信息论与编码,曹雪虹,课件第2章-2
信息论与编码-曹雪虹-第二章-课后习题答案
2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)p p == (0|11)(10|11)0.2p p == (0|10)(00|10)p p == (1|00)(01|00)0.2p p == (1|01)(11|01)p p==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
《信息论与编码》课件1第2章
如果消息ai已发生,则该消息发生所含有的自信息定 义为
1
1
I (ai ) log P(ai ) log pi
(2.4)
第2章 离散无记忆信源与信息熵
可以很容易地证明, 自信息的定义满足上面提出的四个
(1) 此自信息的定义是根据消息发生的概率建立的一个 工程定义,而不是根据这个消息对人的实际意义而建立的 定义。这一纯粹技术性的定义仅仅抓住了“信息”一词在
(2) 自信息I(ai) 在消息ai发生之前,自信息I(ai)表示ai发生的不确定性; 在消息ai发生以后,自信息I(ai)表示ai所含有的(或提
第2章 离散无记忆信源与信息熵
(3) 在式(2.4)中关于对数的底未作明确规定。这是 因为对数的底仅仅影响到度量的单位,实际中可根据
如果取对数的底为2,则所得信息量的单位为比特 (bit, binary unit),此时logx用lbx
第2章 离散无记忆信源与信息熵
第2章 离散无记忆信源与信息熵
2.1 离散无记忆信源 2.2 自信息和熵 2.3 熵函数的性质 2.4 联合事件的熵及其关系 2.5 连续信源的信息测度 习题2
第2章 离散无记忆信源与信息熵
信息理论的研究对象是以各类信息的获取、表示、 传输和处理为目的的信息系统。图2-1给出了一个典型 的通信系统物理模型。在这样的通信系统中,一个贯 穿始终的、最基本的问题便是信息,即信源输出的是 信息,在系统中传输的是信息,接收者获得的也是信 息。可见,在信息理论的学习和研究中,首先需要对
精品课件-信息论、编码及应用-第2章
第2章 离散信源及其信息测度
2.1 单符号离散信源的数学模型 2.2 自信息和信息函数 2.3 信息熵 2.4 信息熵的基本性质 2.5 联合熵和条件熵的分解与计算 2.6 信息熵的解析性质 2.7 离散信源的最大熵值 2.8 多符号离散平稳信源 2.9 多符号离散平稳无记忆信源及其信息熵 2.10 多符号离散平稳有记忆信源及其信息熵 2.11 信源的相关性与冗余度
第2章 离散信源及其信息测度
第2章 离散信源及其信息测度
上述对应的数学表达式为
(2-3)
I(ai;bj)=I(ai)-I(ai|bj)
为了便于引出一个重要的结果,我们不妨假定信道中没有
噪声的随机干扰,这时,显然有bj=ai本身,收信者确切无误地 收到信源发出的消息。那么,收到bj后,对ai仍然存在的不确 定性等于0,即I(ai|bj)=0。这样,根据式(2-3),收到bj后,从 bj中获取关于ai的信息量为I(ai;bj)=I(ai)-I(ai|bj)=I(ai), 这个I(ai)也就是ai本身所含有的信息量,即信源能提供的全部 信息量,我们称I(ai)为ai的自信息量。
(1) 若P(a1)>P(a2),则I(a1)<I(a2),即f[P(ai)]是P(ai) 的单调递减函数;
(2) 若P(ai)=0,则f [P(ai)]→∞; (3) 若P(ai)=1,则f [P(ai)]=0;
第2章 离散信源及其信息测度
(4) 若两个事件ai和bj统计独立,则ai和bj的联合信息量应 等于它们各自的信息量之和,即I(aibj)=I(ai)+I(bj)。如有两 个统计独立的信源X和Y,它们的信源空间分别是
{1,2,3,4,5,6}中的任何一个,不可能是这个集合以外的符号,
信息论与编码_曹雪虹_张宗橙_北京邮电大学出版社课后习题答案
得:随意取出一球时,所需要的信息量为 (1) P(红)= P(白)=1/2
1 1 1 1 H(X)= log 2 log 2 2 2 2 2
= 1比特
3 2013-8-9
(2)P(白)= 1/100 P(红)= 99/100 所以 1 H(X)= log 2
100
1 99 99 log 2 100 100 100
13 2013-8-9
2-10
解: (1)H(colour)=2/38log19+2*(18/38)log(38/18) =0.22+1.02=1.24bit (2)H(colour,number)=H(number)=log38 =5.25bit (3)H(number|colour)=H(c,n)-H(c) =5.25-1.24=4.01bit
8 2013-8-9
2-5
解: (1)I=log18=4.17bit (2)略
9 2013-8-9
2-6
解:
(1) 平均每个符号携带的信息量:
H(X)=14/45log(45/14)+13/45log(45/13) +12/45log(45/12)+6/45log(45/6) =1.95比特/符号 (2)消息自信息量: I=1.95*45=87.8
40 2013-8-9
信源熵
H w1 H ( x / s1) w2 H ( x / s2) w3 H ( x / s3) 1.435
41 2013-8-9
5
2-23
略
28 2013-8-9
2-24
解: 1 3 4 H ( x) log 4 log 0.81 (1)
信息论与编码(曹雪虹第三版)第一、二章
根据传输介质的不同,信道可分为有线信道和无线信道两大类。有线信道包括 双绞线、同轴电缆、光纤等;无线信道包括微波、卫星、移动通信等。
信道容量的定义与计算
信道容量的定义
信道容量是指在给定条件下,信道能 够传输的最大信息量,通常用比特率 (bit rate)来衡量。
信道容量的计算
信道容量的计算涉及到信道的带宽、 信噪比、调制方式等多个因素。在加 性高斯白噪声(AWGN)信道下,香农 公式给出了信道容量的理论上限。
信道编码分类
根据编码方式的不同,信道编码可分为线性分组码和卷积码 两大类。
线性分组码
线性分组码定义
线性分组码是一种将信息 序列划分为等长的组,然 后对每个组独立进行编码 的信道编码方式。
线性分组码特点
编码和解码过程相对简单 ,适用于各种信道条件, 且易于实现硬件化。
常见的线性分组码
汉明码、BCH码、RS码等 。
将信源消息通过某种数学变换转换到另一个域中,然后对变换 系数进行编码。
将连续的信源消息映射为离散的数字值,然后对数字值进行编 码。这种方法会导致量化噪声,是一种有损的编码方式。
信道编码的定义与分类
信道编码定义
信道编码是为了提高信息传输的可靠性、增加通信系统的抗 干扰能力而在发送端对原始信息进行的一种变换。
信息熵总是非负的,因 为自信息量总是非负的 。
当随机变量为确定值时 ,其信息熵为0。
对于独立随机变量,其 联合信息熵等于各自信 息熵之和。
当随机变量服从均匀分 布时,其信息熵达到最 大值。
03
信道与信道容量
信道的定义与分类
信道的定义
信道是信息传输的媒介,它提供了信号传输的通路,是通信系统中的重要组成 部分。
信息论与编码ppt
人们对客观世界运动规律 和存在状态的认识结果
信息 传递 信息 获取
信息处理—再生 信息处理 再生
信息 传递
外部世界 问题/ 问题/环境
信息运动过程
信息 施用
二、信息论的形成和发展 信息论的形成和发展
信息论的奠基人是谁? 信息论的奠基人是谁?信息论的开创文 章是什么? 章是什么? 编码理论的开创文章是什么? 编码理论的开创文章是什么? 香龙的三大定理是什么? 香龙的三大定理是什么?
3
注意事项
1、实行请假制度 、 2、保持课堂纪律 、 3、欢迎提出反馈意见 、
4
学习方法
本课程以概率论为基础,数学推导较多, 本课程以概率论为基础,数学推导较多,学习 时主要把注意力集中到概念的理解上, 概念的理解上 时主要把注意力集中到概念的理解上,不过分 追求数学细节的推导。 追求数学细节的推导。学习时一定要从始至终 注意基本概念的理解,不断加深概念的把握。 注意基本概念的理解,不断加深概念的把握。 学习时注意理解各个概念的“用处” 学习时注意理解各个概念的“用处”,结合其 他课程理解它的意义, 他课程理解它的意义,而不要把它当作数学课 来学习,提倡独立思考, 来学习,提倡独立思考,注重思考在学习中的 重要性。 重要性
在通信系统中形式上传输的是消息,但实质上传输的是信息 在通信系统中形式上传输的是消息 但实质上传输的是信息
什么叫数据? 什么叫数据?
载有信息的可观测、可传输、 载有信息的可观测、可传输、可存储及可 处理的信号均称为数据。 处理的信号均称为数据。
17
4.信息的分类 信息的分类
语义信息:事物运动状态及方式的具体含义, 语义信息:事物运动状态及方式的具体含义, 研究信息的主体含义。 研究信息的主体含义。 语法信息:事物的状态和状态改变方式本身。 语法信息:事物的状态和状态改变方式本身。 研究事物运动出现的各种可能状态和这些状态 之间的联系。是抽象的。 之间的联系。是抽象的。(各种信息要素出现 的可能性及各要素之间的相互关系)。 的可能性及各要素之间的相互关系)。 语用信息:事物运动状态、 语用信息:事物运动状态、方式及其含义对观 察者的效用,研究信息客观价值。 察者的效用,研究信息客观价值。
信息论与编码_曹雪虹_PPT第二章
引言
有效性和可靠性是通信系统中研究的中 心问题,信息论是在信息可度量基础上, 研究有效地和可靠地传递信息的科学。因 此,概率论、随机过程是信息论研究的基 础和工具。
信源的数学模型 正如绪论中所述,在通信系统中收信者在未收到 消息以前,对信源发出什么消息是不确定的, 所以可用随机变量或随机矢量来描述信源输出 的消息。或者说,用概率空间来描述信源。 离散信源的数学模型就是离散型的概率空间:
信息量与不确定性: 信息是事物运动状态或存在方式的不确定性的 描述。那么 , 根据香农信息的定义,信息该如何度 量呢? 当人们收到一封E_Mail,或看了电视,到底得 到多少信息量呢?显然,信息量与不确定性消除的 程度有关。消除多少不确定性,就获得多少信息量 。那么,不确定性的大小能度量吗? 用数学的语言来讲,不确定性就是随机性,具 有不确定性的事件就是随机事件。因此,可以应用 研究随机事件的数学工具 —— 概率论来度量不确 定性的大小。简单地说,不确定性的大小可以直观 地看成是猜测某随机事件是否发生的难易程度。
连续参数马尔可夫链
马尔可夫过程
有限维概率分布(簇) 转移概率
绝对概率
极限分布
平稳分布
状态空间的性质
补1 马尔可夫过程的概念
补1.1 有关定义
随机过程马尔可夫性:(物理描述)
当随机过程在时刻 ti 所处的状态为已知的条件下,过 程在时刻 t(>ti)所处的状态,与过程在ti时刻以前的状态无 关,而仅与在ti时刻的状态有关。这种已知“现在”状态的 条件下,“将来”状态与“过去”状态无关的性质,称为 马尔可夫性或无后效性。 具有马尔可夫性或无后效性的随机过程,即是马尔可 夫过程。
信息论与编码(第二版)曹雪虹(最全版本)答案讲解
《信息论与编码(第二版)》曹雪虹答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==u 1u 2u 31/21/21/32/32/31/3于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
信息论与编码教学课件(全)
目录
• 课程介绍与背景 • 信息论基础 • 编码理论基础 • 信道编码技术 • 数据压缩技术 • 多媒体信息编码技术 • 课程总结与展望
01
课程介绍与背景
Chapter
信息论与编码概述
信息论的基本概念
01
信息、信息量、信息熵等
编码的基本概念
02
信源编码、信道编码、加密编码等
02
极化码(Polar Codes)
一种新型信道编码方式,通过信道极化现象实现高效可靠的信息传输。
03
深度学习在信道编码中的应用
利用深度学习技术优化传统信道编码算法,提高编码性能和效率。
05
数据压缩技术
Chapter
数据压缩概述与分类
数据压缩定义
通过去除冗余信息或使用更高效的编码方式,减小数据表示所需存储空间的过 程。
线性分组码原理:线性分组码是一 种将信息序列划分为等长的组,然 后对每组信息进行线性变换得到相 应监督位的编码方式。
具有严谨的代数结构,易于分析和 设计;
具有一定的检错和纠错能力,适用 于各种通信和存储系统。
循环码原理及特点
循环码原理:循环码是一种特殊的线 性分组码,其任意两个码字循环移位
后仍为该码的码字。
03
编码理论基础
Chapter
编码的基本概念与分类
编码的基本概念
编码是将信息从一种形式或格式转换为另一种形式的过程,以 满足传输、存储或处理的需要。
编码的分类
根据编码的目的和原理,可分为信源编码、信道编码、加密编 码等。
线性分组码原理及特点
线性分组码特点
监督位与信息位之间呈线性关系, 编码和解码电路简单;
《信息论与编码》课件
发展趋势与未来挑战
探讨信息论和编码学领域面临的未 来挑战。
介绍多媒体数字信号压缩和编码技术的发展和应用。
可靠的存储与传输控制技术
解释可靠存储和传输控制技术在信息论中的重要性。
生物信息学中的应用
探讨信息论在生物信息学领域的应用和突破。
总结与展望
信息论与编码的发展历程
回顾信息论和编码学的发展历程和 里程碑。
信息技术的应用前景
展望信息技术在未来的应用前景和 可能性。
介绍误码率和信噪比的定义和关系。
2
码率与修正码率的概念
解释码率和修正码率在信道编码中的重要性。
3
线性码的原理与性质
探讨线性码的原理、特点和应用。
4
编码与译码算法的实现
详细介绍信道编码和译码算法的实现方法。
第四章 信息论应用
无线通信中的信道编码应用
探索无线通信领域中信道编码的应用和进展。
多媒体数字信号的压缩与编码技术
《信息论与编码》T课 件
# 信息论与编码 PPT课件
第一章 信息的度量与表示
信息的概念与来源
介绍信息的定义,以及信息在各个领域中的来源和 应用。
香农信息熵的定义与性质
介绍香农信息熵的概念和其在信息论中的重要性。
信息量的度量方法
详细解释如何度量信息的数量和质量。
信息压缩的基本思路
探讨信息压缩的原理和常用方法。
第二章 信源编码
等长编码与不等长编码
讨论等长编码和不等长编码的特点 和应用领域。
霍夫曼编码的构造方法与 性质
详细介绍霍夫曼编码的构造和优越 性。
香农第一定理与香农第二 定理
解释香农第一定理和香农第二定理 在信源编码中的应用。
《信息论、编码及应用》课件第2章
r
H (X ) P(ai )logP(ai )
i1
H[P(a1), P(a2 ),, P(ar )]
H(P)
(2-11)
第2章 离散信源及其信息测度
2.4.2 对称性 根据式(2-11),并根据加法交换律可知,当变量P1,
P2,…,Pr的顺序任意互换时,熵函数的值保持不变,即 H (P1, P2 ,, Pr ) H (P2 , P1,, Pr ) H (Pr , Pr1,, P1) (2-12)
在数学上可证明,同时满足以上四个公理条件的函数形 式为
I (ai )
f
[P(ai
)]
l
b
1 P(ai
)
lb P(ai )
(2-7)
在式(2-7)和后面的章节中,采用以2为底的对数,所得信息量的 单位为比特。
第2章 离散信源及其信息测度
2.3 信 息 熵
2.3.1 信息熵的数学表达式 为了求得整个信源所提供的平均信息量,首先,我们应
存在的平均不确定性。例如有三个信源X1,X2,X3,它们的 信源空间分别是:
X1
P(
X
1
)
a1 0.5
0a.25,
X2
P(
X
2
)
a1 0.7
0a.23,
X3 P( X 3
)
a1 0.99
a2 0.01
(3) 用信息熵H(X)来表示随机变量X的随机性。
第2章 离散信源及其信息测度
第2章 离散信源及其信息测度
第2章 离散信源及其信息测度
2.1 单符号离散信源的数学模型 2.2 自信息和信息函数 2.3 信息熵 2.4 信息熵的基本性质 2.5 联合熵和条件熵的分解与计算 2.6 信息熵的解析性质 2.7 离散信源的最大熵值 2.8 多符号离散平稳信源 2.9 多符号离散平稳无记忆信源及其信息熵 2.10 多符号离散平稳有记忆信源及其信息熵 2.11 信源的相关性与冗余度
信息论与编码PPT教学课件
第二节 通信系统的模型
5. 密钥源 • 是产生密钥k的源 • 信源编码器输出信号x经过k的加密运算后,就 把明文x变换为密文y
三、通信系统的性能指标及相应的编码问题
第二节 通信系统的模型
问题:能否将三种码(信源编码、信道编码和密码) 合成一种码进行编译?
• 提高有效性必须去掉信源符号中的冗余部分, 此时信道误码会使接收端不能恢复原来的信息 ,也就是必须相应提高传送的可靠性,不然会 使通信质量下降;
• 反之,为了可靠而采用信道编码,往往需扩大 码率,也就降低了有效性。安全性也有类似情 况
▪ 到70年代,有关信息论的研究,从点与点间的单用 户通信推广到多用户系统的研究。1972年盖弗(Caer )发表了有关广播信道的研究,以后陆续有关于多接 入信道和广播信道模型的研究,但由于这些问题比较 难,到目前为止,多用户信息论研究得不多,还有许 多尚待解决的课题。
第一节 信息论的形成和发展
➢ 几个概念
3.三处最有可能发展成为城 市的是哪一处?为什么?除此 而外,你知道哪些地方还分布 有较大的城市? 4. 综上所述,影响聚落形成 和发展的因素有哪些?
• 通信系统的性能指标主要是有效性、可靠性、安全 性和经济性。通信系统优化就是使这些指标达到最 佳。
• 根据信息论的各种编码定理和上述通信系统的指标 ,编码问题可分解为三类:信源编码、信道编码和 密码。
第二节 通信系统的模型
1. 信源编译码器 信源编码器的作用 • 是把信源发出的消息变换成由二进制码元(或 多进制码元)组成的代码组,这种代码组就是 基带信号; • 同时通过信源编码可以压缩信源的冗余度(即 多余度),以提高通信系统传输消息的效率。
信息论与编码第二版第2章ppt
3. 联合熵和条件熵 (1)联合熵(共熵)
联合熵是联合符号集合(X,Y)的每个元素对
(xi , y j ) 的自信息量的概率加权统计平均值,它表
示X和Y同时发生的不确定度。定义为
H XY pxi , yjI xi , yj ij pxi , yj log pxi yj ij
H
(V
|
u0
)
H
(1 4
,
3) 4
0.82bit
/
符号
(2)已知发出的符号,求收到符号后得到的信息量;
11
H (V | U ) p(ui , v j ) log p(v j | ui ) i0 j0
p(u0 , v0 ) p(v0 | u0 ) p(u0 ) 3 / 8 p(u0 , v1) 1/ 8 p(u1, v0 ) 1/ 4 p(u1, v1) 1/ 4
P(x 0, y 0) P( y 0 | x 0)P(x 0) 1/ 2 P(x 0, y ?) 1/ 6, P(x 0, y 1) 0 P(x 1, y 0) 0, P(x 1, y ?) 1/ 6 P(x 1, y 1) 1/ 6
H (Y | X ) p(xi , yi ) log p( yi | xi ) 0.88bit / 符号 ij
“o”的自信息量 I (o)= - log2 0.001=9.97 bit;
例: 居住某地区的女孩中有25%是大学生,在女大学生中有75% 身高为1.6m以上,而女孩中身高1.6m以上的占总数一半。假如得 知“身高1.6m以上的某女孩是大学生”的消息,问获得多少信息 量?
解:设x1为女孩是大学生; x2为身高1.6m以上的女孩; 则p( x1)=1/4 ; p (x2)=1/2;
信息论与编码曹雪虹著第二章
16
2.1信源描述与分类
单符号无记忆信源的性质
它是最简单也是最基本的信源,是组成实际信源的基本 单元。 当信源给定,其相应的概率空间就已给定;反之,如果 概率空间给定,这就表示相应的信源已给定。所以,概 率空间能表征这离散信源的统计特性,因此有时也把这 个概率空间称为信源空间。 这些信源可能输出的消息数是有限的或可数的,而且每 次只输出其中一个消息。因此,可以用一个离散型随机 变量X来描述这个信源输出的消息。这个随机变量X的样 本空间就是符号集A;而X的概率分布就是各消息出现的 先验概率,信源的概率空间必定是一个完备集。
28
2.1信源描述与分类
18
2.1信源描述与分类
最简单L=2的情况,其概率分布为:
X (a1 , a1 ) (a1 , a2 ) P p(a , a ) p(a , a ) 1 1 1 2 (an , an ) p(an , an )
其中: 且
p(ai , a j ) 0, p(ai , a j ) 1
11
2.1信源描述与分类
(3)连续信源:输出消息取值是无限的,即可能出现的消
息数是不可数的无限值。 其数学模型为连续型的概率空间
U (a, b) p(u ) p(u )
u U (, ), p(u)为概率密度函数
b
且概率密度分布函数P(u)≥0, p (u )du 1 。符号集 a 中的取值是介于(a,b)之间连续值, P(u)概率密度分 布函数。
12
2.1信源描述与分类
例如:
一个袋中有很多干电池,随机摸出一个,测其电压值 作为输出符号,该信源每次输出一个符号,但符号取 值在[0,1.5]之间的所有实数,可用连续型随机变量 U来描述,连续信源的概率空间为
《信息论与编码》曹雪虹-张宗橙清华大学出版社可配北邮版本
x8 0.04
编码 码长
1
1
001
3
011
3
0000
4
0100
4
0101
4
00010
5
00011
5
(3) 香农编码
信 源 符 号 符 号 概 率 累 加 概 率 -Logp(xi) 码长 Ki 码字
xi
pi
Pi
x1
0.4
0
1.322
2
00
x2
0.18
0.4
2.474
3
011
x3
0.1
0.58
3.322
4
1001
x4
0.1
0.68
3.322
4
1010
x5
0.07
0.78
3.837
4
1100
www.khd课后a答w案.网com
x6
0.06
0.85
4.059
5
x7
0.05
0.91
4.322
5
x8
0.04
0.96
4.644
5
平均码长:
11011 11101 11110
(4) 费诺编码:
3
2
6
www.khd课后a答w案.网com
(2) H(Y/X)=
1/3
1/3
1/3
1/3
2/3
00
2
x2 1/3
1/3
1/3
1/3
1/3
1/3
01
2
x3 1/9
1/9
1/9
2/9
1/3
100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
信源与信息熵
内容
2.1 信源的描述和分类 2.2 离散信源熵和互信息 2.3 离散序列信源的熵 2.4 连续信源的熵和互信 2.5 冗余度
3
信源的分类
• 离散信源
– 指发出在时间和幅度上都是离散分布的离散 消息的信源,如文字、数字、数据等符号都 是离散消息。
{ 离散
{ { 信源
W1
W2
W3
W4
• 稳态分布概率
W1
3 35
,
W2
6 35
,
W3
6 35
,
W4
4 7
• 稳态后的符号概率分布
p(a1)
i
p(a1
|
si
)
p(siΒιβλιοθήκη )1 23 35
1 3
6 35
1 4
6 35
1 5
4 7
9 35
p(a2 )
i
p(a2
|
si )
p(si )
1 2
3 35
2 3
6 35
(1)1/2
s2 01
00 s1
(0)1/4
(0)1/3 (1)3/4
10 s3
(1)2/3
s4 0 2 / 3 0 4 / 5
11 (0)1/5
s4
(1)4/5
8
Wi pij W j
i
1 2
W1
1 2
W1
W1 W2 W3 W4 1
1 3
W2
2 3 W2
1 2
W3
3 4
W3
1 5
W4
4 5 W4
3 4
6 35
4 5
4 7
26 35
2.2 离散信源熵和互信息
10
离散信源熵和互信息
• 问题:
• 什么叫不确定度? • 什么叫自信息量? • 什么叫平均不确定度? • 什么叫信源熵? • 什么叫平均自信息量? • 什么叫条件熵? • 什么叫联合熵? • 联合熵、条件熵和熵的关系是什么?
11
离散信源熵和互信息
比特(bit); – 若取自然对数,则信息量的单位为奈特(nat); – 若以10为对数底,则信息量的单位为笛特(det)
1 nat=log2e ≈ l.433 bit, l det=log210≈3.322 bit
14
自信息量
• 不确定度 • 定义:
– 随机事件的不确定度在数量上等于它的自信 息量。
• 如果知道事件xi已发生,则该事件所含有的信息 量定义为:
I (xi ) log p(xi )
13
自信息量
• I (xi) 含义:
– 当事件xi发生以前,表示事件xi 发生的不确定性 – 当事件xi发生以后,表示事件xi所含有的信息量 • 自信息的单位的确定 – 在信息论中常用的对数底是2,信息量的单位为
当p(x1)>p(x2)时,I (x1)<I (x2) ⑸两个独立事件的联合信息量等于它们分别的信
息量之和。
即统计独立信源的信息量等于它们分别的信息 量之和。
17
自信息量
• 一个出现概率接近于1的随机事件,发生的可 能性很大,所以它包含的不确定度就很小;
• 一个出现概率很小的随机事件,很难猜测在某 个时刻它能否发生,所以它包含的不确定度就 很大;
• 说明:
– 两者的单位相同,但含义却不相同。 – 具有某种概率分布的随机事件不管发生与否,
都存在不确定度,不确定度表征了该事件的 特性,而自信息量是在该事件发生后给予观 察者的信息量。
15
自信息量
• 二进制码元0,1,当符号概率为p(0)=1/4, p(1)=3/4, 则这两个符号的自信息量为: I(0) =-log2 (1/4)=log24= 2bit I(1) =-log2 (3/4) =0.4151 bit
0.2W2 0.8W2
W0
W1
W2
W0 W1 W2 1
W0 0.3571, W1 0.1429, W2 0.5
0/0.4
1/0.6
so
1/0.2
s1
0/0.3 1/0.7
s2
0/0.8
0.6 0.4 0 p(si | s j ) 0.3 0 0.7
0.2 0 0.8
6
• 例2-2:有一个二元二阶马尔可夫信源,其信源
• p(xi): xi的先验概率
• 单符号离散信源的数学模型—概率空间
X P
x1 p(x1
)
x2 L p(x2 ) L
xn
p(
xn
)
p( xi ) 0
n
p(xi ) 1
i 1
5
马氏链的基本概念
符号 状态
Wi pij W j
i
0.6W0 0.4W0
0.3W1 0.7W1
离散无记忆信源 离散有记忆信源
发出单个符号的无记忆信源 发出符号序列的无记忆信源 发出符号序列的有记忆信源
发出符号序列的马尔可夫信源
4
信源的描述
• 一个离散信源发出的各个符号消息的集合为:
X {x1, x2,L , xn}
• 它们的概率分别为
P {p(x1), p(x2), L , p(xn)}
• 一个以等概率出现的二进制码元(0,1)所包含 的自信息量为:
I(0)= I(1)= -log2 (1/2)=log22=1 bit
• 一个m位的二进制数,有2m个等概率的可能组合 I=-log2(1/2m)=m bit
16
自信息量
• I(xi)的特性: ⑴ I (xi)是非负值 ⑵ 当p(xi) = 1时,I(xi) = 0 ⑶ 当p(xi) = 0时,I(xi) =∞ ⑷ I(xi)是先验概率p(xi)的单调递减函数,即
• 问题:
• 什么叫后验概率? • 什么叫互信息量? • 什么叫平均互信息量? • 什么叫疑义度? • 什么叫噪声熵(或散布度)? • 数据处理定理是如何描述的? • 熵的性质有哪些?
12
2.2.1 自信息量
• 设离散信源X,其概率空间为
X P
x1 p(x1
)
x2 … xn p(x2 ) … p(xn )
• 若是确定性事件,出现概率为1,则它包含的 不确定度为0。
符号集为{0,1},已知符号条件概率: p(0|00) = 1/2 p(1|00)=1/2 p(0|01) = 1/3 p(1|01)=2/3 p(0|10) = 1/4 p(1|10)=3/4 p(0|11) = 1/5 p(1|11)=4/5
• 求:
⑴信源全部状态及状态转移概率 ⑵画出完整的二阶马尔可夫信源状态转移图。 ⑶求平稳分布概率
7
• 符号条件概率矩阵
a0 a1
s1 1/ 2
p(a
j
|
si
)
s2 s3 s4
1/ 1/ 1/
3 4 5
1/ 2 2 / 3 3/ 4 4 / 5
• 状态转移概率矩阵
s1 s2 s3
s1 1/ 2 1/ 2 0
p(s
j
|
si
)
s2 s3 s4
0
1/ 4
0
0 3/4
0
1/ 3 0 1/ 5
(0)1/2