初中数学江西省南昌市初中毕业暨中等学校招生考试.docx

合集下载

江西省南昌市中考数学试题

江西省南昌市中考数学试题

江西省南昌市年初中毕业暨中等学校招生考试数 学 试 卷说明:1.答卷前将密封线内的各项目填写清楚,并在“座位号”方框内填入自己的座位号.2.本卷共有六个大题、24个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算(-2)3的值等于 ( )A .-6B .6C .-8D .8 2.如图,在△ABC 中,D 是AC延长线上的一点,∠BCD 等于( ) A .72° B .82° C .98° D .124°3.用代数式表示“2a 与3的差”为( ) A .2a -3 B .3-2a C .2(a -3) D .2(3-a) 4.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是 ( )A .aB .-aC .±aD .-|a|5.化简aba b a +-222的结果是( )A .aba 2- B .aba - C .aba + D .ba ba +- 6.αααcos ,3tan ,则为锐角=等于( )A .21 B .22C .23 D .33 7.如图,在平面直角坐标系中,⊙O ′ 与两坐标轴分别交于A 、B 、C 、D四点.已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5)8.(针孔成像问题)根据图中尺寸(AB//A ′B ′),那么物像长y(A ′B ′的长)与物长x (AB的长)之间函数关系的图象大致是 ( )9.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x>y ),请观察图案,指出以下关系 式中不正确...的是 ( ) A .x+y=7 B .x -y=2 C .4xy+4=39 D .x 2+y 2=2510.右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的 规则是:把跳棋棋子在棋盘内沿直线隔着棋子 对称跳行,跳行一次称为一步.已知点A 为已方 一枚棋子,欲将棋子A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步二、填空题(本大题共6小题,每小题4分,共24分) 11.化简555-= .12.据报道:某省年中小学共装备计算机16.42万台,平均每 42名中小学生拥有一台计算机. 年在学生数不变的情况下, 计划平均每35名中小学生拥有 一台计算机,则还需装备计算机 万台. 13.如图,点P 是反比例函数xy 2-=上 的一点,PD ⊥x 轴于点D ,则△POD 的面积为 .14.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每个顶点处剪去一个四边形,例如图1中的四边形AGA′H那么∠GA′H的大小是度.15.欣赏下面的各等式:32+42=52102+112++122=132+142请写出下一个由7个连续正整数组成、前4个数的平方和等于后3个数的平方和的等式为 .16.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个..点P,使点P落在∠AOB的平分线上.三、(三大题共2小题,每小题7分,共14分)17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.18.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数....,使原方程有两个实数根,并求这两个实数根的平方和.四、(本大题共2小题,每小题7分,共16分)19.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论;(2)若已知AT=4,试求AB的长.20.如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=3,BC=1.连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG,并求出BF的长;(2)观察图形,请你提出一个与点..P.相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干 打9折,两样东西请拿好!还有找你 的8角钱. 阿姨,我买一盒 饼干和一袋牛奶(递上10元钱).五、(本大题共2小题,每小题8分,共16分) 21.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?22.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 初三(1)班 10 10 6 10 7初三(4)班 10 8 8 9 8初三(8)班9 10 9 6 9(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.六、(本大题共2小题,每小题10分,共20分)23.在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.24.如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2.再把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.(1)用含n°的代数式表示∠α的大小;(2)当n°等于多少时,线段PC与M′F平行?(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.江西省南昌市年初中毕业暨中等学校招生考试数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.C 9.D 10.B二、填空题(本大题共6小题,每小题4分,共24分)11.1-5 12.3.284 13.1 14.6015.212+222+232+242=252+262+27216.(见右图,P1、P2、P3均可)三、(本大题共2小题,每小题7分,共14分)17.解法一:原式=(x-y)[(x-y)+(x+y)]÷2x…………3分=(x-y)·2x÷2x ………………………………………………4分=x-y. ………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5.……………………………………………7分解法二:原式=[(x2-2xy+y2)+(x2-y2)] ÷2x ………………………………………3分=(2x2-2xy) ÷2x ……………………………………………………4分=x-y. …………………………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5 ……………………………………………7分18.解:(1)△=[-2(m+1)]2-4m2………………………………………………………1分=4(m2+2m+1)-4m2=4(2m+1)<0. ……………………………………………………… 2分∴m<-21. 当m<-21时,原方程没有实数根; …………………………………………………3分 (2)取m=1时,原方程为x 2-4x+1=0.…………………………………………………4分 设此方程的两实数根为x 1, x 2,则x 1+x 2=4, x 1·x 2=1.…………………………………5分 ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=42-2×1=14.…………………………………………………7分 【m 取其它符合要求的值时,解答正确可参照评分标准给分.】 四、(本大题共2小题,每小题8分,共16分) 19.(1)BT 平分∠OBA.………………1分 证法一:连结OT ,∵AT 是切线,∴OT ⊥AP.又∵∠PAB 是直角,即AQ ⊥AP ,∴AB ∥OT , ∴∠TBA=∠BTO.又∵OT=OB ∴∠OTB=∠OBT.∴∠OBT=∠TBA ,即BT 平分∠OBA.……………4分 (2)解法一:过点B 作BH ⊥OT 于点H ,则在Rt △OBH 中,OB=5,BH=A T=4 ∴OH=3.…………6分 ∴AB=HT=OT -OH=5-3=2…………………………………8分【(1)证法二:可作直径BD ,连结DT ,构成Rt △TBD ,也可证得BT 平分∠OBA ; (2)解法二:设AB=x 则由Rt △ABT 得BT 2=x 2+16, 又由Rt △ABT ∽Rt △TBD 得BT 2=BD ·AB=10x ,得方程x 2+16=10x, 解之并取舍,得AB=2. 解法三:过点O 作OM ⊥BC 于M ,则MO=AT=4.在Rt △OBM 中,∵OB=5,∴BM=3,∴BC=2BM=6.由AT 2=AB ·AC ,得AB=2.】 评分说明:方法二、三的得分可参照方法一评定. 20.(1)证明:∵△ABC ≌△DCE ≌△FEG333,3.3,131===∴==∴=====∴FG BG EG FG AB FG BG BG EG CE BC 即又∠BGF=∠FGE ,∴△BFG ∽△FEG.…………3分∵△FEG 是等腰三角形,∴△BFG 是等腰三角形,∴BF=BG=3.………………4分 (2)A 层问题(较浅显的,仅用到了1个知识点).例如:①求证:∠PCB=∠REC.(或问∠PCB 与REC 是否相等?)等;②求证:PC//RE.(或问线段PC 与RE 是否平行?)等. B 层问题(有一定思考的,用到了2~3个知识点).例如:①求证:∠BPC=∠BFG 等,求证:BP=PR 等;②求证:△ABP ∽△CQP 等,求证:△BPC ∽△BRE 等;③求证;△ABP ∽△DQR 等;④求BP :PF 的值等. C 层问题(有深刻思考的,用到了4个或4个以上知识点、或用到了(1)中结论).例如:①求证:△ABP ∽△BPC ∽ERF ;②求证:PQ=RQ 等; ③求证:△BPC 是等腰三角形;④求证:△PCQ ≌△RDQ 等;⑤求AP :PC 的值等;⑥求BP 的长;⑦求证:PC=33(或求PC 的长)等. A 层解答举列.求证:PC//RE.证明:∵△ABC ≌△DCE ,∴∠PCB=∠REB ,∴PC//RE.B 层解答举例.求证:BP=PR.证明:∵∠ACB=∠REC ,∴AC//DE. 又∵BC=CE ,∴BP=PR.C 层解答举例.求AP :PC 的值. 解:.3,33,31,//==∴==∴AC PC BG BC FG PC FG AC 而 .2:332333=∴=-=∴PC AP AP 评分说明:①考生按A 层、B 层、C 层中某一层次提出问题均给1分,若继续给出正确的解答则分别再加1分、2分、3分;②若考生提出其它问题,并作正确解答,可参照各相应层次的评分标准评分;③在本题中,若考生提出的是与点P 无关的问题,却是正确的结论及解答,就不再考虑其层次,只给1分.五、(本大题共2小题,每小题8分,共16分)21.解:设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,则 x+y>10, (1)0.9x+y=10-0.8,...... (2)..................................................................2分 x<10. (3)由(2)得y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.…………………………………4分 由(3)综合得 ∴8<x<10. ………………………………………………………5分又∵x 是整数,∴x=9.………………………………………………………………6分 把x=9代入(4)得:y=9.2-0.9×9=1.1(元).…………………………………7分 答:一盒饼干标价9元,一袋牛奶标价1.1元.……………………………………8分 评分说明:①若x<10没在混合组中出现,但求整数解时用到,不扣分;②若用其它方法解答正确,可参照评分标准给分.22.解:(1)设P 1、P 4、P 8顺次为3个班考评分的平均数;W 1、W 4、W 8顺次为3个班考评分的中位数;Z 1、Z 4、Z 8顺次为3个班考评分的众数.则:P 1=51(10+10+6+10+7)=8.6分), P 4=51(8+8+8+9+10)=8.6(分),P 8=51(9+10+9+6+9)=8.6(分).………………………………………………1分 W 1=10(分),W 4=8(分),W 8=9(分).(Z 1=10(分),Z 4=8(分),Z 8=9(分)).………………………………………2分 ∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异, 且W 1>W 8>W 4(Z 1>Z 8>Z 4).……………………………………………………………3分(2)(给出一种参考答案)选定:行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1…………5分 设K 1、K 4、K 8顺次为3个班的考评分,则:K 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,K 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,………………………………………………7分 K 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9.∵K 8>K 4<K 1,∴推荐初三(8)班为市级先进班集体的候选班.………………………8分 评分说明:如按比例式的值计算,且结果正确,均不扣分.六、(本大题共2小题,每小题10分,共20分)23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ; ③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.评分说明:正确写出每一条抛物线给1分,共5分.(填错可酌情倒扣1分,不出现负分).(2)在(1)中存在抛物线DBC ,它与直线AE 不相交.…………7分设抛物线DBC 的解析式为y=ax 2+bx+c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得: 4a -2b+c=29, a+b+c=0, …………………………8分16a+4b+c=0.解这个方程组,得:a=41,b=-45,c=1. ∴抛物线DBC 的解析式为y=41x 2-45x+1.……………………………………9分【另法:设抛物线为y=a(x -1)(x -4),代入D (-2,29),得a=41也可.】 又设直线AE 的解析式为y=mx+n.将A (-2,0),E (0,-6)两点坐标分别代入,得:-2m+n=0,解这个方程组,得m=-3,n=-6.n=-6.∴直线AE 的解析式为y=-3x -6.……………………………………………………10分24.解:(1)连结O ′P ,则∠P O ′F=n °.………………1分⌒ ⌒ ⌒ ∵O ′P =O ′F ,∴∠O ′PF=∠O ′FP=∠α.∴n °+2∠α=180° 即∠α=90°-21 n °……3分 (2)连结M ′P ,∵M ′F 是半圆O ′的直径,∴M ′P ⊥PF.又∵FC ⊥PF ,∴FC//M ′P.若PC// M ′F ,∴四边形M ′PCF 是平行四边形.……4分∴PC= M ′F=2FC ,∠α=∠CPF=30°.…………5分代入(1)中关系式得:30°=90°-21 n °,即n °=120 °.……………6分 (3)以点F 为圆心,FE 的长为半径画ED.∵G M ′⊥M ′F 于点M ′,∴GH 是ED的切线. 同理GE 、HD 也都是ED的切线,∴GE=G M ′,H M ′=HD.……………………7分 【另法:连结GF ,证明得Rt △GEF ≌Rt △G M ′F ,得EG= M ′G ,同理可证H M ′=HD.】设GE=x ,则AG=2-x,再设DH=y ,则H M ′=y,AH=2-y,在Rt △AGH 中,AG 2+AH 2=GH 2,得:(2-x)2+(2-y)2=(x+y)2.…………………8分 即:4-4x+x 2+4-4y+y 2=x 2+2xy+y 2 ∴y=2242+-x x x ,…………………………9分 S=21AG ·AH=21(2-x)(2-y)= 2242+-x x x ,自变量x 的取值范围为0<x<2.S 与x 的函数关系式为S =2242+-x x x (0<x<2).………………………………………10分。

初中毕业暨中等学校招生考试数学试卷及答案(2)

初中毕业暨中等学校招生考试数学试卷及答案(2)

九年级暨中等学校招生考试数学试卷说明:本卷共有五个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算2008(1)-的结果为( ) A .2008B .2008-C .1D .1-2.下列各式中,与2(1)a -相等的是( ) A .21a -B .221a a -+C .221a a --D .21a +3.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手 B .冠军属于外国选手 C .冠军属于中国选手甲 D .冠军属于中国选手乙 4.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.下列图案中是轴对称图形的是( )A. B. C. D.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )7.下列三角形纸片,能沿直线剪一刀得到等腰梯形的是( )左面 (第6题)A .B .C.D.2008年北京 2004年雅典 1988年汉城 1980年莫斯科8.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与② B .②与③ C .③与④ D .①与④ 二、填空题(本大题共8小题,每小题3分,共24分) 9.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).10.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .11.如图,AB 是O 的直径,点C D ,是圆上两点, 100AOC ∠=,则D ∠= 度.12.方程212xx =-的解是 . 13.相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 .14.在ABC △中,6AB =,8AC =,在DEF △中,4DE =,3DF =,要使ABC △与DEF △相似,需添加的一个条件是 (写出一种情况即可). 15.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .16.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 三、(本大题共4小题,每小题6分,共24分) 17.计算:0(2007)12sin 60-+-°.ABFE O(第16题)(第15题)5070 A.5080B . 50100C .50D .(第11题)18.化简:24214a a a+⎛⎫+⎪-⎝⎭·.19.下面三张卡片上分别写有一个等式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?20.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?证明你的结论.四、(本大题共3小题,每小题8分,共24分)21.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.22.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,分数人数 AD BCFEx1x - 2设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?23.北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李用8000元做为预订下表中比赛项目门票的资金. (1)若全部资金用来预订男篮门票和乒乓球门票共10张,问男篮门票和乒乓球门票各订多少张?(2)小李想用全部资金预订男篮、足球和乒乓球三种门票共10张,他的想法能实现吗?请说明理由.五、(本大题共2小题,每小题12分,共24分)24.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,(04)F -,.(1)画出ABC △的外接圆P ,并指出点D 与P 的位置关系;(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与P 的位置关系,并说明理由;②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与P 的劣弧..CD 围成的图形的面积(结果保留π).25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是 , ,;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现 (3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.)x图4x图1x图2x图3江西省南昌市初中毕暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分)1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.D 二、填空题(本大题共8小题,每小题3分,共24分) 9.0.18; 10.12; 11.40; 12.2-; 13.答案不惟一,如5; 14.2BCEF=(或A D ∠=∠); 15.11x =-,23x =; 16.如图:三、(本大题共4小题,每小题6分,共24分) 17.解:原式11)2=+- ································································· 3分11= ········································································· 4分0= ··························································································· 6分18.解:原式22442(4)a a a a-++=- ······································································· 2分 22(2)(2)a a a a a +=+- ······························································· 4分 2aa =-······················································································ 7分 19.解:树形图:第一张卡片上的整式 x 1x - 2(第16题) A OE B F第二张卡片上的整式 1x -2 x 2 x 1x 所有可能出现的结果1x x - 2x 1x x - 12x - 2x 21x - ··················································································································· 4分也可用表格表示: ··················································································································· 4分 所以P (能组成分式)4263==. ····································································· 6分 20.解:AB CF ∥.证明:在ABC △和CFE △中,由DE FE AED CEF AE CE =∠=∠=,,, 得ADE CFE △≌△. ··················································································· 4分 所以A FCE ∠=∠. ······················································································· 5分 故AB CF ∥. ······························································································ 6分 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; ········ 1分 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=; ············································· 2分 方案3最后得分:8; ····················································································· 3分 方案4最后得分:8或8.4. ············································································· 4分(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案. ···························································· 6分 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案. ········································································ 8分 (说明:少答一个方案扣2分,多答一个方案扣1分) 22.解:(1)DE BC ∥,ADE ABC ∴△∽△.AD AEAB AC∴=. ····························································································· 1分 又82AD x =-,8AB =,AE y =,6AC =,8286x y-∴=. 362y x ∴=-+. ··························································································· 3分自变量x 的取值范围为04x ≤≤. ··································································· 4分(2)11326222S BD AE x x ⎛⎫==-+ ⎪⎝⎭22336(2)622x x x =-+=--+. ······································································ 6分∴当2x =时,S 有最大值,且最大值为6. ······················································· 8分 (或用顶点公式求最大值)23.解:(1)设订男篮门票x 张,乒乓球门票y 张. 由题意,得1000500800010x y x y +=⎧⎨+=⎩,., ································································ 3分解得64.x y =⎧⎨=⎩,答:小李可以订男篮门票6张,乒乓球门票4张. ················································· 4分 (2)能,理由如下: ······················································································ 5分 设小李订男篮门票x 张,足球门门票y 张,则乒乓球门票为(10)x y --张.由题意,得1000800500(10)8000x y x y ++--=. ··········································· 7分 整理得5330x y +=,3053xy -=. x y ,均为正整数,∴当3x =时,5y =,102x y ∴--=.∴小李可以预订男篮门票3张,足球门票5张和乒乓球门票2张.∴小李的想法能实现. ···················································································· 8分 五、(本大题共2小题,每小题12分,共24分)24.解:(1)所画P 如图所示,由图可知P PD =.∴点D 在P 上. (3)(2)①直线EF 向上平移1个单位经过点D ,且经过点(0G -,∴2221310PG =+=,25PD =,25DG =. 222PG PD DG ∴=+.则90PDC ∠=,1PD l ∴⊥.∴直线1l 与P 相切. (另法参照评分) ··························································································· 7分 ②PC PD ==CD =222PC PD CD ∴+=.90CPD ∴∠=.x2π5π44S ∴==扇形,21522PCD S ==△.∴直线2l 与劣弧CD 围成的图形的面积为5π542-.………………………………………12分 25.解:(1)(52),,()e c d +,,()c e a d +-,. ·············································· 2分(2)分别过点A B C D ,,,作x 轴的垂线,垂足分别为1111A B C D ,,,, 分别过A D ,作1AE BB ⊥于E ,1DF CC ⊥于点F . 在平行四边形ABCD 中,CD BA =,又11BB CC ∥,180EBA ABC BCF ABC BCF FCD ∴∠+∠+∠=∠+∠+∠=.EBA FCD ∴∠=∠.又90BEA CFD ∠=∠=,BEA CFD ∴△≌△. ····················································································· 5分AE DF a c ∴==-,BE CF d b ==-.设()C x y ,.由e x a c -=-,得x e c a =+-.由y f d b -=-,得y f d b =+-.()C e c a f d b ∴+-+-,. ···························· 7分 (此问解法多种,可参照评分)(3)m a c e +=+,n b d f +=+或m c e a =+-,n d f b =+-. ····················· 9分(4)若GS 为平行四边形的对角线,由(3)可得1(27)P c c -,.要使1P 在抛物线上, 则有274(53)(2)c c c c c =--⨯--,即20c c -=.10c ∴=(舍去),21c =.此时1(27)P -,. ······················································· 10分 若SH 为平行四边形的对角线,由(3)可得2(32)P c c ,,同理可得1c =,此时2(32)P ,. 若GH 为平行四边形的对角线,由(3)可得(2)c c -,,同理可得1c =,此时3(12)P -,. 综上所述,当1c =时,抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形.符合条件的点有1(27)P -,,2(32)P ,,3(12)P -,. 12分)x。

江西省南昌市2007年初中毕业暨中等学校招生考试数学试卷附答案word

江西省南昌市2007年初中毕业暨中等学校招生考试数学试卷附答案word

金山区2006年初三学业考试模拟测试数学试卷月一、填空题(本大题共12题,每小题3分,满分36分) 1、计算:=8 。

2、分解因式:=-42x 。

3、已知反比例函数的图象经过点(1,2),那么反比例函数的解析式是 。

4、已知函数2)(+=x x f ,那么自变量x 的取值范围是 。

5、一个二元一次方程的一个解是⎩⎨⎧==21y x ,这个二元一次方程可以是 (只要写出符合条件的一个即可)。

6、把抛物线x x y 42+=向下平移2个单位所得到的抛物线解析式为 。

7、1纳米=0.000000001米,某物体的长为35纳米,那么该物体的长用科学记数法来表示是 米。

8、已知线段AB 是线段CD 、EF 的比例中项,CD = 2,EF = 8,那么AB = 。

9、如图,AB ⊥BC ,DE//BC ,若0120=∠BED ,那么=∠ABE 。

10、如图,AB 、CD 相交于点O ,若AC//BD ,AC=2cm ,BD=4cm ,∆AOC 的面积为22cm ,那么∆BOD 的面积为 2cm 。

11、在Rt ∆ABC 中,090C =∠,若cosA=21,那么sinA= 。

12、在矩形ABCD 中,AB=5,BC=12,⊙A 的半径为2,若以C 为圆心作一个圆,使⊙CAEDCB (第9题) ACO D B (第10题)学校________________________ 班级_________________ 姓名____________________ 学号____________- - - - - - - - - - - - - - - - - - -- -密 ○- - - - - - - - - - - - - - -- - - - - - - -封 ○- - - - - - - - - - - - - - - -- - - - - - -线 ○- - - - - - - - - - - - - - - - -与⊙A 相切,那么⊙C 的半径为 。

初中数学江西省中等学校招生考试信息数学考试题含答案 .docx

初中数学江西省中等学校招生考试信息数学考试题含答案 .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是()A.与B.与C.与D.与试题2:下列运算正确的是()A.a2+a2=a4 B.a6÷a3=a2 C.a3×a2=a5 D.(a3b)2=a5b3试题3:按如图所示的方法折纸,下面结论正确的个数()①∠2=90°②∠1=∠AEC③△ABE∽△ECF④∠BAE=∠3A.1个 B.2个C.3个 D.4个试题4:若α、β是一元二次方程x2+2x-6=0的两个不相等的根,则α2-2β的值是()A.10 B.16 C.-2 D.-10试题5:如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BC B.PD,DC,BC,ABC.PA,AD,PC,BC D.PA,PB,PC,AD试题6:如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH试题7:据了解2016年11月12日凌晨双“十一”天猫的总成交金额达到1207亿元,1207亿元用科学记数法可表示为元.试题8:如图,中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为.试题9:《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为.试题10:一次函数y=-2x+4与y=交于点(m,n),则= .试题11:二次函数的图象如图,对称轴为直线x=1.若关于x的一元二次方程(t为实数)在-1<x<4的范围内有解,则y的取值范围是.试题12:在菱形ABCD中,AB=5,AC=8,点P是AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF沿EF折叠,使点A落在点A'处,当△A'CD是直角三[角形时,AP的长为.试题13:解不等式组:试题14:如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.试题15:先化简,再求值:÷-1,其中a=.试题16:如图,四边形ABCD是平行四边形,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E作直线EF将四边形ABCD的面积平分;(2)在图2中,DE=DC,作∠A的平分线AM;试题17:某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“化开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来化开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.试题18:近两年,市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)试题19:随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度v km/h行驶了s km,则打车费用为(ps+60q·)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.试题20:我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,求出所选两个班正好不在同一年级的概率.试题21:如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数(k≠0)的图象经过点A,与OB交于点E.(1)求出k;(2)求OE:EB ;试题22:如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA。

江西省南昌市初中数学毕业暨中等学校招生考试试题

江西省南昌市初中数学毕业暨中等学校招生考试试题

机密★江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,26个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项. 1.下列各数中,最小的是( ).A. 0B. 1C.-1D. -22.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人 3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ). 4.下列运算正确的是( ). A.a +b =ab B. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =15.下列各数中是无理数的是( )A.400B.4C.0.4D.0.046.把点A (-2,1)向上平移2个单位,再向右平移3个单位后得到B ,点B 的坐标是( ). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1)7.不等式8-2x >0的解集在数轴上表示正确的是( ).8. 已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 29.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-1 10.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 11.下列函数中自变量x 的取值范围是x >1的是( ).A. 1y x =-B.1y x =-C. 1y x =-D. 1y x=-12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).B. C. D.A. 第7题图甲 图乙 第3题0 2 4 6 A. 0 2 4 6B. 0 2 6C. 0 2 4 6D.二、填空题(本大题共4小题,每小题3分,共12分) 13.计算:-2-1=__________.14.因式分解:x 3-x =______________.15.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE =3:4,其中正确结论的序号是 ..三、(本大题共2小题,每小题5分,共10分) 17.先化简,再求值:2()11a aa a a+÷--,其中2 1.a =+ 18.解方程组:2122.x y x y y -=-⎧⎨-=-⎩,四、(本大题共2小题,每小题6分,共12分)19.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.20.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反比例函数解析式. 五、(本大题共2小题,每小题7分,共14分) 21.有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距d 均相等.(1)直接写出其余四个圆的直径长; (2)求相邻两圆的间距.30 O 180 y (度 ) 165 A. 30 O180 y (度) B. 30 O 180 y 度 ) 195C. 30 O 180 y 度 )D. ABCO x yD A C B P 第15题AD CB E OGF 第16题22.如图,已知⊙O 的半径为2,弦BC 的长为23,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值. (参考数据:3sin 602=,3cos302=,3tan 303=.)五、(本大题共2小题,每小题8分,共16分) 23.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A -B -C -D -E -F ,C -D 是CD ,其余是线段),O 是AF 的中点,桶口直径AF =34cm ,AB =FE =5cm ,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格. (参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)图丙AB CDE FO 34B CA O图甲FE DBCA O图乙DE A B C O24.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分)25.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x 轴的另一个交点为A1.(1)当a=-1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.26.某数学兴趣小组开展了一次活动,过程如下:CBAC1A1x yO设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…) 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二: 如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. 数学思考:(3)若已经摆放了3根小棒,θ1 =_________,θ2=________, θ3=________;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.·机密2011年6月19日江西省南昌市2011年中等学校招生考试数学试题卷 参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,A 1A 2 ABC 图乙A 3 A 41θ 2θ3θ θA 1 A 2 AB CA 3 A 4A 5 A 6 a 1a 2 a 3 图甲θ则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B 7.C 8.D 9. C 10. D 11. A 12. A 二、填空题(本大题共4个小题,每小题3分,共12分)13. 3- 14.()()11x x x +- 15. 90 16. ①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分. 三、(本大题共2个小题,每小题各5分,共10分)17.解:原式=2111111aa a a a a a a a ⎛⎫-÷=⨯= ⎪----⎝⎭. ………………3分 当21a =+时, 原式=112.22112==+- ………………5分 18.解:①-②,得 32y y -=-+,∴1y =. ………………2分 把1y =代入①得 1x =. ………………4分 ∴1,1.x y =⎧⎨=⎩………………5分 四、(本大题共2个小题,每小题各6分,共12分) 19.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分方法二列表格如下:甲 乙 丙 丁 甲 甲、乙 甲、丙 甲、丁 乙 乙、甲 乙、丙 乙、丁 丙 丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种.甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁 甲 乙 丙 第一次 第二次∴P (恰好选中甲、乙两位同学)=16. ………………4分(2) P (恰好选中乙同学)=13. ………………6分20.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. ………………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --. 设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x =中,得:53k -=-, ∴15k =,∴15y x=. …………6分 五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. (2)分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d +=, ∴54d =. ………………6分 答:相邻两圆的间距为54cm. ………………7分 22.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC =23∴3BE EC =………………1分 在Rt△OBE 中,OB =2,∵3sin BE BOE OB ∠==, ∴60BOE ∠=, ∴120BOC ∠=,∴1602BAC BOC ∠=∠=. ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=. 在Rt△DBC 中,233sin BC BDC BD ∠==, ∴60BDC ∠=,∴60BAC BDC ∠=∠=.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=.ABCOEABCOD在Rt△ABE中,∵30BE BAE =∠=, ∴33tan 303BEAE ===,∴S △ABC =132⨯= 答:△ABC 面积的最大值是………………7分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=,∴△ABC 是等边三角形.在Rt△ABE 中,∵30BE BAE ∠=, ∴33tan 303BEAE ===,∴S△ABC =132⨯=答:△ABC 面积的最大值是………………7分六、(本大题共2个小题,每小题8分,共16分). 23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………3分 ∴∠GBO =∠ABC -∠ABO=149°-73.6°=75.4°. ………………4分又 ∵17.72OB ==≈, ………………5分 ∴在Rt△OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………7分 ∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………5分 (3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当1,1a b =-=时,抛物线m 的解析式为:21y x =-+. 令0x =,得:1y =. ∴C (0,1).令0y =,得:1x =±. ∴A (-1,0),B (1,0)学校所数 (所) 在校学生数 (万人) 教师数(万人)小学 12500 440 20初中 2000 200 12高中 450 75 5其它 10050 280 11合计 25000 995 48高中 1.8%全省各级各类学校所数扇形统计图 小学50% 其它 40.2% 8% 图丙 A B C D E F O34G∵C 与C 1关于点B 中心对称,∴抛物线n 的解析式为:()222143y x x x =--=-+ ………4分(2)四边形AC 1A 1C 是平行四边形. ………5分 理由:∵C 与C 1、A 与A 1都关于点B 中心对称,∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y =,得:20ax b +=, ∴b x a =±- ∴(,0),(,0)b b A B a a---, ………9分 ∴2222,b b AB BC OC OB b a a=-=+=- 要使平行四边形AC 1A 1C 是矩形,必须满足AB BC =,∴22b b b a a -- ∴24b b b a a ⎛⎫⨯-=- ⎪⎝⎭, ∴3ab =-.∴,a b 应满足关系式3ab =-. ………10分26.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 32AA 3=12 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=12 ………………3分 a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 522,∴a 3=A 5A 6=AA 5=)222221a a =. ………………4分 方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 32AA 3=12 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=222(21)1a =. ………………4分 )121n n a -= ………………5分(3)12θθ=………………6分23θθ=………………7分34θθ=………………8分(4)由题意得:490, 590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。

2010年江西省南昌市初中毕业暨中等学校招生考试数学试题及答案(word版)

2010年江西省南昌市初中毕业暨中等学校招生考试数学试题及答案(word版)

2010年十校联考初三数学模拟试卷(姜山实验中学)一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.-5的绝对值是( )A 、-5B 、5C 、51-D 、51 2.下列运算正确的是( )A 、2a a a =+B 、a a a =-2C 、22222)2(b b =D 、33333=∙3.人体中红细胞的直径约为0.0000077m ,将0.0000077用科学记数法表示为( )A .7.7×10-5B .7.7×10-6C .77×10-7D .0.77×10-54.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,∠COE =55°,则∠BOD =( ) A .30° B.35° C .40° D.45°5.一个正方体盒子的每个面上都写有一个字,分别是:我、喜、欢、数、学、课,其平面展开图如图所示.那么在该正方体盒子中,与“我”相对的面上所写的字是( )A .欢B .数C .学D .课6.某同学五次跳远的成绩(单位:m)是:3.9,4.1,3.9,3.8,4.2.关于这组数据的错误说法是( )A .极差是0.4B .中位数是3.98C .平均数是3.98D .众数是3.9 7.抛物线y=(x-1)2+5的对称轴是( ) A 、y=1 B 、y=-1 C 、x=-1 D 、x=18、一个圆锥的底面半径为3㎝,它的侧面积为15π㎝2,那么这个圆锥的高线长为( ) A 、6㎝ B 、8㎝ C 、4㎝ D 、4π㎝9、4月18日8时40分,某省铁路局一列满载着2400吨“爱心”大米的专列向青海灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达玉树.描述上述过程速度与时间的大致图象是( )OABD CE我 喜 欢 数学 课10.甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率B. 掷一枚正六面体的骰子,出现1点的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被5整除的概率11.已知函数cbxaxy++=2的图像如图2所示,则下列关系式中成立的是()A.221<-<abB.120<-<abC.220<-<abD.12=-ab12.如图,甲、乙、丙、丁四位同学从四块全等的等腰直角三角形纸板上裁下四块不同的纸板(阴影部分),他们的具体裁法如下:甲同学:如图1所示裁下一个正方形,面积记为S1;乙同学:如图2所示裁下一个正方形,面积记为S2;丙同学:如图3所示裁下一个半圆,使半圆的直径在等腰Rt△的直角边上,面积记为S3;丁同学:如图4所示裁下一个内切圆,面积记为S4。

江西省南昌市初中毕业暨高中(中专)招生考试数学试题

江西省南昌市初中毕业暨高中(中专)招生考试数学试题

江西省南昌市初中毕业暨高中(中专)招生考试数学试题1999.6一、填空题(本大题有10个小题,每小题3分,共30分)1.5的倒数是____.4.已知方程x2+kx-6=0有一个根是2,则k=____.5.△ABC中,D、E分别为BC、AC的中点,AB=6cm,则DE=____cm.7.已知⊙O的半径为5cm,直线l和⊙O相切,则圆心O到直线l的距离d=____cm.8.已知矩形ABCD的一边AB=10cm,另一边AD=3cm,若以直线AB为轴旋转一周,则所得到的圆柱的侧面积是____cm2.9.有一个边长为2cm的正方形,若边长增加xcm,则面积的增加值y(cm2)与边长的增加值x(cm)之间的函数关系式是____.10.按要求画出一个图形:所画图形中同时要有正方形和圆,并且这个图形既是轴对称图形又是中心对称图形,将图形画在下面的空白处.二、选择题(本大题有6个小题,每小题3分,共18分.每小题只有一个正确选项.)11.ab-(2ab-3a2b)的计算结果是[ ] A.3a2b+3ab B.-3a2b-abC.3a2b-ab D.-3a2b+3ab12.下列命题中,假命题是[ ] A.等腰梯形的对角线相等.B.平行四边形的对角线互相垂直.C.四条边相等的四边形是菱形.D.三个角是直角的四边形是矩形.13.下列方程中,有两个不相等实数根的方程是[ ] A.x2+1=0B.x2-2x+1=0C.5x2+4x-1=0D.2x2+4x+3=014.已知△ABC中,∠A:∠B:∠C=2∶3∶4,则这个三角形是[ ]A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形15.不等式10-3(x+6)<1的解集是[ ]C.x<-3D.x>-316.BC为⊙O的直径,P为CB延长线上的一点,过P作⊙O的切线PA,A为切点,PA=4,PB=2,则⊙O的半径等于[ ]A.3B.4C.6D.8三、(本大题有6个小题,每小题6分,共36分).20.在电线杆上离地面高度5米的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).21.不久前,共青团中央等部门发起了“保护母亲河行动”,都捐了5元,两班捐款总额有785元.问两班各有多少名学生?22.已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E 作EF//DA交DB的延长线于点F.求证:EF=BC.四、(本大题9分).BF和AD交于E,过A的切线交CB的延长线于G.求证:(1)AE=BE;(2)AB2=BG·CF.五、(本大题有3个小题,第24、25小题各8分,第26小题11分,共27分).24.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试.将所得数据整理后,画出频率分布直方圆如下.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少;(4)问这次测试中,学生跳绳次数的中位数落在四个小组中的哪个小组内?并说明理由.25.抛物线y=ax2+bx+c(a>0)的顶点为B(-1,m)(m≠0),并且经过点A(-3,0).(1)求此抛物线的解析式(系数和常数项用含m的代数式表示);(2)若由点A、原点O与抛物线上的一点P所构成的三角形是等腰直角三角形,求m的值.26.⊙O′与x轴交于A、B两点,与y轴交于C、(1)求A、B、C、D四点的坐标;(2)求经过点D的切线解析式;(3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,试说明理由.参考答案一、3.64.15.36.27.58.60π9.y=x2+4x10.(略)二、11.C12.B13.C14.A15.D16.A三、=28. (6分)则原方程可化为y2+y-12=0,解这个方程,得y1=-4,y2=3. (2分)两边平方,即得x2-8x-9=0 (4分)解这个方程,得x1=9,x2=-1. (5分)经检验知x=9和x=-1都是原方程的根. (6分)20.解:在Rt△BCD中,∵∠B=45°, CD=5,(1分)21.解:设初三(1)班有学生x名,初三(2)班有学生y名,依题意得方程组 (1分)答:初三(1)班有学生60名,初三(2)班有学生55名.(6分)22.证明:∵EF∥DA,∴∠A=∠E. (1分)又∵AB=BE,∠ABD=∠EBF,∴△ABD≌△EBF.(3分)∴EF=AD. (4分)∵四边形ABCD是平行四边形,∴ AD=BC. (5分)∴EF=BC. (6分)四、23.证明:(1)连结AC. (1分)∴∠ACB=∠ABF. (2分)又∵∠ACB=90°-∠ABD=∠BAD (3分)∴∠BAE=∠ABE.∴AE=BE. (4分)又∵∠ABG=∠CFA, (6分)∴△ABG∽△CFA.∴ AB/BG=CF/AF. (8分)∴AB2=BG·CF. (9分)五、24.解:(1)∵各小组的频率之和等于1. (1分)∴第四小组的频率为 1-(0.1+0.3+0.4)=0.2.(2分)(2)∵第一小组频率为0.1,频数为5.因此,可估计该年级学生跳绳测试的达标率约为90%. (6分)(4)∵第一小组的频数为5,即有5个数据.第二小组的频数为50×O.3=15,即有15个数据.第三小组的频数为50×0.4=20,即有20个数据.将这些数据从小到大排列,位于第25、第26个位置的数据落在第三小组内.因此,这次测试中,学生跳绳次数的中位数落在第三小组内. (8分)25.解:(1)抛物线的顶点为B(-1,m),因此,对称轴是直线x=-1.即有2a=b. ① (1分)又抛物线过点A(-3,0),B(一1,m),得9a-3b+c=0,②a-b+c=m ③ (2分)解由①、②、③所组成的方程组,得(2)分两种情况讨论:①PA是等腰直角三角形AOP的斜边.此时OA=OP,又a>0,∴点P的坐标为(0,-3).得m=-4. (6分)②OA是等腰直角三角形AOP的斜边.26.解:(1)连结O'B,过点O'分别作x轴、y轴的垂线,垂足分别为H、G.∴OB=3.∴点B的坐标为(3,0). (1分)∵AH=BH=2,OH=1,∴点A的坐标为(-1,0). (2分)类似地,可得到点C、D的坐标分别为(0,1),(0,-3). (4分)(2)解:设过点D的切线交x轴于点E,EA=x,则DE2=EA·EB=x(x+4).又在Rt△DOE中,DE2=EO2+DO2=(x+1)2+32,∴(x+1)2+32=x(x+4). (6分)解得x=5,即EA=5,点E的坐标为(-6,0). (7分)设所求切线的解析式为y=kx+b,因为它经过(0,-3)和(-6,0)两点,(3)答:过点A的切线与过点D的切线互相垂直,证明如下: (9分)证明:设过点A的切线与DE相交于点M,与y轴相交于点N.∴∠NAO=∠MDO. (10分)又∵∠NAO+∠ANO=90°,∴∠MND+∠MDN=90°.∴过点A的切线与过点D的切线互相垂直. (11分)。

2012年江西省南昌市初中数学毕业暨中等学校招生考试题

2012年江西省南昌市初中数学毕业暨中等学校招生考试题

2012年江西省南昌市初中数学毕业暨中等学校招生考试题1.-1的绝对值是()A.1 B.0 C.-1 D.±1答案:A.解析过程:-1的绝对值是它的相反数1,即|-1|=1.知识点:绝对值.题型区分:选择题.专题区分:数与式.难度系数:☆分值:3分.试题来源:江西省南昌市试题年代:2012年.2.在下列表述中,不能表示代数式“4a”意义的是()A.4的a倍B.a的4倍C.4个a相加D.4个a相乘答案:D.解析过程:因为4a=4×a=a×4=a+a+a+a,所以选项A,B,C正确;而选项D,4个a相乘应该表示为a·a·a·a=a4≠4a.知识点:代数式的意义.题型区分:选择题.专题区分:数与式.难度系数:☆分值:3分.试题来源:江西省南昌市试题年代:2012年.3.若等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°答案:B.解析过程:设等腰三角形的一个底角为x°,由三角形内角和定理,可得2x+80=180,解得x=50.知识点:三角形内角和定理,等腰三角形的性质.题型区分:选择题.专题区分:图形的性质难度系数:☆分值:3分.试题来源:江西省南昌市试题年代:2012年.4.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3·a3=2a3D.(-2a2)3=-8a6答案:D.解析过程:a3+a3=2a3,a6÷a-3=)3(--6a=a9,a3·a3=a3+3=a6,(-2a2)3=(-2)3(a2)3=-8a6,A、B、C 选项错误,D选项正确.知识点:同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方.题型区分:选择题.专题区分:数与式难度系数:☆分值:3分.试题来源:江西省南昌市试题年代:2012年.5.在下列四个黑体字中,既是轴对称图形,又是中心对称图形的是( )答案:C.解析过程:选项A ,字母C 上下对折能够互相重合,是轴对称图形,但不是中心对称图形;选项B ,字母L 既不是轴对称图形,也不是中心对称图形;选项C ,字母X 沿着左右或者上下对折直线两旁的部分都能互相重合,是轴对称图形,是以交点为中心的中心对称图形;选项D ,字母Z 不是轴对称图形,是中心对称图形.知识点:轴对称图形,中心对称图形.题型区分:选择题.专题区分:图形的变化.难度系数:☆分值:3分.试题来源:江西省南昌市.试题年代:2012年.6.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A .a 户最长B .b 户最长C .c 户最长D .三户一样长答案:D .解析过程:把每户家用电线的铅垂线的下段向右平移一定距离,使本户上下两段电线在一条直线上,则任意两户的铅垂电线都构成一个矩形的对边,所以三户电线的铅垂线部分相等;把a 户电线的水平部分向右平移相邻电线之间的距离,则a ,b 两户水平电线部分构成一个矩形的对边,所以a ,b 两户电线的水平部分一样长,同理可得a ,b ,c 三户电线的水平部分一样长.综上,三户所用电线一样长.知识点:图形的平移,线段平移的特征.题型区分:选择题.专题区分:图形的变化.难度系数:☆分值:3分.试题来源:江西省南昌市.试题年代:2012年.7.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A .南偏西60°B .南偏西30°C .北偏东60°D .北偏东30°答案:A.解析过程:如图,DO 表示阳光光线,由光沿直线传播的性质,可知阳光光线OD与身影OC 在一条直线上,所以∠BOD =∠AOC =60°,所以太阳相对于人的方向第7题图 O D C B A第6题图。

江西省南昌市2021年中考数学试题(解析版)

江西省南昌市2021年中考数学试题(解析版)

初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟;2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上答题,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.计算0(1)的结果为( ).A.1B.-1C.0D.无意义2.2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”.标志着中国高铁车从“中 国制造”到“中国创新”的飞跃.将数300 000用科学记数法表示为( ). A.3×106 B. 3×105 C.0.3×106 D. 30×1043.下列运算正确的是( ). A.236(2)6a a B.C. D.4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为().(第4题)D C B A5.如图,小贤同学为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误..的是( ). A. 四边形ABCD 由矩形变为平行四边形 B. BD 的长度变大C. 四边形ABCD 的面积不变D. 四边形ABCD 的周长不变6.已知抛物线2(0)y ax bx c a 过(-2,0),(2,3)两点,那么抛物线的对称轴( ).A .只能是1xB .可能是y 轴C .在y 轴右侧且在直线2x的左侧 D .在y 轴左侧且在直线2x的右侧二、选择题(本大题共8小题,每小题3分,共24分)第5题B7.一个角的度数是20°,则它的补角的度数为 .8.不等式组x x11023的解集是 .9.如图,OP 平分∠MON , PE ⊥OM 于E , PF ⊥ON 于F ,OA =OB , 则图中有 对全等三角形.第10题第9题O10.如图,点A , B , C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°则∠ADC 的度数为 . 11.已知一元二次方程2430x x 的两根为m ,n ,则22m mn n = .12.两组数据:3,a ,2b , 5与a ,6 ,b 的平均数都是6,若将这两组数据合并为一组数据,则这组 新数据的中位数为 .13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm , ∠CBD =40°,则点B 到CD 的距离为 cm (参考数据:sin20°≈0.342, com 20°≈0.940, sin 40°≈ 0.643, com 40°≈ 0.766.精确到0.1cm ,可用科学计算器).(第14题)(第13题)图2图1AB14.如图,在△ABC 中,AB =BC =4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△P AB 为直角三角形时,AP 的长为 . 三、(本大题共4小题,每小题6分,共24分) 15.先化简,再求值:()()2222a a b a b ,其中,1a 3b.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A, D 1 ,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)对称中心的坐标; (2)写出顶点B, C, B 1 , C 1 的坐标.17.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺........,根据下列条件分别在图1,图2中画出一条弦,使这条x弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法). (1) 如图1,AC=BC ;(2) 如图2,直线l 与⊙O 相切于点P ,且l ∥BC .l图2图1PAA18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m (m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A . 请完成下列表格:(2) 先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于45,求m 的值.四、(本大题共4小题,每小题8分,共32分)19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份 ,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图类别严加干涉稍加询问从来不管从来不管 25%严加干涉稍加询问根据以上信息解答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角的度数为 ; (2)把条形统计图补充完整; (3)若将:“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(1)如图1,纸片□ABCD 中,AD =5,S □ABCD =15,过点A 作AE ⊥BC ,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE ′ 的位置,拼成四边形AEE′D ,则四边形AEE′D 的形状为( ) A .平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D 中,在EE′上取一点F ,使EF =4,剪下△AEF ,将它平移至△DE′F′ 的位置,拼成四边形AFF′D . ① 求证四边形AFF′D 是菱形;② 求四边形AFF′D 两条对角线的长.图2图121.如图,已知直线yax b 与双曲线()0kyx x交于A (,11x y ),B (,22x y )两点(A 与B 不重合), 直线AB 与x 轴交于P (,00x ),与y 轴交于点C .(1) 若A ,B 两点的坐标分别为(1,3),(3,y 2).求点P 的坐标; (2)若11by ,点P 的坐标为(6,0),且AB BP .求,A B 两点的坐标;(3)结合(1),(2)中的结果,猜想并用等式表示,,120x x x 之间的关系(不要求证明).x22.甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在A,B 两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别5 m/s 和4 m/s .(1)在坐标系中,虚线表示乙离A 端的距离S (单位:m )与运动时间t (单位:s )之间的函数图象 (0≤t ≤200),请在同一坐标系中用实线画出甲离A 端的距离S 与运动时间t 之间的函数图象 (0≤t ≤200);sS /m------(2)根据(1)中所画图象,完成下列表格:(3)①直接写出甲、乙两人分别在第一个100m 内,s 与t 的函数解析式,并指出自变量的取值范围; ②求甲、乙第六次相遇时t 的值.五、(本大题共10分)x23.如图,已知二次函数L 1:()2230yax ax a a 和二次函数L 2:()211y a x (0a )图象的顶点分别为M ,N , 与y 轴分别交于点E, F . (1) 函数()2230yax ax a a 的最小值为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而减小时,x 的取值范围是 ; (2)当EFMN 时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明); (3)若二次函数L 2 的图象与x 轴的右交点为(,)0A m ,当△AMN 为等腰三角形时,求方程()2110a x 的解.六、 (本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE 是△ABC 的中线, AF ⊥BE , 垂足为P .像△ABC 这样的三角形均为“中垂三角形”.设BC a ,AC b ,AB c .特例探索(1)如图1,当∠ABE =45°,c 22时,a = ,b ;如图2,当∠ABE=30°,c4时, a = ,b ;图3图2图1CAA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD= AB =3.求AF 的长.EA2015年江西省南昌中考数学解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.解析:选A. ∵除0外,任何数的0次方等于1. ∴选A.2.解析:选B. ∵科学记数法是:把一个数写成“10n a ,其中1≤a <10”. ∴选B.3.解析:选D. ∵()1b a b a b a a b a b b aa ba ba b a b. ∴选D.4.解析:选C. ∵根据光的正投影可知,几何体的左视图是图C. ∴选C.5.解析:选C. ∵向右扭动框架, 矩形变为平行四边形 ,底长不变,高变小,所以面积变小. ∴选C.6.解析:选D. ∵抛物线2(0)yax bx c a 过(-2,0),(2,3)两点,∴420423a b c a b c ,解得34b,∴对称轴3028b xa a,又对称轴在(-2,2)之间, ∴选D.二、填空题(本大题共8小题,每小题3分,共24分) 7.解析:∵两角互补,和为180°,∴它的补角=180°-20°=160°. 8.解析: 由112x ≤0得x ≤2 ,由-3x <9得x >-3,∴不等式组的解集是-3<x ≤2. 9.解析:∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS),又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF, ∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形. 10.解析:∵∠A=50°, ∴∠BOC=100°, ∴∠BOD=80°, ∴∠ADC=∠B+∠BOD=30°+ 80°=110° 11.解析:由一元二次方程根与系数关系得m +n =4,mn =﹣3,又()2223m mn n m n mn∴原式=()243325.12.解析:由题意得32564663a b a b,解得84a b ,∴这组新数据是3,4,5,6,8,8,8,其中位数是6. 13.解析:如右图,作BE ⊥CD 于点E.∵BC=BD, BE ⊥CD, ∴∠CBE=∠DBE=20°, 在Rt △BCD 中,cos ,BEDBE=BD∴cos BE2015, ∴BE≈15×0.940=14.114.解析:如图,分三种情况讨论:图(1)中,∠APB=90°,BABA∵AO=BO, ∠APB=90°,∴PO=AO=BO=2, 又∠AOC=60°, ∴△APO 是等边三角形,∴AP=2;图(2)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°, ∴∠BAP=30°,在Rt △ABP 中,AP=cos30°×4= .图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°, ∴PB=, ∴()222327∴AP 的长为2,或三、(本大题共4小题,每小题6分,共24分) 15.解析:原式 ()[()]()()22222224a b a a b a b a b a b把,1a3b 代入得,原式=()()221431116.解析:(1) ∵正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称, ∴A,A 1 是对应点,∴AA 1 的中点是对称中心, ∵A(0,4),D(2,0),∴AD=2, ∴A 1D 1 = AD=2, 又∵D 1(0,3) ,∴A 1(0,1), ∴对称中心的坐标为(0, 2.5);(2)∵正方形的边长为2, 点A,D 1 ,D ,A 1在y 轴上,∴B(-2,4), C(-2,2), B 1(2,1), C 1(2,3) .17.解析:如右图所示.图1,∵AC=BC,∴ACBC ,∴点C 是AB 的中点,连接CO , 交AB 于点E ,由垂径定理知, 点E 是AB 的中点, 延长CE 交⊙O 于点D , 则CD 为所求作的弦;图2,∵l 切⊙O 于点P, 作射线PO ,交BC 于点E ,则PO ⊥l , ∵l ∥BC , ∴PO ⊥BC, 由垂径定理知,点E 是BC 的中点,连接AE 交⊙O 于F ,则AF 为所求作的弦. 18. 解析:(1)若事件A 为必然事件,则袋中应全为黑球,∴m=4, 若事件A 为随机事件,则袋中有红球, ∵m>1 ,∴m=2或3.(3)Axl图2图1PAA(2)64105m , ∴m=2 .四、(本大题共4小题,每小题8分,共32分)19.解析:(1) 30÷25%=120 10÷120×360°=30° ∴回收的问卷数为120份,圆心角的度数为30° (2) 如下图: (3) (30+80)÷120×1500=1375 ∴对孩子使用手机“管理不严”的家长大约有1375人.严加干涉稍加询问从来不管20.解析:(1) 由平移知:AE //DE′, ∴四边形AEE′D 是平行四边形,又AE ⊥BC, ∴∠AEE′=90°, ∴四边形AEE′D 是矩形,∴C 选项正确.(2) ① ∵AF //DF′, ∴四边形AFF′D 是平行四边形,∵AE=3, EF=4 ,∠E=90°, ∴AF=5,∵S □ABCD =AD·AE=15, ∴AD=5 , ∴AD=AF , ∴四边形AFF′D 是菱形.② 如下图, 连接AF′, DF,在Rt △AEF′中, AE=3, EF′=9, ∴AF′=在Rt △DFE′中, FE′=1, DE′=AE=3, ∴DF= ∴四边形AFF′D 两条对角线的长分别是 .21.解析:(1) 把A(1,3)代入kyx得:3k , 把B (,)23y 代入3yx得:21y ,∴B(3,1).把A(1,3),B(3,1)分别代入y ax b 得:331a b a b ,解得:14a b ,∴4AB y x ,令0ABy ,得4x , ∴(,)40P(2) ∵ABPB , ∴B 是AP 的中点,由中点坐标公式知:,1122622x y x y , ∵,A B 两点都在双曲线上,∴1111622x y x y ,解得12x , ∴24x .作AD ⊥x 于点D (如右图), 则△PAD ∽△PDO , ∴AD PD CO PO ,即146y b , 又11b y ,∴12y ,∴21y .∴(,),(,)2241A B(3) 结论:120x x x .理由如下:∵A (,11x y ),B (,22x y ),∴1122ax b y ax by , ∴2112212121y y x y x y yx x x x x令0y ,得122121x y x y xy y ,∵1122x y x y , ∴()()122121122121x y x y y y x x xy y y y=12x x , 即120x x x22.解析:(1)如下图:t /ss /m(2)填表如下:(3) ① =5S t 甲 (0≤t≤20) ,=-4100S t 乙 (0≤t ≤25).x② ()54100621t t , ∴ 11009t, ∴第六次相遇t 的值是11009. 五、(本大题共10分) 23.解析:(1)∵()222313yax ax a a x , ∴min =3y ;∵(,),(,)M N 1311 ,∴当x 1时,L 1的y 值随着x 的增大而减小,当x1时, L 2 的y 值随着x 的增大而减小, ∴x 的取值范围是x 11(2)∵(,),(,)M N 1311, ∴MN22,∵(,),(,)E a F a 0301,∴()EF a a a 3122,∴a 2222 ,a21如图,∵MN y x 2, ∴(,)A 02,∴,AM AN22,∴AMAN∵a 21,∴(,),(,)E F 022022∴,AEAF22, ∴AE AF∴四边形ENFM 是平行四边形, 已知EFMN ,∴四边形ENFM 是矩形(对角线相等且互相平分的四边形是矩形) (3)∵(,),(,)M N 1311,(,)A m 0, ∴,(),()MNAMm m 22221911① 当AM MN )m 21922,∴()m 211,等式不成立;② 当AM AN )()m m 221911 ∴m 2;③ 当MNAN )m 21122,∴,(m m 127171舍去)∴(,)A 20或,)A 10, ∵()y a x 211的对称轴为x 1,∴左交点坐标分别是(-4,0)或(71,0),∴方程()a x 2110的解为,,,x x x x 1234247171.x七、(本大题共12分) 24. 解析:(1)如图1,连接EF,则EF 是△ABC 的中位线,xC∴EF=AB 12∵∠ABE=45°,AE ⊥EF ∴△ABP 是等腰直角三角形, ∵EF ∥AB ,∴△EFP 也是等腰直角三角形, ∴AP=BP=2 ,EP=FP=1, ∴∴ab 25.如图2,连接EF,则EF 是△ABC 的中位线. ∵∠ABE=30°,AE ⊥BF,AB=4, ∴AP=2, BP=,∵EF //AB 12, ∴∴∴a213 , b 27.(2) a b c 2225如图3,连接EF , 设AP=m ,BP=n.,则c AB m n 2222∵EF //AB 12, ∴PE=12BP=12n , PF=12AP=12m,∴AE m n 22214 , BF n m 22214,∴b AC AE m n 2222244, a BC BF n m 2222244∴()a bm n c 2222255(3)如上图,延长EG,BC 交于点Q, 延长QD,BA 交于点P,延长QE,BE 分别交PB ,PQ 于点M,N,连接EF.图2B图3A∵四边形ABCD 是平行四边形,∴AD //BC, AB //CD,∵E,G 是分别是AD,CD 的中点,∴△EDG ≌△QCG ≌△EAM, ∴,∴BM=4.5.∵CD CQ BP BQ ,∴BP 3535,∴BP=9, ∴M 是BP 的中点; ∵AD //FQ, ∴四边形ADQF 是平行四边形,∴AF ∥PQ,∵E,F 分别是AD ,BC 的中点,∴AE //BF, ∴四边形ABFE 是平行四边形,∴OA=OF, 由AF ∥PQ 得:,OF BF QN BQ 51335OA BAPN BP3193, ∴OA OFPN QN , ∴PN=QN, ∴N 是PQ 的中点; ∴△BQP 是“中垂三角形”, ∴()PQ BQ BP 2222255359144,∴PQ 12, ∴AFPQ 143。

江西省初中毕业暨中等学校招生考试数学试题

江西省初中毕业暨中等学校招生考试数学试题

江西省初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)1.-1的绝对值是( )A.2B.0C.﹣1D.+12.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°3.下列运算正确的是( ).A.633a a a =+B.336a a a =÷-C.3332a a a =⋅D.6328)2(a a -=- 4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a 户最长B. b 户最长C. c 户最长D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分)7.一个正方体有 个面.8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度.10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限.13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x 并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136㎝,OA=OC=51㎝,OE=OF=34㎝,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32㎝.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由; ③若直线k y 8=与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)如图2,当折叠后的AB经过圆心O时,求AB弧的长;(2)如图3,当弦AB=2时,求折叠后AB弧所在圆的圆心O′到弦AB的距离;(3)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的CD弧与AB弧所在圆外切于点P,设点O到弦AB、CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的CD弧与AB弧所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.。

初中数学江西省初中毕业暨中等学校招生考试.docx

初中数学江西省初中毕业暨中等学校招生考试.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是()A.5 B. C.D.试题2:不等式组,的解集是()A. B. C. D.无解试题3:下列四个点,在反比例函数图象上的是()A.(1,) B.(2,4) C.(3,) D.(,)试题4:下列四张扑克牌的牌面,不是中心对称图形的是()试题5:如图,在平行四边形ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A. B.C.四边形AECD是等腰梯形 D.试题6:在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与轴相离、与轴相切 B.与轴、轴都相离 C.与轴相切、与轴相离 D.与轴、轴都相切试题7:下列四个三角形,与上图中的三角形相似的是()试题8:一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有()A.4个 B.5个 C.6个 D.7个试题9:“5・12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是.试题10:分解因式: = .试题11:将抛物线向上平移一个单位后,得到的抛物线解析式是.试题12:计算:.试题13:如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是.试题14:方程的解是.试题15:某次射击训练中,一小组的成绩如下表所示:环数 6 7 8 9人数 1 3 2若该小组的平均成绩为7.7环,则成绩为8环的人数是.试题16:如图,已知点的坐标为(3,0),点分别是某函数图象与轴、轴的交点,点是此图象上的一动点.设点的横坐标为,的长为,且与之间满足关系:(),给出以下四个结论:①;②;③;④.其中正确结论的序号是_ .试题17:先化简,再求值:,其中.试题18:如图:在平面直角坐标系中,有A(0,1),B(,0),C(1,0)三点坐标.(1)若点与三点构成平行四边形,请写出所有符合条件的点的坐标;(2)选择(1)中符合条件的一点,求直线的解析式.试题19:有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率.(2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.试题20:如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处;(1)求证:;(2)设,试猜想之间的一种关系,并给予证明.试题21:如图,为⊙的直径,于点,交⊙于点,于点.(1)请写出三条与有关的正确结论;(2)当,时,求圆中阴影部分的面积.试题22:甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?试题23:为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型的正确结论;(2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.试题24:如图,抛物线相交于两点.(1)求值;(2)设与轴分别交于两点(点在点的左边),与轴分别交于两点(点在点的左边),观察四点的坐标,写出一条正确的结论,并通过计算说明;(3)设两点的横坐标分别记为,若在轴上有一动点,且,过作一条垂直于轴的直线,与两条抛物线分别交于C,D两点,试问当为何值时,线段CD有最大值?其最大值为多少?试题25:如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点到的距离为,到的距离为,记为(当点分别与重合时,记).(1)当时(如图2所示),求的值(结果保留根号);(2)当为何值时,点落在对角形上?请说出你的理由,并求出此时的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.03 0 0.290.29 0.13 0.03(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形.(参考数据:.)试题1答案: D试题2答案: C试题3答案: D试题4答案: D试题5答案: A试题6答案: A试题7答案: B试题8答案: C试题9答案:试题10答案:试题11答案:试题12答案:试题13答案:试题14答案:,试题15答案:4试题16答案:①②③试题17答案:解:原式.当时,原式.试题18答案:解:(1)符合条件的点的坐标分别是,,.(2)①选择点时,设直线的解析式为,由题意得解得直线的解析式为.②选择点时,类似①的求法,可得直线的解析式为.③选择点时,类似①的求法,可得直线的解析式为.试题19答案:解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa,Ab,Ba,Bb四种情况.恰好匹配的有Aa,Bb两种情况,.(2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba可见,从计算器和保护盖中随机取两个,共有12种不同的情况.其中恰好匹配的有4种,分别是Aa,Bb,aA,bB,.或用列表法表示:可见,从计算器和保护盖中随机取两个,共有12种不同的情况.其中恰好匹配的有4种,分别是Aa,Bb,aA,bB,.试题20答案:(1)证:由题意得,,在矩形中,,,...(2)答:三者关系不唯一,有两种可能情况:()三者存在的关系是.证:连结,则.由(1)知,.在中,,.,,.()三者存在的关系是.证:连结,则.由(1)知,.在中,,.试题21答案:解:(1)答案不唯一,只要合理均可.例如:①;②;③;④;⑤;⑥;⑦是直角三角形;⑧是等腰三角形.(2)连结,则.,,.为⊙的直径,.在中,,,.,.,是的中位线.....试题22答案:解一:设乙同学的速度为米/秒,则甲同学的速度为米/秒,根据题意,得,解得.经检验,是方程的解,且符合题意.甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).,乙同学获胜.解二:设甲同学所用的时间为秒,乙同学所用的时间为秒,根据题意,得解得经检验,,是方程组的解,且符合题意.,乙同学获胜.试题23答案:解:(1)可从不同角度分析.例如:①甲同学的平均偏差率是,乙同学的平均偏差率是;②甲同学的偏差率的极差是,乙同学的偏差率的极差是;③甲同学的偏差率最小值是,乙同学的偏差率最小值是;④甲、乙两同学的偏差率最大值都是;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高.(2)可从不同角度分析.例如:①从平均偏差率预测:甲同学的平均偏差率是,估计的字数所在范围是84~116;乙同学的平均偏差率是,估计的字数所在范围是89~111;②从偏差率的中位数预测:甲同学偏差率的中位数是,估计的字数所在范围是85~115;乙同学偏差率的中位数是,估计的字数所在范围是90~110;③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是,估计的字数所在范围是84~116或83~117.乙同学的偏差率是~,估计的字数所在的范围是96~104或其它.试题24答案:解:(1)点在抛物线上,,解得.(2)由(1)知,抛物线,.当时,解得,.点在点的左边,,.当时,解得,.点在点的左边,,.,,点与点对称,点与点对称.(3).抛物线开口向下,抛物线开口向上.根据题意,得.,当时,有最大值.试题25答案:解:(1)过作于交于,于.,,,.,.(2)当时,点在对角线上,其理由是:过作交于,过作交于.平分,,.,,.,.,.即时,点落在对角线上.(以下给出两种求的解法)方法一:,.在中,..方法二:当点在对角线上时,有,解得.(3)0.13 0.03 0 0.03 0.13 0.29 0.500.50 0.29 0.13 0.03 0 0.03 0.13 (4)由点所得到的大致图形如图所示:。

江西省初中暨中等学校招生考数学试题目及参考答案共10页文档

江西省初中暨中等学校招生考数学试题目及参考答案共10页文档

江西省2019年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( ) A . B . C . D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第7题) A . B . C . D .(第5题)E8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 . 14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示: 若该小组的平均成绩为7.7环,则成绩为8环的人数是.16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标.俯视图 主视图(第8题)35° (第16题)(1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 19.有两个不同形状的计算器(分别记为A ,B 乱地放在桌子上. (1(2 A b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处; (1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分) 21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F .(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22P 点跑回到起跑急,掉了球,浪费了650秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2 23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不...同类型...(2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围. x ABCDF A 'B 'EB A24.如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记H E F ∠为α记0α=). (1)当0α=时(如图2所示),求x y ,(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号); (3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.966-+==,≈,≈.) 江西省南昌市2019年初中毕业暨中等学校招生考试数学试题参考答案及评分意见 1.可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.图1 图2 B (E A (F D图3 H DAC B 图44.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +- 11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分21x =+. ···································································································· 4分 当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+, 由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得 直线2BD 的解析式为1y x =--. ······································································ 6分③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ··········· 6分说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况. 恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:AB abBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb aaAaBabb bA bB ba································································ 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ······································· 1分 在矩形ABCD 中,AD BC ∥,B FE B EF ''∴∠=∠. ················································ 2分 B E BF '∴=.·························································· 3分 (2)答:a b c ,,三者关系不唯一,有两种可能情况:(ⅰ)a b c ,,三者存在的关系是222a b c +=. ·················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分 (ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ························· 5分 在ABE △中,AE AB BE +>,a b c ∴+>. ··························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.AB CD FA 'B ' E ABCDFA 'B 'E30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ····· 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ······· 5分OA OB =,OF ∴是ABC △的中位线.111222AOC S AC OF ∴==⨯=△ ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分 3AOC AOC S S S π∴=-=-△阴影扇形 ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ·················································· 6分 乙同学所用的时间为:6024x=(秒). ····························································· 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分 根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜.················································································ 8分 23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如:①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分 乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分 ②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117. ············································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分.五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ···················································································· 2分 解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =.点M 在点N 的左边,2M x ∴=-,1N x =. ··············· 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分∴点M 与点F 对称,点N 与点E 对称. ···························································· 8分(3)102a =>. ∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“MN EF =”均得1分.25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分 (2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.即45α=时,点G 落在对角线AC 上. ····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 14x y ∴==-. ················································································· 8分 方法二:当点G在对角线AC 上时,有12+=, ···················································································· 7分解得14x +=-14x y ∴==-. ·················································································8分 (3)α0 15 30 45 60 75 90x 0.13 0.03 0 0.03 0.13 0.29 0.50 y0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:B (EA (FKDQ。

初中毕业暨中等学校招生考试数学试卷.doc

初中毕业暨中等学校招生考试数学试卷.doc

江西省南昌市年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,30个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题上作答,否则不给分.一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项。

1.计算62--的结果是 ( ) A. 8- B.8 C.4- D.4 2.计算2)3(a --的结果是A. 26a - B. 29a - C. 26a D. 29a要3.(2010江西省南昌)某学生某月有零花钱a 元,其支出情况如图所示,那么下列说法不正确...的是 A .该学生捐赠款为a 6.0元 B.捐赠款所对应的圆心角为︒240C.捐赠款是购书款的2倍D.其他支出占10%(第3题)4.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是 ( )A. B. C. D. 第3题图5.已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边长是 ( ) A.8 B. 7 C. 4 D.3要6.下列图案中既是轴对称图形又是中心对称图形的是 ( )7.不等式组⎩⎨⎧>+-<-,12,62x x 的解集是 ( )A. 3->xB. 3>xC.33<<-xD. 无解 8.如图,反比例函数xy 4=图象的对称轴的条数是 ( ) A.0 B. 1 C. 2 D.3(第8题)9.化简)31(33--的结果是 ( ) A. 3 B. 3- C. 3 D.3-要10. (2010江西省南昌)如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,︒>∠60BEG ,现沿直线EG 将纸片折叠,使点B 落在约片上的点H 处, 连接AH ,则与BEG ∠相等的角的个数为 ( ) A.4 B. 3 C.2 D.1(第10题) 要11.(2010江西省南昌)如图.⊙O 中,AB 、AC 是弦,O 在∠ABO 的内部,α=∠ABO ,β=∠ACO ,θ=∠BOC ,则下列关系中,正确的是 ( )A.βαθ+=B. βαθ22+= C .︒=++180θβα D. ︒=++360θβα(第11题)要12. (2010江西省南昌)某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象(不考虑图象端点情况)大致为( )二、填空题(本大题共8小题,每小题3分,共24分) 13.因式分解:=-822a .,14. .按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 ...................,只按第...(I ) 题评分...). (I )如图,从点C 测得树的顶端的仰角为︒33,20=BC 米,则树高≈AB 米(用计算器计算,结果精确到1.0米).(Ⅱ)计算:=︒-︒∙︒30tan 30cos 30sin .(结果保留根号). (第15题)16.一大门的栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则=∠+∠B CD A B C 度.(第16题)17.如图所示,半圆AB 平移到半圆CD 的位置时所扫过的面积为 .(第17题)要18. (2010江西省南昌)某班有40名同学去看演出,购甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x 张,乙种票y 张,由此可列出方程组: .19.如图,以点P 为圆心的圆弧与x 轴交于B A ,两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为 .(第19题)要20. (2010江西省南昌)如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假定AC>AB ),影长的最大值为m.最小值为n,那么下列结论:①m>AC;②m =AC;③n =AB;④影子的长度先增大后减小.其中,正确结论的序号是 . (多填或错填的得0分,少填的酌情给分)(第20题) 三、(本大题共4小题,每小题4分,共16分) 要21.(2010江西省南昌)化简:)31(2)31(2a a ---.要22. (2010江西省南昌)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.要23. (2010江西省南昌)解方程:144222=-++-x x x .24.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).⑴求事件“转动一次,得到的数恰好是0”发生的概率;⑵用树状图或表格,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率. 四、(本大题共4小题,每小题5分,共20分)25剃须刀由刀片和刀架组成,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新 式剃须刀(刀片可更换). 有关销售策略与售价等信息如下表所示:老式剃须刀新式剃须刀刀架 刀片售价 2.5(元/把) 1(元/把) 0.55(元/片) 成本 2(元/把) 5(元/把) 0.55(元/片)某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是 刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍.问这段时间内 乙厂家销售了多少把刀架?多少片刀片?26.某校九年级全体500名女生进行仰卧起坐训练,下面两图是随机抽取的若干名女生训练前后“1分钟仰卧起坐”测试的成绩统计图(其中,右图不完整).(1)根据上图提供的信息,补全右上图;(2)根据上图提供的信息判断,下列说法不正确...的是 A .训练前各成绩段中人数最多的是第三成绩段B .“33-35”成绩段中,训练前成绩的平均数一定大于训练后成绩的平均数C .训练前后成绩的中位数所落在的成绩段由第三成绩段到了第四成绩段(3)规定39个以上(含39个)为优秀等级,请根据两次测试成绩,估算该校九年级全体女生优秀等级人数训练后比训练前增加了多少人.27.“6”字形图中,FM 是大⊙O 的直径,BC 与大⊙O 相切于B ,OB 与小⊙O 相交于A ,AD ∥BC ,CD ∥BH ∥FM ,BH DH ⊥于H ,设︒=∠30FOB ,4=OB ,6=BC(1)求证:AD 为小⊙O 的切线; (2)求DH 的长(结果保留根号).28.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P 与点A 重合; 当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到过点B 时,伞张得最开.已知伞在撑开的过程中,总有0.6====CN CM PN PM 分米,0.18==CF CE 分米,0.2=BC 分米(1)求AP 长的取值范围;(2)当︒=∠60CPN 时,求AP 的值;(3)在阳光垂直照射下,伞张得最开,求伞下的阴影(假定为圆面)面积为S (结果保留π).图2 图1 五、(本大题共1小题,共12分)29.如图,已知经过原点的抛物线xx y 422+-=与x 轴的另一交点为A ,现将它向右平移m (0>m )个单位,所得抛物线与x 轴交于C 、D 两点,与原抛物线交于点P .(1)求点A 的坐标,并判断∆PCA 存在时它的形状(不要求说理);(2)在x 轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由;(3)设∆PCD 的面积为S ,求S 关于m 的关系式.. 设旋转角)(2111A A A B A A O O ∠<=∠αα,3θ,4θ,5θ,6θ所表示的角如图所示.图1 图2 图3 图4αθ4HB 2B 3A 3A 22A 2B 1A 1A 011(1)用含α的式子表示角的度数:3θ= ,4θ = ,5θ = ; (2)图1—图4中,连接H A o 时,在不添加其他辅助线的情况下,是否存在与直线H A o 垂直且被它平分的线段?若存在,请选择其中一个图给出证明;若不存在,请说明理由; 归纳与猜想设正n 边形121-n O A A A A 与正n 边形121-n O B B B A 重合(其中1A 与1B 重合),现将正n 边形121-n O B B B A 绕顶点o A 逆时针旋转α)1800(n︒<<︒α. (3)设n θ与上述“3θ,4θ,…”的意义一样,请直接写出n θ的度数;(4)试猜想在正n 边形的情况下,是否存在与直线H A o 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.(除“要”其余题目同江西中考题)机密★2010年6月19日江西省南昌市2010年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅;当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共12小题,每小题3分,共36分) 1. A 2. B 3. B 4. D 5. B 6. C 7. B 8. C 9.A 10.B 11.B 12.A二、填空题(本大题共8小题,每小题3分,共24分) 13. )2)(2(2-+a a 14. 7 15 (Ⅰ)13.0;(Ⅱ) 123-16 270 17. 6 18.⎩⎨⎧=+=+.370810,40y x y x 19.(6,0) 20.①③④(说明:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:的相反数是()A.5 B. C.D.试题2:不等式组,的解集是()A. B. C. D.无解试题3:下列四个点,在反比例函数图象上的是()A.(1,) B.(2,4) C.(3,) D.(,)试题4:下列四张扑克牌的牌面,不是中心对称图形的是()A. B. C. D.试题5:如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A. B.C.四边形AECD是等腰梯形 D.试题6:在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与轴相离、与轴相切 B.与轴、轴都相离 C.与轴相切、与轴相离 D.与轴、轴都相切试题7:下列四个三角形,与下图中的三角形相似的是()试题8:一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有()A.4个 B.5个 C.6个 D.7个试题9:“5・12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是.试题10:分解因式: = .试题11:将抛物线向上平移一个单位后,得到的抛物线解析式是.试题12:计算:.试题13:如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是.试题14:方程的解是.试题15:某次射击训练中,一小组的成绩如下表所示:环数 6 7 8 9人数 1 3 2若该小组的平均成绩为7.7环,则成绩为8环的人数是.试题16:如图,已知点的坐标为(3,0),点分别是某函数图象与轴、轴的交点,点是此图象上的一动点.设点的横坐标为,的长为,且与之间满足关系:(),给出以下四个结论:①;②;③;④.其中正确结论的序号是_ .试题17:先化简,再求值:,其中.试题18:如图:在平面直角坐标系中,有A(0,1),B(,0),C(1,0)三点坐标.(1)若点与三点构成平行四边形,请写出所有符合条件的点的坐标;(2)选择(1)中符合条件的一点,求直线的解析式.试题19:有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率.(2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.试题20:如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处;(1)求证:;(2)设,试猜想之间的一种关系,并给予证明.试题21:如图,为⊙的直径,于点,交⊙于点,于点.(1)请写出三条与有关的正确结论;(2)当,时,求圆中阴影部分的面积.试题22:甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?试题23:为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合图中提供的信息,就甲、乙两同学分别写出两条不同类型的正确结论;(2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.试题24:如图,抛物线相交于两点.(1)求值;(2)设与轴分别交于两点(点在点的左边),与轴分别交于两点(点在点的左边),观察四点的坐标,写出一条正确的结论,并通过计算说明;(3)设两点的横坐标分别记为,若在轴上有一动点,且,过作一条垂直于轴的直线,与两条抛物线分别交于C,D两点,试问当为何值时,线段CD有最大值?其最大值为多少?试题25:如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点到的距离为,到的距离为,记为(当点分别与重合时,记).(1)当时(如图2所示),求的值(结果保留根号);(2)当为何值时,点落在对角形上?请说出你的理由,并求出此时的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.03 0 0.290.29 0.13 0.03(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形.(参考数据:.)试题1答案:D试题2答案:C试题3答案:D试题4答案: D试题5答案: A试题6答案: A试题7答案: B试题8答案: C试题9答案:试题10答案:试题11答案:试题12答案:试题13答案:试题14答案:,试题15答案:4试题16答案:①②③试题17答案:解:原式当时,原式.试题18答案:解:(1)符合条件的点的坐标分别是,,(2)①选择点时,设直线的解析式为,由题意得解得直线的解析式为.②选择点时,类似①的求法,可得直线的解析式为.③选择点时,类似①的求法,可得直线的解析式为.试题19答案:解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa,Ab,Ba,Bb四种情况.恰好匹配的有Aa,Bb两种情况,.(2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba可见,从计算器和保护盖中随机取两个,共有12种不同的情况.其中恰好匹配的有4种,分别是Aa,Bb,aA,bB,.或用列表法表示:A B a bA AB Aa AbB BA Ba Bba aA aB abb bA bB ba可见,从计算器和保护盖中随机取两个,共有12种不同的情况.其中恰好匹配的有4种,分别是Aa,Bb,aA,bB,.试题20答案:证:(1)由题意得,,在矩形中,,,...(2)三者关系不唯一,有两种可能情况:()三者存在的关系是.证:连结,则.由(1)知,.在中,,.,,.()三者存在的关系是.证:连结,则.由(1)知,.在中,,.试题21答案:解:(1)答案不唯一,只要合理均可.例如:①;②;③;④;⑤;⑥;⑦是直角三角形;⑧是等腰三角形.(2)连结,则.,,.为⊙的直径,.在中,,,.,.,是的中位线....试题22答案:解一:设乙同学的速度为米/秒,则甲同学的速度为米/秒,根据题意,得,解得.经检验,是方程的解,且符合题意.甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).,乙同学获胜.解二:设甲同学所用的时间为秒,乙同学所用的时间为秒,根据题意,得解得经检验,,是方程组的解,且符合题意.,乙同学获胜.试题23答案:解:(1)可从不同角度分析.例如:①甲同学的平均偏差率是,乙同学的平均偏差率是;②甲同学的偏差率的极差是,乙同学的偏差率的极差是;③甲同学的偏差率最小值是,乙同学的偏差率最小值是;④甲、乙两同学的偏差率最大值都是;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高.(2)可从不同角度分析.例如:①从平均偏差率预测:甲同学的平均偏差率是,估计的字数所在范围是84~116;乙同学的平均偏差率是,估计的字数所在范围是89~111;②从偏差率的中位数预测:甲同学偏差率的中位数是,估计的字数所在范围是85~115;乙同学偏差率的中位数是,估计的字数所在范围是90~110;③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是,估计的字数所在范围是84~116或83~117.乙同学的偏差率是~,估计的字数所在的范围是96~104或其它.试题24答案:解:(1)点在抛物线上,,解得.(2)由(1)知,抛物线,.当时,解得,.点在点的左边,,.当时,解得,.点在点的左边,,.,,点与点对称,点与点对称.(3).抛物线开口向下,抛物线开口向上.根据题意,得.,当时,有最大值.试题25答案:解:(1)过作于交于,于.,,,.,.(2)当时,点在对角线上,其理由是:过作交于,过作交于.平分,,.,,.,.,.即时,点落在对角线上.(以下给出两种求的解法)方法一:,.在中,,.方法二:当点在对角线上时,有,解得.(3)0.13 0.03 0 0.03 0.13 0.29 0.500.50 0.29 0.13 0.03 0 0.03 0.13 (4)由点所得到的大致图形如图所示:。

相关文档
最新文档