高考数学专题复习5 点列、递归数列和数学归纳法

高考数学专题复习5 点列、递归数列和数学归纳法
高考数学专题复习5 点列、递归数列和数学归纳法

y

x

高考数学专题复习5 点列、递归数列和数学归纳法

★★★高考在考什么

【考题回放】

1.已知数列{ a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( A ) A. 4 B. 2 C. 1 D. -2

2.在数列{}n a 中,121,2a a ==,且21(1)n n n a a +-=+-*()n N ∈,则10S = 35 . 3.在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =__2 n+1

-3___. 4.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1

{

+n a n

的前n 项和的公式是 2n+1-2 .

5.已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .

若在一种算法中,计算),,4,3,2(0n k x k

=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算

(6次乘法,3次加法),则计算P 10(x 0)的值共需要 65 次运算.

下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要 2n 次运算.

6.已知函数f (x )=3

2

x x +,数列|x n |(x n >0)的第一项x n =1,以后各项按如下方式取定:曲线x =f (x)在))(,(11++n n x f x 处的切线与

经过(0,0)和(x n ,f (x n ))两点的直线平行(如图).

求证:当n *

N ∈时,

(Ⅰ) x ;2312

12+++=+n n n n x x x

(Ⅱ)21

)2

1

()

2

1

(--≤≤n n n x .

【专家解答】(I ) 证明:因为'

2

()32,f x x x =+

所以曲线()y f x =在11(,())n n x f x ++处的切线斜率12

1132.n n n k x x +++=+

即(0,0)和(,())n n x f x 两点的直线斜率是2

,n n x x + 以221132n

n n n x x x x +++=+. (II )因为函数2

()h x x x =+,当0x >时单调递增,

而221132n n n n x x x x +++=+21142n n x x ++≤+211(2)2n n x x ++=+,

所以12n n x x +≤,即

11,2

n n

x x +≥

因此11

2

12

11

().2n n

n n n n x x x x x x x ----=

?

?????

≥ 又因为12

2

12(),n n n n x x x x +++≥+ 令2

,n n n y x x =+ 则

11.2n n

y y +≤

因为2

1112,y x x =+= 所以12111()().22

n n n y y --≤?=

因此2

2

1

(),2

n n n n x x x -≤+≤ 故1211

()().22

n n n x --≤≤

★★★高考要考什么

【考点透视】

本专题是等差(比)数列知识的综合应用,同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.

【热点透析】

高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:

(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、

推理与综合能力.

(2)给出S n 与a n 的关系,求通项等,考查等价转化的数学思想与解决问题能力.

(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列.

★★★突破重难点

【范例1】已知数列{}n a 中,对一切自然数n ,都有()10,a n ∈且

0212

1=-+?++n n n n a a a a .

求证:(1)n n a a 2

11<+; (2)若n S 表示数列{}n a 的前n 项之和,则12a S n <.

解析: (1)由已知0212

1=-+?++n n n n a a a a 得2

1

112++-=n n n a a a , 又因为()10,a n ∈,所以1102

1<-<+n a , 因此12+>n n a a ,即n

n a a 211<

+. (2) 由结论(1)可知 11221212121a a a a n n n n ---<<<< ,即112

1

a a n n -<,

于是2

1211111111211211

222n n n S a a a a a a a a ---?? ?=+++<+++=?< ? ?

??

, 即12a S n <.

【点睛】从题目的结构可以看出,条件02121=-+?++n n n n a a a a 是解决问题的关键,必须从中找出

1+n a 和n a 的关系.

【文】).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(2

11≥-

=n a b n n

(Ⅰ)求b 1、b 2、b 3、b 4的值;

(Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S 解析(I ),052168,2

1

12

1111=++-+=

-

=

++n n n n n n n n a a a a b a a b 代入递推关系得 整理得

,3

4

2,0364111-==+-+++n n n n n n b b b b b b 即 .320

,4,38,2,143211=====b b b b a 所以有由

(Ⅱ)由,03

2

34),34(234,342111≠=--=--=++b b b b b n n n n

所以故的等比数列公比是首项为,2,3

2

}34{=-q b n

1122124114

2,2(1).3333

11

1,

122

1

()2

1

(12)

51

3(251).

1233n n n n n n n n n n n n n n n b b n b a b b a S a b a b a b b b b n

n n -

=?=?+≥==+-=+++=++

++-=+=+--即由得故

【范例2】设数列{}n a 的前n 项的和1412

2333

n n n S a +=-?+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ;

(Ⅱ)设2n

n n

T S =,1,2,3,

n =,证明:

1

32n

i

i T =<∑ 解析 (Ⅰ)由 S n =43a n -13×2n+1+2

3

, n=1,2,3,… ①

得 a 1=S 1= 43a 1-13×4+2

3

所以a 1=2.

再由①有 S n -1=43a n -1-13×2n +2

3

, n=2,3,4,…

将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13

×(2n+1-2n

), n=2,3, …

整理得: a n +2n =4(a n -1+2n -1),n=2,3, …, 因而数列{a n +2n

}是首项为a 1+2=4,公比为4的等比数列,即a n +2n = 4×4 n -1= 4 n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …

(Ⅱ) S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2) = 23×(2n+1-1)(2n

-1)

T n = 2n S n = 32×2n (2n+1-1)(2n

-1) = 32×(12n -1 - 1

2n+1-1

) 所以 1

n

i i T =∑

=

3

21

(

n

i =∑12i

-1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 3

2

【点睛】S n 与a n 始终是我们的重点,需要我们引起重视;注意总结积累数列不等式放缩的技巧.

【文】设数列{}n a 的前n 项和为S n ,若{}n S 是首项为S 1各项均为正数且公比为q 的等比数列. (1)求数列{}n a 的通项公式n a (用S 1和q 表示); (2)试比较122+++n n n a a a 与的大小,并证明你的结论.

解析 (1)∵{}n S 是各项均为正数的等比数列, ∴)0(11>=-q q S S n n . 当n=1时,a 1=S 1; 当2112,(1)n n n n n a S S S q q --≥=-=-时.

∴???≥-==-)2()1()1(2

1

1

n q q S n S a n n (2)当n=1时,

21321131

2(1)2(1)[()]0,24

a a a S S q q S q S q +-=+---=-+> ∴2312a a a >+.

当2n ≥时,

21211112(1)(1)2(1)n n n n n n a a a S q q S q q S q q --+++-=-+---()3

2

11.n S q q

-=-

∵210,0,n S q ->>

①当q=1时,321(1)0,2.n n n q a a a ++-=∴+= ②当,10时<q .2,0)1(123++>+∴>-n n n a a a q

综上可知:当n=1时,2312a a a >+.当212,1,2;n n n n q a a a ++≥=+=时若则 若2101,2;n n n q a a a ++<<+<则 若211,2.n

n n q a a a ++>+<则

【范例3】由坐标原点O 向曲线)0(323≠+-=a bx ax x y 引切线,切于O 以外的点P 1),(11y x ,再由P 1引此曲线的切线,切于P 1以外的点P 222,(y x ),如此进行下去,得到点列{ P n n n y x ,(}}.

求:(Ⅰ))2(1≥-n x x n n 与的关系式;

(Ⅱ)数列}{n x 的通项公式;

(Ⅲ)当∞→n 时,n P 的极限位置的坐 解析 (Ⅰ)由题得b ax x x f +-='63)(2

过点P 1(),11y x 的切线为),0)()((:11111≠-'=-x x x x f y y l

1l 过原点 32211111113

(3)()(36),.2

x ax bx x x ax b x a ∴--+=--+=

得 又过点P n (,)n n x y 的:()()n n n n l y y f x x x '-=-

因为n l 过点P n-1(11,)n n x y -- 11()()n n n n n y y f x x x --'∴-=-

整理得.0))]((32[112

121=----+----n n n n n n n n x x x x a x x x x

211111()(23)0,230.

13

(2).

22

n n n n n n n n n n x x x x a x x x x a x x a n -----∴-+-=≠+-=∴=-+≥由得

(Ⅱ)由(I )得11

().2

n n x a x a --=--

所以数列{x n -a }是以

2a 公比为2

1

-的等比数列 .])2

1

(1[)21(21a x a a x n n n n --=∴-=-∴-

(法2)通过计算,])2

1(1[,,,4321a x x x x x n

n --=而猜出再用数学归纳法证明.

(Ⅲ),])2

1(1[lim lim a a x n n n n =--=∞→∞→ .23)(lim 333a ab ab a a a f y n n -=+-==∴∞→

n P 点∴的极限位置为().2,3a ab a -

【点睛】注意曲线的切线方程1111:()()l y y f x x x '-=-的应用,从而得出递推式.

【文】数列{}n a 的前n 项和为n S ,已知()211

,1,1,2,2

n n a S n a n n n ==--=??? (Ⅰ)写出n S 与1n S -的递推关系式()2n ≥,并求n S 关于n 的表达式;

(Ⅱ)设()()()1

/,n n n n n S f x x b f p p R n +=

=∈,求数列{}n b 的前n 项和n T . 解析 由()21n n S n a n n =--()2n ≥得()2

1()1n n n S n S S n n -=---,

即()2

2

1(1)1n n n S n S n n ---=-,所以

1111

n n n n

S S n n -+-=-,对2n ≥成立. 由1111n n n n S S n n -+-=-,121112n n n n S S n n ----=--,…,2132

121

S S -=

相加得1121n n S S n n +-=-,又1112S a ==,所以2

1

n n S n =+, 当1n =时,也成立.

(Ⅱ)由()11

1

n n n n S n f x x x n n ++==

+,得()/n n n b f p np ==. 而23123(1)n n n T p p p n p np -=++++-+,

234123(1)n n n pT p p p n p np +=+++

+-+,

2

3

1

1

1(1)

(1)1n n n

n n n p p P T p p p p p np np p

-++--=+++++-=--.

【范例4】设点n A (n x ,0),1

(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -11

2

n -,n x 由以下方法得到: x 1=1,点P 2 (x 2,2)在抛物线C 1:y =x 2

+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短

距离,…,点11(,2)n

n n P x ++在抛物线n C :y =x 2+a n

x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离.

(Ⅰ)求x 2及C 1的方程.

(Ⅱ)证明{n x }是等差数列.

解:(Ⅰ)由题意,得A(1,0), C 1:y =x 2

-7x +b 1.

设点P(x,y)是C 1上任意一点,则|A 1=

令f (x)=(x-1)2

+(x 2

-7x+b 1)2

, 则21()2(1)2(7)(27).f x x x x b x '=-+-+- 由题意得2()0f x '=, 即2222122(1)2(7)(27)0.x x x b x -+-+-= 又P 2(x 2,0)在C 1上, ∴2=x 22

-7x 2+b 1

解得x 2=3, b 1=14. 故C 1方程为y=x 2

-7x +14. (Ⅱ)设P(x,y)是C 1上任意一点,则

|A n =

令g(x)=(x-x n )2

+(x 2

+a n x+bn)2,则2()2()2()(2)n n n n g x x x x a x b x a '=-++++, 由题意得,1()0n g x +'=,即211112()2()(2)n n n n n n n n x x x a x b x a ++++-++++=0,

又∵2

112n n n n n x a x b ++=++,∴(x n+1-x n )+2n

(2x n+1+a n )=0(n≥1),

即(1+2n+1)x n+1- x n +2 n

a n =0, (*) 下面用数学归纳法证明x n =2n-1. ① 当n=1时,x 1=1,等式成立.

② 假设当n=k 时,等式成立,即x k =2k-1.

则当n=k+1时,由(*)知(1+2k+1)x k+1-x k +2k

a k =0, (*)

又a k =-2-4k-11

2k +,∴11

22112

k k k k k x a x k ++-==++. 即当n=k+1,时等式成立.

由①②知,等式对n∈N +

成立,∴{x n }是等差数列.

【点睛】注意第(1)小题其实是第(2)小题的特例,对于求数列的通项公式,归纳猜想证明是十分常用的手段.

【文】已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I )证明:数列{}1n n a a +-是等比数列; (II )求数列{}n a 的通项公式; (II )若数列{}n b 满足121

11

*44...4(1)(),n

n b b b b n a n N ---=+∈证明{}n b 是等差数列.

解析 (I )证明:

2132,n n n a a a ++=- 2112(),n n n n a a a a +++∴-=- *211211,3,

2().n n n n

a a

a a n N a a +++-==∴=∈-

{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列.

(II )解:由(I )得*12(),n n n a a n N +-=∈

112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+

12

*22...2121().

n n n

n N --=++

++=-∈ (III )证明:12111

44...4(1),n n b b b b n a ---=+ 12(...)42,n n b b b nb +++∴= 122[(...)],n n b b b n nb ∴+++-= ① 12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20.n n n b nb +--+= ③ 21(1)20.n n nb n b ++-++= ④

④-③,得2120,n n n nb nb nb ++-+= 即2120,n n n b b b ++-+= *211(),n n n n b b b b n N +++∴-=-∈ {}n b ∴是等差数列.

★★★自我提升

1. 设数列{}n a 的前n 项和为n S ,令12n

n S S S T n

++

+=

,称n T 为数列1a ,2a ,…,n a 的“理想

数”,已知数列1a ,2a ,…,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为(A )

(A) 2002 (B) 2004 (C) 2006 (D) 2008

2. 数学拓展课上,老师定义了一种运算“*”,对于n∈N*满足以下运算性质:

(1) 2*2 = 1,(2) ( 2n + 2) * 2 = 3(2n * 2).则2n *2用含n 的代数式表示为 3n-1

_

3. 若数列{a n }满足112,0;2121, 1.

2n n n n n a a a a a +?

167a =,则20a 的值为( B )

(A) 67 (B) 57 (C) 37 (D) 17

4. 弹子棋共有60颗大小相同的球形弹子,现在棋盘上将它叠成正四面体形的球垛,使剩下的弹子尽可能少,那么剩余的弹子有(B)

(A )0颗 (B )4颗 (C )5颗 (D )11颗

5. 一个机器猫每秒前进或后退一步,程序设计人员让机器猫以每前进3步,然后再后退2步的规律移动;如果将此机器猫放在数轴的原点上,面向正的方向,以1步的距离为1个单位长,令P (n )表示第n 秒时机器猫所在的位置的坐标,且P (0)=0,那么下列结论中错误的是( C )

(A )P(3)=3 (B )P(5)=1 (C )P(101)=21 (D )P(103)

6. 已知函数f (x ) = 2x 2

-x ,则使得数列{

q

pn n f +)(}(n∈N +

)成等差数列的非零常数p 与q 所满足的关系

式为 .p=-2q

7. (理) 已知x 轴上有一点列:P 1(x 1,0), P 2(x 2,0), …,P n (x n ,0),…点P n+2 分有向线段

1+n n P P 所成的比为λ,其中n∈N*,λ>0为常数,x 1=1, x 2=2.

(1)设a n =x n+1-x n ,求数列{a n }的通项公式;

(2)设f (λ)=∞

→n lim x n ,当λ变化时,求f (λ)的取值范围.

解析 (1)由题得 112121,111n n n n n n n n n x x x x a

x a x x λλλλ

+++++++-=

∴=-==-+++

1211,

a x x =-=又

∴{a n }是首项为1,公比为1

-+的等比数列,

∴1

1()1n n a λ

-=-

+ 121321121(2)

()()()1.

1123

0,|| 1.lim 1.

11211n n n n n n x x x x x x x x a a a x λλλλλ

--→∞=+-+-+

+-=+++++>∴-<∴=+=+++

+又

∴当λ>0时 2(2)113

()2(,2)222

f λλλλ+-=

=-∈++ (文) 设曲线与一次函数y =f (x )的图象关于直线 y =x 对称,若f (-1)=0,且点 1

(1,

)n n n

a P n a ++在曲线上,又a 1= a 2.

(1)求曲线C 所对应的函数解析式; (2)求数列{a n }d 的通项公式.

解析:(1)y =x -1 (2) a n =(n -1)!

8.(理)过P (1,0)做曲线C :y=x k

(x ∈(0,+∞),k ∈N +,k>1)的切线,切点为Q 1,设Q 1在x 轴上的投影为P 1,又过P 1做曲线C 的切线,切点为Q 2,设Q 2在x 轴上的投影为P 2,…,依次下去得到一系列点Q 1、Q 2、Q 3、…、Q n 的横坐标为a n ,求证:

(Ⅰ)数列{a n }是等比数列;

(Ⅱ)1

1-+

≥k n

a n ; (Ⅲ)∑∑==+++=-

i n i n

i i a a a a k k a i 1

2112

).:( 注

解:(Ⅰ),1-='k kx y 若切点是),(k

n n n a a Q ,

则切线方程为).(1n k n k n a x ka a y -=--

当1=n 时,切线过点P (1,0)即).1(011

11a ka a k k -=--得.1

1-=

k k a 当1>n 时,切线过点)0,(11--n n a P 即).(011

n n k n k n a a ka a -=---得.1

1

-=-k k a a n n

∴数列}{n a 是首项为

1-k k ,公比为1-k k

的等比数列. .)1

(n n k k a -=∴…6分 (Ⅱ)n n n n n n n n n k C k C k C C k k k a )

1

1()1

1(1

1)1

11()1

(2210-++-+-+=-+=-= .1

1111

0++=-+≥k n k C C n

n

(Ⅲ)记n

n n a n

a n a a S +-+++=12121 , 则

.12111

32++-+++=-n n n a n a n a a S k k

两式相减n

n n n a a a a a n a a a a S k k 1

1111111)11(3211321+

+++<-++++=--+

.

.11

,1,].

)1(1)[1(11]

)1(1[112k k S k S k

k N k k k k k k k k k k S k n n n n

n -<∴-<∴>∈---=-----<∴+ (文)已知曲线C :xy =1,过C 上一点),(n n n y x A 作一斜率为2

1

+-

=n n x k 的直线交曲线C 于另一点),(111+++n n n y x A ,点列),3,2,1( =n A n 的横坐标构成数列{n x },其中7

11

1=x .

(1)求n x 与1+n x 的关系式; (2)求证:{3

1

21+-n x }是一等比数列.

解析:(1)过C :x y 1

=上一点),(n n n y x A 作斜率为n k 的直线交C 于另一点1+n A ,

则2

1

11111111+-

=?-=--

=--=+++++n n n n n n n n n n n n x x x x x x x x x y y k ,于是 21+=+n n n x x x . (2)记31

21+-=n n x a ,则

n n n

n n n a x x x x a 2)3

1

21(231221312111-=+--=+-+=+-=++,

因为0231

21,711111≠-=+-==x a x 而,

因此数列{3

1

21+-n x }是等比数列.

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

数列大题部分-高考数学解题方法归纳总结专题训练

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得 112n n a ?? = ??? ,所以,

由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。 (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列{}n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b =

2018高考文科数学复习数列

数列专项 数列的概念与简单表示法 11.[2016·卷] 无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意n ∈N *,S n ∈{2,3},则k 的最大值为________. [解析] 由S n ∈{2,3},得a 1=S 1∈{2,3}.将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况: ①a 1=2,a 2=0,a 3=1,a 4=-1; ②a 1=2,a 2=1,a 3=0,a 4=-1; ③a 1=2,a 2=1,a 3=-1,a 4=0; ④a 1=3,a 2=0,a 3=-1,a 4=1; ⑤a 1=3,a 2=-1,a 3=0,a 4=1; ⑥a 1=3,a 2=-1,a 3=1,a 4=0. 最多项均只能写到第4项,即k max =4. D2 等差数列及等差数列前n 项和 12.D2[2016·卷] 已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6 =________. 12.6 [解析] 设等差数列{a n }的公差为d ,因为a 3+a 5=0,所以6+2d +6+4d =0,解得d =-2,所以S 6=6×6+6×52 ×(-2)=36-30=6. 8.D2[2016·卷] 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 8.20 [解析] 因为S 5=5a 3=10,所以a 3=2,设其公差为d , 则a 1+a 22=2-2d +(2-d )2=d 2-6d +6=-3, 解得d =3,所以a 9=a 3+6d =2+18=20.

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

高考数学数列复习指导.doc

高考数学数列复习指导 高考数学数列复习指导 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

2021高考数学专题复习:数列(一)

1 2021高考数学专题复习:数列一 1.等差数列定义:12112,,+++-=++==-n n n n n n n a a a d a a d a a 2.2a =d a +1,3a = ,4a = ,2019a = ,m a = ,p a = ?第一通项公式:=n a ()d a dn -+=1 13103a a d =+,83+a a = ,2023a a =- ,202010a a =+ ,20n a a =+ ?第二通项公式:+=m n a a ()83,2382n a d a n ==?=+-? 135,3n a d a ==-?= 510,5n a d a ==?= 201920203,9n a a a ==?= 3.若b A a ,,成等差数列,那么A 叫做a 与b 的等差中项,关系:=A 2 ,=A 4.性质:等差数列中,若,q p n m +=+则 ,2k n m =+则 =+n m a a ,=+q p a a ,=k a 2 37a a += ,313a a += ,2070a a += ,2337a a += 6.等差数列{}n a 中=3,S ,=5S ,=7S ,=9S ,11S = ,

2 13S = ,15S = ,=101S ,2021S = ,=-12k S (1)==158,6S a (2)==3719,10S a (3)==1121,420a S 5.等差数列{}n a 中,首项为1,a 公差为,d ()21n n a a n S +=()d n n na 211-+=n d a n d ??? ? ? -+=2212 令n S c n n =,则=n c ,公差为 等差数列{}n a 中,d a a a S +=+=12122,=4S ,=6S , =8S ,=10S ,=100S 7.公差为d 的等差数列{}n a 由连续2项和构成的新数列 46242,,S S S S S --仍然为等差数列,公差=2d 由连续3项和构成的新数列 69363,,S S S S S --仍然为等差数列,公差=3d 由连续n 项和构成的新数列 n n n n n S S S S S 232,,--仍然为等差数列,公差=n d

2019年高考数学数列部分知识点分析

第 1 页 共 4 页 2019年全国高考数学数列部分知识点考查分析 一、等差数列及其性质 1.(2019年全国Ⅰ理)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A .25n a n =- B .310n a n =- C .228n S n n =- D .21 22n S n n =- 2.(2019年全国Ⅲ理)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 3.(2019年全国Ⅲ文)记n S 为等差数列{}n a 的前n 项和.若35a =,713a =,则10S = . 4.(2019年北京理)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 . 5.(2019年江苏)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 . 二、等比数列及其性质 1.(2019年全国Ⅲ文理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16 B .8 C .4 D .2 2.(2019年全国Ⅰ文)记n S 为等比数列{}n a 的前n 项和,若11a =,33 4 S =,则4S = . 3.(2019年上海秋)已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______. 三、数列综合 1.(2019年全国Ⅰ文)记n S 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式; (2)若10a >,求使得n n S a …的n 的取值范围. 2.(2019年全国Ⅱ理)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--. (1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式. 3.(2019年全国Ⅱ文)已知{}n a 的各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式; (2)设2log n n b a =,求数列{}n b 的前n 项和. 4.(2019年北京文)设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求n S 的最小值. 5.(2019年天津文)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;

数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练 1.如图,曲线2 (0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。 w.w.w.k.s.5.u.c.o.m 2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有2 1,,n n n a b a +成等差数列, 2211,,n n n b a b ++成等比数列. (1)试问{}n b 是否成等差数列?为什么? (2)如果111,2a b ==,求数列1n a ?? ???? 的前n 项和n S . 3. 已知等差数列{n a }中,2a =8,6S =66. (Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥1 6 .

4. 已知数列{n a }中5 3 1=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-= n n a b (+∈N n ) (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求 )1(lim -∞→n b n n . 5. (Ⅰ (Ⅱ (Ⅲn 项的 6. (1(2 7. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意* ∈N n ,都有 n n pa p S p -=?-)1((p 为大于1的常数),并记 n n n n n n n S a C a C a C n f ??++?+?+=21)(2211 .

(浙江专版)2019版高考数学大一轮复习第七章数列与数学归纳法第2节等差数列及其前n项和学案理

第2节 等差数列及其前n 项和 最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系. 知 识 梳 理 1.等差数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N * ,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2 . 2.等差数列的通项公式与前n 项和公式 (1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N * ). (2)等差数列的前n 项和公式 S n =n (a 1+a n )2 =na 1+n (n -1)2 d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的有关性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N * ),则有a m +a n =a p +a q . (2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当 d =0时,{a n }是常数列. (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N * )是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系 S n =d 2 n 2+? ?? ??a 1-d 2n .

普通高等学校招生全国统一考试理科数学试题大全数列部分

2009 年普通高等学校招生全国统一考试试题汇编数列部分 1.(全国1/20)在数列{}n a 中, 1111112n n n a a a n ?? ???’+’+==++. (1)设 n n a b n = ,求数列}{n b 的通项公式; (2)求数列 {}n a 的前n 项和n s . 解: (II ∴S 而k 项和,一 2.解: {}n a 是等差数列3.(全国2/14) 设等差数列{}n a 的前n 项和为n S ,若535a a =则4 5S S = . 解析:由 53, 5a a =得 1460 a d +=,即 40S = 4.(全国2/19)设数列{} n a 的前n 项和为 , n S 已知 11,a =142 n n S a +=+ (I )设 12n n n b a a +=-,证明数列 {} n b 是等比数列

(II )求数列 {} n a 的通项公式。 5.(山东20)等比数列 {}n a 的前 n 项和为,已知对任意的,n N ∈,点(.) n n S 均在函数 (01,,y bx r b b b r ==>≠且均为常数的图象上。 (Ⅰ)求r 的值。 (Ⅱ)当b=2时,记 22(log 1)() n bn a n n ==∈ 证明:对任意的n N +∈ ,不等式1212111 (1) n n b b b n b b b +++>+成立 解::因为对任意的n N +∈,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n S b r =+,当 1 n =时, 11a S b r ==+,当 2 n ≥1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{ n a }为等比数列,所以1r =-,公 比为b ,1 (1)n n a b b -=- )当b=2时, 11 (1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+= 1212n n b n b n ++=,所以1212111 35721 ·······2462n n b b b n b b b n ++++=?? 下面用数学归纳法证明不等式121 2111 35721 ·······12462n n b b b n n b b b n ++++=??>+成立. 1n =时,左边=32,右边=2,因为3 2 2>,所以不等式成立. 假设当n k =时不等式成立,即121 2111 35721 ·······12462k k b b b k k b b b k ++++=??>+成立.则当1 n k =+时,左边=1121 211111 3572123 ·······246222k k k k b b b b k k b b b b k k ++++++++=???? ? + 所以当1n k =+时,不等式也成立. 由①、②可得不等式恒成立. 【命题立意】:本题主要考查了等比数列的定义,通项公式,以及已知n S 求 n a 的基本题型,并运用数学归纳 法证明与自然数有关的命题,以及放缩法证明不等式. 6.(北京14)已知数列 {} n a 满足: 434121,0,,N , n n n n a a a a n *--===∈则 2009a = ________;

相关文档
最新文档