初一奥数-质数与合数

合集下载

奥数数论题库14-质数合数分解质因数_知识例题精讲

奥数数论题库14-质数合数分解质因数_知识例题精讲

本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-5质数合数分解质因数=⨯⨯⨯.=⨯⨯⨯;10101371337=⨯⨯;20082222512007332235. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找一个大于且接近p的平方数2K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那么p就为质数.=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例如:149很接近1441212例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【例 2】两个质数之和为39,求这两个质数的乘积是多少.【例 3】(“祖冲之杯”小学数学邀请赛)九九重阳节,一批老人决定分乘若干辆至多可乘32人的大巴前去参观兵马俑.如果打算每辆车坐22个人,就会有1个人没有座位;如果少开一辆车,那么,这批老人刚好平均分乘余下的大巴.那么有多少个老人?原有多少辆大巴?【例 4】9个连续的自然数,每个数都大于80,那么其中最多有多少个质数?请列举和最小的一组【例 5】用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数.【例 6】7个连续质数从大到小排列是a、b、c、d、e、f、g已知它们的和是偶数,那么d是多少?【例 7】将60拆成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是多少模块二、分解质因数【例 8】两个连续奇数的乘积是111555,这两个奇数之和是多少?【例 9】4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?【例 10】在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【例 11】(老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的乘积是48384。

(完整版)质数和合数_知识点整理

(完整版)质数和合数_知识点整理

(完整版)质数和合数_知识点整理质数和合数知识要点1、自然数按因数的个数来分:质数、合数、1、0四类.(1)、质数(或素数):只有1和它本身两个因数。

(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)、1:只有1个因数。

“1”既不是质数,也不是合数。

注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③20以内的质数:有8个(2、3、5、7、11、13、17、19)④100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。

树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。

把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。

例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。

具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;三、经验之谈:书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数一、填空。

新版初一奥数-质数与合数

新版初一奥数-质数与合数
例如,1有一个正因数; 如果(a,b)=1,那么a,b称为互质(互素).
• 显然,p不同于p1,p2,…,pn, 性质1 一个大于1的正整数n,它的大于1的最小因数一定是质数.
求证:n +4是合数. 性质1 一个大于1的正整数n,它的大于1的最小因数一定是质数. 例3、设n是大于1的正整数,
• 这与假设的p1,p2,…,pn为全部质数矛盾. 例3、设n是大于1的正整数,
• 于是有(n!,n!-1)=1.
• 由于不超过n的自然数都是n!的约数,所以不 超过n的自然数都与n!-1互质(否则,n!与n!-1 不互质),于是n!-1的质约数p一定大于n,
• 即n<p≤n!-1<n!.
• 所以,在n与n!之间一定有一个素数.
例6 、证明素数有无穷多个.
• 证:下面是欧几里得的证法.
等于19的奇数n都能用4,9,2k(k=n-13/2)的和表示.
• 综上所述,不能表示为三个不同的合数的和的最大奇数 是17.
• 1.求出所有的质数p,使p+10,p+14都是质数.
• 2.若p是质数,并且8p2+1也是质数,求证: 8p2-p+2也是质数.
• 3.当m>1时,证明:n4+4m4是合数.
• 故p不会是3k的形式,从而p必定是3k+1或3k+2 的形式,k是正整数.
• 若p=3k+1,则
• 2p+1=2(3k+1)+1=3(2k+1)是合数,
• 与题设矛盾.所以p=3k+2,这时
• 4p+1=4(3k+2)+1=3(4k+3)是合数.
• 例3、设n是大于1的正整数,

【七年级奥数】第21讲 质数和合数(例题练习)

【七年级奥数】第21讲  质数和合数(例题练习)

第21讲质数和合数——例题一、第21讲质数和合数1.四个数,一个是最小的奇质数,一个是偶质数,一个是小于30的最大质数,另一个是大于70的最小质数.求它们的和.【答案】解:最小的奇质数是3,唯一的一个偶质数是2,小于30的最大质数是29,大于70的最小质数是71.因此,它们的和为3+2+29+71=105.【解析】【分析】在解有关质数的问题时,知道一些小常识是有用的,如1既非质数又非合数,2是唯一的偶质数,也是最小的质数,3是最小的奇质数等.另外,200以内的质数共有25个,它们为:2、3、5、7、I1、13、17、19、23、29、31、37、41、43、47,53、59、61、67、71、73,791 83、89、97。

2.有7个不同的质数,它们的和是60.其中最小的是多少?【答案】解:若7个不同的质数都是奇质数,则它们的和必为奇数,不可能等于60,所以这7个不同的质数中有偶数,而我们知道2是唯一的偶质数,所以这7个质数中必有2;2又是所有质数中最小的,所以这7个质数中最小的质数就是2.【解析】【分析】本题利用了2是唯一的偶质数和最小的质数这一特性.不难得出这7个质数是2、3、5、7、11、13、19.3.若n为正整数,n+3与n+7都是质数.求n除以3所得的余数.【答案】解:我们知道n除以3所得的余数只可能为0、1、2三种;若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3.又3≠n+3,故n+3不是质数,与题设矛盾.若余数为2,即n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7;n+7不是质数,与题设矛盾.所以,n除以3所得的余数只能为1.【解析】【分析】一个整数除以m后,余数可能为0,1,…,m-1,共m种.将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数,另一类是除以2余数为1的整数,即奇数.同样,对m=3时,就可将整数分为三类.即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是数论中的一种重要思想方法,有着广泛的应用.4.设n1与n2是任意两个大于3的质数,N1=n12−1 , N2=n22−1 ,N1与N2的最大公约数至少为多少?【答案】解:∵n1是大于3的质数,∴n1不是3的倍数,n1 =3k+1或3k+2,在n1 =3k+1时,n1 -1=3k是3的倍数;在n1 =3k+2时,n1 +1=3k+3是3的倍数;无论哪种情况,N1=n1−1=(n1+1)(n1−1) 都是3的倍数.又∵n1是奇数,∴n1=4k+1或4k+3.在n1=4k+1时,n1+1=4k+2是2的倍数,n1-1=4k是4的倍数,所以N1是8的倍数.在n1=4k+3时,同理可得N1是8的倍数.由于3与8互质,故24|N1.同理,24|N2.另外,取n1 =5,则N1=24.综上所述,N1与N2的最大公约数至少为24.【解析】【分析】从上例中,我们可以得到两个重要结论:(1)若n不是3的倍数,则n2除以3,余数为1.(2)若n是奇数,则n2除以8,余数为1.5.有人说:“任何七个连续的整数中一定有质数”.对吗?【答案】解:不对.如90、91、92、93、94、95、96这七个连续整数全部是合数,没有质数.【解析】【分析】合数:因数除了1和它本身之外还有其他因数的数;质数:因数只有1和它本身的数.由此分析即可.6.设自然数n1>n2 ,且有n12−n22=79 ,试求n1与n2的值.【答案】解:依题可得:n12−n22=(n1+n2)(n1−n2)=79 ,∵整数n1>n2,∴n1+n2与n1−n2 都是正整数,又∵79是一个质数,由质数的性质,及n1+n2 > n1-n2得:,解得:.【解析】【分析】质数:因数只有1和它本身的数,根据质数的性质列出二元一次方程组,解之即可.7.n是不小于40的偶数.试证明:n总可以表示成两个奇合数的和.【答案】证明:因为n是偶数,所以,n的个位数字必为0、2、4、6、8中的某一个.( 1 )若n的个位数字为0,则n=15+5k(k≥5为奇数).( 2 )若n的个位数字为2,则n=27+5k(k≥3为奇数).( 3 )若n的个位数字为4,则n=9+5k(k≥7为奇数).( 4 )若n的个位数字为6,则n=21+5k(k≥5为奇数).( 5 )若n的个位数字为8,则n=33+5k(k≥3为奇数).综上所述,不小于40的任一偶数,都可以表示成两个奇合数之和.【解析】【分析】奇合数:指不能被2整除的合数;即除了偶合数之外的其余合数都是奇合数.根据偶数定义可知n的个位数字必为0、2、4、6、8中的某一个,分情况讨论,即可得证.8.证明有无穷多个n,使多项式n2+3n+7( 1 )表示合数;( 2 )是11的倍数.【答案】证明:只需证(2)当n=11k+1(k≥1)时,多项式n2+3n+7=(11k+1)2+3(11k+1)+7=11(11k2+5k+1).∴是11的倍数.∵11k2+5k+1>1,∴这时n2+3n+7是合数.【解析】【分析】令n=11k+1(k≥1),代入多项式,计算、化简得n=11(11k2+5k+1),从而可得式11的倍数,由11k2+5k+1>1,可得n是表示合数.。

质数和合数知识点总结

质数和合数知识点总结

质数和合数知识点总结一、质数的概念和性质1. 质数的概念:质数是指大于1的整数,除了1和本身外没有其他正因数的数。

换句话说,如果一个数只能被1和它自己整除,那么它就是质数。

例如,2、3、5、7、11等都是质数。

2. 质数的性质:任何一个大于1的整数,都可以被分解为若干个质数的乘积。

这就是所谓的唯一分解定理,也就是每个数都可以被唯一地分解为若干个质数的乘积,并且这个分解式是唯一的。

例如,24=2×2×2×3,其中2和3都是质数,24的质因数分解式就是2×2×2×3。

3. 质数的数量:质数是无限的,也就是说,质数的数量是无穷尽的。

这是由欧几里得在古希腊时期首次证明的,并且一直被数学家们延伸和证明。

4. 质数的应用:质数在数论中有着非常重要的地位,它们是数论中的基础,也是其他数学分支如代数、几何、解析等的基础。

在密码学、数据传输以及计算机科学中,质数也有着非常重要的应用。

二、合数的概念和性质1. 合数的概念:合数是指大于1的整数,除了1和本身外还有其他正因数的数。

换句话说,如果一个数可以被除了1和它自己以外的其他正整数整除,那么它就是合数。

例如,4、6、8、9等都是合数。

2. 合数的性质:合数可以被分解为若干个质数的乘积,而且这个分解式是唯一的。

这也是唯一分解定理的一个重要内容。

例如,24=2×2×2×3,其中2和3都是质数,24的质因数分解式就是2×2×2×3。

3. 合数的数量:合数是无穷的,也就是说,合数的数量是无穷尽的。

这是由欧几里得在古希腊时期首次证明的,并且一直被数学家们延伸和证明。

4. 合数的应用:合数在数论中同样有着重要的地位,它们是数论中的基础,也是其他数学分支如代数、几何、解析等的基础。

在密码学、数据传输以及计算机科学中,合数也有着非常重要的应用。

三、质数和合数的判断方法1. 判断质数:要判断一个数是不是质数,可以很简单地进行试除法。

奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。

(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。

(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。

)(3)合数:含有三个或三个以上因数的自然数。

(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。

例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。

解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。

任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。

例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。

质数和合数重点知识点总结

质数和合数重点知识点总结

质数和合数重点知识点总结1. 质数的定义和性质质数是指除了1和它本身外,不能被其他自然数整除的数。

例如2、3、5、7、11等都是质数。

质数的性质包括:(1)任何大于1的整数n,必定可以被质数整除;(2)任何一个合数(即不是质数)都可以分解成多个质数的乘积;(3)任何一个合数都有大于1和小于它本身的一个质因数。

2. 合数的定义和性质合数是指至少拥有两个不同的因数的自然数。

例如4、6、8、9、10等都是合数。

合数的性质包括:(1)一个合数能够分解为两个自然数的乘积;(2)合数的因数可以分解成更小的因数。

3. 质数和合数的关系质数和合数是数论中的两个基本概念,它们之间存在着密切的关系。

任何一个自然数要么是质数,要么是合数,两者之间不存在其他情况。

质数和合数的关系表现在以下几个方面:(1)任何一个自然数都可以分解为质数的乘积;(2)一个合数一定可以分解为多个质数的乘积;(3)一个自然数是质数当且仅当它只能被1和自身整除。

4. 质数和合数的应用质数和合数在数学中有着广泛的应用,在现实生活和其他学科中也有着重要的作用。

例如:(1)数据加密技术中广泛应用质数的特性,如RSA加密算法;(2)质数和合数的分解被用于因式分解和最小公倍数的求解;(3)质数和合数的性质也在统计学、物理学、计算机科学等领域得到应用。

总之,质数和合数是数学中非常基础和重要的概念,它们的定义、性质和应用对数学学习和实际问题的解决都具有重要意义。

深入理解和掌握质数和合数的性质,有助于提高数学解题的能力和对实际问题的理解。

七年级奥数:质数和合数

七年级奥数:质数和合数

七年级奥数:质数和合数阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫做质数(也叫素数)如果能被l 和本身以外的自然数整除,就叫做合数,自然数1既不是质数也不是合数,叫做单位数,于是自然数可以分为三类:质数、合数和单位数.关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4;2.在所有质数中,只有2这个偶数,其余均为奇数;3.算术基本定理:任意一个大于l 的整数N 能唯一地分解成k 个质因数的乘积(不考虑质因数之问的顺序关系):,这里为不同的质数,为自然数. 定理说明,如果不计质因数的次序,只有一种方法可以把一个合数分解成质因数的连乘积. 例题与求解例1 已知三个质数a 、b 、c 满足以a +b +c +abc =99那么的值等于_____________.解题思路 运用质数性质,结合奇偶性分析,推出a 、b 、c 的值.例2 若p 为质数,仍为质数,则为( ) (湖北省黄冈市竞赛题)(A )质数 (B )可为质数也可为合数(c )合数 (D )既不是质数也不是合数解题思路 从简单情形人手,实验、归纳与猜想.例3 求这样的质数,当它加上10和14时,仍为质数. (上海市竞赛题) 解题思路 由于质数的分布不规则,不妨从最小的质数开始进行实验,这样的质数是否唯一?需按剩余类加以深入讨论.例4 在l ,0交替出现且以l 打头和结尾的所有整数(如101,10101,1010101……)中有多少质数?并请证明你的论断. (北京市竞赛题)解题思路 101是质数,对于,n ≥2,这串数形如的这串数中还有没有质数?关键是对A 进行拆分变形,运用质数合数定义判断.,2121akk a a P P P N =k P P 21P 、k a a a 21、a c c b b a -+-+-53+p 75+p位12011010101+=n A例5 41名运动员所穿运动衣号码是1,2,…40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数? 若能办到,请举一例;若不能办到,请浣明理由. (北京市竞赛题) 解题思路 要使相邻两数的和都是质数,显然它们只能都是奇数,运用奇偶数性质分析.能力训练A 级1.若a 、b 、c 、d 为整数,,则2在1,2,3,…n 这n 个自然数中,已知共有p 个质数,q 个合数,k 是个奇数,m 个偶数,则.3.设a ,b 为自然数,满足1176a =,则a 的最小值为_______.(“希望杯”邀请赛试题)4.已知p 是质数,并且也是质数,则的值为_______.(北京市竞赛题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( ).(A )4 (B )8 (C )12 (D )06.所有形如的六位数,(a 、b 、c 分别是0~9这10个数之一,可以相同且a ≠0)的最大公约数是( ).(A )1001 (B )101 (C )13 (D )117.当整数n >1时,形如+4的数是( ).(A )质数 (B )合数 (C )合数且为偶数 (D )完全平方数8.设x 是正数,<x >表示不超过x 的质数的个数,如(5.1)=3,即不超过5.1的质数有2,3,5共3个,那么<<19>+<93>+(4)×(1)×<8>>的值是( ).(A )12 (B )11 (C )10 (D )9 9、是否存在两个质数,它们的和等于数?若存在,请举一例;若不存在,说明理由. 10.写出十个连续的自然数,使得个个都是合数. (上海市竞赛题)11.在黑板上写出下面的数2,3,4,…1994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由. (五城市联赛题)1997))((2222=++d c b a ______2222=+++d c b a ._________)()(=-+-k p m q 3b 36+p 4811-p abcabc 4n1201111个B 级1.若质数m ,n 满足5m +7n =129,则m +n 的值为______.2.已知P 、q 均为质数,并且存在两个正整数m ,n 使得p =m +n ,q =m ×n ,则的值为___________.3.自然数a 、b 、c 、d 、e 都大于1,其乘积,则其和a +b +c +d +e 的最大值为______,最小值为_____。

质数与合数的认识知识点总结

质数与合数的认识知识点总结

质数与合数的认识知识点总结在数学的奇妙世界中,质数与合数是两个非常重要的概念。

它们就像是数字家族中的“特殊成员”,各自有着独特的性质和特点。

接下来,让我们一起深入了解一下质数与合数的相关知识。

一、质数的定义与特点质数,又称为素数,指的是一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数。

比如说,2、3、5、7、11 等都是质数。

2 是最小的质数,也是唯一的偶质数。

质数具有一些显著的特点:1、质数只有两个因数,即 1 和它本身。

2、质数在整数中相对较少。

判断一个数是否为质数,可以用试除法。

从 2 开始,依次用小于这个数的平方根的质数去除,如果都不能整除,那么这个数就是质数。

二、合数的定义与特点合数则是指一个大于 1 的整数,除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

例如,4、6、8、9、10 等都是合数。

合数的特点包括:1、合数至少有三个因数。

2、合数的数量比质数多。

三、1 既不是质数也不是合数1 是一个比较特殊的数字。

它只有一个因数,不符合质数有两个因数的定义,也不符合合数至少有三个因数的定义,所以 1 既不是质数也不是合数。

四、质数与合数的关系质数和合数共同构成了大于 1 的自然数。

它们相互依存,又相互区别。

每一个合数都可以分解成若干个质数的乘积,这个过程叫做分解质因数。

例如,12 可以分解为 2×2×3。

而质数是构成合数的“基本元素”。

五、质数与合数在数学中的应用1、密码学:质数在密码学中有着重要的应用。

利用大质数的特性,可以设计出安全可靠的加密算法。

2、数论研究:是数论这一数学分支中的重要研究对象,有助于推动数学理论的发展。

3、优化算法:在一些计算和优化问题中,通过对质数和合数的性质的运用,可以提高算法的效率。

六、常见的质数和合数常见的较小的质数有 2、3、5、7、11、13、17、19 等。

常见的较小的合数有 4、6、8、9、10、12、14、15、16、18、20 等。

七年级奥数练习3质数和合数

七年级奥数练习3质数和合数

七年级奥数练习3——质数和合数班级 姓名 座号质数,合数有下面常用的性质:性质1、1不是质数,也不是合数;2是惟一的偶质数.性质2、若质数p │ab ,则必有p │a 或p │b .性质3、若正整a 、b 的积是质数p ,则必有a=p 或b=p .性质4、算术基本定理:任意一个大于l 的整数N 能分解成K 个质因数的乘积,若不考虑质因数之间的顺序,则这种分解是惟一的,从而N 可以写成标准分解形式:k k p p p N ααα 2121=其中k p p p <<21,i p 为质数,i a 为非负整数,(i =1,2,…k ).写出100以内的所有质数并熟记.1. (第16届希望杯竞赛题 )一个两位数的个位数字与十位数字变化位置后,所得的数比原来的数大9,这样的两位数中,质数有( ).A.1个B.3个C.5个D.6个2. (第15届江苏省竞赛题 )已知三个不同的质数,满足,那么a+b+c =_________3. (第14届迎春杯初赛题)如果正整数p 、q 都是质数,并且7p +q 与pq +11也都是质数,那么p=_________4.(第五届“华罗庚金杯”少年数学邀请赛复赛)把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法所拆出的那些质数相乘,得到的乘积中,哪个最小?5.(上海市竞赛题)求这样的质数,当它加上10和14时,仍为质数.6. (第18届江苏省竞赛题)(1)将1、2、3……、2004这2004个数随意排成一个数N。

求证:N一定是合数.(2)若N是大于2的正整数,求证:与至多有一个是质数.7.(第五届加拿大数学奥林匹克试题)如果p和p+2都是大于3的质数,那么请证明:6是p+1的约数.8.(2005年俄罗斯竞赛题)a和b是两个自然数,对它们有以下四个描述:①a+1能被b整除;②a=2b+5;③a+b能被3整除;④a+7b是质数.不过这四个描述中只有三个是正确的,有一个是错误的,试求出a与b所有可能的解.9.对任意正整数n,证明:存在连续n个正整数,它们都是合数.练习:1.(希望杯竞赛题)当x取1到10之间的质数时,四个式子:,,和的值中,共有质数()个A.6B.9C.12D.162.(第17届五羊杯竞赛题)以下关于质数和合数的4中说法中,准确的说法总有()种.①两个质数的和必为合数;②两个合数的和必为合数;③一个质数与一个合数的和必为合数;④一个质数与一个合数的和必为非合数.A.3B.2C.1D.03.(黄冈市竞赛题)若p为质数,5仍是质数,则为()A.质数B.可为质数也可为合数C.合数D.既不是质数也不是合数4.(五羊杯竞赛题)n既不是质数,n可以分解为2个或多于2个质因数的积,每个质因数都大于10,n最小值等于_ __5.(第15届希望杯竞赛题)已知p,q,pq+1都是质数,且,那么满足上述条件的最小质数,6. (希望杯竞赛题)若a,b,c是1998的三个不同的质因数,且,则7. (上海市竞赛题)写出10个连续自然数,它们个个都是合数,这10个数是_________ __________________________________________________.8.(北京市竞赛题)若y,z均为质数,,且满足,则1998x+5y+3z=____________9.(第18届五羊杯竞赛题)如果A,B,C是三个质数,而且A-B=B-C=14,那么A,B,C组成的数组(A,B,C)共有________组.10.(全国初中数学联赛题)设m是不能表示为三个互不相等的合数之和的最大整数,则m=________.11. (五羊杯竞赛题)已知p,p+2,p+6,p+8,p+14,都是质数,则这样的质数p共有多少个?12. (希望杯竞赛题)(1)请你写出不超过30的自然数中的质数之和是________.(2)千位数是1的四位偶自然数共有________个.(3)一个四位偶自然数的千位数字是1,当它分别被四个不同的质数去除时,余数也都是1,满足这些条件的所有自然数中,最大的一个是________.。

质数与合数知识点归纳

质数与合数知识点归纳

质数与合数知识点归纳一、质数的定义与相关知识点1. 定义- 一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数。

例如2、3、5、7、11等都是质数。

2. 质数的性质- 质数只有两个因数,即1和它本身。

例如5的因数只有1和5。

- 2是最小的质数,也是唯一的偶质数。

因为所有大于2的偶数都能被2整除,所以除了2以外的质数都是奇数。

- 质数在数论等数学领域有着重要的地位,许多数学问题都与质数相关,如哥德巴赫猜想(任何一个大于2的偶数都可以表示成两个质数之和)。

3. 判断质数的方法- 试除法:用小于这个数的所有质数依次去除这个数,如果都不能整除,那么这个数就是质数。

例如判断17是否为质数,我们用2、3、5、7、11、13依次去除17,都不能整除,所以17是质数。

二、合数的定义与相关知识点1. 定义- 一个大于1的整数,如果除了1和它本身以外,还有其他的因数,这样的数就叫做合数。

例如4、6、8、9、10等都是合数。

2. 合数的性质- 合数至少有三个因数。

例如4的因数有1、2、4。

- 合数可以分解成若干个质数相乘的形式,这就是合数的分解质因数。

例如6 = 2×3,8 = 2×2×2等。

3. 判断合数的方法- 如果一个数除了1和它本身外,能被其他数整除,那么这个数就是合数。

或者可以先找出这个数的所有因数,如果因数个数大于2个,那么这个数就是合数。

三、质数与合数的区别与联系1. 区别- 因数个数不同:质数只有两个因数,而合数至少有三个因数。

- 性质不同:质数不能分解成除了1和它本身之外其他数相乘的形式(除了1×质数本身),而合数可以分解成若干个质数相乘的形式。

2. 联系- 1既不是质数也不是合数。

- 质数与合数都是自然数(大于1)的分类,它们共同构成了除1以外的自然数集合。

并且合数是由质数相乘得到的(合数的分解质因数结果为质数的乘积)。

奥数讲义数论专题:3 质数与合数

奥数讲义数论专题:3 质数与合数

华杯赛数论专题:3 质数与合数基础知识:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.1不是质数也不是合数,2是唯一的偶质数,3是最小的奇质数.除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7,9.2.判断一个数是否为质数的方法根据定义如果能够找到一个小于P的质数q(均为整数),使得q能够整除P ,那么P就不是质数,所以我们只要拿所有小于P的质数去除P就可以了;但这样的计算量很大,对于不太大的P ,可以先找一个大于且接近P的平方数,再列出所有不大于K的质数,用这些质数去除P ,如果没有能除尽的,那么P就为质数.3.唯一分解定理每个大于1的自然数均可以分解为有限个素数的乘积,并且具有唯一(不计次序变化)的素数分解形式.例题例1.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有几个?【答案】23,37,53,73.【解答】首先,个位数字不能是0,2,4,6,8,5,十位数字只能是3,7,所以满足要求的两位数有四个:23,37 ,53 ,73.例2.把质数373拆开(不改变各数字间的顺序),所有的可能只有3,7,37,73这四个数,它们都是质数. 请找出所有具有这种性质的两位和两位以上的质数.【答案】23,37,53,73,373【解答】用排除法,在所找的数中,各个数位上都不能出现0,1,4,6,8和9,否则拆成一位数时将出现这六个数,都不是质数. 另外除首位外,各位数字都不能出现2和5. 因此,可采用的数字只有3,7,2,5,其中2,5只能出现在首位,并且同一个数字不能连续出现.经检验,满足题意的数只有五个:23,37,53,73和373.例3.老师想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是几?【答案】167、257、347、527或617中间的任意一个【解答】因为是质数,所以个位数不可能为偶数0,2 ,4 ,6 ,8. 也不可能是奇数5.如果末位数字是3或9,那么数字和将是3或9的两倍,因而能被它们整除,就不是质数了.所以个位数只能是 7.这个三位数可以是167、257、347、527或617中间的任意一个.例4.连续的九个自然数中至多有几个质数?为什么?【答案】4个【解答】如果连续的9个自然数在1到20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7).如果这连续的9个数中最小的不小于3,那么其中的偶数显然为合数,而其中的奇数的个数最多有5个.这5个奇数中必定有一个个位数是5,因而该数为合数.这样,至多另外4个奇数都是质数.综上,连续9个数中最多有4个质数.例5.三个质数的乘积恰好等于它们和的11倍,求这三个质数.【答案】2,11,13或3,7,11【解答】设三个不同质数是a、b、c因为,所以a、b、c中,必定有一个质数是11,不妨设a=11,则故可得<I>b</I>=2,c=13,或<I>b</I>=3,c=7,所以三个质数是2,11,13或3,7,11.例6.质数A、B、C、D满足A+B=C,A+C=D,那么A×C+B×D是 .【答案】31【解答】如果A、B都是奇数,则C=A+B是大于2的偶数,不可能是质数,所以A、B有一个是偶数.同理A、C也有一个是偶数,因此只能是A=2.那么B+2=C,C+2=D,即B、C、D是三个连续奇数,必定有一个是3的倍数,那么只能是B=3,C=5,D=7.因此A×C+B×D=2×5+3×7=31.例7. 将135拆成4个互不相同的质数之和,使得其中两个质数的个位数字分别为1和7. 请写出两种满足要求拆分的方法:135=________=________.【答案】135=2+5+31+97=2+5+61+67【解答】四个质数不可能同为奇数,至少有一个偶质数,即为2,因此个位数字为1、2、7,所以第四个数字的个位数字是5且是质数,只能是5,所以原题变为把128拆成个位数字为1和7的两个质数之和,128=31+97=61+67,所以135=2+5+31+97=2+5+61+67.例8.已知两个质数与一个合数的和是293,乘积是10336,那么这三个数中最大的是.【答案】272【解答】因为,其中三个数分别为2、19、272满足要求,故最大的数是 272.例9.请在下列算式中的每个方框内填入一个质数数字,使得等式成立,共有______种.□□+□=□□×□-□=□□-□□=□□÷□+□【答案】4种【解答】第一个算式:32+7或37+2第二个算式:22×2-5或23×2-7第三个算式:72-33第四个算式:72÷2+3例10.4个一位数的乘积是360,并且其中只有一个合数,那么在这4个数字所能组成的四位数中,最大的是多少?【答案】8533【解答】将360分解质因数得,它是6个质因数的乘积.因为题述的四个数中只有一个合数,所以该合数必至少为个质因数之积.而只有3个2相乘才小于10,所以这四个数为3、3、5、8,所能组成的最大四位数是8533.例11.把下面八个数分成两组,使这两组数的乘积相等.14、55、21、30、75、39、143、169【答案】(55、30、169、21);(143、75、14、39)【解答】先把每个数都分解质因数如下:14=2×7 21=3×7 30=2×3×5 39=3×13 55=5×11 75=3×5×5 143=11×13 169=13×13,观察因子得到分组为:(55、30、169、21);(143、75、14、39).例12.5个连续质数的乘积是一个形如□△□□△□的六位数,其中□和△各代表一个数字,那么这个六位数是多少?【答案】323323【解答】因为□△□□△□=□△□×1001=□△□×7×11×13,又□△□为两个质数的乘积,所以□△□=17×19=323,故六位数为323323.例13.幼儿园王老师带216元去买皮球,预计正好花光. 可实际上所购皮球价格比预计的便宜2元,个数比原计划的多9个,仍然恰好花光。

七年级数学培优讲义 竞赛辅导 第5讲 质数与合数

七年级数学培优讲义 竞赛辅导 第5讲 质数与合数

初一数学培优讲义 第5讲 质数与合数一、概念质数:一个大于1的整数a ,如果只有1和a 这两个约数,那么a 就是质数,也叫做素数;如果除了1和a 之外还有其他正约数,则a 叫做合数。

1既不是质数也不是合数。

二、性质1、合数有无穷多个2、质数也有无穷多个证明:假设只有有限多个质数:12,,,n p p p ,构造一个数12()!1n N p p p =+是一个新的质数,若不然,N 是一个合数,则N 可以被12,,,n p p p 中的某一个质数i p 整除,而121()!n N p p p =-,因此1可被i p 整除,矛盾!注:!12n n =⨯⨯⨯.叫做n 的阶乘。

这是一个存在性的证明,即人们知道质数有无穷多个,但至今为止,人们找到的质数还是有限个.现在人们正借助于网络计算机寻找越来越大的质数3、质数2 是唯一的偶质数,也是最小的质数。

解题中需要经常想到这一点。

4、如果质数p|ab ,则p|a ,或p|b.但是如果P 不是质数,一般不具有这个性质。

例如6|4×9=36,但是6不能整除4或者9。

1.试判别359是不是质数分析:若359有一个大于19的约数,则必有一个小于19的约数,因此只要对359逐个用不超过19的质数检验,看能否整除。

2.求质数p,使得p+10和p+14都是质数分析:试验——猜想——证明,是创造性思维的一种方法。

本题需要分类讨论。

3.将1、2、…,2000这2000个数随意排成一行,得到一个数N ,那么N 是质数还是合数?分析:需要抓住一种不变性——不管数字次序如何,所有数字的和都是确定的,而这个和是3的倍数。

4.已知3 个不同的质数a,b,c 满足2000,bab c a +=那么a+b+c 的值等于_____分析:本题用到质数2 的特殊性,需要用到分解质因数。

5.自然数n 至少含有2 个大于10的质因数,那么n 的最小值是______.6.3599是质数还是合数?7.用1、2、3、4、5任意组成一个五位数,所得的数中有几个质数?8.p 是质数。

【七年级奥数】第21讲 质数和合数(例题练习)

【七年级奥数】第21讲  质数和合数(例题练习)

第21讲质数和合数——练习题一、第21讲质数和合数(练习题部分)1.三个正整数,一个是最小的奇质数,一个是最小的奇合数,另一个既不是质数,也不是合数.求这三个数的积.2.三个数,一个是偶质数,一个是大于50的最小的质数,一个是100以内最大的质数.求这三个数的和.3.两个质数的和是49.求这两个质数的积.4.设p1与p2是两个大于2的质数.证明p1 + p2是一个合数.5.p是质数,p2+3也是质数.求证:p3+3是质数.6.若p与p+2都是质数,求p除以3所得的余数.(p>3).7.若自然数n1>n2且n12−n22−2n1−2n2=19 ,求n1与n2的值.8.有四个不同质因数的正整数,最小是多少?9.求2000的所有不同质因数的和.10.试证明:形如111111+9×10k(k是非负整数)的正整数必为合数.11.若n是正整数,n+3与n+7都是质数,求n除以6所得的余数.12.n是自然数,试证明10|n5-n.13.证明有无穷多个n,使n2+n+41( 1 )表示合数;( 2 )为43的倍数.14.试证明:自然数中有无穷多个质数.15. 9个连续的自然数,都大于80.其中最多有多少个质数?答案解析部分一、第21讲质数和合数(练习题部分)1.【答案】解:依题可得:最小的奇质数为3,最小的奇合数是9,既不是质数,也不是合数是1,∴这三个数的积是:1×3×9=27.【解析】【分析】奇质数:既是奇数又是合数的数;奇合数:不能被2整除的合数;根据定义分别写出这三个整数,计算即可.2.【答案】解:依题可得:偶质数是2,大于50的最小质数是:53,100以内最大的质数是97,∴这三个数的和为2+53+97=152.【解析】【分析】质数:因数只有1和它本身的数,根据题意写出满足的条件的三个数,计算即可.3.【答案】解:依题可得:49=2+47,∴2×47=94.∴这两个质数的积为94.【解析】【分析】根据质数定义结合已知条件可得这两个数,列式计算即可.4.【答案】证明:∵p1与p2是两个大于2的质数,∴p1、p2都是奇数,∴p1 + p2是偶数,且大于2 ,∴p1 + p2是大于2的偶数,即为合数.【解析】【分析】根据题意可知p1、p2都是奇数,由奇+奇=偶即可得证.5.【答案】证明:∵p是质数,当p>2时,∴p2+3被4整除,又∵p2+3也是质数,与已知矛盾,∴必有p=2,∴p3+3=11,是质数.【解析】【分析】由于2是最小的质数,先假设当p>2时得出p2+3被4整除,此时与已知条件矛盾,故p=2时,代入即可得证.6.【答案】解:∵p是质数,∴①p=3k时,∵p>3且是质数,∴不存在这样的p;②p=3k+1时,∴p+2=3k+1+2=3(k+1),此时与p+2为质数矛盾;③p=3k+2时,∴p+2=3k+2+2=3(k+1)+1,符合题意;∴p除以3所得的余数为2.【解析】【分析】根据题意分情况讨论:①p=3k时,②p=3k+1时,③p=3k+2时,再根据p+2为质数解答即可.7.【答案】解:∵n12−n22−2n1−2n2=19 ,∴(n1+n2)(n1-n2)-2(n1+n2)=19,即(n1+n2)(n1-n2 -2)=19,又∵19是质数,n1+n2>n1-n2,∴,解得:.【解析】【分析】先将原多项式分解因式,再由19是质数,根据质数性质列出方程,解之即可. 8.【答案】解:根据质因数的定义可得最小的四个质数分别为:2,3,5,7;依题可得:2×3×5×7=210.∴有四个不同质因数的最小正整数为210.【解析】【分析】质数:因数只有1和它本身的数,根据质数定义可得最小的四个质数,计算即可.9.【答案】解:∵2000=24×53,∴2000的所有不同质因数的和为:2+5=7.【解析】【分析】先将2000写成几个质因数积的形式,再找出不同的质因数,相加即可.10.【答案】解:111111+9×10k=3×37037+3×3×10k=3×(37037+3×10k),∴这个数除了1和它本身之外,还有因数3,∴形如111111+9×10k(k是非负整数)的正整数必为合数.【解析】【分析】先将原式分解成3×(37037+3×10k),由此可看出除了因数1和它本身之外,还有3这个因数,根据合数定义即可得证.11.【答案】解:依题可得:①n=6k时,∴n+3=6k+3=3(2k+1),与n+3为质数矛盾;②n=6k+1时,∴n+3=6k+1+3=2(3k+2),与n+3为质数矛盾;③n=6k+2时,∴n+7=6k+2+7=3(2k+3),与n+7为质数矛盾;④n=6k+3时,∴n+3=6k+3+3=6(k+1),与n+3为质数矛盾;⑤n=6k+4时,∴n+3=6k+4+3=6(k+1)+1,为质数;∴n+7=6k+4+7=6(k+2)-1,为质数;⑥n=6k+5时,∴n+7=6k+5+7=3(2k+4),与n+7为质数矛盾;∴n除以6所得的余数为4.【解析】【分析】根据题意分情况讨论:①n=6k时,②n=6k+1时,③n=6k+2时,④n=6k+3时,⑤n=6k+4时,⑥n=6k+5时,将n的值分别代入n+3或n+7,验证是否为质数,逐一分析即可.12.【答案】证明:∵n5-n=n(n4-1)=n(n+1)(n-1)(n2+1),开始讨论:要使n5-n被10整除,只要该式能够同时被2、5整除即可;∵该式中因式n(n+1)是连续的两个自然数,一定有一个是偶数,∴该式可以被2整除;下面讨论能否被5整除.不妨设:①n=5k,显然原式能被5整除;②n=5k+1时,则n-1=5k,显然原式能被5整除;③n=5k+2时,则n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1),∴能被5整除,显然原式能被5整除;④n=5k+3时,则n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2),∴能被5整除,显然原式能被5整除;⑤n=5k+4时,则n+1能被5整除;综上所述:无论n为何值,原式能被5整除.∴10|n5-n【解析】【分析】先将代数式分解因式,即n5-n=n(n+1)(n-1)(n2+1),原题等价于要使n5-n被10整除,只要该式能够同时被2、5整除即可;因为因式中n(n+1)是连续的两个自然数,一定有一个是偶数,从而可得该式可以被2整除;再来讨论能否被5整除,根据被5整除的余数分成5种情况:①n=5k,②n=5k+1,③n=5k+2,④n=5k+3,⑤n=5k+4,分析计算即可得证.13.【答案】证明:当n=43k+1(k≥1)时,∴n2+n+41=(43k+1)2+(43k+1)+41,=43(43k2+3k+1).∴是43的倍数.∵43k2+3k+1>1,∴这时n2+n+41是合数.【解析】【分析】令n=43k+1(k≥1),代入多项式,计算、化简得n=43(43k2+3k+1),从而可得式43的倍数,由43k2+3k+1>1,可得n是表示合数.14.【答案】证明:假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1显然N除以2、3、5、……、p都不能整除,有余数1;∴N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;∴不存在最大的质数,假设不成立,∴自然数中有无穷多个质数.【解析】【分析】此题用反证法来证明,假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1,根据整除的性质分析,可知N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;从而可得假设不成立,原命题成立.15.【答案】解:∵9个连续的自然数,∴末尾数字可能是0—9,①当末尾是0,2,4,6,8的数一定能被2整除;②当末尾是5的数一定能被5整除;∴只有末尾是1,3,7,9的数可能是质数;∴至少有4个偶数,5个连续的奇数,∵大于80的质数必为奇数(偶质数只有一个2),又∵每连续三个自然数中一定有一个是3的倍数,∴质数只可能在这5个连续的奇数中,∴质数个数不能超过4,即9个连续的自然数,都大于80.其中最多有4个质数.【解析】【分析】根据题意大于80的9个连续的自然数中末尾数字可能是0—9;根据被2或5整除的数的特性可知只有末尾是1,3,7,9的数可能是质数;即至少有4个偶数,5个连续的奇数,再根据情况分析即可得出答案.。

初中数学竞赛专题---质数、合数

初中数学竞赛专题---质数、合数

初中数学竞赛专题---质数、合数一、内容提要1 正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。

合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。

2 根椐质数定义可知① 质数只有1和本身两个正约数, ② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2, 如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。

能写成几个质数的积的正整数就是合数。

二、例题例1两个质数的和等于奇数a (a ≥5)。

求这两个数 解:∵两个质数的和等于奇数 ∴必有一个是2所求的两个质数是2和a -2。

例2己知两个整数的积等于质数m, 求这两个数 解:∵质数m 只含两个正约数1和m, 又∵(-1)(-m )=m∴所求的两个整数是1和m 或者-1和-m. 例3己知三个质数a,b,c 它们的积等于30求适合条件的a,b,c 的值 解:分解质因数:30=2×3×5适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a 应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d 它们的积等于210,即abcd=2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来。

例4试写出4个連续正整数,使它们个个都是合数。

解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5 那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数。

本题可推广到n 个。

初中质数与合数

初中质数与合数

初中数学竞赛辅导资料(3)质数 合数一、内容提要1 正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。

合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。

2 根椐质数定义可知① 质数只有1和本身两个正约数, ② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2, 如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。

能写成几个质数的积的正整数就是合数。

二、例题例1两个质数的和等于奇数a (a ≥5)。

求这两个数 解:∵两个质数的和等于奇数 ∴必有一个是2所求的两个质数是2和a -2。

例2己知两个整数的积等于质数m, 求这两个数 解:∵质数m 只含两个正约数1和m, 又∵(-1)(-m )=m∴所求的两个整数是1和m 或者-1和-m. 例3己知三个质数a,b,c 它们的积等于30求适合条件的a,b,c 的值 解:分解质因数:30=2×3×5适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a 应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d 它们的积等于210,即abcd=2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来。

例4试写出4个連续正整数,使它们个个都是合数。

解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5 那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数。

本题可推广到n 个。

质数与合数相关知识点总结

质数与合数相关知识点总结

质数与合数相关知识点总结一、质数与合数的定义1. 质数的定义质数又称素数,是指只能被1和自身整除的自然数,即除了1和本身以外没有其他的因数。

例如:2、3、5、7、11、13等都是质数。

2. 合数的定义合数是指除了1和自身以外还有其他因数的自然数,即可以分解成若干个质数的乘积。

例如:4、6、8、9、10、12等都是合数。

二、质数与合数的性质1. 质数的性质质数的特点是只有两个因数,即1和本身。

质数的个数是无限的。

质数不能分解成两个较小数的乘积。

2. 合数的性质合数的特点是除了1和本身外还有其他因数。

合数可以分解成若干个质数的乘积。

合数的个数是有限的。

三、质数与合数的判定方法1. 质数的判定方法判断一个数是否是质数可以使用试除法。

即用2到它的平方根之间的所有自然数试除,如果都不能整除,那么这个数就是质数。

例如:判断7是否为质数,就是用2到根号7之间的所有自然数试除,发现都不能整除,所以7是质数。

2. 合数的判定方法判断一个数是否是合数也可以使用试除法。

如果一个数能被除了1和它本身以外的其他自然数整除,那么这个数就是合数。

例如:判断12是否为合数,就是用2到根号12之间的所有自然数试除,发现2、3、4、6都能整除,所以12是合数。

四、质数与合数的应用1. 质数与合数在分解因式中的应用将一个合数分解成若干个质数的乘积的过程称为分解因式。

质因数分解是数学中一个重要的方法,可以用来求解最大公约数、最小公倍数、约分以及解方程等问题。

例如:将90分解成质因数,可以得到90=2×3×3×5,即90的质因数分解式为2×3×3×5。

2. 质数与合数在约数与倍数中的应用质数和合数在约数与倍数中都有重要的应用。

约数是一个数的因数,而倍数是一个数的某个数值的整倍数。

例如:对于质数7,它的约数只有1和7两个数,而对于合数12,它的约数有1、2、3、4、6、12这6个数。

奥数讲座:质数合数

奥数讲座:质数合数

质数合数分解质因数一、质数与合数的概念自然数可以按约数(即因数)的个数进行分类:①质数:只能被1和自身整除的自然数叫质数,即质数只有两个约数(即因数):1和它本身。

如2、3、5等②合数:除了能被1和自身整除外,还有能被其他整数整除的自然数叫合数,即,合数的约数(即因数)多于2个,除了1和它本身外,还有别的约数(即因数)。

如4、6、8等等③1 1不是质数也不是合数。

既不是质数也不是合数的自然数只有1注意:1不能质数也不是合数2是最小的质数,也是质数中唯一的偶数4是最小的合数100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97。

二、质数与合数的应用例1.3个质数的和是80,这3个质数的积最大是多少?解析:由于3个数的和是偶数,所以这3个数中必有一个是偶数,在质数中只有2是偶数,所以3个数中一定有2。

另两个质数的和是78,要使乘积最大,这两个质数应该相差尽可能小,显然,和是78的两个质数,41和37的差最小,即这两个数的积是最大。

2×37×41=3034这3个质数乘积最大是3034。

例2.一个两位质数,将它的十位数字与个位数字对调后,仍是一个两位质数,我们称这样的两位质数为“无暇质数”,则所有“无暇质数”之和等于多少?解析:设“无暇质数”为ab,那么ba也是质数因此,a、b无为奇数,容易检验,“无暇质数”分别是11、13、17、31、37、71、73、79、97共9个所以,它们的和=11+13+17+31+37+71+73+79+97=429例3.正方体纸盒的每个面上都写有一个自然数,并且相对两个面所写的两数之和都相等。

若18对面所写的质数是a,14对面所写的质数是b,35对面所写的质数是c,那么a+b+c=?解析:由题意可知18+a=14+b=35+c,要想等式成立,a、b、c 的奇偶性应分别为奇、奇、偶或偶、偶、奇。

奥数知识三十六——质数与合数

奥数知识三十六——质数与合数

奥数知识三十六——质数与合数质数与合数自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。

第二类:只能被两个不同的自然数整除的自然数。

因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。

这类自然数叫质数(或素数)。

例如,2,3,5,7,…第三类:能被两个以上的自然数整除的自然数。

这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除。

这类自然数叫合数。

例如,4,6,8,9,15,…上面的分类方法将自然数分为质数、合数和1,1既不是质数也不是合数。

例1 1~100这100个自然数中有哪些是质数?分析与解:先把前100个自然数写出来,得下表:1既不是质数也不是合数。

2是质数,留下来,后面凡能被2整除的数都是合数,都划去;3是质数,留下来,后面凡能被3整除的数都是合数,都划去;类似地,把5留下来,后面凡是5的倍数的数都划去;把7留下来,后面凡是7的倍数的数都划去。

经过以上的筛选,划去的都是合数,余下26个数,除1外,剩下的25个都是质数。

这样,我们便得到了100以内的质数表:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。

这些质数同学们应当熟记!细心的同学可能会注意到,以上只划到7的倍数,为什么不继续划去11,13,…的倍数呢?事实上,这些倍数已包含在已划去的倍数中。

例如,100以内11的倍数应该是11×A≤100(其中A为整数),显然,A只能取2,3,4,5,6,7,8,9。

因为4=22,6=2×3,8=23,9=32,所以A必是2,3,5,7之一的倍数。

由此推知,11的倍数已全部包含在2,3,5,7的倍数中,已在前面划去了。

要判断一个数N是质数还是合数,根据合数的定义,只要用从小到大的自然数2,3,4,5,6,7,8,…,N-1去除N,其中只要有一个自然数能整除N,N就是合数,否则就是质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y p
• 例5、证明:当n>2时,n与n!之间一定有一 个质数.( n!表示1×2×3×…×n.) • 证:首先,相邻的两个自然数是互质的.这是 因为(a,a-1)=(a,1)=1, • 于是有(n!,n!-1)=1. • 由于不超过n的自然数都是n!的约数,所以不 超过n的自然数都与n!-1互质(否则,n!与n!-1 不互质),于是n!-1的质约数p一定大于n, • 即n<p≤n!-1<n!. • 所以,在n与n!之间一定有一个素数.
质数与合数
主讲:刘文峰
专题简析
• 我们知道,每一个自然数都有正因数(因数又称约数). • 例如,1有一个正因数;2,3,5都有两个正因数,即1 和其本身;4有三个正因数:1,2,4;12有六个正因 数:1,2,3,4,6,12.由此可见,自然数的正因数, 有的多,有的少.除了1以外,每个自然数都至少有两 个正因数.我们把只有1和其本身两个正因数的自然数 称为质数(又称素数),把正因数多于两个的自然数称为 合数.这样,就把全体自然数分成三类: • 1、质数和合数. • 2是最小的质数,也是唯一的一个既是偶数又是质数的 数.也就是说,除了2以外,质数都是奇数。 • 小于100的质数有如下25个:2,3,5,7,11,13, 17,19,23,29,31,37,41,43,47,53,59, 61,67,71,73,79,83,89,97.
• 1.求出所有的质数p,使p+10,p+14都是质数.
• 2.若p是质数,并且8p2+1也是质数,求证: 8p2-p+2也是质数. • 3.当m>1时,证明:n4+4m4是合数.
• 4.不能写成两个合数之和的最大的自然数是几?
• 5.设p和q都是大于3的质数,求证:24|p2-q2. • 6.设x和y是正整数,x≠y,p是奇质数, 1 1 2 • 并且 + = ,求x+y的值.
• 例3、设n是大于1的正整数, • 求证:n +4是合数.
• • • • •
• • •
• •
ቤተ መጻሕፍቲ ባይዱ
例4 、是否存在连续88个自然数都是合数? 解 :我们用n!表示1×2×3×…×n. 令a=1×2×3×…×89=89!, 那么,如下连续88个自然数都是合数:a+2,a+3, a+4,…,a+89. 这是因为对某个2≤k≤89,有a+k=k×[2×…×(k1)(k+1)×…×89+1] 是两个大于1的自然数的乘积. 说明: 由本例可知,对于任意自然数n,存在连续的n个合 数,这也说明相邻的两个素数的差可以任意的大. 用(a,b)表示自然数a,b的最大公约数, 如果(a,b)=1,那么a,b称为互质(互素).
• 例1、 设p,q,r都是质数,并且p+q=r, • p<q.求p. • • • • 解 : 由于r=p+q,所以r不是最小的质数, 从而r是奇数,所以p,q为一奇一偶. 因为p<q,故p既是质数又是偶数, 于是p=2.
• 例2、设p(≥5)是质数,并且2p+1也是质数. • 求证:4p+1是合数. • 证:由于p是大于3的质数, • 故p不会是3k的形式,从而p必定是3k+1或3k+2 的形式,k是正整数. • 若p=3k+1,则 • 2p+1=2(3k+1)+1=3(2k+1)是合数, • 与题设矛盾.所以p=3k+2,这时 • 4p+1=4(3k+2)+1=3(4k+3)是合数.
例7 、 证明:每一个大于11的自然 数都是两个合数的和.
• • • • • 证 : 设n是大于11的自然数. (1)若n=3k(k≥4),则n=3k=6+3(k-2); (2)若n=3k+1(k≥4)则n=3k+1=4+3(k-1); (3)若n=3k+2(k≥4),则n=8+3(k-2). 因此,不论在哪种情况下,n都可以表为两 个合数的和.
• 质数具有许多重要的性质: • 性质1 一个大于 1 的正整数 n,它的大于 1 的最小因数
一定是质数.
• 性质2 如果n是合数,那么n的最小质因数 a一定满足
a2≤n.
• 性质3 质数有无穷多个(这个性质将在例6中证明). • 性质4 (算术基本定理)每一个大于1的自然数n,必能写
ar ,这里的 P , P , … , P 成以下形式: n=p1a1p2a2…pr 1 2 r 是质数, a1 , a2 , … , ar 是自然数.如果不考虑 p1 , P2,…,Pr的次序,那么这种形式是唯一的.
例6 、证明素数有无穷多个.
• 证:下面是欧几里得的证法. • 假设只有有限多个质数, • 设为p1,p2,…,pn.考虑p1p2……pn+1, • 由假设,p1p2…pn+1是合数,它一定有一个质 约数p. • 显然,p不同于p1,p2,…,pn, • 这与假设的p1,p2,…,pn为全部质数矛盾.
• 关于质数和合数的问题很多,著名的哥德巴赫 猜想就是其中之一.哥德巴赫猜想是:每一个 大于2的偶数都能写成两个质数的和.这是至今 还没有解决的难题,我国数学家陈景润在这个 问题上做了到目前为止最好的结果,他证明了 任何大于2的偶数都是两个质数的和或一个质数 与一个合数的和,而这个合数是两个质数的积 (这就是通常所说的1+2).下面我们举些例子.
例8 、 求不能用三个不同合数的和 表示的最大奇数.
• 解、三个最小的合数是4,6,8,它们的和是18, • 于是17是不能用三个不同的合数的和表示的奇数. • 下面证明大于等于19的奇数n都能用三个不同的合数的 和来表示. • 由于当k≥3时,4,9,2k是三个不同的合数, • 并且4+9+2k≥19,所以只要适当选择k,就可以使大于 等于19的奇数n都能用4,9,2k(k=n-13/2)的和表示. • 综上所述,不能表示为三个不同的合数的和的最大奇数 是17.
相关文档
最新文档