2019-2020学年重庆八中九年级上学期期末考试数学试卷

合集下载

2019-2020学年重庆八中九年级上学期期末数学复习卷(解析版)

2019-2020学年重庆八中九年级上学期期末数学复习卷(解析版)

2019-2020学年重庆八中九年级上学期期末数学复习卷一、单选题1.菱形不具备的性质是( )A .对角线一定相等B .对角线互相垂直C .是轴对称图形D .是中心对称图形 【答案】A根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线,即可判断.根据菱形的性质可知:菱形的对角线互相垂直平分,故B 正确;菱形既是轴对称图形,又是中心对称图形,故C ,D 正确;菱形不具备对角线一定相等,故A 错误;故选:A .本题考查了菱形的性质,解决本题的关键是掌握菱形的性质.2.|–5|的值是( )A .15B .5C .–5D .–15【答案】B根据绝对值的定义直接写出答案.解:因为|-5|=5.故选B .本题考查了绝对值,是基础题.3.点M(5,y)与点N(x 、-6)关于x 轴对称,则x 、y 的值分别为( )A .5,-6B .5,6C .-5,-6D .-5,6【答案】B【解析】已知点M(5,y)与点N(x 、-6)关于x 轴对称,可得x=5,y=6,故选B.4.如图,点B C E 、、三点在同一直线上,且,,AB AD AC AE BC DE ===;若12394∠+∠+∠=,则3∠的度数为( )A .49°B .47°C .45°D .43°【答案】B 利用“边边边”证明△ABC 和△ADE 全等,根据全等三角形对应角相等可得∠ABC=∠1,∠BAC=∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3=∠1+∠2,然后求解即可.在△ABC 和△ADE 中AB AD AC AE BC DE =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADE(SSS),∴∠ABC=∠1,∠BAC=∠2,在△ABC 中,由三角形的外角性质得,∠3=∠ABC+∠BAC=∠1+∠2,∵∠1+∠2+∠3=94°,∴2∠3=94°,∴∠3=47°. 故选B.本题考查了全等三角形的判断与性质,解题的关键是熟练的掌握全等三角形的性质与运用. 5.下列说法正确的个数是( )①.两个无理数的和一定是无理数 ②.两个无理数的和一定是有理数③.两个无理数的积一定是无理数 ④.两个无理数的积一定是有理数A .0个B .1个C .2个D .3个【答案】A根据无理数的性质可对每一个结论进行分析,举出反例,即可进行判断.解:①两个无理数的和不一定是无理数,如0ππ-+=,是有理数,此说法错误;②两个无理数的和不一定是无理数,如2πππ+=,是无理数,此说法错误;③两个无理数的积不一定是无理数,如(2=-,是有理数,此说法错误;④两个无理数的积不一定是有理数,如(=,是无理数,此说法错误;综上:说法正确的个数为0.故选:A .本题考查了实数的运算,涉及到了两个无理数的和、差、积、商的运算.6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)【答案】C如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴12 GP GFPC BC==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键.7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个【答案】B 根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确, 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②正确,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误, 综上所述:①②正确,③④错误.故选B .本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.如图,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 也在抛物线1L 上(点A 与点B 不重合),我们定义:这样的两条抛物1L ,2L 互为“友好”抛物线.则错误的说法是( )A .一条抛物线的“友好”抛物线可以有多条.B .如果抛物线2284y x x =-+与y 轴的交点C 关于该抛物线对称轴的对称点为D ,则以点D 为顶点的2284y x x =-+的友好抛物线的表达式为()2244y x =--+. C .若抛物线()21y a x m n =-+的任意一条友好抛物线的解析式为()22y a x h k =-+,则120a a +=.D .若抛物线()21y a x m n =-+的任意一条友好抛物线的解析式为()22y a x h k =-+,则当m x h ≤≤时,两条抛物线中y 同时随x 增大而增大.【答案】D根据“友好”抛物线的定义可知一条抛物线的“友好”抛物线有无数条,即可判断A 选项正确;先求抛物线2284y x x =-+与y 轴的交点C ,进而得到D 点坐标,再根据“友好”抛物线的定义求出表达式即可判断B 选项;将(),m n 代入()22y a x h k =-+,将(),h k 代入()21y a x m n =-+,两式相加即可判断C 选项;根据图象即可判断D 选项错误.A .根据“友好”抛物线的定义,可知经过抛物线1L 的顶点,且以抛物线1L 上任意一点作为顶点的抛物线,都是1L 的“友好”抛物线,故一条抛物线的“友好”抛物线可以有无数条,故A 选项正确;B .抛物线()22284=224=-+--y x x x ,顶点坐标为(2,-4)当0x =时,4y =,则C 点坐标为(0,4), ∵对称轴8222x -=-=⨯,点C 关于该抛物线对称轴的对称点为D ∴D 点坐标为(4,4),设抛物线2284y x x =-+的友好抛物线表达式为()244y a x =-+ 将(2,-4)代入得()24244-=-+a ,解得2a =-∴以点D 为顶点的2284y x x =-+的友好抛物线的表达式为()2244y x =--+ 故B 正确;C .抛物线()21y a x m n =-+的顶点为(),m n ,()22y a x h k =-+的顶点为(),h k ∵它们互为“友好”抛物线∴(),m n 在抛物线()22y a x h k =-+上,(),h k 在抛物线()21y a x m n =-+上 ∴()22-+=a m h k n ①,()21-+=a h m n k ②①+②得:()()2221-++-+=+a m h k a h m n n k。

八中2019年秋季9上期末-含答案

八中2019年秋季9上期末-含答案

重庆八中2019—2020学年度(上)期末考试初三年级数 学 试 题(满分150分,时间120分钟)命题:卢云 周世建 龚元敏 程灿 审核:李铁 打印:程灿 校对:周世建一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将请将答题卡...上对应题目的正确答案标号涂黑. 1.|2020|−=( )A .2020B .2020−C .20201D .20201−2.用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C . 椭圆D .三角形3.下列运算正确的是( )A .134−=−−B .51)51(52−=−⨯C .842x x x =⋅D .2382=+4.下列命题正确的是( )A .1−x 有意义的x 取值范围是1>x .B .一组数据的方差越大,这组数据波动性越大.C .若'5572︒=∠α,则α∠的补角为'10745︒.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为83. 5.已知)2,3(−A 关于x 轴对称点为'A ,则点'A 的坐标为( )A .)2,3(B .)3,2(−C .)2,3(−D .)2,3(−−6.如图,用尺规作图作∠BAC 的平分线AD ,第一步是以A 为圆心,任意长为半径画弧,分别交AB ,AC 于点E ,F ;第二步是分别以E ,F 为圆心,以大于EF 21长为半径画弧,两圆弧交于D 点,连接AD ,那么AD 为所作,则说明∠CAD =∠BAD 的依据是( )A .SSSB .SASC .ASAD .AAS7.如图,菱形ABCD 中,过顶点C 作BC CE ⊥交对角线BD 于E 点,已知134A ∠=︒, 则BEC ∠的大小为( ) A .︒23B .︒28C .︒62D .︒67B第7题图 第9题图 第10题图 8.按下面的程序计算:若开始输入的x 值为正整数,最后输出的结果为22,则开始输入的x 值可以为( ) A .1B .2C .3D .49.如图所示,已知AC 为O 的直径,直线P A 为圆的一条切线,在圆周上有一点B ,且使得BC =OC ,连接AB ,则BAP ∠的大小为( )A .︒30B .︒50C .︒60D .︒7010.如图,在平面直角坐标系中,已知点)6,3(−A ,)3,9(−−B ,以原点O 为位似中心,相似比为31,把△ABO 缩小,则点B 的对应点'B 的坐标是( ) A .)1,3(−−B .)2,1(−C .)1,9(−或)1,9(−D .)1,3(−−或)1,3(11.A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中l 1,l 2表示两人离A 地的距离S (km )与时间t (h )的关系,结合图象,下列结论错误的是( ) A .l 1是表示甲离A 地的距离与时间关系的图象B .乙的速度是h km /30C .两人相遇时间在h t 2.1=D .当甲到达终点时乙距离终点还有km 4512.如图所示,抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点 坐标为()0,3,其部分图象如图所示,下列结论: ①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是10x =,22x =; ④方程20ax bx c ++=有一个实根大于2; ⑤当0x <时,y 随x 增大而增大. 其中结论正确的个数是( ) A .4个B .3个C .2个D .1个二、填空题:(本大题共6个小题,每小题4分,共答题卡...中对应的横线上. 13.分解因式:x x 22−= .14.如图,扇形AOB 的圆心角是为90°,四边形OCDE 是边长为1的正方形,点C ,E 分别在OA ,OB ,D在弧AB π)第14题图 15.若关于x 的分式方程2223=++x mx 有增根,则m 的值为 . 16.如图,四边形ABCD 的顶点都在坐标轴上,若AB ∥CD ,△AOB 与△COD 面积分别为8和18,若双曲线x ky =恰好经过BC 的中点E ,则k 的值为 .17.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角∠ACB=72°,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为 cm .(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.1)EDB图1 图218.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =16.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当BN ∥PE 时,t 的值为 .三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:3924x y x y −=⎧⎨+=⎩; (2)化简:2442()m m m m m −−−÷.20.如图,在平行四边形ABCD 中,E 为AD 边上一点,BE 平分ABC ∠,连接CE ,已知6DE =,8CE =,10AE =.(1)求AB 的长;(2)求平行四边形ABCD 的面积; (3)求cos AEB ∠.H D E FACBDECABlNMFPC ABE21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百分制)进行分析,过程如下: 收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a = ,b = ,c = ,d = .(2) 估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人? (3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.22.如图,平面直角坐标系内,二次函数2y ax bx c =++的图象经过点()2,0A −,()4,0B , 与y 轴交于点()0,6C . (1)求二次函数的解析式;(2)点D 为x 轴下方二次函数图象上一点,连接AC ,BC ,AD ,BD ,若△ABD 的面积是△ABC 面积的一半,求D 点坐标23.一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x y =,那么称这个四位数为“对称数”.(1)最小的“对称数”为 ;四位数A 与2020之和为最大的“对称数”,则A 的值为 ;(2)一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为8,且千位数字a 使得不等式组⎪⎩⎪⎨⎧>−−≤−−a x x x 15221443恰有4个整数解, 求出所有满足条件的“对称数”M 的值.24.如图,C 是线段AB 上一动点,以AB 为直径作半圆,过点C 作CD AB ⊥交半圆于点D ,连接AD .已知8AB cm =,设A 、C 两点间的距离为x cm , △ACD 的面积为y 2cm .(当点C 与点A 或点B 重合时,y 的值为0)请根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数) (1)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:a =______;b =______;c =______.(2)根据表中数值,继续描出(1)中剩余的三个点(x ,y ),画出该函数的图象并写出这个函数的一条性质;(3)结合函数图象,直接写出当△ACD 的面积等于52cm 时,AC 的长度约为 cm .DCBA。

重庆八中2019-2020学年度初2020级九年级上定时练习(七)数学试题

重庆八中2019-2020学年度初2020级九年级上定时练习(七)数学试题

重庆八中初2021级九年级〔上〕定时练习〔七〕数学试题一、选择题〔本大题12个小题,每题4分,共48分〕在每个小题的下面,都给出了代号为 A B C D的四个答案,其中只有一个是正确的,请将做题卡上题号右侧正确答案所对应的方框涂黑^1,—1.——的相反数是〔〕3A. 1 B . -- C. 3 D. - 33 32,假设代数式+J X有意义,那么实数x的取值范围是〔〕x「1A . X#1B. X>0O. X=0D. X之0且X013.以下说法正确的选项是〔〕A.有理数和数轴上的点--- 对应B.不带根号的数一定是有理数C.一个数的平方根仍是它本身D. J4的平方根是土夜4.假设X, y均为正整数,且2X4y =32,贝U X+2y的值为〔〕A. 3B. 4C. 5D. 65.如图,数轴上有O, A, B, C, D五点,根据图中各点所表示的数, 表示数拒〔JTT-J2〕的点会落在〔〕A.点O和A之间B.点A和B之间O g 3cqC.点B和C之间D.点C和D之间一〔J J 2 3—4 /6.如图,AABC是..的内接三角形, AD 是..的直径,/ABC=45;那么/CAD=〔7.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心, AB=40m,点C是弧AB的中点,点D是AB的中点,且CD=10m,那么这段弯路所在圆的半径为〔A.25mB.24mC.30mD.60m8.以下图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5 张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为〔〕① ② ② ④A. 11 B . 13 C. 15 D. 179.如图,斜坡AB长20米,其坡度i=1: 0.75, BCXAC,斜坡AB正前方一座建筑物ME上悬挂了一幅巨型广告, 小明点B测得广告顶部M点的仰角为26.6.,他沿坡面BA走到坡脚A处,然后向大楼方向继续沿直线行走10米来到D处,在D处测得广告底部N点的仰角为50°,此时小明距大楼底端E处20米.B、C、A、D、E、M、N 在同一平面内,C、A、D、E在同一条直线上,那么广告的高度MN是〔〕〔精确到1米〕〔参考数据:sin50° =0.77, tan50° =1.19, sin26.6° =0.45, tan26.6°0.50.A . 12 B. 13 C. 14 D. 15第10题囹.................. ................................................... ............................... 4 k ,,10.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan/AOC=—,反比例函数y=—的图象3 x经过点C,与AB交于点D,假设ACOD的面积为20,那么k的值等于〔〕A. 20 B . 24 C. -20 D. -242〔 a - x〕 - -x - 4a 1 - x ................................. ,一, 一 ,、11 .如果关于x的分式万程一1-3 =一1有负分数解,且关于x的不等式组3 3x + 4 的解集为x 1 x 1 x 12x<-2,那么符合条件的所有整数a的积是〔〕A. - 3B. 0C. 3D. 912 .如图,二次函数y=ax 24bx+c 的图象经过点 A 〔- 3,0〕其对称轴为直线x= - 1,有以下结论:①abc<0;② a+b^^O;@ 5a+4c<0;@ 4ac-b 2 >0愚假设 P( - 5, y i)Q( m, y 2)是抛物线上两点,且 y i 〉y 2, 那么实数m 的取值范围是^5<m<3.其中正确结论的个数是〔 〕A. 1B. 2C. 3D. 4二、填空题〔本大题 6个小题,每题 题卡中对应的横线上.13 . .9 〔_1〕,-、/3sin45'= ___________ .2—元.15 .如图,矩形 ABCD 中,AD =4, AB=2.以A 为圆心,AD 为半径作弧交 BC 于点F 、交AB 的延长线于点 E,那么图中阴影局部的面积为16 .从-1, 1, 2这三个数中随机抽取两个数分别记为x, y,把点M 的坐标记为〔x,y 〕,假设点N 为〔3,0〕,那么在平面直角坐标系内直线 MN 经过第二象限的概率为 .17 . A, B 两地相距280千米,甲、乙两车同时相向匀速出发,甲车出发0.5小时后发现有东西落在出发地 A 地,于是立即按原速沿原路返回,在A 地取到东西后立即以原速继续向 B 地行驶,并在途中与乙车第一次相遇, 相遇后甲、乙两车继续以各自的速度朝着各自的方向匀速行驶, 当乙车到达A 地后,立即掉头以原速开往 B 地〔甲车取东西、掉头和乙车掉头的时间均忽略不计〕.两车之间的距离y 〔千米〕与甲车出发的时间 x 〔小 时〕之间的局部关系如下图,那么当乙车到达B 地时,甲车与B 地的距离为 千米.4分,共24分〕请将每题的答案直接填在答14.今年“十一〞黄金周期间某市实现旅游收入 5.71亿元,该数据用科学记数法表示第15题图18. 10月28日第七届军运会在武汉闭幕, 中国人民解放军体育代表团共获得133枚金牌、64枚银牌、42枚铜牌,位居金牌榜和奖牌榜第一. 闭幕后对局部志愿者做了一次“我最喜爱观看的比赛〞问卷调查(每名志愿者都填了调查表,且只选了一个工程),统计后射击、游泳、田径、篮球榜上有名.其中选射击的人数比选游泳的少8人;选田径的人数不仅比选游泳的人多,且为整数倍;选田径与选游泳的人数之和是选篮球与选射击的人数之和的5倍;选田径与选篮球的人数之和比选射击与选游泳的人数之和多24人.那么参加调查问卷的志愿者有人.三、解做题:(本大题8个小题,第26小题8分,其余每题10分,共78分)解答时每题必须给出必要的演算过程或推理步骤,请将解答书写在做题卡中对应的位置上. 19.化简:(1) 2(x-1 j[2x-1 )-2(x+1 ) (2) _2x__ 2X16X 1 X -12 一20.如图,在RtAABC 中,/ ACB=90 , sin A=一,点3 DE = 2, DB=9.(1)求BC的长.(2)求tanZCDE.x 3-2 ""x -2x 1D、E分别在AB、AC上,DE LAC,垂足为点E,D<x<90, D 组:90WXW100)乙校成线的扇形统计图a.甲校学生的测试成绩在 C 组的是:80, 82.5, 82.5, 82.5, 85, 85,85.5, 89, 89.5b.甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数 众数甲校 83.2 a 82.5 乙校80.68180根据以上信息,答复以下问题:(1)扇形统计图中C 组所在的圆心角度数为 度,乙校学生的测试成绩位于 D 组的人数为 人. (2)表格中a=,在此次测试中,甲校小明和乙校小华的成绩均为82.5分,那么两位同学在本校测试成绩中的排名更靠前的是 (填“小明〞或“小华〞)(3)假设甲校学生共有 400人参加此次测试,估计成绩超过 86分的人数.622.我们已经知道反比例函数的图象是双曲线,研究函数y=-------- 的图象和性质.该函数y 与自变量x 的几组对 x -3应值如下表,并画出了局部函数图象,如下图 ^21.为了解甲、乙两校学生英语口语的学习情况, 行了整理和分析,绘制成了如下两幅统计每个学校随机抽取20个学生进行测试,测试后对学生的成绩进(数据分组为: A 组:60<x<70, B 组:70Wx<80, C 组:80甲校成虢的糜数分布直方(1)函数y =-3 自变量的取值范围是(2)补全函数图像;(3)假设点A (a, c) B (b, c)为该函数图象上不同的两点,那么a+b=(4)直接写出当6之x—2时x的取值范围.x -323.一个多位正整数,将其首两位截去,假设余下的数与这个首两位数的和能被11整除,那么我们称这样的数为“双十一数〞.如1221,截去首两位12,余下的数为21, 21与12的和为33,能被11整除,那么1221是“双(1)判断5665 (是〞或“不是〞)“双十一数〞;将任意一个“双十一数〞的首两位数与余下的数交换得到一个新数,该新数被11整除;(能〞或“不能〞)(2) 一个各位数字均不为0的三位正整数m,将其各位上的数字重新排列得到新三位数械,在所有重新排2b - c 列的数中,当a+2b-3c最大时,我们称此时的三位数为m的“自恋数〞,并规定f(m)= --------------- .比方a 123,重新排歹U 可得132, 213, 231 , 312, 321 , 1+2父3—3父2=1, 2+2父1—3乂3=5,2+2父3-3父1=5, 3+2x1-3父2=-1, 3+2父2-3父13,由于5>4>1 1 尸5,所以231 是2 3-1 5123的“自恋数〞,那么f(123)=-2—=万.假设一个三位“双十一数〞t,它的十位数字与个位数字之和是7,且十位数字大于个位数字,求所有这样的“双十一数〞中f(t )的最大值.24.某水果微商九月中旬购进了榴莲和江安李共600千克,榴莲和江安李的进价均为每千克24元,榴莲以售价每千克45元,江安李以售价每千克36元的价格很快销售完.(1)假设水果微商九月中旬获利不低于10440元,求购进榴莲至少多少千克?(2)为了增加销售量,获得更大利润,根据销售情况和“国庆中秋双节〞即将来临的市场分析,在进价不变a% (降价后售价不低的情况下该水果微商九月下旬决定调整售价,将榴莲的售价在九月中旬的根底上下调5 -进价),江安李的售价在九月中旬的根底上上涨—a%;同时,与(1)中获得最低利润时的销售量相比,榴5 … ........................ .......................... ...................莲的销售量下降了一a%,而江安李的销售量上升了25%,结果九月下旬的销售额比九月中旬增加了360元,求a的值.25.如图,平行四边ABCD中,AB=BE, F是AB上一点,FB=CE,连接DF,点G是FD的中点,且满足AAFG是等腰直角三角形,连接GC, GE. A__________________________ 办(1)假设AF=3 应,求AD 的长;(2)求证:GD=V2GE;1 226.在平面直角坐标系中,抛物线丫=万/-x-4与x轴交于AB两点〔点A在点B的左侧〕,与y轴交于点C.〔1〕如图1,连接B,C两点,P为直线BC下方抛物线上一动点,连接OP交线段BC于点D,连接CP.线段AO 在x轴上平移后的线段记作A'O',连接A'D、PO’,当S班最大时,求四边形A'DPO'周长的最小值.S COD〔2〕如图2,将该抛物线沿一定方向平移后过点巳点E和点C关于原点对称,交x轴于F,B两点〔点F在点B的左侧〕,连接EF,将AEOF绕点O逆时针旋转一定的角度a 〔0,3a<360口〕,彳4到AEOF',其中直线E'F'与x轴形成的夹角记作P,当P+45红EFO时,求直线EF′与坐标轴的交点坐标,假设不存在, 请说明理由.。

重庆八中2019-2020学年度初三上期末考试及参考答案

重庆八中2019-2020学年度初三上期末考试及参考答案

C. x2 x4 = x8
D. 2 + 8 = 3 2
A. x −1 有意义的 x 取值范围是 x 1 .
B.一组数据的方差越大,这组数据波动性越大.
C.若 = 7255' ,则 的补角为10745' .
D.布袋中有除颜色以外完全相同的 3 个黄球和 5 个白球,从布袋中随机摸出一个球是
(1)通过画图、测量、计算,得到了 x 与 y 的几组值,如下表:
x / cm 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
y / cm2 0 0.5 1.3 2.3 a 4.6 5.8 7.0 8.0 8.9 9.7 10.2 10.4 10.2 b c 0
恰有
4
个整数解,
5x −1 a
求出所有满足条件的“对称数”M 的值.
24.如图, C 是线段 AB 上一动点,以 AB 为直径作半圆,过点 C 作 CD ⊥ AB 交半圆于点 D ,连接 AD .已知 AB = 8cm ,设 A 、 C 两点间的距离为 x cm , △ ACD 的面积为 y cm2 .(当点 C 与点 A 或点 B 重合时, y 的值为 0 )请根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)
补全表格中的数值: a = ______; b = ______; c = ______.
(2)根据表中数值,继续描出(1)中剩余的三个点(x,y),画出该函数的图象并写出
这个函数的一条性质;
(3)结合函数图象,直接写出当△ ACD 的面积等于 5 cm2 时,AC 的长度约为

重庆八中2019-2020学年度(上)期末考试初三年级数学试题评分标准

重庆八中2019-2020学年度(上)期末考试初三年级数学试题评分标准

重庆八中2019—2020学年度(上)期末考试初三年级数学参考答案一、选择题(每小题4分,共48分)二、填空题(每小题4分,共24分) 13.()2x x − 14.12π− 15.316.617.6018.4021三、解答题(共78分)19.(1)32x y =⎧⎨=−⎩…………5分;(2)原式22m m =−…………5分,结果若未把括号打开建议扣1分20.(1)∵四边形ABCD 是平行四边形∴AD ∥BC ∴AEB CBE ∠=∠ 又∵BE 平分ABC ∠ ∴CBE ABE ∠=∠ ∴AEB ABE ∠=∠∴AB AE =……………………………………………………………………2分 ∵10AE =∴10AB =………………………………………………………………………3分 (2)∵四边形ABCD 是平行四边形∴CD AB = ∵10AB = ∴10CD =∵在△CED 中,10CD =,8CE =,6ED = ∴222ED CE CD += ∴90CED ∠=︒∴CE AD ⊥………………………………………………………………………5分 ∴S □ABCD ()1068128AD CE =⋅=+⨯=…………………………………………6分 (3)∵四边形ABCD 是平行四边形∴BC ∥AD 且BC AD =∴90BCE CED ∠=∠=︒,16AD =∴Rt △BCE中,BE =8分∴cos cos BC AEB EBC BE ∠=∠===………………………………10分 21.(1)11,10,77.5,81a b c d ====……………………………………………………4分 (2)由样本数据可得,七年级得分在80分及以上的占712205+=,故七年级得分在80分及以上的大约26002405⨯=人;八年级得分在80分及以上的占1023205+=,故八年级得分在80分及以上的大约36003605⨯=人.故共有600人.………………………7分(3) 该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可)…………………10分22.(1)233642y x x =−++………………………………………………………………4分(2)由△ABD 的面积是△ABC 面积的一半知:132D y OC ==,又点D 在x 轴下方,故3D y =−…………………………………………………………………………… 6分代入233642y x x =−++解得:11x =,21x =,故点D坐标为()1,3−或)1,3−………………………………………………………10分23.(1)1010;7979………………………………………………………………………4分(2)由⎪⎩⎪⎨⎧>−−≤−−ax x x 15221443得145a x +<≤,由x 有四个整数解,得14a −≤<,又a 为千位数字,所以1,2,3a =.……………………………………………………………… 6分设个位数字为b ,由题意可得,十位数字为8b −,故()38a b a b +=+−, 4b a =+.…………………………………………………………………………7分故满足题设条件的M 为1335、2626、3917…………………………………10分24.(1) 3.5a =,9.3b =,7.3c =(允许合理的误差存在)…………………………3分 (2)描点1分,连线2分,答案图略;性质答案参考:当06x ≤≤时,y 随x 增大而增大,当68x <≤时,y 随x 增大而减小;当6x =时,y 的最大值为10.4.(性质2分) (3)2.7或7.8(允许合理的误差存在)(2分)25. (1)设甲单价为x 万元,则乙单价为()140x −万元,则:360480140x x=− 解得60x =………………………………………………………………………3分 经检验,60x =是所列方程的根.答:甲设备60万元每台,乙设备80万元每台.……………………………4分 (2)设每吨燃料棒成本为a 元,则其物资成本为40%a ,则:540%40%104a a a −=⨯+,解得100a =………………………………………6分设每吨燃料棒在200元基础上降价x 元,则()()200100350536080x x −−+=解得112x =,218x =……………………………………………………………8分 ∵2008%x ≤⨯ ∴12x =∴每吨燃料棒售价应为188元.………………………………………………10分26.(1)等边△CDE 2分 (2)①证明:略;……………………………………………………………………6分②提示:'BD ED CD ==,'BD AB 8分。

重庆八中九年级上学期期末考试数学试卷及答案解析

重庆八中九年级上学期期末考试数学试卷及答案解析

2020-2021学年重庆八中九年级上学期期末考试数学试卷一.选择题(共12小题,满分48分,每小题4分)
1.如果一个有理数的绝对值是6,那么这个数一定是()
A.6B.﹣6C.﹣6或6D.无法确定
2.用一个平面去截正方体ABCD﹣A1B1C1D1(如图),所截得的截面不可能的是()
A.正三角形B.正方形C.正五边形D.正六边形
3.下列运算正确的是()
A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.√2+√8=3√2 4.下列语句不是命题的是()
A.连结AB B.对顶角相等
C.相等的角是对顶角D.同角的余角相等
5.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5
6.如图,仔细观察用直尺和圆规作出∠AOB的角平分线OE示意图,请你根据所学知识,说明画出的∠AOE=∠BOE的依据是()
A.ASA B.SAS C.AAS D.SSS
7.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()
A.4B.8C.2√2D.√2
第1 页共26 页。

2019-2020学年重庆八中九年级上册期末数学试卷

2019-2020学年重庆八中九年级上册期末数学试卷

2019-2020学年重庆八中九年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共48.0分)1.−2的绝对值是A. −2B. 2C. ±2D. −122.如图,用平面去截圆锥,所得截面的形状是选项中的A.B.C.D.3.下列运算正确的是()A. (x2)3=x5B. √2+√8=√10=√2C. x⋅x2⋅x4=x6D. 2√24.下列命题正确的是()A. 对角线互相垂直平分的四边形是正方形B. 16的平方根是4C. 两边及其一角相等的两个三角形全等D. 数据4,0,4,6,6的方差是4.85.点M(3,−4)关于x轴的对称点M′的坐标是()A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)6.如图,以△ABC的顶点C为圆心,小于CA长为半径作圆弧,交CA于点E,交BC的延长线于点F;再分EF长为半径作圆弧,两弧交别以E,F为圆心,大于12于点G;作射线CG,若∠A=60°,∠B=70°,则∠ACG为()A. 75°B. 70°C. 65°D. 60°7.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=128°,则∠AOE的大小为()A. 62°B. 52°C. 68°D. 64°8.如图所示运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输入的结果为12.……则第2018次输出的结果是()A. 1B. 6C. 3D. 49.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,连接OD,若∠ACB=50°,则∠BOD=()A. 40°B. 50°C. 60°D. 80°10.如图所示,E(−4,2),F(−1,−1),以O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E′的坐标为()A. (2,−1)或(−2,1)B. (8,−4)或(−8,4)C. (2,−1)D. (8,−4)11.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(ℎ)的关系如图所示,下列说法错误的是()A. 甲的速度是6km/ℎB. 甲出发4.5小时后与乙相遇C. 乙比甲晚出发2小时D. 乙的速度是3km/ℎ12.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a−2b+c>0;②3a+b>0;③b2=4a(c−n);④一元二次方程ax2+bx+c=n−1有两个互异实根.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13.分解因式:5a2+10ab=______.14.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)15.关于x的分式方程7xx−1+5=2m−1x−1有增根,则m的值为______.16.如图,双曲线y=kx(x>0)经过△OAB的顶点A和OB的中点C,AB//x轴,点A 的坐标为(2,3),求△OAC的面积是______.17.某飞机模型的机翼形状如图所示,其中AB//DC,∠BAE=90°,根据图中的数据计算CD的长为______ cm(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=______.三、计算题(本大题共2小题,共20.0分)19. 如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.如果AD =42cm ,AP =10cm ,求△APB 的面积.20. 某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?四、解答题(本大题共6小题,共58.0分) 21. 计算:(1)4x 2−4+2x+2+12−x (2)(1+1a−1)÷(1a 2−1+1).22.为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析.下面给出了部分信息.七年级:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74八年级:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)a=______,m=______,n=______;(2)你认为哪个年级读书知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有______人.23. 已知一个二次函数的图象经过点A(−1,0)、B(3,0)和C(0,−3)三点,求此二次函数的解析式.24. 求不等式组{2(1−x)≤x +83x−26<x+13的最大整数解.25. 在数学兴趣小组活动中,同学们证明了数学定理:“直角三角形中,30°角所对直角边等于斜边的一半.”那么在直角三角形中,对于锐角O 的任意一个确定的值α,它的对边与斜边的比值y 都是多少呢?为了研究这个问题,小华在平面直角坐标系中,以原点为圆心,5cm 为半径画了一个圆弧分别交x ,y 轴于C ,D 两点,A 为圆弧上一动点(不与C ,D 重合),连接OA ,过点A 作AB ⊥x 轴于点B ,设∠AOB =α,∠AOB 的对边AB 与斜边OA 的比值为y(如图1).根据函数定义,小华判断y与α具有函数关系,并根据学习函数的经验,对函数y 随自变量α的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)通过取点、画图、测量、计算,得到了α与y的几组值,如下表:α/°1020304050607080y0.170.340.500.640.770.940.98(说明:补全表格时相关数值保留两位小数)(2)写出该函数自变量α的取值范围_______________.(3)在图2中描出“以补全后的表中各对对应值为坐标”的点,画出该函数的大致图象;(4)根据图象,写出此函数的一条性质__________________________________________.(5)结合画出的函数图象,解决问题:当锐角为45°时,这个比值约为__________.(保留两位小数)26.如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=4,点D为边AB上一动点,DE⊥AC,DF⊥BC,垂足为E,F.连接EF,CD.(1)求证:EF=CD;(2)当EF为何值时,EF//AB;(3)当四边形ECFD为正方形时,求EF的值.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【解答】解:|−2|=2.故选B.2.【答案】D【解析】【分析】本题考查圆锥的认识,熟练掌握圆锥的特点是解题关键.圆锥的截面可能是圆形,椭圆形,抛物线形,或等腰三角形,由此分析即可.【解答】解:根据圆锥的特点可知,用平面截圆锥,不可能得到不规则的四边形和长方形,不能是不规则的三角形,可能是抛物线形.故选D.3.【答案】D【解析】解:A、(x2)3=x6,故本选项错误;B、√2+√8=√2+2√2=3√2,故本选项错误;C、x⋅x2⋅x4=x7,故本选项错误;=√2,故本选项正确;D、√2故选:D.根据幂的乘方法则判断A;先把√8化为最简二次根式,再合并同类二次根式,即可判断B;根据同底数幂的乘法法则判断C;根据二次根式的除法法则判断D.本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、以及二次根式的除法法则是解题的关键.4.【答案】D【解析】解:A、对角线互相垂直平分且相等的四边形是正方形,所以A选项为假命题;B、16的平方根是±4,所以B选项为假命题;C、两边及夹角相等的两个三角形全等,所以C选项为假命题;D、数据4,0,4,6,6的方差是4.8,所以D选项为真命题.故选D.根据正方形的判定对A进行判断;根据平方根的性质对B进行判断;根据全等三角形的判定对C进行判断;根据方差的定义对D进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.【答案】A【解析】解:点M(3,−4)关于x轴的对称点M′的坐标是(3,4).故选:A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质,三角形外角的性质,关键是掌握全等三角形的判定和性质.结合图中射线CG的作法,证得△EGC≌△FGC,从而根据全等三角形对应角相等可得∠ACD(即CG为∠ACD的角平分线);观察图形,发现∠ACD是△ABC ∠ACG=∠DCG=12的一个外角,故根据外角性质,结合∠A与∠B的度数,即可求得∠ACD的度数,再结合上步提示即可求得∠ACG的度数.【解答】解:如图,连接FG、EG.根据题意可得:CE=CF,EG=FG.∵CG=CG,∴△EGC≌△FGC(SSS),∴∠ACG=∠DCG=12∠ACD,即CG为∠ACD的角平分线.∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=60°+70°=130°,∴∠ACG=12∠ACD=65°,故选C.7.【答案】D【解析】【解答】解:在菱形ABCD中,∠ADC=128°,∴∠BAD=180°−128°=52°,∴∠BAO=12∠BAD=12×52°=26°,∵OE⊥AB,∴∠AOE=90°−∠BAO=90°−26°=64°.故选:D.【分析】本题主要考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.8.【答案】C【解析】解:当x=48时,=24,第一次输出的结果为:48×12=12,第二次输出的结果为:24×12=6,第三次输出的结果为:12×12=3,第四次输出的结果为:6×12第五次输出的结果为:3+3=6,=3,第六次输出的结果为:6×12∵(2018−2)÷2=1008,∴第2018次输出的结果是3,故选:C.根据题意和运算程序,可以求得前几次的输出结果,从而可以发现输出结果的变化规律,进而求得第2018次输出的结果.本题考查有理数的混合运算、代数式求值,解答本题的关键是明确有理数混合运算的计算方法.9.【答案】D【解析】【分析】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°−∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【答案】A【解析】【试题解析】【分析】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k.利用以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,则把E 点的横纵坐标都乘以12或−12即可得到对应点E′的坐标.【解答】解:∵以O 为位似中心,按比例1:2把△EFO 缩小,∴点E 的对应点E′的坐标为(2,−1)或(−2,1).故选A .11.【答案】D【解析】【分析】根据题意,再结合甲乙两人与B 地距离和时间的一次函数图象不难解决问题,主要是根据甲乙二人相遇时建立方程求出乙的速度即可判断选项.本题是考查一个相向行走的时间、路程、速度的关系问题,结合其一次函数图象上的示数,读出示数的意义是解题的关键.【解答】解:如右图所示,甲、乙分别从A 、B 两地相向而行,从图象中可看出,当t =0时,A 、B 两地距离s =36(km),甲从A 地先出发2小时后乙才从B 地出发,故选项C 正确;从甲行走的一次函数上看,其速度v 1=36−242=6(km/ℎ),A 项正确;从图象中可得到两条直线的交点所对应的时间是甲和乙相遇的时间4.5ℎ,此时甲已出发4.5ℎ,故B 项正确;设乙的速度为v2,则甲乙相遇时他们行走的路程为A、B两地距离可得,4.5v1+(4.5−2)v2=36,解得v2=3.6(km/ℎ),故乙的速度为3.6km/ℎ,故D项错误.故选D.12.【答案】B【解析】【分析】本题主要考查抛物线与x轴的交点,图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系.利用抛物线的对称性得到抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间,则当x=−2时,y<0,于是可对①进行判断;=1,即b=−2a,则可对②进行判断;利用抛物线的对称轴为直线x=−b2a=n,则可对③进行判断;利用抛物线的顶点的纵坐标为n得到4ac−b24a由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n−1有2个公共点,于是可对④进行判断.【解答】解:①∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间.∴当x=−2时,y<0,即4a−2b+c<0,所以①不符合题意;=1,即b=−2a,②∵抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a<0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n),∴4ac−b2=n,4a∴b2=4ac−4an=4a(c−n),所以③符合题意;④∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n−1有2个公共点,∴一元二次方程ax2+bx+c=n−1有两个不相等的实数根,所以④符合题意.故选:B.13.【答案】5a(a+2b)【解析】解:原式=5a(a+2b),故答案为:5a(a+2b)原式提取公因式即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.15.【答案】4【解析】解:去分母得:7x+5x−5=2m−1,由分式方程有增根,得到x−1=0,即x=1,把x=1代入整式方程得:12−5=2m−1,解得:m=4,故答案为:4分式方程去分母转化为整式方程,由分式方程有增根得到x−1=0,求出x的值,代入整式方程计算即可求出m的值.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.【答案】92(x>0)上,【解析】解:∵点A(2,3)在双曲线y=kx∴k=2×3=6.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB//x轴,∴BM⊥y轴,∴MB//CN,∴△OCN∽△OBM,∵C为OB的中点,即OCOB =12,∴S△OCNS△OBM =(12)2,∵A,C都在双曲线y=6x上,∴S△OCN=S△AOM=3,由33+S△AOB =14,得:S△AOB=9,则△AOC面积=12S△AOB=92.故答案是:92.将A坐标代入反比例解析式求出k的值即可;过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM的面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.17.【答案】22【解析】解:作DM⊥AB于M,如图所示:在Rt△BCN中,BC=CN÷cos37°=50÷0.8= 62.5(cm),∴BN=BC⋅sin37°=62.5×0.60≈37.5(cm),∴AN=AB+BN=34+37.5=71.5cm,∵∠DAE=45°,∠BAE=90°,∴∠DAM=45°,∴△ADM是等腰直角三角形,∴AM=DM=50cm,∴CD=MN=AN−AM=71.5−50≈22(cm);故答案为:22.作DM⊥AB于M,在Rt△BCN中,由三角函数求出BC≈62.5(cm),BN≈37.5(cm),求出AN的长,证出△ADM是等腰直角三角形,得出AM=DM=50cm,即可得出CD 的长.本题考查了解直角三角形的应用、三角函数、等腰直角三角形的判定与性质;熟练掌握解直角三角形的方法,求出BN是解决问题的关键.18.【答案】257【解析】解:如图所示:∵Rt△ABC中,∠C=90o,AB=5,AC=4,∴BC=√AB2−AC2=3,由旋转的性质得:AD=AB=5,由平移的性质得,AE//CG,AB//EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE =∠ACB ,∴△ADE∽△ACB ,∴AE AB =AD AC=DE BC ,即AE 5=54=DE 3, ∴AE =254,DE =154,∵AB//EF ,∴△DEH∽△BAH ,∴EH AH =DE AB ,即254−AH AH =1545, 解得:AH =257;故答案为:257.先判断出∠ADE =∠ACB ,进而得出△ADE∽△ACB ,得出比例式求出AE ,再证明△DEH∽△BAH ,得出比例式,即可得出AH 的长.本题考查了平移的性质、旋转的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握平移的性质,证明三角形相似是解题的关键. 19.【答案】解:∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.. 又∵四边形ABCD 是平行四边形,∴AD//BC .∴∠PAB +∠PBA =90°.∴∠APB =180°−90°=90°.∴△APB 为直角三角形,∵四边形ABCD 是平行四边形,∴BC =AD =42cm .又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB =∠PAD =∠DPA .∴DP =AD =42cm .同理PC =BC =42cm .∴AB =DC =DP +PC =84cm .∴在Rt △APB 中,由勾股定理得:PB =√422−102=8√26cm .∴△APB 的面积是12AP ⋅BP =12×10×8√26=40√26cm 2.【解析】首先根据平行四边形性质得出AD//CB ,AB//CD ,推出∠DAB +∠CBA =180°,求出∠PAB +∠PBA =90°,进而可得△APB 为直角三角形;再根据角平分线的定义以及两条直线平行,则内错角相等.从而证明△ADP 和△BCP 是等腰三角形.则AB =CD =PD +PC =2AD =84cm ,根据勾股定理得到PB 的长,再根据直角三角形的面积等于两条直角边的乘积的一半计算即可.本题考查了平行四边形的性质以及勾股定理的运用,根据平行线的性质结合角平分线的定义,发现两个等腰三角形ADP 和等腰三角形BCP 是解题的关键.20.【答案】解:设甲商品的单价为x 元,乙商品的单价为2x 元,根据题意,得240x −3002x =15,解这个方程,得x =6,经检验,x =6是所列方程的根,∴2x =2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系“购买240元甲商品的数量比购买300元乙商品的数量多15件”是解本题的关键.21.【答案】解:(1)4x 2−4+2x+2+12−x=4x 2−4+2(x−2)(x+2)(x−2)−x+2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)(1+1a−1)÷(1a 2−1+1)=a−1+1a−1÷1+a 2−1a 2−1 =a a−1⋅(a+1)(a−1)a 2 =a+1a .【解析】(1)先通分,化为同分母分式,再根据同分母分式加减法法则计算即可;(2)先将被除式与除式分别通分计算,再将除法转化为乘法,然后根据分式的乘法法则计算即可.本题考查了分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.注意最后结果分子、分母要进行约分,运算的结果要化成最简分式或整式.22.【答案】(1)2,88.5,89;(2)∵八年级读书知识竞赛的总体成绩平均数虽然低一点,但众数和中位数高于七年级,且八年级的众数89高于七年级的众数74,说明八年级分数不低于89分的人数比七年级多,∴八年级读书知识竞赛的总体成绩较好;(3)460.【解析】【分析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.(1)根据总数据可得a的值,根据中位数和众数的定义可得m和n的值;(2)根据平均数,众数和中位数这几方面的意义解答可得;(3)分别计算该校七、八年级所有学生中获得“阅读小能手”称号的人数,相加可得结论.【解答】解:(1)a=20−1−3−8−6=2,八年级20人的成绩:50,65,68,76,77,78,87,88,88,88,89,89,89,89,91,92,93,94,94,95,∴m=88+892=88.5,n=89,故答案为:2,88.5,89;(2)见答案;(3)1+820×400+8+620×400=460,则估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有460人,故答案为:460.23.【答案】解:设抛物线解析式为y=a(x+1)(x−3),把(0,−3)代入得−3=a×1×(−3),解得a=1,所以抛物线解析式为y=(x+1)(x−3),即y=x2−2x−3.【解析】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.点A和点B是抛物线与x轴的交点,可设抛物线解析式为y=a(x+1)(x−3),然后将点C坐标代入,求出a即可.24.【答案】解:{2(1−x)≤x+8①3x−26<x+13②∵解不等式①得:x≥−2,解不等式②得:x<4,∴不等式组的解集是:−2≤x<4,∴不等式组的最大整数解是3.【解析】先求出不等式组的解集,再求出不等式组的最大整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.25.【答案】解:(1)0.87;(2)0<a<90;(3)作图如下:(4)在自变量取值范围内,函数没有最大、最小值;(5)0.71【解析】【分析】本题考查描点法画函数图象,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.(1)根据题意取点、画图、测量、最后通过计算即可填表;(2)根据α为锐角,可得α的取值范围;(3)利用描点法画出函数图象即可;(4)利用(3)中的图象,即可得到这个比值;【解答】解:(1)通过测量和计算可得,当α=60时,y≈0.87,故答案为0.87;(2)∵α为锐角,∴0<a<90,故答案为0<a<90;(3)见答案;(4)答案不唯一,例如:①在自变量取值范围内,函数没有最大、最小值;②在自变量取值范围内,y随x增大而增大;③函数图象只分布在第一象限;故答案为在自变量取值范围内,函数没有最大、最小值;(5)答案不唯一,可以为0.70−0.72之间都可或者更宽泛0.69−0.73,故答案为0.71.26.【答案】(1)证明:∵DE ⊥AC ,DF ⊥BC ,∴∠DEC =∠CFD =90°,∵∠ACB =90°,∴四边形ECFD 是矩形,∴EF =CD ;(2)解:当EF =√5时,EF//AB ,理由是:由(1)知:四边形ECFD 是矩形,∴DE//CF ,DE =CF ,∵EF//AB ,∴四边形BDEF 是平行四边形,∴DE =BF ,∴CF =BF ,同理可证:CE =AE ,∴EF =12AB , 在Rt △ABC 中,AB =√AC 2+BC 2=√22+42=2√5,∴EF =12AB =√5; (3)解:∵四边形ECFD 是正方形,∴DE =DF ,设DE =DF =a ,∴S △ABC =S △BCD +S △ACD ,12AC ⋅BC =12BC ⋅DF +12AC ⋅DE , 12×4×2=12×4a +12×2a , a =43,在Rt △DEF 中,EF =√DE 2+DF 2=√(43)2+(43)2=4√23.【解析】(1)根据有三个角是直角的四边形是矩形,证明四边形ECFD是矩形,可得结论;(2)证明四边形BDEF是平行四边形,得DE=BF,根据勾股定理可得AB的长,从而得EF的长;(3)设DE=DF=a,根据面积法得:S△ABC=S△BCD+S△ACD,代入可得a的值,从而得结论.本题考查三角形和四边形综合题、矩形、平行四边形和正方形的性质和判定、三角形的面积、勾股定理等知识,解题的关键是灵活应用矩形和正方形的判定解决问题,属于中考常考题型.。

重庆八中2019-2020学年度(上)期末考试初三年级数学试题

重庆八中2019-2020学年度(上)期末考试初三年级数学试题

重庆八中2019-2020(上)期末考试初三年级数学试题一、选择题: (本大题共 12个小题,每小题4分,共48分) 1.2020-=( ) A .2020 B .2020- C .12020 D .12020-2. 用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形3. 下列运算正确的是( )A .431--=-B .211555⎛⎫ ⎪⎝⎭⨯-=- C .248x x x ⋅= D.2832+=4. 下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C.若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为385. 已知()3,2A -关于x 轴对称点为'A ,则点'A 的坐标为( )A .()3,2B .()2,3- C.() 3,2- D .()3,2--6. 如图,用尺规作图作BAC ∠的平分线AD ,第一步是以A 为圆心,任意长为半径画弧,分别交,AB AC 于点,E F ;第二步是分别以,E F 为圆心,以大于12EF 长为半径画弧,两圆弧交于D 点,连接AD ,那么AD 为所作,则说明CAD BAD ∠=∠的依据是( )A .SSSB .SAS C.ASA D .AAS7. 如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒ C.62︒ D .67︒8. 按下面的程序计算:若开始输入x 的值为正整数,最后输出的结果为22,则开始输入的x 值可以为( )A .1B .2 C.3 D .49. 如图所示,已知AC 为O 的直径,直线PA 为圆的一条切线,在圆周上有一点B ,且使得BC OC =,连接AB ,则BAP ∠的大小为( )A .30︒B .50︒ C.60︒ D .70︒10. 如图,在平面直角坐标系中,已知点()()3,693,,A B ---,以原点O 为位似中心,相似比为13,把ABO缩小,则点B 的对应点'B 的坐标是( )A .()3,1--B .()1,2- C. ()9,1-或()9,1- D .()3,1--或()3,111. A B 、两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中12,l l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象,下列结论错误的是( )A .1l 是表示甲离A 地的距离与时间关系的图象B .乙的速度是30/km hC. 两人相遇时间在 1.2t h =D .当甲到达终点时乙距离终点还有45km12. 如图所示,抛物线2()0y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是120,2x x ==;④方程20ax bx c ++=有一个实根大于2;⑤当0x <时,y 随x 增大而增大.其中结论正确的个数有( )A .4个B .3个 C.2个 D .1个二、填空题:(本大题共6个小题,每小题4分,共24分)13. 分解因式:22x x -= . 14. 如图,扇形AOB 的圆心角是为90︒,四边形OCDE 是边长为1的正方形,点,C E 分别在,,OA OB D 在弧AB 上,那么图中阴影部分的面积为 .(结果保留π)15. 若关于x 的分式方程3222x mx +=+有增根,则m 的值为 .16. 如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB 与COD 面积分别为8和18,若双曲线ky x =恰好经过BC 的中点E ,则k 的值为17. 自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角72ACB ∠=︒,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为 cm .(参考数据: 720.95,720.31,2.1 )73sin cos tan ︒≈︒≈︒≈18. 如图,在Rt ABC 中,90,10,16C AC BC ∠=︒==.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与,CB AB 边交于,E F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当//BN PE 时,t 的值为 .三、解答题(本大题共8小题,第26题8分,其余每小题10分,共78分)19.()1 解方程组: 3924x y x y -=⎧⎨+=⎩; ()2化简:2442m m m m m --⎛⎫-÷ ⎪⎝⎭.20. 如图,在平行四边形ABCD 中,E 为AD 边上一点,BE 平分ABC ∠,连接CE ,已知6,8DE CE ==,10AE =.()1求AB 的长;()2求平行四边形ABCD 的面积;()3求cos AEB ∠.21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,,,,,,80865983,777578817275,,,.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70, 41.整理数据:≤≤8089xxx≤≤≤≤90100xx4049≤≤7079≤≤5059x≤≤6069七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:()1由上表填空:a=;b=;c=;d=.()2估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?()3你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.22. 如图,平面直角坐标系内,二次函数2y ax bx c =++的图象经过点()(),2,04,0A B -,与y 轴交于点()0,6C .()1求二次函数的解析式;()2点D 为x 轴下方二次函数图象上一点,连接,,,AC BC AD BD ,若ABD 的面积是ABC 面积的一半,求D 点坐标.23. 一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x y =,那么称这个四位数为“对称数”()1最小的“对称数”为 ;四位数A 与2020之和为最大的“对称数”,则A 的值为 ; ()2一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为8,且千位数字a 使得不等式组34214251x x x a--⎧-≤⎪⎨⎪->⎩恰有4个整数解,求出所有满足条件的“对称数”M 的值.24.如图,C 是线段AB 上--动点,以AB 为直径作半圆,过点C 作CD AB ⊥交半圆于点D ,连接AD .已知8AB cm =,设A C 、两点间的距离为xcm ,ACD 的面积为2ycm .(当点C 与点A 或点B 重合时,y 的值为0)请根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)()1通过画图、测量、计算,得到了x 与y 的几组值,如下表: xcm 00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.02ycm 0 0.5 1.3 2.3 a 4.6 5.8 7.0 8.0 8.9 9.7 10.2 10.4 10.2b c 0 补全表格中的数值: a = ;b = ;c = .()2根据表中数值,继续描出()1中剩余的三个点(),x y ,画出该函数的图象并写出这个函数的一条性质; ()3结合函数图象,直接写出当ACD 的面积等于25cm 时,AC 的长度约为___ _cm .25.实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且 两种智能设备的单价和为140万元.()1求甲、乙两种智能设备单价;()2垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的40%,且生产每吨燃料棒所需人力成本比物资成本的倍54还多10元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?26.如图,在ABC 中,,120AC BC ACB =∠=︒, 点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE .()1如图1,若45,6CDB AB ∠=︒=求等边CDE 的边长;()2如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G .①求证:CF DF ⊥;②如图3,将CFD 沿CF 翻折得'CFD ,连接'BD ,直接写出'BD AB的最小值.重庆八中2019-2020学年度(上)期末考试初三年级数学参考答案一、选择题(每小题4分,共48分) 1 2 3 4 5 6 7 8 9 10 11 12 A B D B D A D B C D C B二、填空题(每小题4分,共24分) 13.()2x x - 14.12π- 15.3 16.6 17.60 18.4021三、解答题(共78分)19.()132x y =⎧⎨=-⎩()2原式2–2m = 结果若未把括号打开建议扣1分20.()1四边形ABCD 是平行四边形// AD BC ∴AEB CBE ∴∠=∠又BE 平分ABC ∠CBE ABE ∴∠=∠AEB ABE ∴∠=∠AB AE ∴=10AE =10AB ∴=()2四边形ABCD 是平行四边形.CD AB ∴=10AB =10CD ∴=在CED 中,10,8,6CD CE ED ===222ED CE CD ∴+=90CED ∴∠=︒.CE AD ∴⊥()1068128.ABCD S AD CE ∴=⋅=+⨯=()3四边形ABCD 是平行四边形//BC AD ∴且BC AD =90,16BCE CED AD ∴∠=∠=︒=Rt BCE ∴中,22 85BE BC CE =+=1625585BC cos AEB cos EBC BE ∴∠=∠===21.()111,10,77.5,81a b c d ====()2由样本数据可得,七年级得分在80分及以上的占712205+=.故七年级得分在80分及以上的大约22405⨯=600人;八年级得分在80分及以上的占1023205+=,故八年级得分在80分及以上的大约36003605⨯=人.故共有600人.()3该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可)22.()1233642y x x =-++()2由ABD 的面积是ABC 面积的一半知:132D y OC ==,又点D 在x 轴下方,故3D y =-. 代入233642y x x =-++解得:1131x =--,2131x =-,故点D 坐标为()131,3---或()131,3--23. ()11010;7979()2由34214251x x x a --⎧-≤⎪⎨⎪->⎩得142a x +<≤,由x 有四个整数解,得14a -≤<,又a 为千位数字,所以1,2,3a =.设个位数字为b ,由题意可得,十位数字为8b -,故()38a b a b +=+-,4b a =+.故满足题设条件的M 为133526263917,,24.() 1 3.5,9.3,7.3a b c === ( 允许合理的误差存在)()2描点1分,连线2分,答案图略:性质答案参考;当06x ≤≤时,y 随x 增大而 增大,当68x <≤时,y 随x 增大而减小;当6x =时,y 的最大值为10.4.(性质2分) ()3 2.7或7.8 (允许合理的误差存在)25. () 1设甲单价为x 万元,则乙单价为()140x -万元,则:360480140x x =-解得60x =经检验,60x =是所列方程的根.答:甲设备60万元每台,乙设备80万元每台.()2设每吨燃料棒成本为a 元,则其物资成本为40%a ,则:540%40%104a a a -=⨯+,解得100a =设每吨燃料棒在200元基础上降价x 元,则()()200100350 536080x x --+=解得1212,18x x ==2008%x ≤⨯.12x ∴=∴每吨燃料棒售价应为188元.26. () 1等边CDE 的边长为6;()2①证明:略;②提示:'BD ED CD ==,BD AB '的最小值为36。

重庆八中九年级(上)期末数学试卷

重庆八中九年级(上)期末数学试卷
第 7 页,共 20 页
答案和解析
1.【答案】B
【解析】
解:在实数 ,-2,0,1 中,最小的数是-2.
故选:B. 找出实数中最小的数即可. 此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关 键. 2.【答案】B
【解析】
解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生 变化,左视图不变. 故选:B. 根据三视图的定义,即可判断. 本题考查几何体的三视图,解题的关键是理解三视图的定义,灵活运用所学 知识解决问题,属于基础题. 3.【答案】D
第 3 页,共 20 页
四、解答题(本大题共 7 小题,共 68.0 分) 20. 计算:
(1)(a-b)(a+2b)-(2a-b)2 (2)(1-1m−1)÷m2−4m+4m2−m
21. 如图,小明为了测量小河对岸大树 BC 的高度,他在点 A 测得大树顶端 B 的仰角是 45°,沿斜坡走 325 米到达斜坡上点 D,在此处测得树顶端点 B 的仰角为 31°,且 斜坡 AF 的坡比为 1:2(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60). (1)求小明从点 A 走到点 D 的过程中,他上升的高度; (2)大树 BC 的高度约为多少米?
22. 重庆八中为了了解“校园文明监督岗”的值围情况,对全校 各班级进行了抽样调查,过程如下: 收集数据:从三个年级中随机抽取了 20 个班级,学校对 各班的评分如下: 92 71 89 82 69 82 96 83 77 83 80 82 66 73 82 78 92 70 74 59 整理、描述数据:按如下分数段整理、描述这两组样本 数据:
极差 d
23. 如图,在 Rt△ABC 中∠ACB=90°,BC=4,AC=3.点 P 从点 B 出发,沿折线 B-C-A

重庆名校2019—2020学年度初三年级期末考试-数学

重庆名校2019—2020学年度初三年级期末考试-数学

重庆名校2019—2020学年度(上)期末考试初三年级数学试题(满分150分,时间120分钟)命题:卢天周世建龚元敏程灿审核:李铁打印:程灿校对:周世建一、选择题:(本大题共12个小题,毎小题4分,共48分)在每个小题的下面,都给出了厶B、C、Q的四个答案,其中只有一个是正确的,清将请将弩题卡上对应题目的正确答案标号涂器.1. H2020|-(' )D.67°第9题图第.10題图7,如图,菱形ABCD中,过顶点C作CE1BC交对角线如于E点,已知£4 = 134。

,则山花。

的大小为()A. 23°B, 28。

.第7题图8,按下面的程序计算:A. 2020B. -2020C. ----20202.用一个平面去截…个圆锥,截面的形状不可能是()A,圆 B.短形 C.椭圆3.下列运算正确的是()A. _4_3 = TB. 5X(_:)2=_!C.4.下列命题正确的是()2020 D.三角形D.次+屈3很A.五3有意义的x取值范围是XA I,B.~组数据的方差越大,这组数据波动性越大.C.若& 土72°55',则 & 的补角为107°45'.D.布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为?,85.已知4(T,2)关于对由对称点为才,则点4的坐标为()A. (3,2)B. (2,-3)C, (3厂2) D.卜3厂2)6.如图,用尺规作图作ABAC的平分线』£),第一步是以彳为圆心,任意长为半径画弧,分别交AB, AC于点E,入第二步是分别以瓦尸为圆心,以大于4"长为半径画弧,2两圆弧交于刀点,连接如>,那么,4。

为所作,则说明ACAD-^BAD的依据是()A.SSS B.SAS 9 °C. ASAD. AAS/I ... E .. B重庆中2019—2020学年度(上)期末考试初三年级数学试题第顷共8页若开始输入的x值为正整数,最后输出的結果为22,A. 1B.2力如图所示,已知AC为0。

2019-2020学年重庆八中九年级上学期期末数学试卷 (解析版)

2019-2020学年重庆八中九年级上学期期末数学试卷 (解析版)

2019-2020学年重庆八中九年级(上)期末数学试卷一、选择题(共12小题).1.﹣2020的绝对值是()A.2020B.﹣2020C.﹣D.2.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形3.下列运算正确的是()A.﹣4﹣3=﹣1B.5×(﹣)2=﹣C.x2•x4=x8D.+=34.下列命题正确的是()A.有意义的x取值范围是x>1.B.一组数据的方差越大,这组数据波动性越大.C.若∠α=72°55′,则∠α的补角为107°45′.D.布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为5.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)6.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,那么AD为所作,则说明∠CAD=∠BAD的依据是()A.SSS B.SAS C.ASA D.AAS7.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.49.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()A.30°B.50°C.60°D.70°10.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)11.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1.l2表示两人离A地的距离s(km)与时间t(h)的关系,结合图象,下列结论错误的是()A.l1是表示甲离A地的距离与时间关系的图象B.乙的速度是30km/hC.两人相遇时间在t=1.2hD.当甲到达终点时乙距离终点还有45km12.如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.分解因式:x2﹣2x=.14.如图,扇形AOB的圆心角是为90°,四边形OCDE是边长为1的正方形,点C,E 分别在OA,OB,D在弧AB上,那么图中阴影部分的面积为.(结果保留π)15.若关于x的分式方程=2有增根,则m的值为.16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为.17.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm,中轴轴心C到地面的距离CF为33cm,后轮中心A与中轴轴心C连线与车架中立管BC所成夹角∠ACB=72°,后轮切地面l于点D.为了使得车座B到地面的距离BE为90cm,应当将车架中立管BC的长设置为cm.(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈ 3.1)18.如图,Rt△ABC中,∠C=90°,AC=10,BC=16.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将△PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为.三、解答题(本大题共8小题,第26题8分,其余每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:(2)化简:(m﹣)÷20.如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=10.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤49 50≤x≤59 60≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=;b=;c=;d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.22.如图,平面直角坐标系内,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(4,0),与y轴交于点C(0,6).(1)求二次函数的解析式;(2)点D为x轴下方二次函数图象上一点,连接AC,BC,AD,BD,若△ABD的面积是△ABC面积的一半,求D点坐标.23.一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x =y,那么称这个四位数为“对称数”(1)最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;(2)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组恰有4个整数解,求出所有满足条件的“对称数”M的值.24.如图,C是线段AB上一动点,以AB为直径作半圆,过点C作CD⊥AB交半圆于点D,连接AD.已知AB=8cm,设A,C两点间的距离为xcm,△ACD的面积为ycm2.(当点C与点A或点B重合时,y的值为0)请根据学习函数的经验,对函数y随自变量x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数(1)通过画图、测量、计算,得到了x与y的几组值,如表:xcm00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.57.07.58.0 ycm200.5 1.3 2.3a 4.6 5.87.08.08.99.710.210.410.2b c0补全表格中的数值:a=;b=;c=.(2)根据表中数值,继续描出(1)中剩余的三个点(x,y),画出该函数的图象并写出这个函数的一条性质;(3)结合函数图象,直接写出当△ACD的面积等于5cm2时,AC的长度约为cm.25.垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的40%,且生产每吨燃料棒所需人力成本比物资成本的倍还多10元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?26.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.参考答案一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.1.﹣2020的绝对值是()A.2020B.﹣2020C.﹣D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:|﹣2020|=2020,故选:A.2.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形【分析】根据圆锥的形状特点判断即可.解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B符合题意;故选:B.3.下列运算正确的是()A.﹣4﹣3=﹣1B.5×(﹣)2=﹣C.x2•x4=x8D.+=3【分析】分别有理数的减法法则,有理数的乘方与有理数的乘法法则、同底数幂的乘法法则以及二次根式的加减法法则逐一判断即可.解:A.﹣4﹣3=﹣7,故本选项不合题意;B.5×(﹣)2=,故本选项不合题意;C.x2•x4=x6,故本选项不合题意;D.,故本选项符合题意.故选:D.4.下列命题正确的是()A.有意义的x取值范围是x>1.B.一组数据的方差越大,这组数据波动性越大.C.若∠α=72°55′,则∠α的补角为107°45′.D.布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为【分析】根据二次根式、方差、互补和概率判断即可.解:A、有意义的x取值范围是x≥1,原命题是假命题;B、一组数据的方差越大,这组数据波动性越大,是真命题;C、若∠α=72°55′,则∠α的补角为107°5′,原命题是假命题;D、布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为,原命题是假命题;故选:B.5.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【分析】直接利用关于x轴对称点的性质得出符合题意的答案.解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2).故选:D.6.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,那么AD为所作,则说明∠CAD=∠BAD的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图过程可得,AF=AE,DF=DE,又AD=AD,可以证明△FAD≌△EAD,即可得结论.解:根据作图过程可知:AF=AE,DF=DE,又AD=AD,∴△FAD≌△EAD(SSS),∴∠CAD=∠BAD.故选:A.7.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°【分析】根据菱形的性质和三角形的内角和解答即可.解:∵菱形ABCD,∠A=134°,∴∠ABC=180°﹣134°=46°,∴∠DBC=,∵CE⊥BC,∴∠BEC=90°﹣23°=67°,故选:D.8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.4【分析】由3x+1=22,解得x=7,即开始输入的x为7,最后输出的结果为22;当开始输入的x值满足3x+1=7,最后输出的结果也为22,可解得x=2,符合题意.解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.9.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()A.30°B.50°C.60°D.70°【分析】连接OB,根据等边三角形的性质得到∠BOC=60°,根据圆周角定理得到∠BAC=30°,根据切线的性质得到∠CAP=90°,结合图形计算,得到答案.解:连接OB,∵BC=OC,OB=OC,∴OB=OC=BC,∴△OBC为等边三角形,∴∠BOC=60°,由圆周角定理得,∠BAC=∠BOC=30°,∵直线PA为圆的一条切线,AC为⊙O的直径,∴∠CAP=90°,∴∠BAP=90°﹣30°=60°,故选:C.10.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可得到点B′的坐标.解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(﹣9,﹣3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).故选:D.11.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1.l2表示两人离A地的距离s(km)与时间t(h)的关系,结合图象,下列结论错误的是()A.l1是表示甲离A地的距离与时间关系的图象B.乙的速度是30km/hC.两人相遇时间在t=1.2hD.当甲到达终点时乙距离终点还有45km【分析】选项A、B根据题意和图象可以判断;选项C根据图象可以分别求得甲乙对应的函数解析式,联立即可得出甲出发后经过多少小时两人相遇.根据“路程、时间与速度的关系”列式计算即可.解:∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,故选项A不合题意;乙的速度是:90÷(3.5﹣0.5)=90÷3=30(km/h),故选项B不合题意;设甲对应的函数解析式为y=ax+b,,解得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,解得,即乙对应的函数解析式为y=30x﹣15,,解得,即甲出发1.4小时后两人相遇.故选项C符合题意;90﹣30×(2﹣0.5)=45(km),即当甲到达终点时乙距离终点还有45km.故选项D不合题意.故选:C.12.如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.解:抛物线开口向下,a<0,对称轴为直线x=1>0,a、b异号,因此b>0,与y轴交点为(0,3),因此c=3>0,于是abc<0,故结论①是正确的;由对称轴为直线x=﹣=1得2a+b=0,当x=﹣1时,y=a﹣b+c<0,所以a+2a+c <0,即3a+c<0,又a<0,4a+c<0,故结论②不正确;当y=3时,x1=0,即过(0,3),抛物线的对称轴为直线x=1,由对称性可得,抛物线过(2,3),因此方程ax2+bx+c=3的有两个根是x1=0,x2=2;故③正确;抛物线与x轴的一个交点(x1,0),且﹣1<x1<0,由对称轴为直线x=1,可得另一个交点(x2,0),2<x2<3,因此④是正确的;根据图象可得当x<0时,y随x增大而增大,因此⑤是正确的;正确的结论有4个,故选:A.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.分解因式:x2﹣2x=x(x﹣2).【分析】提取公因式x,整理即可.解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).14.如图,扇形AOB的圆心角是为90°,四边形OCDE是边长为1的正方形,点C,E 分别在OA,OB,D在弧AB上,那么图中阴影部分的面积为π﹣1.(结果保留π)【分析】先利用正方形的性质得到OD=,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形AOB﹣S正方形OCDE进行计算.解:∵四边形OCDE是边长为1的正方形,∴OD=,∴图中阴影部分的面积=S扇形AOB﹣S正方形OCDE=﹣1=π﹣1.故答案为π﹣1.15.若关于x的分式方程=2有增根,则m的值为3.【分析】分式方程去分母转化为整式方程,解出x,由分式方程有增根,得到x+2=0,求出x的值,代入求出m的值即可.解:=2,去分母得:3x+2m=2x+4,解得:x=﹣2m+4,由分式方程有增根,得到x+2=0,即x=﹣2,把x=﹣2代入x=﹣2m+4中得:m=3,故答案为:3.16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为6.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.17.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm,中轴轴心C到地面的距离CF为33cm,后轮中心A与中轴轴心C连线与车架中立管BC所成夹角∠ACB=72°,后轮切地面l于点D.为了使得车座B到地面的距离BE为90cm,应当将车架中立管BC的长设置为60cm.(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈ 3.1)【分析】直接利用已知得出HE的长,再利用锐角三角函数关系得出BC的长.解:由题意可得:HE=FC=33cm,故BH=BE﹣HE=90﹣33=57(cm),则sin72°==≈0.95,解得:BC≈60(cm).故答案为:60.18.如图,Rt△ABC中,∠C=90°,AC=10,BC=16.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将△PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为.【分析】作NH⊥BC于H.首先证明∠PEC=∠NEB=∠NBE,推出EH=BH,根据cos∠PEC=cos∠NEB,推出=,由此构建方程解决问题即可.解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴=,∵EF∥AC,∴=,∴=,∴EF=EN=(16﹣3t),∴=,整理得:63t2﹣960t+1600=0,解得t=或(舍弃),故答案为.三、解答题(本大题共8小题,第26题8分,其余每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:(2)化简:(m﹣)÷【分析】(1)利用加减消元法解方程;(2)先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.解:(1),①+②×3得x+6x=9+12,解得x=3,把x=3代入①得3﹣3y=9,解得y=﹣2,所以方程组的解为;(2)原式=•=•=m(m﹣2)=m2﹣2m.20.如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=10.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证△CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠AEB,∴AB=AE=10,(2)∵四边形ABCD是平行四边形.∴CD=AB=10,在△CED中,CD=10,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(10+6)×8=128;(3)∵四边形ABCD是平行四边形.∴BC∥AD,BC=AD,∴∠BCE=∠CED=90°,AD=16,∴Rt△BCE中,BE==8,∴cos∠AEB=cos∠EBC===.21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤49 50≤x≤59 60≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=11;b=10;c=78.5;d=81.(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,72,73,75,75,75,76,77,77,78,79,80,80,81,83,85,86,87,94,∴其中位数c==78.5,八年级成绩的众数d=81,故答案为:11,10,78.5,81;(2)由样本数据可得,七年级得分在80分及以上的占=,故七年级得分在80分及以上的大约600×=240人;八年级得分在80分及以上的占=,故八年级得分在80分及以上的大约600×=360人.故共有600人.(3)该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).22.如图,平面直角坐标系内,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(4,0),与y轴交于点C(0,6).(1)求二次函数的解析式;(2)点D为x轴下方二次函数图象上一点,连接AC,BC,AD,BD,若△ABD的面积是△ABC面积的一半,求D点坐标.【分析】(1)设交点式y=a(x+2)(x﹣4),然后把(0,6)代入求出a得到得抛物线解析式;(2)设D(t,﹣t2+t+6),利用三角形面积公式得到×(2+4)×[﹣(﹣t2+t+6)]=××(2+4)×6,然后解关于t的方程得P点坐标.解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把(0,6)代入得6=a×(0+2)(0﹣4),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4),即y=﹣x2+x+6;(2)设D(t,﹣t2+t+6),∵△ABD的面积是△ABC面积的一半,∴×(2+4)×[﹣(﹣t2+t+6)]=××(2+4)×6整理得t2﹣2t﹣12=0,解得t1=1+,t2=1﹣,∴P点坐标为(1+,﹣3)或(1﹣,﹣3).23.一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x =y,那么称这个四位数为“对称数”(1)最小的“对称数”为1010;四位数A与2020之和为最大的“对称数”,则A的值为7979;(2)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组恰有4个整数解,求出所有满足条件的“对称数”M的值.【分析】(1)根据题意,可以写出最小的“对称数”和最大的“对称数”,然后即可得到A的值,本题得以解决;(2)根据千位数字a使得不等式组恰有4个整数解,可以求得a的值,然后根据题意,可以得到所有满足条件的“对称数”M的值.解:(1)由题意可得,最小的“对称数”为1010,最大的“对称数”是9999,∵四位数A与2020之和为最大的“对称数”,∴A的值为:9999﹣2020=7979,故答案为:1010,7979;(2)由不等式组,得<x≤4,∵千位数字a使得不等式组恰有4个整数解,∴0≤<1,解得,﹣1≤a<4,∵a为千位数字,∴a=1,2,3,设个位数字为b,∵一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,∴百位数字为3a,十位数字是8﹣b,∴a+b=3a+(8﹣b),b=a+4,∴当a=1时,b=5,此时对称数”M的值是1335,当a=2时,b=6,此时对称数”M的值是2626,当a=3时,b=7,此时对称数”M的值是3917由上可得,对称数”M的值是1335,2626,3917.24.如图,C是线段AB上一动点,以AB为直径作半圆,过点C作CD⊥AB交半圆于点D,连接AD.已知AB=8cm,设A,C两点间的距离为xcm,△ACD的面积为ycm2.(当点C与点A或点B重合时,y的值为0)请根据学习函数的经验,对函数y随自变量x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数(1)通过画图、测量、计算,得到了x与y的几组值,如表:xcm00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.57.07.58.0 ycm200.5 1.3 2.3a 4.6 5.87.08.08.99.710.210.410.2b c0补全表格中的数值:a= 3.5;b=9.3;c=7.3.(2)根据表中数值,继续描出(1)中剩余的三个点(x,y),画出该函数的图象并写出这个函数的一条性质;(3)结合函数图象,直接写出当△ACD的面积等于5cm2时,AC的长度约为 2.7或7.8 cm.【分析】(1)如图,连接BD,根据圆周角定理得到∠ADB=90°,根据余角的性质得到∠DAC=∠BDC,根据相似三角形的性质得到CD==,于是得到y =x,当x=2.0时,当x=7.0时,当x=7.5时,解方程即可得到结论;(2)根据题意画出函数图象即可;(3)根据函数图象求得自变量的值即可.解:(1)如图,连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵DC⊥AB,∴∠ACD=∠BCD=90°,∴∠ADC+∠DAC=∠ADC+∠BDC=90°,∴∠DAC=∠BDC,∴△ADC∽△DBC,∴=,∴CD==,∴y=x,当x=2.0时,a=y=2×≈3.5,当x=7.0时,b=y=7×≈9.3;当x=7.5时,c=y=7.5×≈7.3,故答案为:3.5,9.3,7.3;(2)函数图象如图所示,性质:当0≤x≤6时,y随x增大而增大,当6<x≤8时,y 随x增大而减小;当x=6时,y的最大值为10.4;(3)由函数图象知,当△ACD的面积等于5cm2时,AC的长度约为2.7cm或7.8cm.故答案为:2.7或7.8.25.垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的40%,且生产每吨燃料棒所需人力成本比物资成本的倍还多10元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?【分析】(1)设甲智能设备单价x万元,则乙单价为(14﹣x)万元,利用购买的两种设备数量相同,列出分式方程求解即可;(2)设每吨燃料棒在200元基础上降价x元,根据题意列出方程,求解后根据降价幅度不超过7%,即可得出售价.解:(1)设甲智能设备单价x万元,则乙单价为(14﹣x)万元,由题意得:=,解得:x=60,经检验x=60是方程的解,∴x=60,140﹣x=80,答:甲设备60万元/台,乙设备80万元/台;(2)设每吨燃料棒的成本为a元,则其物资成本为40%a元,由题意得:a﹣40%a=×40%a+10,解得:a=100,即每吨燃料棒的成本100元.设每吨燃料棒在200元基础上降价x元,由题意得:(200﹣x﹣100)(350+5x)=36080,解得:x1=12,x2=18,∵x≤200×7%,即x≤14,∴x=12,200﹣x=188,答:每吨燃料棒售价应为188元.26.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.【分析】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH =;(2)①延长BC到N,使CN=BC,由“SAS”可证△CEN≌△CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N =30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证△EFD≌∠BFD',可得BD'=DE,则当CD取最小值时,有最小值,即可求解.解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,。

【精选3份合集】2019-2020年重庆市九年级上学期期末综合测试数学试题

【精选3份合集】2019-2020年重庆市九年级上学期期末综合测试数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,抛物线y =ax 2+bx+c 交x 轴分别于点A (﹣3,0),B (1,0),交y 轴正半轴于点D ,抛物线顶点为C .下列结论①2a ﹣b =0;②a+b+c =0;③当m≠﹣1时,a ﹣b >am 2+bm ;④当△ABC 是等腰直角三角形时,a =1-2;⑤若D (0,3),则抛物线的对称轴直线x =﹣1上的动点P 与B 、D 两点围成的△PBD 周长最小值为32+10,其中,正确的个数为( )A .2个B .3个C .4个D .5个【答案】D 【分析】把A 、B 两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC 是等腰直角三角形时点C 的坐标,进而可求得此时a 的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A (﹣3,0),B (1,0)代入y =ax 2+bx+c 得到0930a b c a b c ++=⎧⎨-+=⎩,消去c 得到2a ﹣b =0,故①②正确;∵抛物线的对称轴是直线x =﹣1,开口向下,∴x =﹣1时,y 有最大值,最大值=a ﹣b+c , ∵m≠﹣1,∴a ﹣b+c >am 2+bm+c ,∴a ﹣b >am 2+bm ,故③正确;当△ABC 是等腰直角三角形时,C (﹣1,2),可设抛物线的解析式为y =a (x+1)2+2,把(1,0)代入解得a =﹣12,故④正确, 如图,连接AD 交抛物线的对称轴于P ,连接PB ,则此时△BDP 的周长最小,最小值=PD+PB+BD =PD+PA+BD =AD+BD ,∵AD 2233+=2BD 2231+10,∴△PBD 周长最小值为2+10,故⑤正确.【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.2.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.23B.3C.33D.32【答案】D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=12ED⋅AE,S△ECD=12ED⋅CF.∴S△AED=S△CDE∵AE=12AD=1,DE=223AD AE=-=,∴△ECD的面积是32. 故答案选:D.本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.3.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2【答案】D 【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.4.一5的绝对值是( )A .5B .15C .15-D .-5 【答案】A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A .5.若3a b +=2a b -=22a b -的值为( ) A .6B .23C 5D 6 【答案】D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把3a b +=2a b -=【详解】解:22a b -=(a+b )(a-b )326.故答案为D .【点睛】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.6.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( ) A .y =10x B .y =5x C .y =20x D .y =20x 【答案】C【解析】试题解析:∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,1102xy ,∴= ∴y 与x 的函数关系式为:20y x =. 故选C .点睛:根据三角形的面积公式列出1102xy =,即可求出答案. 7.图中的两个梯形成中心对称,点P 的对称点是( )A .点AB .点BC .点CD .点D【答案】C 【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:图中的两个梯形成中心对称,点P 的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.8.如图,A ,B ,C ,D ,E 互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的总面积是( )A .1.5πB .2.5πC .3.5πD .4.5π【答案】C【分析】根据圆心角之和等于五边形的内角和,由于半径相等,根据扇形的面积公式计算先算出五边形内部五个扇形的面积之和,再用五个圆的面积之和减去五边形内部五个扇形的面积之和即可求得结果.【详解】∵五边形的内角和是:(5−2)×180°=540°,∴阴影部分的面积之和是:2 25401 15 3.5360πππ⨯⨯⨯-=,故选C.【点睛】本题主要考查多边形的内角和以及扇形的面积公式,解决问题的关键是把阴影部分的面积当成一个扇形面积来求,将五边形的内角和理解成圆心角也很关键;这题是易错题,注意是求五边形外部的扇形面积之和.9.如图,在平面直角坐标系中,函数y kx=与3yx=-的图像相交于A,B两点,过点A作x轴的平行线,交函数4yx=的图像于点C,连接BC,交x轴于点E,则OBE△的面积为()A.72B.74C.2 D.32【答案】B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数y kx=与3yx=-的图像相交于A,B两点∴联立3y kxyx=⎧⎪⎨=-⎪⎩解得12123333k kx xy k y k⎧⎧--==⎪⎪⎨⎨⎪⎪=-=-⎩⎩∴点A、B坐标分别是333,3k kA kB k⎛----⎝⎝∵过点A作x轴的平行线,交函数4yx=的图像于点C∴把3y k=-代入到4yx=中得,43kx=-解得433kxk-=-∴点C 的坐标为43,3k k ⎛⎫--- ⎪ ⎪⎝ ∴1433=2372ABC k k S k ⎛⎫--⨯--⨯-= ⎪ ⎪⎝⎭∵OA=OB,OE∥AC∴OE 是△ABC 的中位线∴17==44OBE ABC S S 故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.10.如图,直线y mx =与双曲线k y x=交于A 、B 两点,过点A 作AM x ⊥轴,垂足为M ,连接BM ,若2ABM S ∆=,则k 的值是( )A .2B .4C .-2D .-4 【答案】A【解析】由题意得:2ABM AOM SS =,又1||2AOM S k =,则k 的值即可求出. 【详解】设(,)A x y , ∴直线y mx =与双曲线k y x=交于A 、B 两点, (,)B x y ∴--,1||2BOM Sxy ∴=,1||2AOM S xy = , BOM AOM S S ∴=,122||12ABM AOM BOM AOM AOM S S S S S k ∴=+====,则2k =±. 又由于反比例函数位于一三象限,0k >,故2k =.【点睛】 本题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点.11.如图,抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为1x =,则下列结论中正确的是( )A .0a >B .当1x >时,y 随x 的增大而增大C .0c <D .3x =是一元二次方程20ax bx c ++=的一个根【答案】D【解析】根据二次函数图象的开口方向向下可得a 是负数,与y 轴的交点在正半轴可得c 是正数,根据二次函数的增减性可得B 选项错误,根据抛物线的对称轴结合与x 轴的一个交点的坐标可以求出与x 轴的另一交点坐标,也就是一元二次方程ax 2+bx +c =0的根,从而得解.【详解】A 、根据图象,二次函数开口方向向下,∴a <0,故本选项错误;B 、当x >1时,y 随x 的增大而减小,故本选项错误;C 、根据图象,抛物线与y 轴的交点在正半轴,∴c >0,故本选项错误;D 、∵抛物线与x 轴的一个交点坐标是(−1,0),对称轴是x =1,设另一交点为(x ,0),−1+x =2×1,x =3,∴另一交点坐标是(3,0),∴x =3是一元二次方程ax 2+bx +c =0的一个根,故本选项正确.故选:D .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x 轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.12.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是A .()246y x =+-B .()242y x =--C .()242y x =-+D .()213y x =--【答案】B【分析】把265y x x =-+配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线()2265=34y x x x =-+--向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:()()22-3-1-4+2=-4-2y x x =故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(本题包括8个小题)13.若关于x 的一元二次方程x 2﹣4x+m =0没有实数根,则m 的取值范围是_____.【答案】m >4【分析】根据根的判别式即可求出答案.【详解】解:由题意可知:△<0,∴()2=441640m m ∆--=<﹣, ∴m >4故答案为:m >4【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.14.已知圆的半径是2,则该圆的内接正六边形的面积是__________【答案】【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接OA 、OB ,作OG AB ⊥于G ,等边三角形的边长是2,OG ∴,∴等边三角形的面积是122⨯= ∴正六边形的面积是:6故答案为:【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.15.如图,△ABC 中,AB =6,BC =1.如果动点D 以每秒2个单位长度的速度,从点B 出发沿边BA 向点A 运动,此时直线DE ∥BC ,交AC 于点E .记x 秒时DE 的长度为y ,写出y 关于x 的函数解析式_____(不用写自变量取值范围).【答案】y =﹣3x+1【分析】由DE ∥BC 可得出△ADE ∽△ABC ,再利用相似三角形的性质,可得出y 关于x 的函数解析式.【详解】∵DE ∥BC ,∴△ADE ∽△ABC , ∴DE AD BC AB=,即6296y x -=,∴y =﹣3x+1. 故答案为:y =﹣3x+1.【点睛】 本题考查根据实际问题列函数关系式,利用相似三角形的性质得出DE AD BC AB=是关键. 16.抛物线y=x 2+2x+3的顶点坐标是_____________.【答案】(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=2(1)2x ++,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.17.如图,在△ABC 中,D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF ∥AB ,AD :BD =5:3,CF =6,则DE 的长为_____.【答案】1【分析】根据平行线分线段成比例定理得到53AE ADEC DB==,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴53AE ADEC DB==,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴5=3DE AEFC EC=,即563DE=,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.18.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为5,则AEBE(AE BE<)的值为_____.【答案】1 2【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为53EHAB=,令5k,AB=3k,设AE=a,AH=3k a-,在直角三角形AEH中,利用勾股定理,即可求出a的值,即可得到答案.【详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH ,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF ,∴△AEH ≌△BFE (AAS ),∴BE=AH ,∵EH AB =令,AB=3k ,在直角三角形AEH 中,设AE=a ,AH=AB-AE=3k a -,由勾股定理,得222AE AH EH +=,即222(3))a k a +-=,解得:a k =或2a k =,∵AE BE <,∴AE k =,∴2BE k =, ∴122AE k BE k ==; 故答案为:12. 【点睛】 本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE 和BE 的长度.三、解答题(本题包括8个小题)19.已知二次函数的图象顶点是(12)-,, 且经过()1, 3-,求这个二次函数的表达式. 【答案】()25124y x =-++ 【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【详解】把顶点()12-,代入()2y a x h k =-+得:()212y a x =++, 把()1,3-代入()212y a x =++得:54a =-, ∴二次函数的表达式为:()25124y x =-++. 【点睛】 本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键.20.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,【答案】(1)b=2或b=10-;(2)x 1=x 2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.21.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)把表格填写完整;(2)根据上表填空:①抛物线与x 轴的交点坐标是________和__________;②在对称轴右侧,y 随x 增大而_______________;③当22x -<<时,则y 的取值范围是_________________;(3)请直接写出抛物线2y ax bx c =++的解析式.【答案】(1)2;(2)①抛物线与x 轴的交点坐标是()30-,和()10,;②y 随x 增大而减小;③y 的取值范围是54y -<≤;(2)223y x x =--+.【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y 的值相等,都为2;(2)①利用表中y=0时x 的值可得到抛物线与x 轴的交点坐标;②设交点式y=a (x+2)(x-1),再把(0,2)代入求出a 得到抛物线解析式为y=-x 2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;③由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y 的取值范围;(2)由(2)得抛物线解析式.【详解】解:(1)∵x=-2,y=0;x=1,y=0,∴抛物线的对称轴为直线x=-1,∴x=0和x=-2时,y=2;故答案是:2;(2)①∵x=-2,y=0;x=1,y=0,∴抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);②设抛物线解析式为y=a(x+2)(x-1),把(0,2)代入得2=-2a,解得a=-1,∴抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,抛物线的顶点坐标为(-1,1),抛物线开口向下,∴在对称轴右侧,y随x增大而减小;故答案是:减小;③当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,∴当-2<x<2时,则y的取值范围是-5<y≤1.故答案是:-5<y≤1;(2)由(2)得抛物线解析式为y=-x2-2x+2,故答案是:y=-x2-2x+2.【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点问题转化为关于x的一元二次方程的问题.也考查了二次函数的性质.22.(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.【答案】解:(1)16;(2)12.【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率.【详解】解:(1)画树状图得∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)=21126=(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,∴这些线段能构成三角形的概率为P(能构成三角形)= 61122=【点睛】本题考查概率的计算,难度不大.23.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=25,求⊙O的半径.【答案】(1)见解析;(2)52.【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD 为菱形,∴AB =BC =CD =DA ,AD ∥BC ,∠DAB =∠C , ∵BF =BE ,∴AB ﹣BF =BC ﹣BE ,即AF =CE ,∴△DAF ≌△DCE (SAS ),∴∠DFA =∠DEC ,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DEC =90°∵AD ∥BC ,∴∠ADE =∠DEC =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(2)解:如图2,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DFB =90°,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2, ∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴()2222()2252AD AD ---=,∴AD =1.∴⊙O 的半径为52. 【点睛】。

2019-2020学年度第一学期重庆市重点中学九年级数学期末考试试卷解析版

2019-2020学年度第一学期重庆市重点中学九年级数学期末考试试卷解析版

绝密★启用前2019-2020学年度第一学期重庆市重点中学九年级数学期末考试试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.下列汽车标识中,是中心对称图形的是( )A .B .C .D . 2.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°3.下列方程属于一元二次方程的是( )A .310x -=B .343x x -=C .2210x x +-=D .2110x x -+= 4.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 5.如图,四边形ABCD 是⊙O 的内接四边形,⊙B=70°,则⊙D 的度数是( )A .110°B .90°C .70°D .50°6.点(2,4)在反比例函数(0)k y k x =≠的图象上,下列各点也在此函数图象上的是( )A .(4,2)-B .(1,8)-C .(2,4)-D .(4,2)7.若关于x 的一元二次方程x 2−x −m =0的一个根是x =1,则m 的值是( )A .1B .0C .−1D .28.修建一个面积为100平方米的矩形花园,它的长比宽多10米,设宽为x 米,可列方程为( )A .(10)100x x -=B .22(10)100x x +-=C .22(10)100x x ++=D .(10)100x x +=9.如图,从圆O 外一点P 引圆O 的两条切线PA ,PB ,切点分别为A ,B .如果60APB ∠=︒,8PA =,那么圆O 的半径是( )A .4B .CD .10.如图,点C 在反比例函数y=k x(x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB=BC ,⊙AOB 的面积为1,则k 的值为( )A .1B .2C .3D .4第II 卷(非选择题)二、填空题11.点A (﹣2,3)关于原点对称的点的坐标是_____.12.一元二次方程x (x (3(=0的解是________(13.在“山清水秀地干净”这句话中任选一个汉字,这个字是“清”的概率为________. 14.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是________2cm (结果用含π的式子表示).15.已知二次函数2()3y x h =-+,当2x <时,y 随x 的增大而减小,则h 的取值范16.如图,在菱形ABCD 中,2AB =,120C ∠=︒,点P 是平面内一点,且90APB ∠=︒,则DP 的最小值为________.三、解答题17.解方程:2230x x --=.18.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为(4,3)A -、(3,1)B -、(1,3)C -.(1)将ABC V 先向右平移4个单位长度、再向上平移2个单位长度,得到111A B C △,画出111A B C △.(2)222A B C △与ABC V 关于原点O 成中心对称,画出222A B C △.19.为了传承优秀传统文化,我校开展“经典诵读”比赛互动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料),将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.求:(1)小明诵读《论语》的概率.(2)小明和小亮诵读两个不同材料的概率.20.如图,直线y=1x+2与双曲线y=k 相交于点A(m(3),与x 轴交于点C((1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.21.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?22.如图,已知AB 为O e 的直径,F 为O e 上一点,AC 平分BAF ∠且交O e 于点C ,过点C 作CD AF ⊥交AF 的延长线于点D ,延长AB 、DC 交于点E ,连接BC 、CF .(1)求证:CD 是O e 的切线.(2)求证:2AF DF AB +=.23.如图,抛物线24y x x =-+交x 轴于O 、B 两点,A 为抛物线上一点,且横纵坐标相等(原点除外),P 为抛物线上一动点,过P 作x 轴的垂线,垂足为(,0)(0)D a a >,并与直线OA 交于点C .(1)求A 、B 两点的坐标.(2)当点P 在线段OA 上方时,过P 作x 轴的平行线与直线OA 相交于点E ,求PCE V 周长的最大值及此时P 点的坐标.参考答案1.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.3.C【解析】【分析】一元二次方程是指只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.【详解】解:A 、是一元一次方程,故本选项错误;B 、未知数的项的最高次数不是2,不是一元二次方程,故本选项错误;C 、是一元二次方程,故本选项正确;D 、不是整式方程,即不是一元二次方程,故本选项错误;故选:C .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .5.A【解析】试题分析:(四边形ABCD 是(O 的内接四边形,((D+(B=180°,((D=180°﹣70°=110°,故选A .考点:圆内接四边形的性质.6.D【解析】【分析】先把点(2,4)代入反比例函数y=kx,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.【详解】解:∵点(2,4)在反比例函数y=kx的图象上,∴k=2×4=8.A、∵4×(-2)=-8≠8,∴此点不在函数图象上;B、∵(-1)×8=-8≠8,∴此点不在函数图象上;C、∵(-2)×4=-8≠8,此点不在函数图象上;D、∵4×2=8,此点在函数图象上.故选:D.【点睛】本题考查了反比例函数图象上点的坐标特点,掌握反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.7.B【解析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一次方程即可.本题解析: 把x=1代入x²−x−m=0得1−1−m=0,解得m=0.故选B.8.D【解析】【分析】根据花圃的面积为100列出方程即可.【详解】解:∵花圃的长比宽多10米,花圃的宽为x米,∴长为(x+10)米,∵花圃的面积为100,∴可列方程为x(x+10)=100.故选D .【点睛】本题考查了列一元二次方程;根据长方形的面积公式得到方程是解题的关键. 9.C【解析】【分析】作辅助线,连接OA ,OP ,根据切线长定理可知:∠OPA=12∠APB ,由PA 与⊙O 相切,可知:OA ⊥AP ,根据已知条件可将OP 的长求出.【详解】解:连接OA ,OP∵PA ,PB 是⊙O 的切线,∠APB=60°,∴∠OPA=12∠APB=30°,OA ⊥OP , ∴OA=AP·tan ∠OPA=8×3=83, ∴圆O 的半径是83. 故选:C .【点睛】 本题考查了切线长和特殊三角函数值的运用和计算,熟练掌握性质是关键. 10.D【解析】【分析】过点C 作CD x ⊥轴,设点()(),0,0,.A a B b - AB BC =,则,OD OA a == 22,CD OB b == 得到点C 的坐标,根据AOB ∆的面积为1,得到,a b 的关系式,即可求出k 的值.【解答】过点C 作CD x ⊥轴,设点()(),0,0,.A a B b - AB BC =,则,OD OA a == 22,CD OB b == 得到点C 的坐标为:(),2.a bAOB ∆的面积为1(即11,2ab = 2,ab = 22 4.k a b ab =⋅==故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键. 11.(2,﹣3) 【解析】 【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可. 【详解】点P (-2,3)关于原点对称的点的坐标为(2,-3),故本题正确答案为(2,-3). 【点睛】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.12.10x =(23x =( 【解析】 【分析】根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】 x(x -3)=0( x=0(x -3=0( x 1=0(x 2=3.【点睛】此题考查了解一元二次方程,熟练掌握因式分解法是解题发关键.13.1 7【解析】【分析】直接利用概率公式进而得出答案.【详解】解:∵在“山清水秀地干净”这7个字中,“清”字有1个,∴这个字是“清”的概率是17,故答案为:17.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:圆锥的侧面积=2π×3×5÷2=15π.故答案为:15π.【点睛】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.15.2h≥【解析】【分析】据题目中的函数解析式和二次函数的性质,可以得到b的取值范围.【详解】解::∵二次函数2()3y x h =-+中,a=1>0, ∴此函数开口向上,∴当x<h 时,y 的值随x 值的增大而减小, ∵当x<2时,y 的值随x 值的增大而减小, ∴h≥2,故答案为:h≥2. 【点睛】本题考查了二次函数图象与系数的关系,解题的关键是明确题意,利用二次函数的性质解答. 161- 【解析】 【分析】取AB 的中点O ,以O 为圆心,OA 为半径作⊙O ,则点P 在⊙O 上,由题意可知12AB=1,故此当PD 有最小值即可,当O 、P 、D 在一条直线上时,PD 有最小值. 【详解】解:如图所示:取AB 的中点O ,以O 为圆心,OA 为半径作⊙O .∵∠APB=90°, ∴点P 在⊙O 上. ∵AB=2, ∴OP=1,12AB=1. ∴当O 、P 、C 在一条直线时,PD 有最小值时, 过点D 作DE ⊥AB 交AB 的延长线于点E,∵∠C=∠BAD=120°, ∴∠EAD=60°, ∴AE=1, ∴, 在RT △OED 中,=, ∵OP=1∴PD 的最小值=OD -1-1. 【点睛】本题主要考查了菱形的性质、勾股定理,找出当O 、P 、C 在一条直线时,PD 有最小值是解题的关键. 17.123,1x x ==- 【解析】 【分析】将方程的左边因式分解后即可求得方程的解 【详解】解:因式分解得:(x+1)(x -3)=0, 即x+1=0或x -3=0, 解得:x 1=-1,x 2=3 【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.18.(1)画图见解析;(2)画图见解析. 【解析】 【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出A 、B 、C 关于原点O 的中心对称点A 2、B 2、C 2的位置,然后顺次连接即可;. 【详解】(1)如图所示111A B C △为所求.(2)如图所示222A B C △为所求.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义. 19.(1)13;(2)23. 【解析】试题分析:(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.试题解析:(1)小华诵读《弟子规》的概率=13; (2)列表得:由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种, 所以P (小华和小敏诵读两个不同材料)=69=23. 考点:列表法与树状图法. 20.(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y =12x +2,可得:3=12m +2,解得:m =2,∴A (2,3).∵A 点也在双曲线上,∴k =2×3=6,∴双曲线解析式为y =6x;(2)在y =12x +2中,令y =0可求得:x =﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴CP =|t +4|,且A (2,3),∴S △ACP =12×3|t +4|.∵△ACP的面积为3,∴12×3|t +4|=3,解得:t =﹣6或t =﹣2,∴P 点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.21.(1(y((x(180((2(售价定为140元/件时(每天最大利润W(1600元. 【解析】(1)设y 与x 之间的函数关系式为y=kx+b (k≠0),根据所给函数图象列出关于kb 的关系式,求出k 、b 的值即可;(2)把每天的利润W 与销售单价x 之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.解:(1)设y 与x 之间的函数关系式为y=kx+b (k≠0),由所给函数图象可知,1305015030k b k b +=⎧⎨+=⎩,解得1180k b =-⎧⎨=⎩. 故y 与x 的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x ﹣100)y=(x ﹣100)(﹣x+180) =﹣x2+280x ﹣18000 =﹣(x ﹣140)2+1600, ∵a=﹣1<0,∴当x=140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W=1600元. 22.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1) 连接OC ,由题意可证CO ∥AD,且CD ⊥AD,即CD ⊥OC,则可得证;(2) 过点C 作CG AB ⊥于点G ,易证RT △AGC ≌△ADC ,进而证明RT △CGB ≌RT △CDF ,可得结果. 【详解】解:(1)证明:如图,连接OC . ∵AC 平分BAD ∠, ∴OAC CAD =∠∠, 又OAC OCA ∠=∠, ∴OCA CAD ∠=∠, ∴//CO AD 又CD AD ⊥, ∴CD OC ⊥,又∵OC 是O e 的半径, ∴CD 是O e 的切线;(2)证明:过点C 作CG AB ⊥于点G . ∵OAC CAD =∠∠,AD CD ⊥, ∴CG CD =,在Rt AGC △和Rt ADC V 中, ∵CG CD =,AC AC =, ∴Rt Rt (HL)AGC ADC △≌△,∴AG AD =.又∵BAC CAD ∠=∠, ∴BC CF =,在Rt CGB △和Rt CDF △中, ∵BC FC =,CG CD =, ∴Rt Rt (HL)CGB CDF △≌△, ∴GB DF =. ∵AG GB AB +=,∴AD DF AB +=,即2AF DF AB +=.【点睛】本题考查了切线的判定,全等三角形的判定与性质,解题的关键是熟练运用这些性质进行推理.23.(1)点B 坐标为(4,0),点A 的坐标为(3,3);(2)PCE V 周长的最大值为4+,点P 坐标为(1,3). 【解析】 【分析】(1)利用待定系数法即可解决问题;(2)设点P 的坐标为2(,4)a a a -+,则,23PC a a =-+Q 点的坐标为(n ,0),PE x ∥轴,得出PCE V 是等腰直角三角形,进而得出当PC 取最大值时,PCE V 周长最大, PC 即可用含a 的代数式表示出来,利用二次函数的性质即可解决最值问题 【详解】解:(1)令0y =,则240x x -+=, 解得10x =,24x =,∴点B 坐标为(4,0),设点A 坐标为(,)m m ,把(,)A m m 代入24y x x =-+得, 24m m m =-+,解得13m =,20m =(舍去), ∴点A 的坐标为(3,3);(2)如图,设点P 的坐标为2(,4)a a a -+, ∵点A 坐标为(3,3), ∴45AOB ∠=︒, ∴OD CD a ==,∴2243PC PD CD a a a a a =-=-+-=-+. ∵PE x ∥轴,∴PCE V 是等腰直角三角形, ∴当PC 取最大值时,PCE V 周长最大. ∵PE 与线段OA 相交, ∴01a ≤≤.由22393()24PC a a a =-+=--+可知,抛物线的对称轴为直线32a =,在对称轴左侧PC 随x的增大而增大.∴当1a =时,PC 最大,PC 的最大值为132-+=∴2PE =,CE =∴PCE V 的周长为4CP PE CE ++=+∴PCE V 周长的最大值为4+, 把1a =代入P 的坐标24a a -+,得 ∴点P 坐标为(1,3).【点睛】本题考查了二次函数的应用、待定系数法求函数解析式、等腰直角三角形的性质以及三角形的周长公式,解题的关键是设出点的坐标,由数量关系找出关于点的坐标中的未知数的方程,解方程来求解是关键.。

2020-2021学年重庆八中九年级上学期期末考试数学试卷及答案解析

2020-2021学年重庆八中九年级上学期期末考试数学试卷及答案解析

2020-2021学年重庆八中九年级上学期期末考试数学试卷一.选择题(共12小题,满分48分,每小题4分)
1.(4分)如果一个有理数的绝对值是6,那么这个数一定是()
A.6B.﹣6C.﹣6或6D.无法确定2.(4分)用一个平面去截正方体ABCD﹣A1B1C1D1(如图),所截得的截面不可能的是()
A.正三角形B.正方形C.正五边形D.正六边形3.(4分)下列运算正确的是()
A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.√2+√8=3√2 4.(4分)下列语句不是命题的是()
A.连结AB B.对顶角相等
C.相等的角是对顶角D.同角的余角相等
5.(4分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5
6.(4分)如图,仔细观察用直尺和圆规作出∠AOB的角平分线OE示意图,请你根据所学知识,说明画出的∠AOE=∠BOE的依据是()
A.ASA B.SAS C.AAS D.SSS
7.(4分)如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()
A.4B.8C.2√2D.√2
第1 页共26 页。

重庆市2019-2020年度九年级上学期期末数学试题B卷

重庆市2019-2020年度九年级上学期期末数学试题B卷

重庆市2019-2020年度九年级上学期期末数学试题B卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列标志中不是中心对称图形的是()A.中国移动B.中国银行C.中国人民银行D.方正集团2 . 如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与(x<0)和(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.53 . 下列各式中,y是x的二次函数的是()A.B.C..D.4 . 有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15B.n(n+1)=15C.n(n﹣1)=30D.n(n+1)=305 . 若二次函数的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)6 . 如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()A.cm B.4cm C.cm D.cm7 . 如图,等腰△OAB的底边OB恰好在x轴上,反比例函数y=的图象经过AB的中点M,若等腰△OAB的面积为24,则k=()A.24B.18C.12D.98 . 今年国庆假期间,小明与小亮两家准备从九龙山、金丝峡、红河谷三个景点中任选一个景点游玩。

则两家选到同一个景点的概率是()A.B.C.D.9 . 方程 ax2+bx+c=0(a≠0)有实数根,那么成立的式子是()A.b2-4ac>0B.b2-4ac<0C.b2-4ac≤0D.b2-4ac≥010 . 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.6B.7C.8D.9二、填空题11 . 飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m12 . 已知圆锥的母线长为4cm,底面圆的半径为3cm,则此圆锥的侧面积是_____cm2.13 . 一个口袋中装有5个红球,3个白球,1个绿球,摸到白球的频率______摸到绿球的频率(填“大于”“小于”或“等于”)14 . 如图,O为矩形ABCD边AD上一点,以O为圆心,OA为半径画圆与CD交于点E,过点E作⊙O的切线EF交AB于F,点C关于EF的对称点G恰好落在⊙O上,若AD=4,AB=6,则OA的长为____.15 . 如图,在矩形ABCD中,已知,,点P是边BC上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作的角平分线交边CD于点N.则线段MN的最小值为_______________16 . 如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是_____.三、解答题17 . 已知关于 x 的一元二次方程 x2 +( m −3)x − 3m = 0(1)求证:该方程有两个实数根;(2)若该方程的两个实数根、满足,求 m 的值.18 . 一个不透明的盒中装有若干个只有颜色不同的红球与白球.若盒中有个红球和个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;若先从盒中摸出个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,一共做了次,统计结果如下表:无记号有记号球的颜色红色白色红色白色摸到的次数由上述的摸球实验的结果可估算盒中红球、白球各占总球数的百分之几?在的条件下估算盒中红球的个数.19 . 用配方法解一元二次方程:x2-6x+6=0.20 . 如图,以的弦为斜边作,点在圆内,边经过圆心,过点作的切线.(1)求证:;(2)若,,求的半径.21 . 某商品的进价为每件20元,当销售单价是25元时,每天的销售量为250件,如果调整价格,销售单价每上涨1元,每天的销售量就减少10件.①求每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式,并写出x的取值范围.②求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?③若商场要每天获得销售利润2000元,同时让利于顾客,销售单价应定为多少元?22 . 如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.23 . 如图,一次函数的图像与反比例函数的图像交于,两点,与轴分别交于两点,且.(1)求一次函数和反比例函数的解析式;(2)若点与点关于轴对称,连接,求的面积.24 . 如图,已知正方形的边长为,点是对角线上一点,连接,将线段绕点顺时针旋转至的位置,连接、.(1)求证:;(2)当点在什么位置时,的面积最大?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 21 页
2019-2020学年重庆八中九年级上学期期末考试数学试卷
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了
A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.
1.﹣2020的绝对值是( )
A .2020
B .﹣2020
C .−12020
D .12020
【解答】解:根据绝对值的概念可知:|﹣2020|=2020,
故选:A .
2.用一个平面去截一个圆锥,截面的形状不可能是( )
A .圆
B .矩形
C .椭圆
D .三角形
【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,
截面不可能是矩形,故B 符合题意;
故选:B .
3.下列运算正确的是( )
A .﹣4﹣3=﹣1
B .5×(−15)2=−15
C .x 2•x 4=x 8
D .√2+√8=3√2 【解答】解:A .﹣4﹣3=﹣7,故本选项不合题意;
B .5×(−15)2=15,故本选项不合题意;
C .x 2•x 4=x 6,故本选项不合题意;
D .√2+√8=√2+2√2=3√2,故本选项符合题意.
故选:D .
4.下列命题正确的是( )
A .√x −1有意义的x 取值范围是x >1.
B .一组数据的方差越大,这组数据波动性越大.
C .若∠α=72°55′,则∠α的补角为107°45′.
D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为38。

相关文档
最新文档