第四章 几何图形初步概论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章几何图形初步
4.1 几何图形
4.1.1 立体图形与平面图形
一、教学目标
1、知识与技能
(1)初步了解立体图形和平面图形的概念.
(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.
2、过程与方法
(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.
(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.
3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.
二、教学重点、难点:
教学重点:常见几何体的识别
教学难点:从实物中抽象几何图形.
三、教学过程
1.创设情境,导入新课.
2直观感知,识别图形
(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.
(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等
局部,得到的是线段、点.
(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.
(4)引导学生得出几何图形、立体图形、平面图形的概念.
我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.
有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.
有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.
3. 实践探究.
(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥
.
(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?
(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?
4.小结
这节课你有什么收获?
5.作业设计
课本第121页习题4.1第1、2题;
4.1.1 几何图形(二)
一、教学目标
知识与技能
1.能识别简单几何体的三种视图.
2.会画简单立体图形及其它们的简单组合的三种视图.
3.进一步认识立体图形与平面图形之间的关系.
4.引导学生把所学的数学知识应用到生活中去,解决身边的数学问题.
过程与方法
在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.
情感、态度、价值观
1).通过活动,形成学生主动探究的意识,丰富学生数学活动的成功经验,激发学生对几何图形的好奇心和对学习的自信心.
2).从实物出发,让学生感受到图形世界的无处不在,提高学生学习数学的热情.
二、重点与难点
重点:
1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.
2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.
难点:
1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念
2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.
三、教学过程
1.创设情景,引入新课
“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?
2.新课学习
(1)不同角度看直棱柱、圆柱、圆锥、球
让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)(2)猜一猜,看一看
Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)
Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)
Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.
(3) 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?
你能一一画下来吗7(画出示意图即可)
(4)(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)
3.实践与探究
(1)
上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?
(2)再试一试,画出它的三视图.
4.小结
(1)你对本节内容有哪些认识?
(2)你有什么收获?有什么感想?有什么困惑?
● 蚊子 壁虎 ●
蚊子
●
● 壁虎 4.1.1 几何图形(三)
一、教学目标 知识与技能
⒈了解直棱柱、圆锥等简单立体图形的侧面展开图。 ⒉能根据展开图初步判断和制作立体模型。 ⒊进一步认识立体图形与平面图形之间的关系。
⒋通过描述展开图,发展学生运用几何语言表述问题的能力。 过程与方法
⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。
⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。
⒊通过展开与折叠的活动,体会数学的应用价值。 情感、态度、价值观
⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。 ⒉通过探讨现实生活中的实物制作,提高学生学习热情。 二、重点与难点
重点:直棱柱的展开图。
难点:根据展开图判断和制作立体模型。 三、教学过程
1.创设情境,导入课题 小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径? 学生各抒己见,提出路线方案。 教师总结: 若在平面上,壁虎只要沿直线爬过去就可以了。而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。
如图所示:
圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可。若蚊子和壁虎在其他几何体上,如棱锥,正方体…… 它们展开后是什么图形呢?今天我们就来讨论它们的展开图。
2、新课探究:
(1)正方体的表面展开图
教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形。然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图。
.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)