完全平方公式与平方差公式综合练习题
平方差、完全平方公式专项练习题
平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-55.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.6.利用平方差公式计算:2009×2007-20082.(1)一变:22007200720082006-⨯.(2)二变:22007200820061⨯+.7.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4 ……(1)观察以上各式并猜想:(1-x)(1+x+x2+……+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.② 2+22+23+……+2n=______(n为正整数).③(x-1)(x99+x98+x97+……+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
最新平方差公式和完全平方公式练习题
一、选择题1.平方差公式(a+b)(a-b)=a -b 中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(a+b)(b-a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a -4;②(2a -b)(2a +b)=4a -b ;③(3-x)(x+3)=x -9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x -y .A.1个B.2个C.3个D.4个4.若x -y =30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x +2y )(______)=9x -4y .7.(a+b-1)(a-b+1)=____________8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.9.利用平方差公式计算:(1)2009×2007-2008 .(2).10. 解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3)11.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.12,判断正误(1)(a-b)=a - b ( )(2)(-a-b)=(a+b)=a+2ab+b ( )(3)(a-b)=(b-a)=b-2ab+a ()( 4)(1)(2x+5y ) (2)( m - n ) (3) (x-3)(4)(-2t-1) (5)( x+ y) (6)(-cd+ )(7)(a+b+c ) (8)(a+b+c+d )(1)代数式2xy-x -y =( )A 、(x-y )B 、(-x-y )C 、(y-x )D 、-(x-y )(2)( )-( )等于 ( )A 、xyB 、2xyC 、D 、02、利用完全平方公式计算。
平方差、完全平方公式专项练习题
( 2)( 3+1)( 32+1)(34+1) … (32008+1 )- 34016 . 2
2.(一题多变题)利用平方差公式计算: 2009 ×2007- 20082.
( 1)一变:利用平方差公式计算:
2007 2
2007 2008
.
2006
( 2)二变:利用平方差公式计算:
2007 2
.
-4-
C组:
10、已知三角形
ABC的三边长分别为 a,b,c 且 a,b,c 满足等式 3(a2 b2 c2) (a b c)2 ,
请说明该三角形是什么三角形?
整式的乘法、平方差公式、完全平方公式、整式的除法 综合运用题
(B 卷) 姓名:
一、请准确填空 1、若 a2+b2-2a+2b+2=0, 则 a2004+b2005=________.
5.( 2007,泰安, 3 分)下列运算正确的是(
)
A . a3+a3=3a6
B .(- a) 3·(- a) 5=-a8
C.(- 2a2b) ·4a=- 24a6b3
D .(- 1 a- 4b)( 1 a- 4b)=16b2- 1 a2
3
3
9
6.( 2008,海南, 3 分)计算:( a+1)( a-1) =______.
平方差公式专项练习题
基础题
一、选择题 1.平方差公式( a+b)( a- b)=a2-b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D .以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
平方差、完全平方公式专项练习题
平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b ) C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+. 3.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方公式专项练习题完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
平方差、完全平方公式专项练习题
公式变形之袁州冬雪创作一、基础题1.(-2x+y )(-2x -y )=______. 2.(-3x 2+2y 2)(______)=9x 4-4y 4.3.(a+b -1)(a -b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那末用较大的正方形的面积减去较小的正方形的面积,差是_____.5.操纵平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a 2+4)(a 4+16)(a -2). (2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).8(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜测:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数) (2)根据你的猜测计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______. (3)通过以上规律请你停止下面的探索:①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方式罕见的变形有:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求yx 的值.3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值.操练: ()5,3a b ab -==求2()a b +与223()a b +的值. 2.已知6,4a b a b +=-=求ab 与22a b +的值.3、已知224,4a b a b +=+=求22a b 与2()a b -的值.4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab++的值.6.已知222450x y x y +--+=,求21(1)2x xy --的值.7.已知16x x -=,求221x x+的值.8、0132=++x x ,求(1)221x x +(2)441xx +9试说明不管x,y 取何值,代数式226415x y x y ++-+的值总是正数. 10、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 知足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值.3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小整式的乘法、平方差公式、完全平方公式、整式的除法一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a2004+b2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________. x 2+41y 2成为一个完全平方式,则应加上________.5.(4a m+1-6a m )÷2am -1=________.×31×(302+1)=________.x 2-5x +1=0,则x 2+21x =________.8.已知(2005-a )(2003-a )=1000,请你猜测(2005-a )2+(2003-a )2=________. 二、相信你的选择x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.110.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5B.51C.-51D.-511.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有 12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于 A.a 4-2a 2b 2+b4B.a 6+2a 4b 4+b6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是 A.11 B.3C.5x 2-7xy +M 是一个完全平方式,那末M 是A.27y2B.249y2C.449y2y 2x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n、y n一定是互为相反数 B.(x 1)n、(y1)n一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x2n -1、-y 2n -1一定相等三、考察你的基本功(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学×106m/h,请你推算一下第二宇宙速度是飞机速度的多少倍? 五、探究拓展与应用 20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1). 根据上式的计算方法,请计算 (3+1)(32+1)(34+1)…(332+1)-2364的值.用适当的方法计算 (1)20022003200220022⨯-(2)2222221247484950-++-+-(3)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222200411411311211 (4)()()()()1212121264842++++整合与拓展 一 变号后运用:()()()()()2525555522+-=--=-+-=---b b b b b b 二交换位置后运用:()()()()2255555b b b b b -=--+-=---三 持续运用:()()()()()4222111111x x x x x x -=+-=+-+四 整体运用:()()()[]()1111222-+=-+=-+++b a b a b a b a 五 逆向应用:2222221247484950-++-+-=()()()()()()12124748474849504950-+++-++-+ 六 先拆项再运用:()()99964100002100210021009810222=-=-=-+=⨯七 先添因式再运用:()()()()1212121264842++++=()()()()1212121212264422-+++-=()()()()()31231212312121212864646444-=+-=++-。
完全平方与平方差公式精选习题
完全平方与平方差公式精选习题1, (a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?(a-b)2与a2-b2相等吗?为什么?2,3, 如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.4, 思考:怎样计算1022,992更简便呢?5, 已知a+b=7,ab=10,求a2+b2,(a-b)2的值.6, 运用完全平方公式计算:(1) (6a+5b)2;(2) (4x-3y)2;(3) (2m-1)2;(4)(-2m-1)2 .7, 若a+b=5,ab=-6, 求a2+b2,a2-ab+b2.8, 已知x2+y2=8,x+y=4,求x-y.9, 看谁算得又快又准.①(x+1)( x-1);②(m+2)( m-2);③(2m+1)(2m-1);④(5y+z)(5y-z).10, 利用平方差公式计算:(1) (5+6x )( 5-6x ) ;(2)(x-2y)(x+2y);(3)(-m+n)(-m-n)(4)(-7m+8n)(-8n-7m);(5)(x-2)(x+2)(x2+4).11, 计算:(1) 103×97; (2) 118×12212, 计算:(1)a2(a+b)(a-b)+a2b2;(2)(2x-5)(2x+5) –2x(2x-3)13, 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.14, 王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?15, .利用平方差公式计算:(1)(a+3b)(a- 3b);(2)(3+2a)(-3+2a);(3)(-2x2-y)(-2x2+y);(4)(-5+6x)(-6x-5).16, (1)51×49;(2)13.2×12.8;(3)(3x+4)(3x-4)-(2x+3)(3x-2). 17,1 (x-y)(x+y)(x2+y2);2.若A=(2+1)(22+1)(24+1),则A的值是______.。
平方差公式、完全平方公式综合练习题
平方差公式、完全平方公式综合练习题在代数学的学习中,平方差公式和完全平方公式是我们经常会用到的重要公式。
它们可以帮助我们简化复杂的计算,提高效率。
本文将为大家提供一些综合练习题,以帮助大家熟练掌握平方差公式和完全平方公式的应用。
练习题1:计算以下表达式的值:(1) $(3x + 4)(3x - 4)$;(2) $(5a + 2b)(5a - 2b)$;(3) $(2x + 7y)(2x - 7y)$。
解答:(1) 首先,我们可以利用平方差公式进行计算:$(3x + 4)(3x - 4) = (3x)^2 - 4^2 = 9x^2 - 16$。
(2) 同样地,利用平方差公式进行计算:$(5a + 2b)(5a - 2b) = (5a)^2 - (2b)^2 = 25a^2 - 4b^2$。
(3) 再次利用平方差公式进行计算:$(2x + 7y)(2x - 7y) = (2x)^2 - (7y)^2 = 4x^2 - 49y^2$。
练习题2:计算以下表达式的值:(1) $9x^2 - 16$;(2) $25a^2 - 4b^2$;(3) $4x^2 - 49y^2$。
解答:(1) 这个表达式可以看作是平方差公式的逆运算。
通过观察可得:$9x^2 - 16 = (3x)^2 - 4^2 = (3x + 4)(3x - 4)$。
(2) 类似地,我们可以将其写成平方差公式的形式:$25a^2 - 4b^2 = (5a)^2 - (2b)^2 = (5a + 2b)(5a - 2b)$。
(3) 同样地,利用平方差公式的逆运算,我们可以得到:$4x^2 - 49y^2 = (2x)^2 - (7y)^2 = (2x + 7y)(2x - 7y)$。
练习题3:计算以下表达式的值:(1) $(x + 2)^2$;(2) $(y - 3)^2$;(3) $(3a - b)^2$。
解答:(1) 这些表达式可以应用完全平方公式进行计算。
平方差公式、完全平方公式练习题
数学试卷 第 1 页,共 2 页数学试卷 第 2 页,共 2 页/ / / ○ / / / / ○/ / / / ○ / / / / ○ / / / / ○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○ / / / / ○ / / / / ○ / / / / ○ / / / / ○ / / /密 封 线 内 不 许 答 题学校 年级 班 姓名 考号平方差公式、完全平方公式练习题一、选择题1、下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m) 2、下列运算中,正确的是( )A. 224)2)(2(b a b a b a -=+--B. 222)2)(2(b a b a b a --=-+-C. 222)2)(2(b a b a b a --=-+D. 224)2)(2(b a b a b a -=+--- 3、(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-4x 2-5y B.-4x 2+5y C.(4x 2-5y)2D.(4x+5y)24、有下列运算:①2229)3(a a = ②2251)51)(15(m m m -=++-③532)1()1()1(--=--a a a ④626442++=⨯⨯n m n m ,其中正确的是( )A. ①②B. ②③C.③④D. ②④5、若m ,n 是整数,那么22)()(n m n m --+值一定是( )A. 正数B. 负数C. 非负数D. 4的倍数 6、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-9 7、(a+3b)2-(3a+b)2计算的结果是( ).A.8(a-b)2B.8(a+b)2C.8b 2-8a 2D.8a 2-8b 28、(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( ).A.-25x 4-16y 4 B.-25x 4+40x 2y 2-16y 2C.25x 4-16y4D.25x 4-40x 2y 2+16y 29、若(x-5)2=x 2+kx+25,则k=( ) A .5 B .-5 C .10 D .-1010、如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )A .4B .2C .-2D .±2 二、填空题1、)(23(b a + 2294)a b -=;2、(12x+3)2 -(12x -3)2=______. 3、已知622=-y x ,3=+y x ,则=-y x4、若a 2+2a=1,则(a+1)2=_________.5、(1)a 2-4ab+( )=(a-2b)26、(a+b)2-( )=(a-b)2 三、计算题(1) )52)(52(22--+-x x (2)( )(3)()()2323x y z x y z +-++ (4)(3a+2b)2-(3a-2b)2(5) 20.1×19.9 (6)20012四、先化简,再求值. (x 3+2)2-2(x+2)(x-2)(x 2+4)-(x 2-2)2,其中x=-21.。
平方差、完全平方公式专项练习题
平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )A.只能是数B.只能是单项式C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是( )A.5B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)22007200720082006-⨯.(2)22007200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是( )A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b )(a +b )=_______. ②(a -b)(a 2+ab+b 2)=______.③(a -b )(a3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差与完全平方公式综合练习
平方差与完全平方公式综合一、选择题1. 下列多项式的乘法中,可以用平方差公式计算的是( )A . ()()a b b a ++B .()()a b a b +--C .1133a b b a ⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭- D .()()22a b b a +- 2. 下列计算正确的是( )A.()223(23)29?x x x +=--B.()24(4)4x x x +=--C.()25(6)30x x x +=-- D. 2(14)(14)116b b b +=---- 3. 下列式中能用平方差公式计算的有( )11 ()()22x y x y -+①,(3)(3)a bc bc a ---②,()() 33x y x y -+++③,()()10011001+--④ A.1个 B.2个 C.3个 D.4个 4. 计算()22222()a b a b ⎡⎤+⎣⎦-等于 ( )A. 42242a a b b +-B. 64462a a b b ++C.64462a a b b +-D. 84482a a b b +-5. ()()42(1)11a a a a +++-的计算结果是( )A.-1B.1C. 42a 1-D. 412a -6. 下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=. A.①② B.②③ C.②④ D.③④7. 如果22481a N ab b •-+是一个完全平方式,则N 等于( )A .18 B.±18 C.±36 D.±648. 化简432x x x •÷(-)(-)(-)的结果是 ( ) A .x 5 B .-x 5 C .x 6 D .-x 69. 计算222323x y x y +(-)-()的结果是 ( )A .28y -B .12xy -C .24xy -D .010. 如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+11. 如果281x ax ++是一个完全平方式,那么a 的值是( ).A.9B.-9C.9或-9D.18或-1812. 若22420x x m +-是一个完全平方式,则m=( )A.5B.-5C.±5D.2513. 若要使222x xy y x y m ++=+(-),则m 的值为( ) A.xy B.3xy C.-xy D.-3xy14. 若2230x y =-,且x -y=-5,则x y +的值是( )A .5B .6C .-6D .-515. 已知()211a b +=, 2ab =,则2()a b -的值是( )A.11B.3C.5D.1916. 有理数a 、b 满足222220a b a b +++=-,则a 、b 的值分别为( )A. 11a b ==,B. 11a b ==-,C. 11a b =-=-,D.不能确定17. 一个正方形的边长为2acm ,若边长增加26cm ,则新正方形的面积人增加了( ).A .236cmB .212acmC .()236+12a cmD .以上都不对二、填空题18. 2235925_______a a (-)=+-. 2222_______4a b a b --()=++. 19. 222__________4x xy y -()=-+.20. ()()22______m m -+=,()()2332______x y y x +-+=,()()22_______?x y y x --=21. 224______92______m m ++=+(), ()229_______813_______x x -+=- 22216_______94_______x y x --=-++(),22. ()()2222 ______24_______(______4)a c c -+-=, 22(_______5n 9m ______________+=++), 23. ()()223232_______?x y x y +--=, 22(321)(321)_______?a a a a -+++=24. 22______________x xy x --+=().25. 22249________81________9a b b -+=(+). 26. 2244321_______a a a ++=(+)+. 27. 22________a b a b --()=(+). 28. 2222________________a b a b a b ---+=(+)=(). 29.()()222121_______x x -++= ,()()22_______a b a b +--= 30. 2________a b c -(+)=. 31. 如果224925y kxy x +-是一个完全平方式,那么k = 32. 已知0136422=+-++y x y x ,求xy =_______.三、解答题33. 运用乘法公式计算:(1)222(32)a b ab + (2)21123m n ⎛⎫- ⎪⎝⎭ ;(3)113322a b b a ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ ; (4)2142x y ⎛⎫-- ⎪⎝⎭(5)()()()2444x x x -+-- (6)()()222323m n m n -+ ;(7)()()2323a b c c a b -+-+(8)2199-(9)2201320152014⨯-.(10)222346.07654.34692.07654.3+⨯+34. 化简:[43432353]2x y x y x y x y x ++÷(-)()-(-)()(-).35. 解方程:(1)()(95)(31)315x x x x +=---. (2)90)7(5)7(2)43(+-=++-x x x x x x36. 已知222710a b ab a b a b +=,=,求+,(-)的值.37. 已知6,4a b a b +=-=求ab 与22a b +的值。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。