1人船模型-动量守恒定律
人船模型(学生版)-动量守恒的十种模型
动量守恒的十种模型解读人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:mv 人-Mv 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=m M +mL 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m 。
“人船模型”的拓展(某一方向动量守恒)【典例分析】1如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【针对性训练】1(2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为()A.M +m M hB.M +m m (h +2a )C.M +m M (h +2a )D.M +m Mh +2a 2(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d ,然后用卷尺测出船长L 。
动量守恒定律题型总结
2
2
R L1 L2
位移关系:
0 m L1 M L2
t
t
L1 L2 R
速度关系:水平方向动量守恒
0 mv MV
mgR 1 mv2 1 MV 2
2
2
ML2 L1 600 m
位移关系:
0 m L1 M L2
t
t
L1 L2 Lcos60o L
速度关系
0 mvsin600 MV
题型五、相对运动问题 定参考系、定速度
(1)每次射击(一发):设艇的速度为V,
则子弹速度为-(800-v)
P25——3T
0 (M m)V m(800V )
V m 800 0.01800 0.067m / s
M
120
(2)连续射击(10发):设艇的速度为V,
则子弹速度为-(800-v)
0 (M 10m)V 10m(800 V )
v0
AB
AB
v
AB
vA
AB
vA vB=2vA
mv0 = 2MvA+mv= MvA+(M+m)vB
题型四、系统含有两个以上的物体——如6T 19 3
3明确系统的选取
v
甲
乙
M
M
0= (M+m)v1 - (M-m)v2
讨论:球在两车之间抛了若干次,最终落在甲 车上,求两车速度之比。 最终落在乙车上,之比是多少?
研究对象(系统),则此系统在从子弹开始射入木块
到弹簧压缩至最短的整个过程中:( A、动量守恒、机械能守恒
B)
B、动量不守恒、机械能不守恒
C、动量守恒、机械能不守恒
D、动量不守恒、机械能守恒
动量守恒定律的应用之“人船模型”
动量守恒定律的应用之“人船模型”1.模型的适用条件物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0.2.模型特点(1)遵从动量守恒定律,如图所示.(2)两物体的位移满足: m x 人t -M x 船t=0 x 人+x 船=L即x 人=M M +m L ,x 船=m M +mL mv 人-Mv 船=03.利用人船模型解题需注意两点(1)条件①系统的总动量守恒或某一方向上的动量守恒。
①构成系统的两物体原来静止,因相互作用而反向运动。
①x 1、x 2均为沿动量方向相对于同一参考系的位移。
(2)解题关键是画出草图确定初、末位置和各物体位移关系。
【题型1】质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边(如图所示),当他向左走到船的左端时,船左端离岸的距离是( )A .LB .L m M +C .ML m M +D .mL m M+ 【题型2】气球质量200 kg 载有质量为50 kg 的人,静止在空中距地面20 m 高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?【题型3】如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2Lm M +mC .ML M +mD .mL M +m【题型4】如图所示,一辆质量为M =3 kg 的小车A 静止在光滑的水平面上,小车上有一质量为m =1 kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6 J ,小球与小车右壁距离为L ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小;(2)在整个过程中,小车移动的距离。
动量守恒的条件 爆炸、反冲运动 人船模型(附精品解析)
动量守恒的条件爆炸、反冲运动人船模型考点一动量守恒的条件考点二爆炸、反冲运动考点三人船模型考点四连续射击问题1.动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.动量守恒定律常用表达式:m1v1+m2v2=m1v1′+m2v2′.1)p=p′:相互作用前系统的总动量p等于相互作用后的总动量p′.2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.4)Δp=0:系统总动量增量为零.考点一动量守恒的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
附:机械能守恒的条件:只有重力、系统内弹力做功.1.下列四幅图所反映的物理过程中,说法正确的是()A.甲图中子弹射入木块过程中,子弹和木块组成系统动量守恒,能量不守恒B.乙图中M、N两木块放在光滑水平面上,剪断束缚M、N的细线,在弹簧从压缩状态恢复原长过程中,M、N与弹簧组成的系统动量不守恒,机械能守恒C.丙图中细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量不守恒,机械能守恒D.丁图中木块沿光滑固定斜面下滑,木块和斜面组成的系统动量守恒,机械能守恒2.如图所反映的物理过程中,以物体A和物体B为一个系统符合系统机械能守恒且水平方向动量守恒的是()A.甲图中,在光滑水平面上,物块B以初速度v0滑上上表面粗糙的静止长木板AB.乙图中,在光滑水平面上,物块B以初速度v0滑下靠在墙边的表面光滑的斜面AC.丙图中,在光滑水平上面有两个带正电的小球A、B相距一定的距离,从静止开始释放D.丁图中,在光滑水平面上物体A以初速度v0滑上表面光滑的圆弧轨道B3.(多选)如图所示,A、B两物体质量之比为m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当两物体被同时释放后,则( )A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒4. (2021·全国乙卷·T14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
动量中的人船模型资料
人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪,弄丢了快乐的自己。擦汗眼泪,告诉自己, 日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。
人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时,你越渴望的东西,也许越是无情无义地弃你 而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。
动量守恒定律的应用
人船模型及应用
作者:孙广志
长为l ,质量为M的船停在静水中,一个质量为m的人 (可视为质点)站在船的左端,当人从船的左端以速 度v走到船的右端的过程中,船的速度是多少?船与人 相对于地的位移分别是多少?(忽略水对船的阻力)
m人S人=M船S船
S人+S船=L
人对地位移:s1=ML/(m+M)船对地位移:s2= mL/(m+M)
“不能。” “它能滋润你的干渴?”
“不能。”
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重,相互包容,相互懂得,才能走的更远。
相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世!
择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓言多么美丽;唯愿简单的相处,真心地付出, 平淡地相守,才不负最美的人生;不负善良的自己。
动量守恒定律常见模型归类
m l2 L M m
Байду номын сангаас
l 2 l1
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
(1)射入类 特点:在某一方向上动量守恒,如子弹有初 速度而木块无初速度,碰撞时间非常短,子弹 射入木块后二者以相同速度一起运动。 (2)射穿类 特点:在某一方向动量守恒,子弹有初速度, 木块有或无初速度,击穿时间很短,击穿后二 者分别以某一速度运动。
动量守恒定律常见模型归类 模型一 —— 人船模型
【例1】质量为m的人站在质量为M ,长 为L的静止小船的右端,小船的左端靠在 岸边。当他向左走到船的左端时,船左 端离岸多远?
动量守恒定律常见模型归类
解:先画出示意图。人、船系统动量守恒,总动量 始终为零,所以人、船动量大小始终相等。 从图中可以看出,人、船的位移大小之和等于 L 。设 人、船位移大小分别为l1、l2 ,则: mv1=Mv2 两边同乘时间t ,有 m· l1 = M· l2 ………… ① 而 l1 +l2 = L ………… ② 联立①②式,解得
动量守恒定律常见模型归类 子弹打木块模型特征
模型特征: (1)系统合力为零,因此动量守恒; ( 2 )系统初动量不为零(一般为一静一动),末动 量也不为零; (3)子弹没有穿出木块时,子弹和木块两者发生的 相对位移等于子弹射入的深度;子弹穿出木块时,子 弹和木块两者发生的相对位移为木块的宽度。 (4)系统因摩擦产生的热量等于滑动摩擦力与两种 物体相对位移的乘积,且等于损失的机械能,即:
Q f s E
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
【例 2】设质量为 m 的子弹以初速度 v0 射向 静止在光滑水平面上的质量为M的木块,并 留在木块中不再射出,子弹钻入木块深度为 d 。求木块对子弹的平均阻力的大小和该过 程中木块前进的距离。
动量守恒(人船模型专题)教学提纲
S2
S1
b
块由斜面顶部无初速滑到底部 时,劈移动的距离是S2多少?
分析和解答:劈和小物块组成的系统水平方向不受外力,
故水平方向动量守恒,且初始时两物均静止,设物块的水平
位移为s1,故由动量守恒定律
可得 ms1=Ms2
由几何关系可得:s1=b-s2
联立上式得 s2=mb/(M+m) 即为M发生的位移。
小结
动量守恒定律的应用Ⅰ
人船模型及应用
制作:朱正泽
复习
动量守恒定律的要点: 1、内容: 如果一个系统不受外力或所受外力之和
为零,则这个系统的总动量保持不变. 2、矢量表达式:
m1v1+m2v2=m1v1′ห้องสมุดไป่ตู้m2v2′
3、条件:系统不受外力或所受外力之和为零。
[演示1]一只小船,停在静水中,船头有一个人从船 头走向船尾,不计水的阻力。
S1
S2
代入数据联立解得:S1=8m, S2=2m
如图所示,质量为M=200kg,长为b=10m的平板车静止在光滑的水平面 上,车上有一个质量为m=50kg的人,人由静止开始从平板车左端走到 右端,求此过程中,车相对地面的位移大小?
[变式练习1]若将此题中的人换成相同
a
质量,长为a=2m的小车 m
b
(如图所示),结果又如何? M
解:由题意仍有:
—SS—12
=
M —m—
此时,小车不能视为质点
S1
S2
由几何关系知相对位移为(b-a),所以有
S1+S2=(b-a) 代入数据联立解得:S1=6.4m, S2=1.6m
m [变式3]斜面
一个质量为M,底面边长为 b
人船模型
O O ′ A B O ″ O bR 2R 人、船问题模型(C)动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
例题、如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,不计水的阻力。
当人从船头走到船尾的过程中,船和人对地的移位各是多大? 解一:设人行走的平均速度为v 1,在时间t 内从船头走到船尾对地位移为S 1,人行走时航速(平均)为v 2,位移为S 2,据动量守恒有 mv 1-Mv 2=0即 mS 1/t-MS 2/t=0 ∴S 1/S 2=M/m而S 1+S 2=l 解得S 1=Ml/(M+m) S 2=ml/(M+m)解二:系统质心位置保持不动,开始时人、船质心为O ′。
且OO ′=A O M m ', OO ′+O ′A=l/2 ∴ l m M M O O +=' 当人从船头走到船尾时,由于对称2l m M m O O ⋅+='' ∴ 船的位移l m M m O O S ⋅+='=22, l mM M S l S ⋅+=-=21 1.静止在空中的气球质量为M ,下面拖一条质量不计的软梯,质量为m 的人站在软梯上端距地面高为h 。
求:⑴人安全不能确定地面软梯的最小长度⑵若软梯长为h ,则人从软梯上端到下端时,人距地面还有多高?2.一质量为M 、底面边长为b 的三角形劈块静止于光滑水平地面上,如图。
有一质量为m 的物块由斜面顶部无初速滑到底部的过程中,劈块移动的距离是多少?3.某人在一只静止于水面上的小船上练习射出。
船、人连同枪(不包括子弹)及靶的总质量为M ,靶立于船头,枪内有n 颗质量均为m 的子弹,枪口到靶的距离为l ,子弹射出枪口时相对地面的速度为v ,在发射后一颗子弹时,前一颗子弹已陷入靶中,则在发射完n 颗子弹后小船后退的距离是多少?4.质量为m 、半径为R 的小球,放在半径为2R 、质量为2m 的大空心球内,大球开始静止在光滑水平面上。
在四种常见模型中应用动量守恒定律(解析版)
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。
人船模型
人船模型“人船模型”是动量守恒定律的应用的一个经典模型,该模型应用的条件:一个原来处于静止状态的系统,当系统中的物体间发生相对运动的过程中,有一个方向上动量守恒.例1.质量是M ,长为L 的船停在静止水中,若质量为m 的人,由船头走向船尾时,人行走的位移和船的位移是多少?解:不考虑水的粘滞阻力,人和船组成的系统在水平方向不受外力,系统在水平方向动量守恒,则 人船υυm M = ①人进船退,人停船停,人由船头走向船尾的这个过程中,始终满足①式,则全过程有M m S S ===人船人船人船υυυ ② 又 L S S =+人船 ③由②③得, L mM m S +=船 例2.一长为L ,质量为M 的船上两端分别站有甲、乙两人,质量分别为m 甲和m 乙.当两人交换位置后,船移动距离多大?其中m 甲>m 乙.解:(方法一)先作出如右草图,解法同上面例1,υυυM m m +=乙乙甲甲 ①MS S m S m +=乙乙甲甲 ② 乙S L S =+ ③L S S =+甲 ④由②③④得, L m m M m m S 乙甲乙甲++-= (方法二)等效法:把(乙甲m m -)等效为一个人,把(乙m M 2+)看成船,用例1结论,即得到L m m M m m S 乙甲乙甲++-=说明:无论甲、乙谁先走还是同时走,无论在运动过程中谁的速度大谁的速度小,也无论谁先到达船的另一头,最终的结果,船移动的方向和距离都是唯一确定的。
例3.小车静置在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端。
已知车、人、枪和靶的总质量为M (不含子弹),每颗子弹质量为m ,共n 发。
打靶时,每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发。
若枪口到靶的距离为d ,待打完n 发子弹后,小车移动的距离为_______。
解:等效为人船模型,总质量为nm 的子弹,运动到小车的另一端,则小车移动的距离可直接由例1结论得到, d nmM nm S +=车 例4.如图所示,一辆小车静止在光滑水平面上在C 、D 两端置有油灰阻挡层,整辆小车质量1㎏,在车的水平底板上放有光滑小球A 和B,质量分别为m A =1㎏,m B =3㎏,A 、B 小球间置一被压缩的弹簧,其弹性势能为6J,现突然松开弹簧,A 、B 小球脱离弹簧时距C 、D 端均为0.6m.然后两球分别与油灰阻挡层碰撞,并被油灰粘住,问:(1)A 、B 小球脱离弹簧时的速度大小各是多少?(2)整个过程小车的位移是多少?解:(1)以向左为正方向0=+B B A A m m υυ ①p B B A A E m m =+222121υυ ② 由①②得,s m A /3=υs m B /1-=υ(2)(方法一)A 以s m A /3=υ向左运动,经0.2s 和C 碰撞时,B 只前进了0.2m ,离D还有0.4m ,A 和C 碰撞,水平方向动量守恒AC A A A m m m υυ)(+= 解得,s m AC /5.1=υ碰后瞬间,A 和C 就以共同速度s m AC /5.1=υ向左运动,B 继续以s m B /1=υ的速度向右运动。
3.动量守恒定律的应用人船模型
3. 推论: m1s1=m2s2 4. 使用时应明确v1、 v2 、s1、s2 必须是 相对同一参照系(一般取地面)的大小.
例题9:某人在船上练习射击,人 在船的一端,靶在船的另一端,相
距为L,人、船、枪(不含子弹) 、靶的总质量为M,枪膛每颗子弹 的质量为m,共有子弹n发。当人把
2. 不需考虑过程的细节, 只需考虑初末
状态
教学目的
1、理解平均动量的概念及平均动量守 恒特点。 2、掌握“人船模型”的原理及方法。 3、会应用“人船模型”求位移等相关 物理问题。
人船模型
利用平均动量守恒求位移
播放动画
平均动量守恒求位移“模型”推导
解:以船和人为系统作为研究对象; 由于不计水的阻力,所以系统的动量守恒
课后讨论:
1.m越大,则S船也越大;反之,M越大, S船越小。
2.当M﹥﹥m时,S船→0;如:人在万吨 巨轮上行走时,S船→0;当M﹤﹤m时, 也可得到S船≈L
3.不论人怎样走动(匀速、变速),当
人从船头走至船尾时,船移动的距离 相同,而且人动船动,人停船停。
思考题:
1、一质量为M的船,静止于湖水 中,船身长L,船的两端点有质量 分别为m1和m2的人,且m1=m2,当 两人交换位置后,船身位移的大小 是多少?(不计水的阻力)
总结 :人船模型的综合 一发、散人船及人车模型(水平 二方、向劈)(斜面,弧面)和物块(水平 方三向、)气球和人(竖直方 四向、)圆环和球及圆环和环(水 处平理方此向类)题,除熟记推论外,关键是 画草图,确定位移s1和s2的关系。
作业
1.如图2所示,在光滑水平地面上,有两 个光滑的直角三形木块A和B,底边长 分别为a、b,质量分别为M、m,若M = 4m,且不计任何摩擦力,当B滑到底 部时,A向后移了多少距离?
高中物理“人船模型”问题的特点和分析
高中物理“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.典例1 如图7所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?图7答案 m m +M L M m +ML 解析 设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒, 所以有m v 1=M v 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +ML . 典例2 如图8所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图8A.mhM+m B.Mh M+mC.mh(M+m)tan αD.Mh (M+m)tan α答案C解析此题属“人船模型”问题.m与M组成的系统在水平方向上动量守恒,设m在水平方向上对地位移为x1,M在水平方向上对地位移为x2,因此有0=mx1-Mx2. ①且x1+x2=htan α.②由①②可得x2=mh(M+m)tan α,故选C.“人船模型”问题应注意以下两点1.适用条件:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).2.画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.。
高考经典物理模型:人船模型(一)
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该m系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
专题19 动量守恒定律(人船模型)-2019高考物理一轮复习专题详解(解析版)
知识回顾“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则由11220m v m v -=得:1122m s m s =使用时应明确:1s 、2s 必须是相对同一参照系的位移大小。
当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。
解此类题一定要画出反映位移关系的草图。
“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。
例题分析【例1】 一质量为M ,长为s 0的船静止于水面上,一质量为m 的人站在船头,当人从船头走到船尾时,求船前进的位移s 的大小.(不计水的阻力) 【答案】s =mM +m s 0【解析】 因不计水的阻力,人和船组成的系统动量守恒,设人、船相对地的平均速度分别为v 、v 0,【例2】. 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A .B .C .D .【答案】C【例3】(2017年广东省三校五月模拟)某小组在探究反冲运动时,将质量为m 1的一个小液化瓶固定在质量为m 2的小船上,利用液化瓶向外喷射气体作为船的动力.现在整个装置静止放在平静的水面上,已知打开液化瓶后向外喷射气体的对地速度为v 1,如果在Δt 的时间内向后喷射的气体的质量为Δm ,忽略水的阻力,则(1)喷射出质量为Δm 的液体后,小船的速度是多少?(2)喷射出Δm 液体的过程中,小船所受气体的平均作用力的大小是多少? 【答案】v 2=Δmv 1m 1+m 2-Δm,方向与喷射气体的速度方向相反; F =Δmv 1Δt【解析】:设小船的速度大小为v 2,由动量守恒定律得 Δmv 1-(m 1+m 2-Δm )v 2=0解得v 2=Δmv 1m 1+m 2-Δm ,方向与喷射气体的速度方向相反(2)设对喷射气体的平均作用力为F ,由动量定理得 FΔt =Δmv 1-0 解得F =Δmv 1Δt由牛顿第三定律得气体对小船的平均作用力为 F ′=F =Δmv 1Δt.1 、如图所示,一个质量为m 1=50 kg 的人爬在一只大气球下方,气球下面有一根长绳.气球和长绳的总质量为m2=20 kg,长绳的下端刚好和水平面接触.当静止时人离地面的高度为h=5 m.如果这个人开始沿绳向下滑,忽略重力和空气阻力,当他滑到绳下端时,他离地面的高度是(可以把人看做质点)()A.5 m B.3.6 m C.2.6 m D.8 m【答案】B【解析】设在此过程中人、气球对地发生的位移分别是x、x′,由动量守恒定律有m1x=m2x′,又因为x +x′=h,解得x′≈3.57 m,选B项.学科&网2 、如图所示,质量为m的小球A系在长为l的轻绳一端,轻绳的另一端系在质量为M的小车支架的O 点.现用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的橡皮泥碰击后粘在一起,则在此过程中小车的位移是()A.向右,大小为lB.向左,大小为lC.向右,大小为lD.向左,大小为l【答案】D3 、如图所示,静止在光滑水平面上的小车质量为M,固定在小车上的杆用长为l的轻绳与质量为m的小球相连,将小球拉至水平右端后放手,则小车向右移动的最大距离为()A.B.C.D.【答案】C4 、质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球壳内,如图所示,当小球从图示位置无初速度沿内壁滚到最低点时,大球移动的位移为()A.,方向水平向右B.,方向水平向左C.,方向水平向右D.,方向水平向左【答案】D【解析】设小球滑到最低点所用的时间为t,发生的水平位移大小为R-x,大球的位移大小为x,取水平向左方向为正方向.则根据水平方向平均动量守恒得:2m2-m1=0,即:m=2m,解得:x=R,方向向左,故D正确,A、B、C错误5 、(多选)如图所示,质量均为M的甲、乙两车静置在光滑的水平面上,两车相距为L.乙车上站立着一个质量为m的人,他通过一条轻绳拉甲车,甲、乙两车最后相接触,以下说法正确的是()A.甲、乙两车运动中速度之比为B.甲、乙两车运动中速度之比为C.甲车移动的距离为LD.乙车移动的距离为L【答案】ACD6 、(多选)小车静止在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端,如图所示.已知车、人、枪和靶的总质量为M(不含子弹),每颗子弹质量为m,共n发,打靶时,枪口到靶的距离为d.若每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发.则以下说法中正确的是()A.待打完n发子弹后,小车将以一定的速度向右匀速运动B.待打完n发子弹后,小车应停在射击之前位置的右方C.在每一发子弹的射击过程中,小车所发生的位移相同,大小均为D.在每一发子弹的射击过程中,小车所发生的位移不相同【答案】BC【解析】车、人、枪、靶和n颗子弹组成的系统动量守恒,系统初动量为0,故末动量为0,A错误;每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发,因此每次射击,以一颗子弹和车、人、枪、靶、(n-1)颗子弹为研究对象,动量守恒,则:0=m-[M+(n-1)m]·,由位移关系有:x车+x子=d,解得x车=,故C正确;每射击一次,车子都会右移,故B正确7 、(多选)小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车的质量为M 、长为L ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C 离开弹簧向B 端冲去,并跟B 端橡皮泥黏在一起,以下说法中正确的是( )A . 如果AB 车内表面光滑,整个系统任何时刻机械能都守恒 B . 整个系统任何时刻动量都守恒C . 当木块对地运动速度大小为v 时,小车对地运动速度大小为vD . AB 车向左运动最大位移大于【答案】BC8.(2017年高考·课标全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/s D. 6.3×102 kg·m/s 【答案】:A【解析】:燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.9.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.mM -m v【答案】D【解析】:喷气过程内力远远大于外力,动量守恒.由动量守恒定律得0=(M -m )v -mv 0,得v =mM -m v 0,D 正确.学科&网10.(多选)(2017年长沙模拟)如图所示,在光滑水平面上停放着质量为m 、装有光滑弧形槽的小车,一质量也为m 的小球以水平初速度v 0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( )A .小球以后将向右做平抛运动B .小球将做自由落体运动C .此过程小球对小车做的功为mv 202D .小球在弧形槽内上升的最大高度为v 202g【答案】:BC11.(多选)(2017年北京东城区模拟)两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受合力的冲量与另一物体所受合力的冲量相同 C .两个物体的动量变化总是大小相等、方向相反 D .系统总动量的变化为零 【答案】CD【解析】:两个物体组成的系统总动量守恒,则p 1+p 2=p ′1+p ′2,等式变形后得p 1-p ′1=p ′2-p 2,即-Δp 1=Δp 2,-m 1Δv 1=m 2Δv 2,所以每个物体的动量变化大小相等,方向相反,但是只有在两物体质量相等的情况下才有一个物体增加的速度等于另一个物体减少的速度,故A 错误,C 正确;根据动量定理得I 1=Δp 1,I 2=Δp 2,每个物体的动量变化大小相等,方向相反,所以每个物体受到的冲量大小相等,方向相反,故B 错误;两物体组成的系统总动量守恒,即系统总动量的变化为零,D 正确.12.(2017·课标全国Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s 【答案】 A13.(2017·福州模拟)一质量为M 的航天器正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小v 2,则喷出气体的质量m 为( )A .m =v 2-v 1v 1MB .m =v 2v 2-v 1MC .m =v 2-v 0v 2+v 1MD .m =v 2-v 0v 2-v 1M【答案】 C【解析】规定航天器的速度方向为正方向,由动量守恒定律可得Mv 0=(M -m)v 2-mv 1,解得m =v 2-v 0v 2+v 1M ,故C 项正确.14.(2017·沈阳一模)在光滑的水平地面上放有一质量为M 带光滑14圆弧形槽的小车,一质量为m 的小铁块以速度v 0沿水平槽口滑去,如图所示,若M =m ,则铁块离开车时将( )A .向左平抛B .向右平抛C .自由落体D .无法判断 【答案】 C【解析】小铁块和小车组成的系统水平方向不受外力,系统水平方向的动量守恒,以向左为正方向,由动量守恒定律得:mv 0=Mv 车+mv 铁系统的机械能守恒,由机械能守恒定律得:12mv 02=12Mv 车2+12mv 铁2解得铁块离开车时:v 铁=0,v 车=v 0.所以铁块离开车时将做自由落体运动,故A、B、D三项错误,C项正确.15.如图所示,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面.今把质量为m的小物体从A点由静止释放,m与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间的距离x随各量变化的情况是()A.其他量不变,R越大x越大B.其他量不变,μ越大x越大C.其他量不变,m越大x越大D.其他量不变,M越大x越大【答案】 A16.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C点以后,将做竖直上抛运动D.槽将不会再次与墙接触【答案】 D【解析】小球从A→B的过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽和物块组成的系统动量也不守恒;从B→C的过程中,小球对半圆槽的压力方向向右下方,所以半圆槽要向右推动物块一起运动,此过程中,小球、半圆槽和物块组成的系统在水平方向动量守恒,A、B两项错误;当小球运动到C点时,它的两个分运动的合速度方向并不是竖直向上,所以此后小球做斜上抛运动,即C项错误;因为全过程中,整个系统在水平方向上获得了水平向右的冲量,最终槽将与墙不会再次接触,D项正确.17、质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,水的阻力不计,则小船的运动速率和方向为()A.0.6 m/s,向左B.3 m/s,向左C.0.6 m/s,向右D.3 m/s,向右【答案】A。
动量守恒中的常见模型
动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.【例题1】如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相同的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时【例题2】如图所示,位于光滑水平面桌面上的小滑块P和Q都视作质点,质量相等。
Q与轻质弹簧相连。
设Q静止,P以某一初速度向Q 运动并与弹簧发生碰撞。
在整个过程中,弹簧具有最大弹性势能等于()A.P的初动能B .P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/4【例题3】小球A和B的质量分别为mA 和mB 且mA»mB 在某高度处将A和B先后从静止释放。
人船模型(教案)
人船模型(教案)第一篇:人船模型(教案)动量守恒定律应用----“人船模型”【学习目标】1.知道“人船模型”指什么,知道“人船模型”的实质是反冲运动。
2.能用动量守恒定律分析解决“人船模型”问题。
【重点难点】1、“人船模型”的基本原理。
2、动量守恒定律应用。
【学法指导】“人船模型”不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.利用“人船模型”及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果来了.通过本节学习,能比较容易的解决这类问题。
课前预习复习动量守恒定律(1)内容:(2)常用的表达形式(3)常见守恒形式及成立条件新课学习一、想一想1、如图1所示,长为L、质量为M的船停在静水中,一个质量为m的人立在船头,若不计水的阻力,在人从船头走到船尾的过程中,小船相对于湖面移动的距离是多少?2、如图所示,质量为M=200kg,长为b=10m的平板车静止在光滑的水平面上,车上有一个质量为m=50kg的人,人由静止开始从平板车左端走到右端,求此过程中,车相对地面的位移大小?二、试一试1、若将此题中的人换成相同质量,长度为a= 2米的小车(如图所示),结果又如何?2、如图所示,质量均为M的甲、乙两车静止在光滑的水平地面上,两车相距为L,乙车上站立一个质量为m的人,他通过一条轻绳拉甲车,甲乙两车最后相接触,下列说法中错误的是()A、该过程中甲、乙两车移动的距离之比为B、该过程中甲、乙两车移动的速度之比为C、该过程中甲车移动的距离为D、该过程中乙车移动的距离为三、做一做1、载人气球原来静止在空中(如图所示),质量为M,下面拖一条质量不计的软梯,质量为m的人(可视为质点)站在软梯上端距地面高度为H,若人要沿轻绳梯返回地面,则绳梯的长度L至少为多长?2、一个质量为M,底面边长为b 的劈静止在光滑的水平面上,见左图,有一质量为m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是S2多少?3、如图所示,一滑块B静止在光滑水平面上,其上一部分为半径是R的1/4光滑圆轨道,此滑块总质量为m2,一个质量为m1的小球A(可视为质点)由静止从最高点释放,当小球从最低点水平飞出时,小球和滑块对地的位移S1,S2分别为多大?4、如图所示,质量为3m,半径为R的大空心球B(内壁光滑)静止在光滑水平面上,有一质量为m 的小球A(可视为质点)从与大球球心等高处开始无初速下滑,滚到另一侧相同高度时,大球移动的距离为()A、RB、R/2C、R/3D、R/4四、人船模型总结1、判断构成相互作用的系统是否动量守恒,或是在某一方向上动量守恒。
专题十六 人船模型
专题十六 人船模型说明1.人船模型:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题。
2.人船模型的特点(1)两物体满足动量守恒定律(2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即.应用此关系时要注意一个问题:即公式、和x 一般都是相对地面而言的.练习题1.如图所示,长为l ,质量为m 的小船停在静水中,一个质量为m ′的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,小船对地的位移是多少?2.(单选)有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L,已知他自身的质量为m,则渔船的质量M 为( )A .mL dB .()m L d d- C .()m L d d + D .md L d - 3.(单选)如图所示,大气球质量为100kg ,载有质量为50kg 的人(可以把人看做质点),静止在空气中距地面20m 高的地方,气球下方悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这绳长至少应为( ) A .20m B .30m C .40mD .50m4.如图所示,物体A 和B 质量分别为m 1和m 2,其图示直角边长分别为a 和b 。
设B 与水平地面无摩擦,当A由O 顶端从静止开始滑到B 的底端时,B 的水平位移是多少?5.如图所示,质量为m ,半径为r 的小球,放在内半径为R ,质量M =3m 的大空心球内,大球开始静止在光滑水平面上,求当小球由图中位置无初速度释放沿内壁滚到最低点时,大球移动的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
1.如图所示,F 1、F 2等大反向,同时作用于静止在光滑水平面上的A 、B 两物体上,已知M A >M B ,经过相同时间后撤去两力.以后两物体相碰并粘成一体,这时A 、B 将 ( )
A .停止运动
B .向右运动
C .向左运动
D .仍运动但方向不能确定
2.如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑斜面由静止自由滑下,下滑到达斜面底端的过程中
A.两物体所受重力做功相同
B.两物体到达斜面底端时动量相同
C.两物体所受合外力冲量相同
D.两物体到达斜面底端时动量变化量的大小相等
3.如图,质量为m 的人在质量为M 的平板车上从左端走到右端,若不计平板车与地面的摩擦,则下列说法不正确...
的是( ) A .人在车上行走时,车将向左运动
B .当人停止走动时,由于车的惯性大,车将继续后退
C .人以不同速度从车的左端走到右端,车在地面上移动的距离不变
D .不管人在车上行走的速度多大,车在地面上移动的距离都相同
4. 下列情形中,满足动量守恒的是
A. 铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量
B. 子弹水平穿过放在光滑水平桌面上的木块过程中,子弹和木块的总动量
C. 子弹水平穿过墙壁的过程中,子弹和墙壁的总动量
D. 棒击垒球的过程中,棒和垒球的总动量
5.把皮球从地面以某一初速度竖直上抛,经过一段时间后皮球又落回抛出点,上升最大高度的一半处记为A 点。
以地面为零势能面。
设运动过程中受到的空气阻力大小与速率成正比,则
A .皮球上升过程中的克服重力做功大于下降过程中重力做功
B .皮球上升过程中重力的冲量大于下降过程中重力的冲量
C .皮球上升过程与下降过程空气阻力的冲量大小相等
D .皮球下降过程中重力势能与动能相等的位置在A 点下方
6.如图所示,轻弹簧下悬重物m 2。
m 2与m 1之间用轻绳连接。
剪断m 1与m 2间的轻绳,经较短时
间m 1有速度u ,m 2有速度大小为v ,求这段时间内弹力的冲量及弹力的平均值。
7.如图所示,气球吊着A 、B 两个物体以速度v 匀速上升,A 物体与气球的总质量为m 1,
物体B 的质量为m 2,m 1>m 2。
某时刻A 、B 间细线断裂,求当气球的速度为2v 时,求物体B
的速度大小并判断方向。
(空气阻力不计)
1.如图所示,A 、B 两物体质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则
A .若A 、
B 与平板车上表面间的动摩擦因数相同,A 、B 组成的系统动量守恒
B .若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 、
C 组成的系统动量守恒
C .若A 、B 所受的摩擦力大小相等,A 、B 组成的系统动量守恒
D .若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统动量守恒
2.如图所示,在光滑的水平面上,有甲、乙两木块,两木块间夹一轻质弹簧,弹簧仅与木块接触但不连接,用两手握住木块压缩弹簧,并使两木块静止,则( )
A .两手同时释放,两木块的总动量为零
B .先释放甲木块,后释放乙木块,两木块的总动量方向向右
C .先释放甲木块,后释放乙木块,两木块的总动量方向向左
D .在先释放甲木块,后释放乙木块的全过程中,两木块的总动量守恒
3.如图所示,质量为m 的人立于平板车上,人与车的总质量为M ,人与车以速度v 1在光滑水平面上向东运动。
当此人相对于车以速度v 2竖直跳起时,车向东的速度大小为 (填选项前的字母)
A
. B . C . D .v 1
4.如右图所示,小车M 静置于光滑水平面上,上表面粗糙且足够长,木块m 以初速度v 滑上小车的上表面,则( )
A .m 的最终速度为mv M
B .因小车上表面粗糙,故系统动量不守恒
C .当m 速度最小时,小车M 的速度最大
D .若小车上表面越粗糙,则系统因摩擦而产生的内能也越大
5.某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M ,枪内装有n 颗子弹,每颗子弹的质量均为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 。
在发射后一颗子弹
时,前一颗子弹已射人靶中,在发射完n 颗子弹并击中靶时,不计船受到的阻力,小船后退的距离等于
( )
A .0 B
6.如图在光滑水平面上叠放AB 两物体,其间有摩擦,m A =2 kg ,m B =1 kg ,速度的大小均为v 0=10 m/s ,设A 板足够长,当观察到B 做加速运动时,A 的可能速度为( )
A .2 m/s
B .3 m/s
C .4 m/s
D .5 m/s
7.如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对,小船静止。
若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )
1.静止在水面上的船长为L 、质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离是
2.如图所示,气球质量为100kg ,下连一质量不计的长绳,质量为50kg 的人抓住绳子与气球一起静止在20m 高处,若此人要沿着绳子安全下滑着地,求绳子至少有多长。
3.如图所示,一质量为m l 的圆筒A ,圆筒内外皆光滑,将A 置于光滑水平面上,圆筒半径为R.现有一质量为m 2的光滑小球B (可视为质点),由静止从圆筒的水平直径处沿筒壁滑下,设A 和B 均为弹性体,且不计空气阻力,求圆筒向一侧滑动的最大距离.
4.如图所示,一质量为M 的三角形木块(AB=L )静止在光滑水平,一质量为m 的木块可视为质点,从顶端C 释放,所有接触面均光滑,求m 滑至B 时M 滑动的位移。
5.如图所示,一平板车质量为M 其长度为L ,静止在光滑水平面上。
平板车上有一质量为m 的汽车长度为d ,汽车从一端行驶到另一端,求:平板车与汽车各自的位移。
6.如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当绳与A B 成θ角时,圆环移动的距离是多少?
1. 质量为M 的平板车以速度v 0在光滑水平面上滑行,车旁有人将质量为m 的小木块无初速地轻放在车上,已知木块与平板车间的动摩擦因素为μ,平板车可以无限长。
试求:⑴ 它们的共同速度为多少? ⑵ 需经多长时间两者才能相对静止?
2.如图所示,两小车A 、B 置于光滑水平面上,质量分别为m 和2m ,一轻质弹簧两端分别固定在两小车上,开始时弹簧处于拉伸状态,用手固定两小车。
现在先释放小车B ,当小车B 的速度大小为3v 时,再释放小车A ,此时弹簧仍处于拉伸状态;当小车A 的速度大小为v 时,弹簧刚好恢复原长。
自始至终弹簧都未超出弹性限度。
求:
①弹簧刚恢复原长时,小车B 的速度大小;
②两小车相距最近时,小车A 的速度大小。
3.如图所示,质量为1kg 的小物块以5m/s 的初速度滑上一块原来静止在水平面上的木板,木板质量为4kg ,木板与水平面间的动摩擦因数为0.02,经时间2s 后,小物块从木板另一端以1m/s 相对于地的速度滑出g=10m/s 2,求: (1)小物块与木板间的动摩擦因数。
(2)这一过程中木板的位移。
(3)此过程中因摩擦增加的内能。
4.物块A 和B (均可视为质点),由车上P 处分别以初速度v 1=2m/s 向左和v 2=4m/s 向右运动,最终A 、B 两
物块恰好停在小车两端没有脱离小车。
已知两物块与小车间的动摩擦因数都为μ=0.1,取g=10m/s 2。
求:
(1)小车的长度L ;
(2)A 在小车上滑动的过程中产生的热量;
(3)从A 、B 开始运动计时,经5s 小车离原位置的距离。
V 0。