高中数学课时训练(含解析):数列 (3)
(完整word版)高一数学数列部分经典习题及答案
.数 列一.数列的概念:(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);二.等差数列的有关概念:1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
设{}n a 是等差数列,求证:以b n =na a a n +++Λ21 *n N ∈为通项公式的数列{}nb 为等差数列。
2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3.等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 三.等差数列的性质:1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
高中数学课时达标训练六数列的性质和递推公式含解析新人教A版必修5090428
高中数学课时达标训练六数列的性质和递推公式含解析新人教A 版必修5090428课时达标训练(六) 数列的性质和递推公式[即时达标对点练]题组1 数列的函数性质1.已知数列{a n }的通项公式是a n =2n n +1,那么这个数列是( ) A .递增数列 B .递减数列C .摆动数列D .常数列解析:选A 法一:∵a n +1=2(n +1)n +2, ∴a n +1-a n =2(n +1)n +2-2n n +1=2(n +1)2-2n (n +2)(n +1)(n +2)=2(n +1)(n +2)>0, ∴{a n }是递增数列.法二:∵数列{a n }各项均为正,又a n +1=2(n +1)n +2, ∴a n +1a n =2(n +1)n +22n n +1=2(n +1)22n (n +2)=n 2+2n +1n 2+2n>1, ∴{a n }是递增数列.2.已知数列{a n }满足a 1>0,a n +1a n =13(n ∈N *),则数列{a n }是________数列(填“递增”或“递减”).解析:由已知a 1>0,a n +1=13a n (n ∈N *), 得a n >0(n ∈N *).又a n +1-a n =13a n -a n =-23a n <0, 所以{a n }是递减数列.答案:递减3.如果数列{a n }为递增数列,且a n =n 2+λn (n ∈N *),则实数λ的取值范围为________.解析:因为{a n }为递增数列,所以a n +1>a n .即(n +1)2+λ(n +1)>n 2+λn .∴λ>-2n -1.即λ>-3,故实数λ>-3.答案:(-3,+∞)题组2 数列的最大(小)项4.数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( )A .103B .10818C .10318D .108 解析:选D 根据题意结合二次函数的性质可得, a n =-2n 2+29n +3=-2⎝⎛⎭⎪⎫n 2-292n +3 =-2⎝⎛⎭⎪⎫n -2942+3+29×298. 所以n =7时,a n =108为最大值.5.设a n =-n 2+10n +11,数列{a n }从首项到第m 项的和最大,则m 的值是________. 解析:令a n =-n 2+10n +11≥0,则0<n ≤11.∴a 1>0,a 2>0,…,a 10>0,a 11=0.∴m =10或11.答案:10或11题组3 由递推公式求数列中的项6.数列1,3,6,10,15,…的递推公式是( )A .a n +1=a n +n ,n ∈N *B .a n =a n -1+n ,n ∈N *,n ≥2C .a n +1=a n +(n +1),n ∈N *,n ≥2D .a n =a n -1+(n -1),n ∈N *,n ≥2解析:选B 逐项验证可知B 选项合适.7.数列{a n }满足a 1=2,a n +1a n +a n +1-a n +1=0,则a 2 019=( )A .2 B.13 C .-12D .-3 解析:选C 由a n +1a n +a n +1-a n +1=0得a n +1=a n -1a n +1, 由a 1=2得a 2=2-12+1=13,a 3=13-113+1=-12,a 4=-12-1-12+1=-3,a 5=-3-1-3+1=2,…, ∴{a n }是周期为4的数列,而2 019=504×4+3,∴a 2 019=a 3=-12.故选C. 8.已知数列{a n }的第1项是2,以后的各项由公式a n =a n -11-a n -1(n =2,3,4,…)给出,写出这个数列的前5项,并归纳出数列{a n }的通项公式.解:可依次代入项数进行求值.a 1=2,a 2=21-2=-2,a 3=-21-(-2)=-23,a 4=-231-⎝ ⎛⎭⎪⎫-23=-25,a 5=-251-⎝ ⎛⎭⎪⎫-25=-27.即数列{a n }的前5项为2,-2,-23,-25,-27.也可写为-2-1,-21,-23,-25,-27.即分子都是-2,分母依次加2,且都是奇数,所以a n =-22n -3(n ∈N *).题组4 由递推公式求数列的通项公式9.在数列{a n }中,a 1=2,a n +1-a n -3=0,则{a n }的通项公式为( )A .a n =3n +2B .a n =3n -2C .a n =3n -1D .a n =3n +1解析:选C 因为a 1=2,a n +1-a n -3=0,所以a n -a n -1=3,a n -1-a n -2=3,a n -2-a n -1=3,…a 2-a 1=3,以上各式相加,则有a n -a 1=(n -1)×3,所以a n =2+3(n -1)=3n -1.10.已知数列{a n }满足a 1=1,a n +1=2ana n+2(n ∈N *),试探究数列{a n }的通项公式.解:法一:将n =1,2,3,4依次代入递推公式得a 2=23,a 3=24,a 4=25. 又a 1=22,∴可猜想a n =2n +1. 则有a n +1=2n +2,将其代入递推关系式验证成立. ∴a n =2n +1(n ∈N *). 法二:∵a n +1=2a n a n +2,∴a n +1a n =2a n -2a n +1. 两边同除以2a n +1a n ,得1a n +1-1a n =12. ∴1a 2-1a 1=12,1a 3-1a 2=12,…,1a n -1a n -1=12. 把以上各式累加得1a n -1a 1=n -12. 又a 1=1,∴a n =2n +1. 故数列{a n }的通项公式为a n =2n +1(n ∈N *). [能力提升综合练]1.在数列{a n }中,a 1=13,a n =(-1)n ·2a n -1(n ≥2),则a 5等于( ) A .-163 B.163 C .-83 D.83解析:选B 对n 依次取2,3,4,5得a 2=(-1)2·2×13=23,a 3=-43,a 4=-83,a 5=163. 2.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( )A .2n B.n (n +1)2 C .2n -1 D .2n -1解析:选C 由a n =a 0+a 1+…+a n -1(n ≥1), 得a n -1=a 0+a 1+…+a n -2(n ≥2),两式相减得,a n =2a n -1,即a n a n -1=2(n ≥2), 则a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1·2n -1,又a 1=a 0=1,∴a n =2n -1(n ≥2).又∵a 1=1也适合,∴a n =2n -1.3.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,则a 10=( )A .-165B .-33C .-30D .-21解析:选C ∵a p +q =a p +a q ,∴a 4=2a 2=-12,a 8=2a 4=-24,a 10=a 2+a 8=-30.4.已知a n =n - 2 017n - 2 016(n ∈N *),则数列{a n }的前100项中最小项和最大项分别是( ) A .a 1,a 100B .a 100,a 44C .a 45,a 44D .a 44,a 45 解析:选C a n =n - 2 017n - 2 016=n - 2 016+ 2 016- 2 017n - 2 016=1+ 2 016- 2 017n - 2 016(n ∈N *). 当n ≤44时,数列{a n }单调递增,且a n >1;当n ≥45时,数列{a n }单调递增,且a n <1.∴数列{a n }的前100项中最小项和最大项分别是a 45,a 44.故选C.5.已知数列{a n },a n =a n +m (a <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.解析:∵⎩⎪⎨⎪⎧2=a +m ,4=a 2+m , ∴⎩⎪⎨⎪⎧a =-1,m =3, ∴a n =(-1)n +3,∴a 3=(-1)3+3=2.答案:26.数列{a n }中,a 1=7,a 9=8,且(n -1)a n =a 1+a 2+…+a n -1(n ≥3),则a 2等于________. 解析:由(n -1)a n =a 1+a 2+…+a n -1(n ≥3), 得na n +1=a 1+a 2+…+a n ,两式相减,得na n +1-(n -1)a n =a n .∴n ≥3时,na n +1=na n ,即a n +1=a n .又a 9=8,∴a 3=8.又2a 3=a 1+a 2,a 1=7,∴a 2=2a 3-a 1=9.答案:97.设f (x )=log 2x -log x 4(0<x <1),又知数列{a n }的通项a n 满足f (2a n )=2n .(1)求数列{a n }的通项公式;(2)试判断数列{a n }的增减性.解:(1)∵f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n , ∴log 22a n -log 2a n 4=2n ,由换底公式,得log 22a n -log 24log 22a n=2n , 即a n -2a n=2n , ∴a 2n -2na n -2=0,∴a n =n ±n 2+2.①由0<x <1,有0<2a n <1,∴a n <0.②由①②得a n =n -n 2+2,此即为数列{a n }的通项公式. (2)a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2(n +1)+(n +1)2+2<1, ∵a n <0,∴a n +1>a n ,∴数列{a n }是单调递增数列.8.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0),a =-7, ∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4;a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2n -1=1+12n -2-a 2.∵对任意的n∈N*,都有a n≤a6成立,并结合函数f(x)=1+12x-2-a2的单调性,∴5<2-a2<6,∴-10<a<-8,即a的取值范围为(-10,-8).。
高考数学(广东专用,文科)大一轮复习配套课时训练:第五篇 数列 大题冲关集训(三)(含答案)
大题冲关集训(三)1.(2012年高考重庆卷)已知 {a n}为等差数列,且a1+a3=8,a2+a4=12.(1)求数列{a n}的通项公式;(2)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值. 解:(1)设数列{a n} 的公差为d,由题意知解得a1=2,d=2.所以a n=a1+(n-1)d=2+2(n-1)=2n.(2)由(1)可得S n===n(1+n),因a1,a k,S k+2成等比数列,所以=a 1S k+2.从而(2k)2=2(k+2)(k+3),即k2-5k-6=0.解得k=6 或k=-1(舍去),因此k=6.2.(2013年高考福建卷)已知等差数列{a n}的公差d=1,前n项和为S n.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.解:(1)因为数列{a n}的公差d=1,且1,a1,a3成等比数列,所以=1×(a 1+2),即-a 1-2=0,解得a1=-1或a1=2.(2)因为数列{a n}的公差d=1,且S5>a1a9,所以5a 1+10>+8a1,即+3a 1-10<0,解得-5<a1<2.3.(2013清远市调研)已知数列{a n}的各项均为正数,且a1=1,当n≥2时,都有a n=a n-1+2n-1,记T n=++…+.(1)求数列{a n}的通项公式;(2)证明:T n<2.(1)解:当n≥2时,∵a n=a n-1+2n-1,∴a2-a1=2×2-1,a3-a2=2×3-1,…,a n-a n-1=2×n-1,各式相加得a n-a1=2(2+3+…+n)-(n-1),∴a n-a1=2×-(n-1),∴a n=n2.又当n=1时,a1=1满足上式,故a n=n2.(2)证明:T n=1+++…+<1+++…+=1+1-+-+…+-=2-<2.4.(2013泰安二模)已知等差数列{a n}的首项a1=3,且公差d≠0,其前n 项和为S n,且a1,a4,a13分别是等比数列{b n}的b2,b3,b4项.(1)求数列{a n}与{b n}的通项公式;(2)证明:≤++…+<.(1)解:设等比数列的公比为q,∵a1,a4,a13分别是等比数列{b n}的b2,b3,b4,∴(a1+3d)2=a1(a1+12d).又a1=3,∴d2-2d=0,∴d=2或d=0(舍去).∴a n=3+2(n-1)=2n+1.等比数列{b n}的公比为==3,b1==1.∴b n=3n-1.(2)证明:由(1)知S n=n2+2n,∴==(-),∴++…+==(1+--)=-(+)<.∵+≤+=,∴-(+)≥,∴≤++…+<.5.(2013深圳二调)各项为正数的数列{a n}满足=4S n-2a n-1(n∈N*),其中S n为{a n}前n项和.(1)求a1,a2的值;(2)求数列{a n}的通项公式;(3)是否存在正整数m,n,使得向量a=(2a n+2,m)与向量b=(-a n+5,3+a n)垂直?请说明理由.解:(1)当n=1时,=4S 1-2a1-1,即(a1-1)2=0,解得a1=1.当n=2时,=4S-1=4a1+2a2-1=3+2a2,解得a2=3或a2=-1(舍去).(2)由=4S n-2a n-1, ①=4S n+1-2a n+1-1. ②②-①得-=4a+2a n=2(a n+1+a n).即(a n+1-a n)(a n+1+a n)=2(a n+1+a n),∵数列{a n}各项均为正数,∴a n+1+a n>0,a n+1-a n=2,∴数列{a n}是首项为1,公差为2的等差数列,∴a n=2n-1.(3)∵a n=2n-1,∴a=(2a n+2,m)=(2(2n+3),m)≠0,b=(-a n+5,3+a n)=(-(2n+9),2(n+1))≠0.∴a⊥b⇔a·b=0⇔m(n+1)=(2n+3)(2n+9)=[2(n+1)+1][2(n+1)+7]⇔m(n+1)=4(n+1)2+16(n+1)+7⇔m=4(n+1)+16+.∵m,n∈N*,∴n+1=7,m=4×7+16+1,即n=6,m=45.当且仅当n=6,m=45时,a⊥b.6.(2013佛山质检(二))环保刻不容缓,或许人类最后一滴水将是自己的泪水.某地水资源极为紧张,且受工业污染严重,预计20年后该地将无洁净的水可用.当地决定重新选址建设新城区,同时对旧城区进行拆除,已知旧城区的住房总面积为64a m2,每年拆除的数量相同;新城区计划第一年建设住房面积a m2,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a m2.设第n(n≥1,且n ∈N)年新城区的住房总面积为a n m2,该地的住房总面积为b n m2.(1)求{a n}的通项公式;(2)若每年拆除4a m2,比较a n+1与b n的大小.解:(1)设第n年新城区的住房建设面积λn m2,则当1≤n≤4时,λn=2n-1a;当n≥5时,λn=(n+4)a.所以,当1≤n≤4时,a n=(2n-1)a;当n≥5时,a n=a+2a+4a+8a+9a+…+(n+4)a=a,故a n=(2)1≤n≤3时,a n+1=(2n+1-1)a,b n=(2n-1)a+64a-4na,显然有a n+1<b n.n=4时,a n+1=a5=24a,b n=b4=63a,此时a n+1<b n.5≤n≤16时,a n+1=a,b n=a+64a-4na,a n+1-b n=(5n-59)a.所以,5≤n≤11时,a n+1<b n;12≤n≤16时,a n+1>b n;n≥17时,显然a n+1>b n,故当1≤n≤11时,a n+1<b n;当n≥12时,a n+1>b n.7.(2013东莞市高三模拟)已知数列{a n}的首项a1=5,前n项和为S n,且S n+1=2S n+n+5.(1)证明:数列{a n+1}是等比数列;(2)令f(x)=a1x+a2x2+…+a n x n,求函数f(x)在点x=1处的导数f'(1),并比较2f'(1)与23n2-13n的大小.(1)证明:由已知S n+1=2S n+n+5,可得n≥2,S n=2S n-1+n+4两式相减得S n+1-S n=2(S n-S n-1)+1即a n+1=2a n+1,从而a n+1+1=2(a n+1),当n=1时,S2=2S1+1+5,所以a2+a1=2a1+6,又a1=5,所以a2=11,从而a2+1=2(a1+1),故总有a n+1+1=2(a n+1),n∈N*,又a1=5,a1+1≠0,从而=2即数列{a n+1}是等比数列.(2)解:由(1)知a n=3×2n-1,因为f(x)=a1x+a2x2+…+a n x n,所以f'(x)=a1+2a2x+…+na n x n-1,从而f'(1)=a1+2a2+…+na n=(3×2-1)+2(3×22-1)+…+n(3×2n-1)=3(2+2×22+…+n×2n)-(1+2+…+n),令T n=2+2×22+…+n×2n,2T n=22+2×23+3×24+…+n×2n+1,错位相减得,T n=(n-1)2n+1+2,f'(1)=3(n-1)·2n+1-+6,∴2f'(1)-(23n2-13n)=12(n-1)·2n-12(2n2-n-1)=12(n-1)·2n-12(n-1 )(2n+1)=12(n-1)[2n-(2n+1)].当n=1时,2f'(1)=23n2-13n;当n=2时,2f'(1)<23n2-13n,当n≥3时,n-1>0,又由函数y=2x与y=2x+1得2n>2n+1,所以(n-1)[2n-(2n+1)]>0,从而2f'(1)>23n2-13n.。
新课标最新北师大版2018-2019学年高中数学必修五《数列》同步习题课及答案解析
北师大版高中数学必修五习题课(1)课时目标 1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧n =1,n ≥2.2.若数列{a n }为等差数列,则有: (1)通项公式:a n =__________;(2)前n 项和:S n =______________=_________________________________________. 3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q(m ,n ,p ,q ∈N +),则______________________. (2)若S n 表示等差数列{a n }的前n 项和,则 S k ,S 2k -S k ,____________成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( ) A .24 B .22 C .20 D .-82.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( ) A .24 B .25 C .26 D .273.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-374.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120 B.105C.90 D.755.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为( )A.11 B.12C.13 D.146.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于( )A.-2 012 B.2 012C.6 033 D.6 036二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N+且p≠q),则S p+q=________. 9.等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是______.10.已知数列{a n}中,a1=20,a n+1=a n+2n-1,n∈N+,则数列{a n}的通项公式a n=________.三、解答题11.甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?12.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.能力提升13.在等差数列{a n}中,a10<0,a11>0,且|a10|<a11,S n为{a n}的前n项的和,则下列结论正确的是( )A.S1,S2,…,S10都小于零,S11,S12,…都大于零B.S1,S2,…,S5都小于零,S6,S7,…都大于零C.S1,S2,…,S20都小于零,S21,S22,…都大于零D.S1,S2,…,S19都小于零,S20,S21,…都大于零14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 34 5 67 8 9 1011 12 13 14 15……………………………根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是______________.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.习题课(1) 答案知识梳理1.S 1 S n -S n -1 2.(1)a 1+(n -1)d (2)na 1+n(n -1)d 2 n(a 1+a n )2 3.(1)a m +a n =a p+a q (2)S 3k -S 2k 作业设计 1.A2.C [∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26.]3.C [设数列{a n },{b n }的公差分别为d ,d ′,则a 2+b 2=(a 1+d)+(b 1+d ′)=(a 1+b 1)+(d +d ′)=100. 又∵a 1+b 1=100,∴d +d ′=0.∴a 37+b 37=(a 1+36d)+(b 1+36d ′)=(a 1+b 1)+36(d +d ′)=100.] 4.B [∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1=5-d ,a 3=5+d ,d>0, ∴a 1a 2a 3=(5-d)·5·(5+d)=80, ∴d =3,a 1=2.∴a 11+a 12+a 13=3a 12=3(a 1+11d)=3a 1+33d =3×2+33×3=105.] 5.A [S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0,又a 1>0,d<0,S 12=(a 1+a 12)·122=0,n<12时,S n >0.]6.D [S n n =a 1+(n -1)d2,∴S 2 0082 008-S 2 0062 006=a 1+2 008-12d -a 1-2 006-12d =d =2. ∴S 2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.] 7.80解析 a 6+a 7+…+a 10=S 10-S 5=111-31=80. 8.0解析 设S n =an 2+bn ,由S p =S q . 知ap 2+bp =aq 2+bq ,∴p +q =-b a.∴S p +q =a(p +q)2+b(p +q)=a(-b a )2+b(-b a )=b 2a -b2a=0.9.5或6解析 d<0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>…. ∴当n =5或6时,S n 取到最大值. 10.n 2-2n +21解析 ∵a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,…, a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3). ∴a n =20+(n -1)(2n -2)2=n 2-2n +21.11.解 (1)设n 分钟后第1次相遇,依题意, 有2n +n(n -1)2+5n =70,整理得n 2+13n -140=0. 解之得n =7,n =-20(舍去). 第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意,有 2n +n(n -1)2+5n =3×70,整理得n 2+13n -420=0. 解之得n =15,n =-28(舍去). 第2次相遇是在开始运动后15分钟.12.解 (1)设等差数列{a n }的公差为d ,且d>0. ∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117, 又公差d>0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3.(2)由(1)知,S n =n ·1+n(n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-nn +c .∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).13.D [∵S 19=19(a 1+a 19)2=19a 10<0,S 20=20(a 1+a 20)2.而a 1+a 20=a 10+a 11,∵a 10<0,a 11>0且|a 10|<a 11, ∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0.又∵d =a 11-a 10>0. ∴S n >0 (n ≥20).] 14.n 22-n 2+3解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+。
高考数学复习 数列 课时作业数列的综合应用(含解析)新人教A版
课时作业 数列的综合应用1.已知数列{a n }为等差数列,且满足OA →=a 3OB →+a 2 015OC →,其中点A ,B ,C 在一条直线上,点O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 017的值为( A )A.2 0172B .2 017C .2 018D .2 015解析:因为点A ,B ,C 在一条直线上, 所以a 3+a 2 015=1,则S 2 017=2 017a 1+a 2 0172=2 017a 3+a 2 0152=2 0172,故选A.2.某制药厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=13(n +1)(n +2)(2n +3)吨,但如果年产量超过130吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( C )A .5年B .6年C .7年D .8年解析:由题意知第一年产量为a 1=13×2×3×5=10;以后各年产量分别为a n =f (n )-f (n -1)=13(n +1)(n +2)(2n +3)-13n ·(n +1)·(2n +1)=2(n +1)2(n ∈N *), 令2(n +1)2≤130,所以1≤n ≤65-1, 所以1≤n ≤7.故最长的生产期限为7年.3.定义:若数列{a n }对任意的正整数n ,都有|a n +1|+|a n |=d (d 为常数),则称{a n }为“绝对和数列”,d 叫作“绝对公和”.在“绝对和数列”{a n }中,a 1=2,绝对公和为3,则其前2 017项的和S 2 017的最小值为( C )A .-2 017B .-3 014C .-3 022D .3 032解析:依题意,要使其前2 017项的和S 2 017的值最小,只需每一项都取最小值即可.因为|a n +1|+|a n |=3,所以有-a 3-a 2=-a 5-a 4=…=-a 2 017-a 2 016=3,即a 3+a 2=a 5+a 4=…=a 2 017+a 2 016=-3,所以S 2 017的最小值为2+2 017-12×(-3)=-3 022,故选C.4.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2 015a 2 016>1,a 2 015-1a 2 016-1<0.给出下列结论:(1)0<q <1;(2)a 2 015a 2 017-1>0;(3)T 2 016的值是T n 中最大的;(4)使T n >1成立的最大自然数等于4 030.其中正确的结论为( C )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4) 解析:由a 2 015-1a 2 016-1<0可知a 2 015<1或a 2 016<1.如果a 2 015<1,那么a 2 016>1, 若a 2 015<0,则q <0; 又∵a 2 016=a 1q2 015,∴a 2 016应与a 1异号,即a 2 016<0,这与假设矛盾,故q >0.若q ≥1,则a 2 015>1且a 2 016>1,与推出的结论矛盾,故0<q <1,故(1)正确. 又a 2 015a 2 017=a 22 016<1,故(2)错误.由结论(1)可知a 2 015>1,a 2 016<1,故数列从第 2 016项开始小于1,则T 2 015最大,故(3)错误.由结论(1)可知数列从第2 016项开始小于1,而T n =a 1a 2a 3…a n ,故当T n =(a 2 015)n时,求得T n >1对应的自然数为4 030,故(4)正确.5.(2019·太原模拟)已知数列{a n }中,a 1=0,a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),若数列{b n }满足b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1,则数列{b n }的最大项为第 6 项.解析:由a 1=0,且a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),得a n -a n -1=2n -1(n ≥2),则a 2-a 1=2×2-1,a 3-a 2=2×3-1,a 4-a 3=2×4-1,…,a n -a n -1=2n -1(n ≥2),以上各式累加得a n =2(2+3+…+n )-(n -1)=2×n +2n -12-n +1=n 2-1(n ≥2),当n=1时,上式仍成立,所以b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1=n ·n +12·⎝ ⎛⎭⎪⎫811n -1=(n 2+n )·⎝ ⎛⎭⎪⎫811n -1(n ∈N *).由⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,得⎩⎪⎨⎪⎧n 2+n ·⎝ ⎛⎭⎪⎫811n -1≥n 2-n ·⎝ ⎛⎭⎪⎫811n -2,n 2+n ·⎝ ⎛⎭⎪⎫811n -1≥n 2+3n +2·⎝ ⎛⎭⎪⎫811n ,解得163≤n ≤193.因为n ∈N *,所以n =6, 所以数列{b n }的最大项为第6项.6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q -p ,例如f (12)=4-3=1,数列{f (3n)}的前100项和为 350-1 .解析:当n 为偶数时,f (3n )=0;当n 为奇数时,f (3n)=3n +12-3n -12,因此数列{f (3n)}的前100项和为31-30+32-31+…+350-349=350-1.7.(2019·长沙、南昌联考)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N *),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N *恒成立,则整数m 的最大值为( B )A .3B .4C .5D .6解析:当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4n -1+1,两式相减得a 2n +1-a 2n =4a n +4, 即a 2n +1=a 2n +4a n +4=(a n +2)2, 又a n >0,所以a n +1=a n +2(n ≥2). 对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9, 所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列, 故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N *,2n -1>0,所以不等式4n 2-8n +3<(5-m )·2n ·a n 等价于5-m >2n -32n . 记b n =2n -32n ,则b n +1b n =2n -12n +12n -32n =2n -14n -6,当n ≥3时,b n +1b n<1, 又b 1=-12,b 2=14,b 3=38,所以(b n )max =b 3=38.故5-m >38,得m <378,所以整数m 的最大值为4.8.(2019·南昌调研)已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为 9 .解析:∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n , ∴b n =1n n +1+n +1n=n +1 n -n n +1[n n +1+n +1 n ][n +1 n -n n +1 ]=n +1 n -n n +1n n +1=1n -1n +1,∴T n =1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1, 要使T n 为有理数,只需1n +1为有理数, 令n +1=t 2,∵1≤n ≤100,∴n =3,8,15,24,35,48,63,80,99,共9个数. ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.(2019·福建漳州模拟)已知数列{a n }满足na n -(n +1)·a n -1=2n 2+2n (n =2,3,4,…),a 1=6.(1)求证:⎩⎨⎧⎭⎬⎫a n n +1为等差数列,并求出{a n }的通项公式; (2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,求证:S n <512.解:(1)证明:由na n -(n +1)a n -1=2n 2+2n (n =2,3,4,…),a 1=6,可得a n n +1-a n -1n=2,a 11+1=3,则⎩⎨⎧⎭⎬⎫a n n +1是首项为3,公差为2的等差数列,可得a nn +1=3+2(n -1)=2n +1,则a n =(n +1)(2n +1)(n ∈N *).(2)证明:由1n +12n +1<12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1,可得数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1a 1+1a 2+…+1a n ≤16+12×⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512,即S n <512.10.已知函数f (x )=⎝⎛⎭⎪⎫sin x 2+cos x 22-1cos 2x2-sin2x2,函数y =f (x )-3在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =3πa n 4n 2-13n -2,求数列{b n }的前n 项和S n . 解:(1)f (x )=⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1cos 2x2-sin2x2=sin x cos x=tan x ,由tan x =3及x >0得x =k π+π3(k ∈N ),数列{a n }是首项a 1=π3,公差d =π的等差数列,所以a n =π3+(n -1)π=n π-2π3.(2)b n =3πa n 4n 2-13n -2 =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1.S n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 11.已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3. (1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a n b n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ,若不存在,请说明理由.解:(1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎪⎨⎪⎧1+d =1·q ,1·q 2=1+4d ,∴d =0或d =2,∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1.(2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n =1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.12.(2019·河南洛阳模拟)已知等差数列{a n }的公差d ≠0,且a 3=5,a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式; (2)设b n =1a 2n +4n -2,S n 是数列{b n }的前n 项和.若对任意正整数n ,不等式2S n +(-1)n+1·a >0恒成立,求实数a 的取值范围. 解:(1)因为a 3=5,a 1,a 2,a 5成等比数列,所以⎩⎪⎨⎪⎧a 1+2d =5,a 1+d 2=a 1a 1+4d ,解得a 1=1,d =2,所以数列{a n }的通项公式为a n =2n -1. (2)因为b n =1a 2n +4n -2=12n -12+4n -2=14n 2-1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1,依题意,对任意正整数n ,不等式1-12n +1+(-1)n +1a >0,当n 为奇数时,1-12n +1+(-1)n +1a >0即a >-1+12n +1,所以a >-23;当n 为偶数时,1-12n +1+(-1)n +1a >0即a <1-12n +1,所以a <45.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,45.。
高考数学《数列》大题训练50题含答案解析整理版
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
高中数学--数列大题专项训练(含详解)
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
2022年高中数学第二章数列3-2等差数列前n项和的性质与应用练习含解析新人教A版必修
课时训练10 等差数列前n 项和的性质与应用一、等差数列前n 项和性质的应用1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .42答案:C解析:S 2,S 4-S 2,S 6-S 4成等差数列,即2,8,S 6-10成等差数列,S 6=24.2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .2答案:C解析:由题意得S 偶-S 奇=5d=15,∴d=3.或由解方程组{5a 1+20d =15,5a 1+25d =30求得d=3,故选C .3.等差数列{a n }的前n 项和为S n ,a 1=-2 015,S 20152015−S 20132013=2,则S 2 015=( )A.2 015B.-2 015C.0D.1答案:B解析:由等差数列前n 项和性质可知,数列{S nn }是等差数列,设公差为d ,则S 20152015−S 20132013=2d=2,所以d=1.所以S 20152015=S 11+2014d=-2015+2014=-1,所以S 2015=-2015.二、等差数列前n 项和中的最值问题4.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题中错误的是( )A.若d<0,则数列{S n }有最大项B.若数列{S n }有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列答案:C解析:由等差数列的前n项和公式S n=na1+12n(n-1)d=d2n2+(a1-d2)n知,S n对应的二次函数有最大值时d<0.故若d<0,则S n有最大值,A,B正确.又若对任意n∈N*,S n>0,则a1>0,d>0,{S n}必为递增数列,D正确.而对于C项,令S n=n2-2n,则数列{S n}递增,但S1=-1<0.C不正确.5.(2015河南南阳高二期中,10)已知数列{a n}为等差数列,若a11a10<-1,且它们的前n项和S n有最大值,则使得S n>0的n的最大值为( )A.21B.20C.19D.18答案:C解析:由a11a10<-1,可得a11+a10a10<0,由它们的前n项和S n有最大值可得数列的公差d<0,∴a10>0,a11+a10<0,a11<0,∴a1+a19=2a10>0,a1+a20=a11+a10<0.∴使得S n>0的n的最大值n=19.故选C.6.设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N*,都有S n≤S k成立,则k的值为( )A.22B.21C.20D.19答案:C解析:对任意n∈N*,都有S n≤S k成立,即S k为S n的最大值.因为a1+a4+a7=99,a2+a5+a8=93,所以a4=33,a5=31,故公差d=-2,a n=a4+(n-4)d=41-2n,则n=1时,a1=39,所以S n=d2n2+(a1-d2)n=-n2+40n=-(n-20)2+400,即当n=20时S n取得最大值,从而满足对任意n∈N*,都有S n≤S k成立的k的值为20.7.设等差数列{a n}的前n项和为S n,且S2 014>0,S2 015<0,则当n= 时,S n最大. 答案:1 007解析:由等差数列的性质知,S2015=2015a1008<0,所以a1008<0.又S2014=2014(a1+a2014)2=1007(a1007+a1008)>0,所以a1007+a1008>0,而a1008<0,故a1007>0.因此当n=1007时,S n最大.8.已知数列{a n},a n∈N*,前n项和S n=18(a n+2)2.(1)求证:{a n}是等差数列;(2)设b n=12a n-30,求数列{b n}的前n项和的最小值.(1)证明:由已知得8S n=(a n+2)2,则8S n-1=(a n-1+2)2(n≥2),两式相减,得8a n=(a n+2)2-(a n-1+2)2,即(a n+a n-1)(a n-a n-1-4)=0.因为a n∈N*,所以a n+a n-1>0,所以a n-a n-1=4(n≥2),故数列{a n}是以4为公差的等差数列.(2)解:令n=1,得S1=a1=18(a1+2)2,解得a1=2.由(1)知a n=2+(n-1)×4=4n-2,所以b n=12a n-30=2n-31.由b n=2n-31<0,得n<312,即数列{b n}的前15项为负值,n≥16时b n>0.设数列{b n}的前n项和为T n,则T15最小,其值为T15=15×(-29)+15×142×2=-225.三、与数列{|a n|}前n项和有关的问题9.已知数列{a n}的通项公式a n=5-n,则当|a1|+|a2|+…+|a n|=16时,n= .答案:8解析:由a n=5-n,可得n<5时,a n>0;n=5时,a5=0;n>5时,a n<0,而a1+a2+…+a5=10,∴|a1|+|a2|+…+|a n|=(a1+a2+…+a5)-(a6+a7+…+a n)=16.∴20+n2-9n2=16,解得n=8.10.在公差为d的等差数列{a n}中,已知a1=10,且5a3·a1=(2a2+2)2.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.解:(1)因为5a3·a1=(2a2+2)2,所以d2-3d-4=0,解得d=-1或d=4.故a n=-n+11或a n=4n+6.(2)设数列{a n}的前n项和为S n.因为d<0,所以由(1)得d=-1,a n=-n+11.则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-12n2+212n;当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=12n2-212n+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |={-12n 2+212n ,n≤11,12n 2-212n +110,n ≥12.(建议用时:30分钟)1.若等差数列{a n }的前3项和S 3=9,则a 2等于( )A.3B.4C.5D.6答案:A解析:S 3=3(a 1+a 3)2=9,∴a 1+a 3=2a 2=6.∴a 2=3.故选A .2.设{a n }是公差为-2的等差数列,如果a 1+a 4+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A.-182B.-78C.-148D.-82答案:D解析:由a 1+a 4+a 7+…+a 97=50,①令a 3+a 6+a 9+…+a 99=x ,②②-①得2d×33=x-50,而d=-2,∴x=-132+50=-82.故选D .3.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值为确定的常数,则下列各数中也是常数的是()A.S 7B.S 8C.S 13D.S 15答案:C解析:a 2+a 4+a 15=a 1+d+a 1+3d+a 1+14d=3(a 1+6d )=3a 7=3×a 1+a 132=313×13(a 1+a 13)2=313S 13.于是可知S13是常数.4.设{a n}为等差数列,a1>0,a6+a7>0,a6·a7<0,则使其前n项和S n>0成立的最大自然数n是( )A.11B.12C.13D.14答案:B解析:∵a6+a7=a1+a12,∴S12=12(a1+a12)2=6(a6+a7)>0.由已知得a6>0,a7<0,又S13=13a7<0,∴使S n>0成立的最大自然数n为12,故选B.5.已知等差数列{a n}的前n项和为S n,若S n=1,S3n-S n=5,则S4n=( )A.4B.6C.10D.15答案:C解析:由S n,S2n-S n,S3n-S2n,S4n-S3n成等差数列,设公差为d,则S2n-S n=S n+d,S3n-S2n=S n+2d.∴S3n-S n=2S n+3d=5.又∵S n=1,∴d=1.∴S4n=S n+(S2n-S n)+(S3n-S2n)+(S4n-S3n)=1+2+3+4=10.6.等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k= .答案:10解析:S9=S4,∴a5+a6+a7+a8+a9=0,∴a7=0,从而a4+a10=2a7=0,∴k=10.7.等差数列前12项和为354,在前12项中的偶数项的和与奇数项的和之比为32∶27,则公差d= .答案:5解析:由已知{S 奇+S 偶=354,S 偶S 奇=3227,解得{S 偶=192,S 奇=162.又∵此等差数列共12项,∴S 偶-S 奇=6d=30.∴d=5.8.等差数列{a n }与{b n },它们的前n 项和分别为A n ,B n ,若A n B n =2n -2n +3,则a 5b 5= . 答案:43解析:a 5b 5=9a 59b 5=A 9B 9=2×9-29+3=43.9.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d ,∵a 1=20,S 10=S 15,∴10a 1+10×92d=15a 1+15×142d.解得d=-53.解法一:由以上得a n =20-53(n-1)=-53n+653.由a n ≥0得-53n+653≥0,∴n ≤13.所以数列前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d=130.解法二:由以上得S n =20n+n (n -1)2×(-53)=-56n 2+56n+20n=-56n 2+1256n=-56(n 2-25n )=-56(n -252)2+312524.∴当n=12或13时,S n 最大,最大值为S 12=S 13=130.10.等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和.解:等差数列{a n }的公差d=a 17-a 117-1=-12-(-60)16=3,∴a n =a 1+(n-1)d=-60+(n-1)×3=3n-63.由a n <0,得3n-63<0,即n<21.∴数列{a n }的前20项是负数,第20项以后的项都为非负数.设S n ,S n '分别表示数列{a n },{|a n |}的前n 项和,当n ≤20时,S n '=-S n=-[-60n +n (n -1)2×3]=-32n 2+1232n ;当n>20时,S n '=-S 20+(S n -S 20)=S n -2S 20=-60n+n (n -1)2×3-2×(-60×20+20×192×3)=32n 2-1232n+1260.∴数列{|a n |}的前n 项和为S n '={-32n 2+1232n (n≤20),32n 2-1232n +1260(n >20).。
2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版
第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。
高三数列专题练习30道带答案复习课程
高三数列专题练习30道带答案高三数列专题训练二学校:___________姓名:___________班级:___________考号:___________一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T .2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T . 6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T .10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =.(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T .11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+. (1)求数列{}n a的通项公式;(2)若2n a n b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T .13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
高中数学数列专题训练6套含答案
目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。
高中数学课时训练(含解析):数列 (4)
【课时训练】第30节 数列求和一、选择题1.(阳泉质检)已知数列{a n }的前n 项和为S n ,且满足a n +2=2a n +1-a n ,a 5=4-a 3,则S 7=( )A .7B .12C .14D .21【答案】C【解析】由a n +2=2a n +1-a n 知数列{a n }为等差数列,由a 5=4-a 3得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14. 2.(辽宁五校联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为( )A.10125 B .3536 C .25101 D .310【答案】C【解析】在等差数列{a n }中,a 5+a 7=2a 6=26⇒a 6=13.又数列{a n }的公差d =a 6-a 36-3=13-73=2,所以a n =a 3+(n -3)·d =7+(n -3)×2=2n +1,那么b n =1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,故S n =b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫n n +1⇒S 100=14⎝ ⎛⎭⎪⎫100101=25101.3.(河南郑州模拟)已知在等差数列{a n }中,a 1=120,公差d =-4.若S n ≤a n (n ≥2),其中S n 为该数列的前n 项和,则n 的最小值为( )A .60B .62C .70D .72【答案】B【解析】由题意得a n =120-4(n -1)=124-4n ,S n =120n +n (n -1)2×(-4)=122n -2n 2.由S n ≤a n ,得122n -2n 2≤124-4n ,即n 2-63n +62≥0,解得n ≥62或n ≤1(舍去).故选B.4.(嘉兴调研)已知a n =32n -101(n ∈N *),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .99B .100C .101D .102【答案】C【解析】由通项公式得a 1+a 100=a 2+a 99=a 3+a 98=…=a 50+a 51=0,a 101=3101>0.故选C.5.(广东肇庆二模)已知数列{a n }的前n 项和是S n ,且4S n =(a n +1)2,则下列说法正确的是( )A .数列{a n }为等差数列B .数列{a n }为等差或等比数列C .数列{a n }为等比数列D .数列{a n }既不是等差数列也不是等比数列 【答案】B【解析】∵4S n =(a n +1)2,∴4S n +1=(a n +1+1)2,∴4S n +1-4S n =4a n +1=(a n +1+1)2-(a n +1)2,化简得(a n +1+a n )(a n +1-a n -2)=0,∴a n +1=a n +2,或a n +1+a n =0,∵4a 1=(a 1+1)2,∴a 1=1.故选B.6.(山西太原五中调考)在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099 B .101100 C .100101 D .99100【答案】C【解析】由题意得a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0⇒a n +1=12-a n ⇒a n +1-1=a n -12-a n ⇒1a n +1-1=1a n -1-1,∴数列⎩⎨⎧⎭⎬⎫1a n -1为以-2为首项,-1为公差的等差数列,∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a nn 2=1n (n +1)=1n -1n +1.∴a 1+a 222+…+a 1001002=1-12+12-13+…+1100-1101=100101.7.(湖南衡阳模拟)已知数列{a n }满足a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),则该数列前2 017项的和S 2 017=( )A .1 345B .671C .1 342D .1 341【答案】A【解析】由a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),得a 3=0,a 4=1,a 5=1,a 6=0,则数列{a n }是以3为周期的周期数列,且a 1+a 2+a 3=2.又2 017=672×3+1,所以S 2 017=672×2+1=1 345.二、填空题8.(河北冀州中学月考)已知正项等比数列{a n }的前n 项和为S n ,且S 1,S 3,S 4成等差数列,则数列{a n }的公比为________.【答案】1+52【解析】设{a n }的公比为q ,由题意易知q >0且q ≠1.因为S 1,S 3,S 4成等差数列,所以2S 3=S 1+S 4,即2a 1(1-q 3)1-q =a 1+a 1(1-q 4)1-q,解得q =1+52.9.(泰安模拟)已知数列{a n }中,a 1=1,a n +1=(-1)n ·(a n +1),记S n 为{a n }的前n 项和,则S 2 017=________.【答案】-1 007【解析】由a 1=1,a n +1=(-1)n (a n +1)可得,该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 2 017=504×(-2)+1=-1 007.10.(山东枣庄质检)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”.若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.【答案】 2n +1-2【解析】 ∵a n +1-a n =2n, ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.三、解答题11.(湖北稳派教育联考)设等差数列{a n }的公差为d ,前n 项和为S n ,S n =n 2+n (a 1-1)(n ∈N *),且a 1,a 3-1,a 5+7成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解】(1)∵S n =n 2+n (a 1-1), 又S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,∴d =2.又a 1,a 3-1,a 5+7成等比数列.∴a 1(a 5+7)=(a 3-1)2,即a 1(a 1+15)=(a 1+3)2,解得a 1=1,∴a n =1+2(n -1)=2n -1.(2)由(1)可得b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 故T n=b 1+b 2+…+b n-1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -3-12n -1+⎝ ⎛⎭⎪⎫12n -1-12n +1=n2n +1. 12.(辽宁五校联考)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n<34.(1)【解】∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n 是以18为首项,14为公比的等比数列.∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)【证明】由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),∴1c n=1(n +1)(n -1)=12⎝⎛⎭⎪⎫1n -1-1n +1, ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1=34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
(2021年整理)高中数列经典习题(含答案)
(完整版)高中数列经典习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中数列经典习题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中数列经典习题(含答案)的全部内容。
(完整版)高中数列经典习题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)高中数列经典习题(含答案) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高中数列经典习题(含答案)〉这篇文档的全部内容。
1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除。
2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0。
(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由。
3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d ;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值。
4、设数列{n a }的前n 项和n S 。
高中数学课时训练(含解析):数列 (1)
【课时训练】第27节 数列的概念与简单表示法一、选择题1.(四川凉山诊断)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132【答案】B【解析】∵a n +a n +1=12,a 2=2,∴a n =⎩⎨⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎪⎫-32+10×2=72.2.(南昌模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n(n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B .158 C .34 D .38【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.3.(江西抚州七校联考)设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n =( )A.12n +1 B .12n +2C.12n +1+12n +2D .12n +1-12n +2【答案】D【解析】 ∵a n =1n +1+1n +2+1n +3+…+1n +(n -1)+1n +n ,n ∈N *,∴a n +1=1n +2+1n +3+…+1(n +1)+(n -1)+1(n +1)+n +1(n +1)+(n +1),n ∈N *,故a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2.4.(河北石家庄二中调研)已知数列{a n }的通项公式为a n =12n -15,则其最大项和最小项分别为( )A .1,-17 B .0,-17 C.17,-17 D .1,-111【答案】A【解析】由题意知a 1=-113,a 2=-111,a 3=-17,a 4=1,则当n ≥4时,a n >0.又当n ≥5时,a n -a n -1=12n -15-12n -1-15=-2n -1(2n -15)(2n -1-15)<0,所以a n <a n -1,于是数列{a n }的最大项为1,最小项为-17.5.(浙江湖州模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n =2a n-2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又a nn ≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.6.(河南信阳调研)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a 2 018的值为( )A .-8B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=1+a n 1-a n(n ∈N *)得,a 2=-3,a 3=-12,a 4=13,a 5=2,可见数列{a n }的周期为4,所以a 2 018=a 504×4+2=a 2=-3.7.(广西南宁模拟)已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n=n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞)B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n =n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A.8.(保定调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1) 【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1. 9.(宁夏银川模拟)若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( )A .19B .20C .21D .22 【答案】B【解析】由(n -1)a n =(n +1)a n -1得,a na n -1=n +1n -1,则a n =a 1×⎝ ⎛⎭⎪⎫a 2a 1×⎝ ⎛⎭⎪⎫a 3a 2×…×⎝ ⎛⎭⎪⎫a n a n -1=2×31×42×…×n +1n -1=n (n +1).又a n <462,即n (n +1)<462,所以n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.二、填空题10.(湖北八校联考)已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.11.(潍坊模拟)已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.【答案】⎝⎛⎭⎪⎫-12n -1【解析】当n =1时,a 1=S 1=13a 1+23,∴a 1=1; 当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }是首项a 1=1,公比q =-12的等比数列,故a n =⎝ ⎛⎭⎪⎫-12n -1.三、解答题12.(安徽淮南第四次考试)已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式.【解】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *. (2)∵a 2=4b 1=4,∴b 1=1. ∵nb n +1-(n +1)b n =n 3+n 2,∴b n +1n +1-b nn =n , 故b n n -b n -1n -1=n -1,…,b 33-b 22=2,b 22-b 11=1,n ≥2,将上面各式累加得b n n -b 11=1+2+3+…+(n -1)=n (n -1)2,∴b n =n 3-n 2+2n 2,n ∈N *. 13.(福建清流一中模拟)设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课时训练】第29节 等比数列及其前n 项和
一、选择题
1.(贵州遵义四中段测)设数列{a n }满足2a n =a n +1(n ∈N *),且前n 项和为S n ,则S 4
a 2
的值为( )
A.152 B .154 C .4 D .2
【答案】A
【解析】由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2
=a 1(1-24)1-2a 1×2=15
2.
故选A.
2.(河南名校联考)在各项均为正数的等比数列{a n }中,a 1=3,a 9=a 2a 3a 4,则公比q 的值为( )
A.2 B .3 C .2 D .3
【答案】D
【解析】由a 9=a 2a 3a 4得a 1q 8=a 31q 6,所以q 2
=a 21.因为等比数列{a n }的各项都
为正数,所以q =a 1=3.
3.(辽宁沈阳二中质检)在等比数列{a n }中,a 5a 11=3,a 3+a 13=4,则a 15a 5=( )
A .3
B .-13
C .3或1
3 D .-3或-1
3
【答案】C
【解析】根据等比数列的性质得⎩⎪⎨⎪⎧
(a 3q 5)2=3,a 3
(1+q 10
)=4,化简得3q 20-10q 10
+3=0,解得q 10
=3或13,所以a 15a 5=a 5q 10a 5
=q 10=3或1
3.
4.(江苏泰州模拟)已知各项均是正数的等比数列{a n }中,a 2,1
2a 3,a 1成等差数
列,则a 4+a 5
a 3+a 4
的值为( )
A.5-1
2 B .5+1
2 C .-5-1
2 D .5-12或5+12
【答案】B
【解析】设{a n }的公比为q (q >0).由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.从而a 4+a 5a 3+a 4
=q =1+5
2. 5.(广东珠海综合测试)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】B
【解析】当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a n
a n -1=2,n =2,3,4,…,即a n =
2a n -1,n =2,3,4,…,所以必要性成立.故选B.
6.(辽宁盘锦高中月考)已知等比数列{a n }的前n 项积记为Ⅱn .若a 3a 4a 8=8,则Ⅱ9=( )
A .512
B .256
C .81
D .16
【答案】A
【解析】由题意知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=
(a 1a 9)(a 2a 8)·(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83
=512.
7.(湖南浏阳一中月考)已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值为( )
A .126
B .130
C .132
D .134
【答案】C
【解析】设等比数列{a n }的公比为q (q >0),由题意可知,lg a 3=b 3,lg a 6=b 6.
又b 3=18,b 6=12,则a 1q 2=1018,a 1q 5=1012,∴q 3=10-6,即q =10-2,∴a 1=1022.∵{a n }为正项等比数列,∴{b n }为等差数列,且公差d =-2,b 1=22,故b n =22+(n -1)×(-2)=-2n +24.∴数列{b n }的前n 项和S n =22n +n (n -1)
2×(-2)=-n 2+23n =-⎝ ⎛⎭
⎪⎫n -2322+5294.又n ∈N *,故n =11或12时,(S n )m a x =132. 二、填空题
8.(河南洛阳统考)已知{a n }为等比数列,且a 3+a 6=36,a 4+a 7=18.若a n =12,则n =________.
【答案】 9
【解析】设{a n }的公比为q ,由a 3+a 6=36,a 4+a 7=(a 3+a 6)q =18,解得q =1
2,
由a 1(q 2
+q 5
)=36得a 1=128,进而a n =128·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭
⎪⎫12n -8.由a n =1
2,解得n =9. 9.(天津六校联考)设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.
【答案】15
【解析】由题意得a n =(-2)n -1,所以a 1+|a 2|+a 3+|a 4|=1+|-2|+(-2)2+|(-2)3|=15.
10.(福建上杭一中月考)已知等差数列{a n }的前5项和为105,且a 10=2a 5.对任意的m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m ,则数列{b m }的前m 项和S m =________.
【答案】72m +1-7
48
【解析】设数列{a n }的公差为d ,前n 项和为T n .由T 5=105,a 10=2a 5,得
⎩⎨
⎧
5a 1+5×(5-1)2d =105,
a 1+9d =2(a 1+4d ),
解得a 1=7,d =7,因此a n =a 1+(n -1)d =7+7(n -1)
=7n (n ∈N *).对任意的m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1,所以数列{b m }是首项为7,公比为49的等比数列,故S m =7×(1-49m )1-49
=7×(72m -1)
48=
72m +1-748.
三、解答题
11.(湖北鄂东南联盟期中联考)已知数列{a n }满足a 1=899
9,a n +1=10a n +1. (1)证明:数列⎩⎨⎧⎭
⎬⎫a n +19是等比数列,并求数列{a n }的通项公式; (2)数列{b n }满足b n =lg ⎝ ⎛⎭⎪⎫a n +19,T n 为数列⎩⎨⎧⎭
⎬⎫1b n b n +1的前n 项和,求证:T n <1
2.
(1)【解】由a n +1=10a n +1,得a n +1+19=10a n +10
9=10⎝ ⎛⎭
⎪⎫a n +19,所以a n +1+1
9
a n +19=10,所以数列⎩⎨⎧⎭
⎬⎫a n +19是等比数列,首项为a 1+1
9=100,公比为10.
所以a n +19=100×10n -1=10n +1,所以a n =10n +1
-19. (2)【证明】由(1)可得b n =lg ⎝
⎛
⎭
⎪⎫a n +19=lg 10n +1=n +1,
所以1b n b n +1=1(n +1)(n +2)=1n +1-1n +2
,
所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭
⎪⎫1n +1-1n +2=12-1n +2<1
2,
所以T n <1
2.
12.(长沙模拟)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=5
4,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.
(1)求a 4的值;
(2)证明:⎩⎨⎧
⎭
⎬⎫a n +1-12a n 为等比数列. (1) 【解】当n =2时,4S 4+5S 2=8S 3+S 1, 即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛
⎭⎪⎫1+32+54+1,
解得a 4=78.
(2)【证明】由4S n +2+5S n =8S n +1+S n -1(n ≥2),得
4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×5
4+1=6=4a 2,∴4a n +2+a n =4a n +1(n ∈N *). ∴a n +2-12a n +1
a n +1-12a n =4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=1
2. ∴数列⎩⎨⎧⎭
⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,1
2为公比的等比数列.。