人教版七年级数学课本知识点归纳

合集下载

人教版初一数学知识点总结

人教版初一数学知识点总结

人教版初一数学知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:q(1)凡能写成(p,q为整数且p)形式的数,都是有理数.正整数、、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数整数零正分数(2)有理数的分类:①有理数零②有理数负整数负整数正分数分数负有理数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;的相反数还是;(2)相反数的和为a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,的绝对值是,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a(a)(a) a(2)绝对值可透露表现为:a(a)或a;绝对值的题目经常分类讨论;a(a)a(a)-1-5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比大,负数永远比小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:没有倒数;若a≠,那么a的倒数是1;a若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法例:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决意.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a即无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时: (-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和研究数轴的基础上,理解正-2-负数、相反数、绝对值的意义所在。

人教版初中数学全册知识点归纳

人教版初中数学全册知识点归纳

七年级数学〔上〕学问点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的相识初步四个章节的内容.第一章 有理数一. 学问框架二.学问概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a 不肯定是负数,+a 也不肯定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数.4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点分开原点的间隔 ;(2) 肯定值可表示为:或 ;肯定值的问题常常分类探讨;5.有理数比大小:〔1〕正数的肯定值越大,这个数越大;〔2〕正数恒久比0大,负数恒久比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,肯定值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;假设 a ≠0,那么a 的倒数是a 1;假设ab=1 a 、b 互为倒数;假设ab=-1 a 、b 互为负倒数.7. 有理数加法法那么:〔1〕同号两数相加,取一样的符号,并把肯定值相加;〔2〕异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值; 〔3〕一个数及0相加,仍得这个数.8.有理数加法的运算律:〔1〕加法的交换律:a+b=b+a ;〔2〕加法的结合律:〔a+b 〕+c=a+〔b+c 〕.9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b 〕. 10 有理数乘法法那么:〔1〕两数相乘,同号为正,异号为负,并把肯定值相乘;〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定.11 有理数乘法的运算律:〔1〕乘法的交换律:ab=ba;〔2〕乘法的结合律:〔ab〕c=a〔bc〕;〔3〕乘法的安排律:a〔b+c〕=ab+ac .12.有理数除法法那么:除以一个数等于乘以这个数的倒数;留意:零不能做除数,. 13.有理数乘方的法那么:〔1〕正数的任何次幂都是正数;〔2〕负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:〔1〕求一样因式积的运算,叫做乘方;〔2〕乘方中,一样的因式叫做底数,一样因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法那么:先乘方,后乘除,最终加减.本章内容要求学生正确相识有理数的概念,在实际生活和学习数轴的根底上,理解正负数、相反数、肯定值的意义所在。

人教版七年级数学知识点归纳上下册

人教版七年级数学知识点归纳上下册

初一数学知识点总结(初一上学期)代数初步知识一、代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有必然的限制,第一字母所取得数应保证它所在的式子成心义,第二字母所取得数还应使实际生活或生产成心义;单唯一个数或一个字母也是代数式。

二、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常利用“· ” 乘,或省略不写。

(2)数与数相乘,仍应利用“×”乘,不用“· ”乘,也不能省略乘号。

(3)数与字母相乘时,一样在结果中把数写在字母前面,如a×5应写成5a 。

(4)在代数式中显现除法运算时,一样用分数线将被除式和除式联系,如3÷a 写成a3的形式;(5)a 与b 的差写作a-b ,要注意字母顺序;假设只说两数的差,当别离设两数为a 、b 时,那么应分类,写做a-b 和b-a . 3、几个重要的代数式:(1)a 与b 的平方差是:a 2-b 2; a 与b 差的平方是:(a-b )2。

(2)假设a 、b 、c 是正整数,那么两位整数是:10a+b ;那么三位整数是:100a+10b+c 。

(3)假设m 、n 是整数,那么被5除商m 余n 的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个持续整数是:n-一、n 、n+1。

(4)假设b >0,那么正数是:a 2+b ,负数是:-a 2-b ,非负数是:b 2,非正数是:-b 2。

有理数1、有理数: (1)凡能写成ab(a 、b 都是整数且a≠0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a 不必然是负数,+a 也不必然是正数;p 不是有理数)(2)有理数中,一、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

人教版七年级数学上册 第一至第四章全册知识点归纳

人教版七年级数学上册  第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

数学人教版七年级上册知识点归纳

数学人教版七年级上册知识点归纳

数学人教版七年级上册知识点归纳数学人教版七年级上册知识点归纳下面为大家精心归纳了数学人教版七年级上册的知识点,希望能够帮助大家更好地掌握数学知识。

1.正数与负数①正数:大于0的数叫做正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的数前面加上负号“—”的数叫做负数。

与正数具有相反的意义。

③ 0既不是正数也不是负数,是正数和负数的分界,是唯一的中性数。

注意要搞清相反意义的量:南北、东西、上下、左右、上升下降、增长减少等。

2.有理数①整数:正整数、0、负整数统称整数。

②分数:正分数和负分数统称分数。

③有理数:整数和分数统称有理数。

④数轴:通常用一条直线上的点表示数,这条直线叫做数轴。

⑤数轴三要素:原点、正方向、单位长度。

⑥原点:在直线上任取一个点表示数,这个点叫做原点。

⑦数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点不全表示有理数。

3.相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4.绝对值①数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.两个负数,绝对值大的反而小。

5.有理数的加减法有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.③一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

6.有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;除以任何一个不等于0的数,都得。

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。

人教版七年级上册数学课本知识点归.pdf

人教版七年级上册数学课本知识点归.pdf

人教版七年级上册数学课本知识点归xx第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b = a +(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= b a4.乘法结合律:(ab)c = a(b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

人教版初一数学重点

人教版初一数学重点

人教版初一数学重点
人教版初一数学的重点内容如下:
1. 小数与分数:包括小数的读写、大小比较、四则运算等基本操作;分数的读写、化简、比较大小、四则运算等基本操作。

2. 代数与方程:包括代数式的计算与化简、一元一次方程的解法、应用题等内容。

3. 几何:包括图形的分类与性质、图形的相似与全等、角的概念与性质、平面镜映射等内容。

4. 数据与统计:包括数据的收集与整理、频数表与频率表、直方图与折线图的绘制、中位数与众数的计算等内容。

5. 几何变换:包括平移、旋转、翻转等常见几何变换的基本概念和性质。

6. 比例与百分数:包括比例的计算与应用、百分数的计算与应用等内容。

这些是初一数学人教版教材中的重点内容,希望能对你有所帮助!如果有具体的问题,可以告诉我,我会尽力进行解答。

七年级数学上册知识点归纳人教版

七年级数学上册知识点归纳人教版

七年级数学上册知识点归纳人教版2em; text-align: center;">七年级数学上册知识点归纳人教版1一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-〞的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则减去一个数,等于加上这个数的相反数。

14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。

人教版七年级数学课本知识点归纳

人教版七年级数学课本知识点归纳

第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a−b = a +(−b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= b a4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。

例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。

例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。

(完整版)人教版初一数学知识点总结

(完整版)人教版初一数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版数学七年级上册第一章知识点总结

人教版数学七年级上册第一章知识点总结

人教版数学七年级上册第一章知识点总结第一章有理数知识点总结正数:大于的数叫做正数。

01.概念负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

有理数:整数和分数统称有理数。

1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

π是正数但不是有理数!2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

三、数轴比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

“—”号)(注意不带“+”代数:只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

四、相反数两个符号:符号相同是正数,符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b 互为倒数。

人教版七年级数学知识点总结归纳

人教版七年级数学知识点总结归纳

人教版七年级数学知识点总结归纳
以下是人教版七年级数学知识点总结归纳:
一、代数式
1. 用运算符号把数或表示数的字母连结而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2. 用数值代替代数式中的字母,计算出的结果叫做代数式的值。

二、有理数
1. 有理数:
有理数分为正数、负数和0。

①正数:大于0的数叫做正数;
②负数:小于0的数叫做负数;
③0:0既不是正数也不是负数,0是最小的自然数,0是正数和负数的分界点。

2. 有理数的分类:
有理数可分为整数和分数,也可分为正有理数、0、负有理数,还分为正整数、0、负整数,正分数和负分数。

三、整式的加减法
1. 整式的加减法:
整式的加减法运算的实质是去括号、合并同类项。

四、一元一次方程
1. 一元一次方程的概念:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2. 一元一次方程的解法:
一元一次方程的一般形式是ax+b=0(a,b是常数且a≠0)。

它的解法有三种:公式法、配方法、因式分解法。

五、代数式求值
1. 代数式求值的方法:
根据代数式的特点,一般采用整体代入的方法。

具体来说,如果给出的是一个带有一个未知数的代数式,而这个未知数的值是确定的,那么我们就可以把这个未知数的值直接代入这个代数式中,从而求出代数式的值。

如果给出的代数式中包含多个未知数,那么我们可以通过对代数式进行变形,将其转化为一个只含有一个未知数的代数式,然后把这个未知数的值代入求值。

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。

平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。

同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业所谓高质量是指高正确率和高速度。

写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。

人教版初中七年级数学上册知识点归纳整理

人教版初中七年级数学上册知识点归纳整理

人教版初中七年级数学上册知识点归纳整

一、数的概念和表示方法
- 数的概念:自然数、整数、有理数、实数等
- 数的表示方法:用数字和字母表示数,数的位置和位值
二、整数
- 整数的概念:正整数、负整数、零等
- 整数的运算:加法、减法、乘法、除法
- 整数的性质:比较大小、绝对值、相反数
三、分数
- 分数的概念:分子、分母、真分数、假分数、带分数
- 分数的运算:加法、减法、乘法、除法
- 分数的比较大小:通分、比较分子、比较分母
四、小数
- 小数的概念:小数点、小数的读法
- 小数的运算:加法、减法、乘法、除法
- 小数的比较大小:化为分数,比较分数大小
五、代数式和方程
- 代数式的概念:常数、未知数、系数、次数
- 代数式的运算:合并同类项、移项、开平方、平方差公式
- 方程的概念:等式、未知数、解方程
- 解方程的方法:实际问题翻译为方程、整理方程后求解
六、图形的认识
- 点、线、面的概念
- 角的概念:直角、锐角、钝角
- 三角形的分类:直角三角形、等腰三角形、等边三角形
- 平行线、相交线、垂线的概念
以上是人教版初中七年级数学上册的知识点归纳整理。

通过学习这些知识,你可以更好地理解数学的基本概念和运算方法,为进一步学习打下坚实的基础。

人教版七年级数学上册知识点归纳

人教版七年级数学上册知识点归纳

人教版七年级数学上册知识点归纳一、有理数1.有理数的分类-按定义分:有理数分为整数和分数。

整数包括正整数、0、负整数;分数包括正分数和负分数。

-按性质分:有理数分为正有理数、0、负有理数。

正有理数包括正整数和正分数;负有理数包括负整数和负分数。

2.数轴-定义:规定了原点、正方向和单位长度的直线叫做数轴。

-数轴的三要素:原点、正方向、单位长度。

-数轴上的点与有理数的关系:数轴上的点与有理数一一对应。

3.相反数-定义:只有符号不同的两个数叫做互为相反数。

0 的相反数是0。

-性质:若a、b 互为相反数,则a + b = 0;反之,若a + b = 0,则a、b 互为相反数。

4.绝对值-定义:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。

-性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是0。

即:-当a > 0 时,|a| = a;-当a = 0 时,|a| = 0;-当a < 0 时,|a| = -a。

5.有理数的大小比较-正数大于0,0 大于负数,正数大于负数。

-两个负数,绝对值大的反而小。

6.有理数的加减法-加法法则:-同号两数相加,取相同的符号,并把绝对值相加。

-异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

-一个数同0 相加,仍得这个数。

-减法法则:减去一个数,等于加上这个数的相反数。

7.有理数的乘除法-乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0 相乘,都得0。

-几个不为0 的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

-除法法则:除以一个不等于0 的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0 除以任何一个不等于0 的数,都得0。

8.有理数的乘方-定义:求n 个相同因数a 的积的运算叫做乘方,记作aⁿ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a−b = a +(−b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= b a4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方1.求n个相同因数的积的运算,叫做乘方。

写作a n 。

(乘方的结果叫幂,a 叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式(一)整式1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。

单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变第三章一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

(二)一元一次方程。

1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

2.解:求出的方程中未知数的值叫做方程的解。

(二)等式的性质1.等式两边加(或减)同一个数(或式子),结果仍相等。

如果a= b,那么a±c= b±c2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a= b,那么a c= b c;如果a= b,(c‡0),那么a ∕c = b ∕c。

(三)解方程的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

1.去分母:把系数化成整数。

2.去括号3.移项:把等式一边的某项变号后移到另一边。

4.合并同类项5.系数化为1第四章图形认识初步一、图形认识初步1.几何图形:把从实物中抽象出来的各种图形的统称。

2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.点,线,面,体①图形是由点,线,面构成的。

②线与线相交得点,面与面相交得线。

③点动成线,线动成面,面动成体。

二、直线、线段、射线1.线段:线段有两个端点。

2.射线:将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

3.直线:将线段的两端无限延长就形成了直线。

直线没有端点。

4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。

5.相交:两条直线有一个公共点时,称这两条直线相交。

6.两条直线相交有一个公共点,这个公共点叫交点。

7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

8.线段的性质:两点的所有连线中,线段最短。

(两点之间,线段最短)9.距离:连接两点间的线段的长度,叫做这两点的距离。

三、角1.角:有公共端点的两条射线组成的图形叫做角。

2.角的度量单位:度、分、秒。

3.角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的度、分、秒是60进制。

4.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

平角等于180度。

周角等于360度。

直角等于90度。

③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

④工具:量角器、三角尺、经纬仪。

5.余角和补角①余角:两个角的和等于90度,这两个角互为余角。

即其中每一个是另一个角的余角。

②补角:两个角的和等于180度,这两个角互为补角。

即其中一个是另一个角的补角。

③补角的性质:等角的补角相等④余角的性质:等角的余角相等第五章 相交线与平行线 一、知识网络结构 二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图113 42180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当 = 90°时,⊥ 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。

图3中,共有 对同位角: 与 是图21 3 42 a b 图3a 5 7 8 6 1 3 4 2 bc同位角; 与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。

图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质: 性质1:两直线平行,同位角相等。

如图4所示,如果a ∥b ,则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。

如图4所示,如果a ∥b ,则 = ; = 。

性质3:两直线平行,同旁内角互补。

如图4所示,如果a ∥b ,则 + = 180°;+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。

如果a ∥b ,a ∥c ,图4 a 5 7 86 1 3 42 bc6 1 3 4 2 c则∥。

相关文档
最新文档