光纤光学ppt课件
光纤光学课件第一章
幻灯片 1
光纤光学 第一章
光纤传输的基本理论
W-C Chen
幻灯片 2 §1. 前言
Foshan Univ.
低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。光纤在工程上的 使用促使人们需要对光纤进行深入研究,形成一门新的学科——光纤光学。
NA ni sinim n12 n22 n1 2
*相对折射率差:
(n12 n22 ) / 2n12
约束光: z zc
*折射光: z zc
幻灯片 14 *渐变折射率分布:
子午光线:渐变折射率分布
n(r) n1 1 2(r / a)2 1/2 n2
0ra ra
*光线轨迹: 限制在子午平面内传播的周期曲线。 轨迹曲线在光纤端面投影线仍 是过圆心的直线,但一般不与纤壁相交。
波动理论的数学基础——麦克斯韦方程:
H D/ t J
E B / t
D
B 0
幻灯片 20 从麦克斯韦方程组出发导出一般波导介质中电场的波动方程
2E
(E
)
E
2E t 2
J t
由
E
B
E
t
B
( H )
t
t
根据恒等式关系,有
10
光纤光学第一章课件 ppt 转 word---陆众 制
幻灯片 26
模式的基本性质
当采用波动理论来分析光波在光纤中的传输时,须求解波导场方程。其方法是首先求出
纵向场分量 Ez 和 Hz,然后利用纵横关系式求出场的横向分量。求出 Ez 和 Hz,再通过
麦克斯韦方程组求出其他电磁场分量,就得到任意位置的电场和磁场。
第5章-光纤光学ppt课件光纤的特征参数与测试技术
如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲展 宽值为 : D = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
显然这种情形下, 1 Gbps速率光通信系统没有任何问题。
课堂测验(7)
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功率
为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55μm的波长损耗比1.3μm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤的损耗
§5.1.1 光纤材料的吸收损耗
光纤的损耗谱
不断拓展的光纤窗口波长
2004年
7
§5.1.2 散射损耗
特点:不可能消除的损耗
散射损耗
特点:非线性散射
产生新的频率分量
散射
机理: 光
新光波长+声子
§ 5.1.3 光纤的弯曲损耗
物理机制
光纤发生弯曲
全反射条件破坏
约束能力下降
导摸转化为辐射摸
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零?
习题:5.4~5.11
《光纤光学教学课件》第十九讲
光纤传感器的原理与分类
原理
光纤传感器利用光在光纤中的传输特性变化来检测各种物理量(如温度、压力、 位移、速度等)的变化。当外界参数作用于光纤时,光纤中光的强度、相位、波 长等会发生改变,从而检测出外界参数的变化。
分类
根据不同的分类标准,光纤传感器可以分为多种类型。按工作原理可分为功能型 和非功能型;按被测物理量可分为强度型、干涉型、偏振型和分布式光纤传感器 等;按应用领域可分为工业、环境、医疗和军事等领域的光纤传感器。
04 新型光纤技术及发展趋势
CHAPTER
光子晶体光纤
光子晶体光纤是一种新型光纤,其结构由石英、聚合物或复合材料制成,具有光子 带隙特性。
光子晶体光纤具有高非线性、低损耗、低色散等优点,在光通信、光传感、激光等 领域具有广泛的应用前景。
光子晶体光纤的制造工艺主要包括微纳加工、化学气相沉积等,其应用场景包括光 子晶体激光器、光子晶体光纤传感器等。
光纤的传输损耗
光纤的传输损耗
光纤在传输过程中会因为吸收、散射和弯曲等原因产生能量损耗,这些损耗限 制了光信号的传输距离和信号质量。
减小传输损耗的方法
通过采用低损耗光纤、优化光纤制造工艺、减小光纤弯曲半径等方法可以减小 光纤的传输损耗。
02 光纤通信系统概述
CHAPTER
光纤通信系统的组成
光纤
传输光信号的介质,由石英等 材料制成。
在成本方面,多模光纤制造成本较低,而单模光纤制 造成本较高。
光纤技术的发展趋势
未来光纤技术的发展将更加注重高带宽、高速率、低损耗、低色散等方 面。新型光纤材料和制造工艺的不断涌现,将推动光纤技术的进一步发 展。
新型光纤技术还包括光子晶体光纤、光子带隙光纤等,这些光纤具有优 异的光学性能和潜在的应用前景。
chapter光纤光学ppt课件
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。
光纤光学课件第一章
幻灯片1光纤光学第一章光纤传输的基本理论W-C ChenFoshan Univ.幻灯片2§1. 前言低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。
光纤在工程上的使用促使人们需要对光纤进行深入研究,形成一门新的学科——光纤光学。
幻灯片3光纤的分类幻灯片4实用光纤主要的三种基本类型(a) 突变型多模光纤; (b) 渐变型多模光纤;(c)单模光纤(a)(b)(c)多模光纤幻灯片5阶跃折射率光纤剖面测量图(华工光通信研究所)单模光纤多模光纤幻灯片6光纤结构●光纤(Optical Fiber)是由中心的纤芯(Core)和外围的包层(Cladding)同轴组成的圆柱形细丝。
●纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
●包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。
●设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。
幻灯片7主要用途:突变型多模光纤只能用于小容量短距离系统。
渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平1.55μm色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。
偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。
幻灯片8§2.光纤的研究方法 ——光线理论幻灯片9 光线理论 ● 光线分类● 子午光线 ● 倾斜光线 射线方程几何光学法分析问题的两个出发点 • 数值孔径 • 时间延迟 幻灯片10● 设纤芯和包层折射率分别为n1和n2,空气的折射率n0=1, 纤芯中心轴线与z 轴一致。
● 光线在光纤端面以小角度θ从空气入射到纤芯(n0<n1),折射角为θ1,折射后的光线在纤芯直线传播,并在纤芯与包层交界面以角度ψ1入射到包层(n1>n2)。
光纤基础知识PPT演示课件
62.5/50m
8~10m
1.0m
125m2m
2%
245m10m
15m
2m
•16
光纤:参数
光纤的光学及传输特性参数
• 模场直径 • 衰减系数 • 色散系数 • 截止波长 • 弯曲损耗 • 偏振模色散
•17
光纤:参数
光纤的光学及传输特性参数
模场直径:
高斯分布的单模光纤, 模场直径是光场幅度 分布1/e处各点所围成 圆的直径,也等于光 功率分布1/e2处各点 所围成圆的直径。
一部分入射光将被反射
一部分入射光将进入第二种媒质,并产生折射
1 2
媒质1 折射率n1
媒质2 折射率n2
1=2
媒质1
1
折射率n1
2
媒质2
折射率n2
n1·Sin1=n2·Sin2
•3
折射率 n=光在真空中的传播速度/光在该媒质中的传播速度
媒质 真空 空气 水 多模光纤 单模光纤 玻璃 钻石
折射率 1.0 1.0003 1.33 1.457 1.471 1.5~1.9 2.42
1
4
4
3
1 非色散位移光纤 2 色散位移光纤 3 色散平坦光纤 4 非零色散位移光纤
2
0 1200
1400 1500 1600 1700 1800 nm
-4
-8
波长(nm)
•22
光纤:参数
光纤的光学及传输特性参数
截止波长:
光纤作为单模光纤工作的最短波长。工作 波长超过此波长时,只能传输基模,此时光纤 为单模光纤;工作波长低于此波长时,除基模 外,高次模也可传输,此时光纤为多模光纤。
如:Corning的Submarine Leaf光纤 Lucent的TrueWave XL光纤
第4章 光纤光学课件渐变折射率分布光纤
r0n(r0 )sinθZ(r0 )cosθφ(r0 )
角向运动特点
光线的角动量:
恒为常数
r
2
r2
df
dt
I n
Hale Waihona Puke dz dtI nVp
Ic
n2
– 这表明,光线角向运动速度将取决于光线轨迹 到纤轴距离r:在最大的r处光线转动最慢;在最 小的r处光线转动最快。
子午光线:θφ=π/2, I 0
dφ/dz=0 光线保持在同一平面
(dz/dS)|r0
=rcosθrzr(ˆr0) zzˆ
x
P
r r
zdz
r P0 r0
ds
r0 p
r0df dl dr
f
y
ef
Q er
轴向运动
分析轴向分量方程:
d n dz 0 dS dS
有: n(dz/dS)=const., 令其为 n , 则有
n =n(r)dz/dS=n(r)cosθz(r)=n(r0)cosθz(r0) n ---- 第一射线不变量
0
rl1
rl 2 a rl 3
r
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
光线存在区域: rl1 < r < rl2
r > rl3 内散焦面半径:rl1 外散焦面半径:rl2 辐射散焦面半径: rl3
n2(a)- I2 /a2
在r>rr1的所有区域均有光线存在,因此光线的约束作 用完全消失,光线毫无阻挡地进入包层中传播。
角向运动
分析φ分量方程:
光纤课件ppt
目 录
• 光纤基础知识 • 光纤通信系统 • 光纤网络 • 光纤传感技术 • 光纤在医疗领域的应用 • 未来展望
01
光纤基础知识
光的本质与传播
01
02
03
光的波动性
光在传播过程中表现出波 动性质,如干涉、衍射等 。
光的粒子性
光同时具有粒子性质,光 子是光的能量单位,具有 动量和能量。
光的传播速度
低损耗
光纤传输损耗较低,可实现长 距离传输。
带宽大
光纤传输带宽较大,可同时传 输多种信号。
抗干扰能力强
光纤传输不受电磁干扰影响, 具有较高的保密性和稳定性。
温度稳定性好
光纤材料具有较好的温度稳定 性,可在不同环境下稳定传输
。
02
光纤通信系统
光源与光调制
光源
激光器(LD)和发光二极管( LED)是光纤通信中常用的光源 。它们能够产生单色光,具有较 高的频率和较窄的光谱线宽。
光调制
光调制是将信息转换为光信号的 过程。常见的光调制方式包括开 关键控(OOK)、脉冲位置调制 (PPM)和相位调制(PSK)等 。
光纤的连接与耦合
光纤连接器
光纤连接器是用来连接两根光纤的器 件,常见的光纤连接器有SC、FC、 LC和ST等类型。
光纤耦合器
光纤耦合器是将多根光纤连接在一起 ,实现光信号的分路、合路和传输的 器件。常见的光纤耦合器有1x2、1x4 、1x8等类型。
新工艺
随着纳米技术的发展,光纤制造中的 纳米光刻、化学气相沉积等新工艺逐 渐应用于光纤预制棒的生产,这些新 工艺能够提高光纤的制造精度和降低 生产成本。
光纤通信技术的发展趋势
01
超高速率
随着数据传输需求的增长,光纤通信系统的传输速率不断提高,未来的
光纤光学第三章PPT课件
子 cos
第14页/共95页
斜光线绕光纤轴线成螺旋形传播。 斜光线是三维空间光线,而子午光线只在二维平面内传播。
第15页/共95页
3.2.4 变折射率光纤的光线理论 见光纤光学(刘德明,向清,黄德修)P9面
程函方程/光线方程:
d ds
n(r)
dr ds
n(r)
若媒介是各向同性而又均匀,有
n dr const ds
当m不等0时当m1时得到混合模eh1n和he1n模的截止条件为jua0其第一个根对应u0也就是说它所对应的模在任何条件下都不会截止这个模为最低阶模称为基模he11在单模波导中导波模只有基模其余展开分量全部转变成耦合损失所以为减小耦合损失应尽量使入射光束的形状与波导基模的形状相同
参考文献: [1] 廖延彪.光纤光学,清华大学出版社,2000,3 [2] 刘德明,向清,黄德修.光纤光学,国防工业出版社,1999 [3] 马军山.光纤通信技术,人民邮电出版社,2004
第24页/共95页
分析思路
第25页/共95页
1、光纤介质的特性
响应的局部性 各向同性 线性 均匀 无损
第26页/共95页
2、光纤中麦克斯韦方程组
玻璃光纤中传导电流J =0,电导率σ=0 ;无自由电荷ρ =0,所以光纤中麦克斯韦方程 组微分形式为:
E B t H D t •D 0 •B 0
s in 2
0
r0 r
2
1 2
自聚焦透镜的折射率服从平方率分布规律:
n2 (r) n2(0)(1 Ar2)
z
z0
n(r0 ) cosz (r0 )
n(0) A
sin1
n(0) Ar
n2 (0) n2 (r0 ) cos2 z (r0 )
光纤光学8-光纤光栅PPT课件
,从而引起掺锗石英玻璃中引起折射率的改变,
其改变的具体数值如下式:Kramers-Kronig关系
:
n(')
c
()d 0 2 '2
色心模型认为,在紫外 光照射下电子在不同位置上 的重新分布是掺锗石英光纤 折射率改变的主要原因。
8
密致模型
玻璃的光敏性与玻璃中缺陷有关,在紫外光照射 下光纤材料中的局部应力和密度将发生变化。掺锗 石英玻璃的折射率与其密度呈线性关系,因此这种 应力和密度的变化被认为是光纤材料中光致折射率 的一种可能的机制-密致模型。
纤形成的折射率变化是持久的,室温条件下放置2个星
期下降11%。
10
3、光纤材料的还原性处理
通过在光纤拉制中完成后用氢灯对所要曝光的 光纤段进行“焰刷”处理。把拉制好的标准通信锗 光纤段放在~1700℃的氢氧焰下灼烧,使光纤在 240nm处的吸收增加,可获得大于10-3的折射率变化 ,光纤材料的光敏性提高了一个数量级。缺点就是 高温灼绕破坏了光纤,有长期稳定性的问题。
• 1989年 G.Melts 报道了从光纤的侧面用激光的干 涉曝光制作了光纤光栅,使光纤光栅得到迅速发 展。
• 1993年 K.O. Hill提出的相位掩模制造法使光纤 光栅的制造技术得到重大发展,使光纤光栅的大 批量制造成为可能。
3
一、 光纤光栅的基本概念
1.光纤光栅
光纤光栅是一种折射率沿光纤纵向周期变化的波 导。当光通过这样的波导时将产生相位的周 期性变化。
载氢光纤在紫外光照射时将引起氢气和掺锗石英 光纤之间产生化学反应,H2分子在Si-O-Ge区发生变 化,形成与折射率有关的Ge-OH,Si-OH,Ge-H,Si-H等
化学键和缺氧锗缺陷中心,从而产生光致折射率变化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 一根空心玻璃管能否传光?为什么? 2. 光纤纤芯变粗时,允许存在的模式数目如何变化? 3. 光纤中传播的光波有何特征? 4. 推导波导场方程经历了哪几种分离变量? 5. 本征方程有什么特点? 6. 模式是什么? 7. 如何唯一确定一个模式? 8. 由射线方程推导光线轨迹,只需要知道什么? 9. 渐变折射率分布光纤中光线如何传播?为什么?
–外散焦面: 光线转折点(rip)的集合
–导光条件:
n2 n n1
9
• 射G线I方O程F中光线d (的n dr传) 播n:(r倾) 斜光线
dS dS
• 分量方程 轴向分量:
角向分量:
径向分量:
d n dz 0 dS dS
n dr d d nr d 0
dS dS dS dS
轨迹到纤轴距离r:在最大的r处光线转动最
慢;在最小的r处光线转动最快。
16
径向运动
分析 r 分量方程:
d
n
dr
nr
d
2
dn(r)
dS dS dS dr
导出: n 2(dr/dz)2=g(r)
2
g
(r)
n2
(r
)
2
n
I r
2
17
径向运动特点
• 对于相同r值,dr/dz可正可负,且在z1和z2处 分别达到最大和最小(dr/dz=0),因此,r-z 关系曲线关于z1和z2对称并呈周期性振荡
0ra ra
–光线轨迹: 限制在子午平面内传播的周期曲线。 轨迹曲线在 光纤端面投影线仍是过园心的直线,但一般不与纤壁相交。
–广义折射定律: n(r) cos z (r) (n 常数)
–局部数值孔径: 定义局部数值孔径NA(r)为入射点媒质折射率 与该点最大入射角的正弦值之积,即
NA(r) n0 (r)sinimax(r) n2 (r) n22
14
角向运动
分析φ分量方程: n dr d d nr d 0
dS dS dS dS
有:
I =n r2dφ/dz
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
15
角向运动特点
• 光线的角动量:
r2ω=r2dφ/dt=
Ic/
2n 恒为常数
• 这表明,光线角向运动速度将取决于光线
–相对折射率差: (n12 n22 ) / 2n12 –最大时延差: • n1 / c
5
SIOF的传输容量
• 传输容量: 时延差的倒数 • 多模光纤: n1=1.5, ∆=1%, ∆ =50 ns/km
传输带宽: 1/ ∆ = 20 MHz·km 结论1: 多模光纤通信容量并不高! • 由一点发出的光线不能会聚在另一点: 结论2:多模光纤不适合于传输图像!
n2(r) n2(r)-I2 /r2 n2(a)- I2 /r2
2
nr
0 rr1 rl1 rg1
a rg 2 rl 2
rl 3
r
20
约束光线
条件:
n2<n(r0) cosθz(r0)<n1
光线存在区域: rg1 < r < rg2
内散焦面半径:rg1 外散焦面半径:rg2
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
光线存在区域: rl1 < r < rl2 r > rl3
d
n
dr
nr
d
2
dn(r)
dS dS dS dr
上述推导中应用了关系式: der/d=e ; der/d=-er
10
园柱坐标系与光线入射条件
(dr/dS) |r0 =sinθz(r0)sinθφ(r0)
z
ez
e
(r dφ/dS)|r0 =sinθz(r0)cosθφ(r0)
(dz/dS)|r0 = cosθz(r0)
1
1.3 光线理论
• 光线分类 • 光线轨迹:子午光线 • 光线轨迹:倾斜光线
2
光线分类
• 子午光线:
– 限制在子午平面内传播的光线 – 与光轴相交
• 倾斜光线:
– 轨迹曲线不限制在一个平面内 – 不过光轴
3
子午平面
z
4
SIOF中光线的传播:子午光线
–折射率分布: n(r) nn21
0ra ra
6
SIOF中光线的传播: 倾斜光线
• 光线轨迹: (螺旋折线)
内散焦面半径:
cosi sin z sin ric a cos
•
数值孔径: (大于子午光线)
NAS
NA / sin
•
最大时延差: (大于子午光线)
s
n12n1Βιβλιοθήκη 2NA S1
n1 c
7
8
GIOF中光线的传播:子午光线
–渐变折射率分布: n(r) n1 1 2(r / a)g 1/2 n2
12
轴向运动: 广义折射率定理
r
rip
n(r)
z(r)
nz1 cos z1 nz2 cos z2 nz3 cos z3 .... Const
13
轴向运动特点
• 相速: Vp=ω/β=c/ n 恒为常数 • 这说明渐变折射率分布光纤(GIOF)中的光
线沿z轴传播的速度恒定不变, 与光线的轴 向夹角θz无关,这是一个与均匀折射率分布 光纤(SIOF)完全不同的重要特点(SIOF中 不同角度的光线轴向速度不同) • GIOF带宽大于SIOF!
r
a rip
ric
z1
z2
z
18
光线分类判据
判据:
n2(dr/dz)2=g(r)
g(r)
n2(r) I 2
/ r2
2
n
当g(r)≥0时,光线存在; 当g(r)<0时,为光线禁区; 当g(r) = 0时,为内外散焦面。
19
g(r)
n2(r) I 2
/ r2
2
n
n12
2
ng
2
nl
n
2 2
r rrˆ zzˆ
x
r
z
er
r0
r0d
z dz
ds
r0
dr
y
e
er
11
轴向运动
分析轴向分量方程:
d n dz 0 dS dS
有: n(dz/dS)=const., 令其为 n , 则有
n =n(r)dz/dS=n(r)cosθz(r)=n(r0)cosθz(r0)
n ---- 第一射线不变量
–光线轨迹: 限制在子午平面内传播的锯齿形折线。 光纤端面投影线是过园心交于纤壁的直线。
–导光条件: –临界角:
ni sini n12 n22 zc arccos(n2 / n1)
i
n2 n1
–数值孔径: 定义光纤数值孔径NA为入射媒质折射率 与最大入射角的正弦值之积,即
NA ni sinim n12 n22 n1 2