逻辑连接词教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.6逻辑联结词(一)

教学目标

理解逻辑联结词“或”、“且”、“非”的含义及理解复合命题的结构.

教学重点

逻辑联结词“或”、“且”、“非”的含义及复合命题的构成.

教学难点

对“或”、“且”、“非”的含义的理解.

教学手段

粉笔、黑板

授课类型

新授课

课时安排

1课时

教学方法

讲授法

教学过程

一.情境设置

歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”。这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,但见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反。”结果故作聪明的批评家,反倒自讨个没趣。

在这个故事里,批评家用他的语言和行动表明了这样几句语句:

(1)我不给傻子让路(2)你歌德是傻子(3)我不给你让路。

歌德用语言和行动反击:

(1)我给傻子让路(2)你批评家是傻子(3)我给你让路。

二、复习引入:

命题的概念:可以判断真假的语句叫命题

正确的命题叫真命题,错误的命题叫假命题

例如:①12>5 ②3是15的约数③0.5是整数

①②是真命题,③是假命题

反例:④3是15的约数吗?⑤ x>8 都不是命题。

注:不涉及真假和无法判断真假的语句不是命题。

又如:

“这是一棵大树”;“x<2”.都不能叫命题.由于“大树”没有界定,就不能判断“这是一棵大树”的真假.由于x是未知数,也不能判断“x<2”是否成立.

注:疑问句、祈使句、感叹句都不是命题。

注意:

①初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.说法不同,实质是一样的

②判断命题的关键在于能不能判断其真假,即能不能判断其是否成立;不能

判断真假的语句,就不是命题.

③与命题相关的概念是开语句例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,无法确定语句真假.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).

问2:下列语句是命题吗?如果是命题,则与前面的命题在结构上有什么区别?

(6)0.5为非整数;

(7)菱形的对角线互相垂直且平分;

(8)10可以被2或5整除.

三、讲解新课:

1.逻辑连接词

例⑥ 10可以被2或5整除;(10可以被2整除或10可以被5整除)

⑦菱形的对角线互相垂直且平分;

(菱形的对角线互相垂直且菱形的对角线互相平分)

⑧ 0.5为非整数 .( 非“0.5是整数”)

逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词

其实,有些概念前面已遇到过.

例如:

或:不等式2x-x-6>0的解集:{ x | x<-2或x>3 }.

且:不等式2x-x-6<0的解集:{ x | -2< x<3 } 即 { x | x>-2且x<3 }.

2.简单命题与复合命题:

简单命题:不含有逻辑联结词的命题叫做简单命题

复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题

3.复合命题的构成形式

我们通常小写的拉丁字母用 p, q, r, s……表示命题,则复合命题的形式有以下三种:

p或q,记作p∨q ;p且q,记作p∧q;非p(命题的否定),记作⌝p 注意1:数学中的“或”与日常生活用语中的“或”的区别,“或”这个逻辑联结词的用法,一般有两种解释:

一是“不可兼有”,即“a或b”是指a,b中的某一个,但不是两者.日常生活中有时采用这一解释.例如“你去或我去”,人们在理解上不会认为有你我都去这种可能. 又如:“苹果是长在树上或长在土里”这一命题,从数学的角度来看它是真命题,但在日常生活中,我们认为这句话是不妥的.

二是“可兼有”,即“a或b”是指a,b中的任何一个或两者.例如“x∈A 或x∈B”,是指x可能属于A但不属于B(这里的“但”等价于“且”),x也可能不属于A但属于B,x还可能既属于A又属于B(即x∈A∩B);又如在“p真或q

真”中,可能只有p真,也可能只有q真,还可能p,q都为真.数学书中一般采用这种解释,运用数学语言和解数学题时,都要遵守这一点.还要注意“可兼有”并不意味“一定兼有”.

“p且q”是指p,q中的两者.例如,“x∈A且x∈B”,是指x属于A,同时x 也属于B(即x∈A B).

“非p”是指p的否定,即不是p. 例如,p是“x∈A”,则“非p”表示x

).

不是集合A的元素(即x∈A

C

U

注意2:

(1)“p或q”、“p且q”的两种复合命题中的p和q可以是毫无关系的两个简单命题.

(2)“非p”这种复合命题又叫命题的否定;是对原命题的关键词进行否定;

例1(课本第26页例1)分别指出下列复合命题的形式及构成它们的简单命题:

(1) 24既是8的倍数,也是6的被数;

(2) 李强是篮球运动员或跳高运动员;

(3)平行线不相交.

解:(1)这个命题是p且q的形式,

其中p:24是8的倍数,q:24是6的倍数.

(2)这个命题是p或q的形式,

其中p:李强是篮球运动员,q:李强是跳高运动员.

(3)这个命题是非p的形式,

其中p:平行线相交.

1.命题“方程x2=2的解是x=±2是(B)

A.简单命题B.含“或”的复合命题

C.含“且”的复合命题 D.含“非”的复合命题

2.用“或”“且”“非”填空,使命题成为真命题:

(1)x∈A∪B,则x∈A__或__x∈B;

(2)x∈A∩B,则x∈A__且_ x∈B;

(3)a、b∈R,a>0__且____b>0,则ab>0.

3.把下列写法改写成复合命题“p或q”“p且q”或“非p”的形式:

相关文档
最新文档