华南理工大学 本科物理化学复习笔记
物理化学的知识点总结
物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
华南理工大学大学化学知识点
与元素的分区、周期、族的关系;原子半径的周期性;电 离能的周期性;电子亲和能的周期性;电负性的周期性。 6.理解化学键的本质和类型。 7.掌握价键理论的内容和成键原理,会用价键理论解释共价键的特征。 8.利用杂化轨道理论解释常见分子几何构型。 9.理解分子的极性及判断依据,分子间作用力的类型、特征以及氢键的 本质,会用分子间作用力解释物质性质的变化规律。 10.理解晶体的宏观特性。 11.理解晶体的微观特性,掌握晶体的基本类型和描述晶体的基本参数。 12.掌握晶体的基本类型和各类晶体的特征,能够判断常见物质的晶体类 型。 13.了解物质的其它聚集形态,如非晶体、准晶体、液晶等多种形态。 14.化学反应进度的概念和计算。 15. 热力学第一定律的基本内容。掌握热力学标准态的物理意义和热力 学的一些基本术语。
= 0.799 + 0.059×lg[1.6×10–10]
= 0.221 V
电对中Ag为固体,其浓度[Ag]=1
(3)沉淀对电极电势值的影响
EӨ=0.799 V EӨ=0.221 V
(3)沉淀对电极电势值的影响
E Ө/V
E Ө,
上表中若[氧化型]物质Ag+生成了相同类型的沉淀,沉 淀的Ksp 越小,Ag+ 的平衡浓度也越小,E 值也将变得 越小,Ag+ 的氧化能力降低了,Ag+被稳定了;
(4)配合物的生成对电极电势值的影响
例题 7:EӨ(Ag+/Ag)=0.8 V,
然后根据能斯特方程
华南理工大学《大学物理ii》大学物理(下册)复习资料.docx
《大学物理》下学期复习资料【一】电磁相互作用(洛仑兹力、安培力,磁力矩)1. 洛仑兹力:F m =qvxB(1)大小:F m =qvBsm6 . (2)方向:戸,“垂直于卩、P 构成的平面。
对于正电荷,三者符合右螺旋关系,对负 电荷与之相反。
(3)特点:E”垂直于洛仑兹力对电荷不作功。
当卩丄P 时,电荷在磁场中作圆周运动qvB = mv 2 / r 2. 霍耳效应一一电流与磁场方向垂直,霍耳电势差U H = — ^-,霍耳系数R H =— (D 是导体在E 方向的厚度)ne D ne负载流子分别与电流同向、反向,根据它们在洛仑兹力作用下的运动方向,可判定导体表面电荷的正、负) 3. 安培力(安培定律)_(1)电流元所受磁场力:df = IcUxB 大小:df = IdfBsin 0 (B 是电流元处的磁感应强度) 次当各处电流元受力同向时,对标量式直接积分;反之,先计算0’在各坐标轴的分量,积分后求合力。
(2) —段载流直导线:f = ILB sin & 方向:Id^xB (电流元的方向即电流I 方向)(3) 两平行载流导线:同向电流相互吸引,异向电流郴互排斥,且df/df = I-B(4) 闭合载流线圈:在均匀磁场中,所受的合磁场力为零。
(但运动线圈中的电动势一般不等于等于零)4.磁力矩(磁场力对转动导体的力矩):M=|p ni xB|= IS BsinO e = Z (p m ,B ) 磁力矩M 的单位:N-m,方向:同p,n xB 的方向。
5.磁场对载流线圈作的功 A = I- △①川 【二】电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律岂方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体屮哪一端的电势高(正极)。
①对闭合回路,厲方向由楞次定律判断;②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生勺)|b (vxB )-d?; 直导线:Ej =(vxB )-^ 动生电动势的方向:vxB 方向,即正电荷所受的洛仑兹力方向。
物理化学笔记与考试指南
物理化学笔记与考试指南一、热力学基础。
(一)基本概念。
1. 系统与环境。
- 系统:被研究的对象,可以是物质的一部分,如一定量的气体、液体或固体。
- 环境:系统之外与系统密切相关的部分。
系统与环境之间可以有物质和能量的交换。
根据交换情况分为孤立系统(无物质和能量交换)、封闭系统(有能量交换无物质交换)和敞开系统(有物质和能量交换)。
2. 状态函数。
- 定义:其数值仅取决于系统的状态,而与系统到达该状态的途径无关。
如温度T、压力p、体积V、内能U等。
- 特点:状态函数的微小变化在数学上是全微分。
例如,对于理想气体pV = nRT,p、V、T都是状态函数。
3. 过程与途径。
- 过程:系统状态发生变化的经过。
常见的过程有等温过程(Δ T=0)、等压过程(Δ p = 0)、等容过程(Δ V=0)、绝热过程(Q = 0)等。
- 途径:实现过程的具体步骤。
例如,从同一始态到同一终态,可以有不同的途径。
(二)热力学第一定律。
1. 表达式。
- Δ U=Q + W,其中Δ U是系统内能的变化,Q是系统吸收的热量,W是环境对系统做的功。
2. 功的计算。
- 体积功W=-p_外Δ V(适用于等外压过程)。
对于理想气体的可逆过程,W = -nRTln(V_2)/(V_1)。
3. 热的计算。
- 等容热Q_V=Δ U(因为W = 0);等压热Q_p=Δ H,其中H = U + pV是焓。
(三)热化学。
1. 反应热的计算。
- 标准摩尔反应焓Δ_rH_m^θ的计算:- 由标准摩尔生成焓Δ_fH_m^θ计算:Δ_rH_m^θ=∑_iν_iΔ_fH_m^θ(产物)-∑_jν_jΔ_fH_m^θ(反应物),其中ν是化学计量数。
- 由标准摩尔燃烧焓Δ_cH_m^θ计算:Δ_rH_m^θ=-∑_iν_iΔ_cH_m^θ(产物)+∑_jν_jΔ_cH_m^θ(反应物)。
2. Hess定律。
- 化学反应不管是一步完成还是分几步完成,其反应热相同。
华南理工大学物理化学复习提纲1-6章
本科物理化学复习提纲(I)第一章气体一.一.重要概念理想气体,分压,分体积,临界参数,压缩因子,对比状态二.二.重要关系式(1) 理想气体:pV=nRT , n = m/M(2) 分压或分体积:p B=c B RT=p y B(3) 压缩因子:Z = pV/RT第二章热力学第一定律与热化学一、重要概念系统与环境,隔离系统,封闭系统,(敞开系统),广延量(加和性:V,U,H,S,A,G),强度量(摩尔量,T,p),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q,W),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓二、重要公式与定义式1. 体积功:δW= -p外dV2. 热力学第一定律:∆U = Q+W,d U =δQ +δW3.焓的定义:H=U + pV4.热容:定容摩尔热容C V,m = δQ V /dT = (∂U m/∂T )V定压摩尔热容C p,m = δQ p /dT = (∂H m/∂T )P理性气体:C p,m- C V,m=R;凝聚态:C p,m- C V,m≈0理想单原子气体C V,m =3R/2,C p,m= C V,m+R=5R/25. 标准摩尔反应焓:由标准生成焓∆f H Bθ (T)或标准燃烧焓∆c H Bθ (T)计算∆r H mθ = ∑v B∆f H Bθ (T) = -∑v B∆c H Bθ (T)6. 基希霍夫公式(适用于相变和化学反应过程)∆r H mθ(T2)= ∆r H mθ(T1)+⎰21TT∆r C p,m d T7. 恒压摩尔反应热与恒容摩尔反应热的关系式Q p-Q V = ∆r H m(T) -∆r U m(T) =∑v B(g)RT8. 理想气体的可逆绝热过程方程:p1V1♑= p2V2♑ ,p1V1/T1 = p2V2/T2,♑=C p,m/C V,m三、各种过程Q、W、∆U、∆H的计算1.解题时可能要用到的内容(1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N2,O2,H2等。
华南理工大学物理化学复习提纲I.doc
物理化学复习提纲(I)(华南理工大学物理化学教研室)第1章热力学第一定律与热化学第2章热力学第二定律第5章多组分系统热力学第3章化学平衡第六章相平衡第七-十二章第1章热力学第一定律与热化学一、重要概念系统与环境,隔离系统,封闭系统,(敞开系统),广延量(加和性:V,U,H,S,A,G),强度量(摩尔量,T,p),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q,W),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓二、重要公式与定义式1. 体积功:δW= -p外dV2. 热力学第一定律:∆U = Q+W,d U =δQ +δW3.焓的定义:H=U + pV4.热容:定容摩尔热容C V,m = δQ V /dT = (∂U m/∂T )V定压摩尔热容C p,m = δQ p /dT = (∂H m/∂T )P理性气体:C p,m- C V,m=R;凝聚态:C p,m- C V,m≈0理想单原子气体C V,m =3R/2,C p,m= C V,m+R=5R/25. 标准摩尔反应焓:由标准生成焓∆f H Bθ (T)或标准燃烧焓∆c H Bθ (T)计算∆r H mθ = ∑v B∆f H Bθ (T) = -∑v B∆c H Bθ (T)6. 基希霍夫公式(适用于相变和化学反应过程)∆r H mθ(T2)= ∆r H mθ(T1)+⎰21TT∆r C p,m d T7. 恒压摩尔反应热与恒容摩尔反应热的关系式Q p-Q V = ∆r H m(T) -∆r U m(T) =∑v B(g)RT8. 理想气体的可逆绝热过程方程:p1V1♑= p2V2♑ ,p1V1/T1 = p2V2/T2,♑=C p,m/C V,m三、各种过程Q、W、∆U、∆H的计算1.解题时可能要用到的内容(1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N2,O2,H2等。
恒温过程d T=0,∆U=∆H=0,Q=W非恒温过程,∆U = n C V,m ∆T,∆H = n C p,m ∆T单原子气体C V,m =3R/2,C p,m = C V,m+R = 5R/2(2) 对于凝聚相,状态函数通常近似认为只与温度有关,而与压力或体积无关,即∆U≈∆H= n C p,m ∆T2.恒压过程:p外=p=常数,无其他功W'=0(1) W= -p外(V2-V1),∆H = Q p =⎰21TT n C p,m d T,∆U =∆H-∆(pV),Q=∆U-W(2) 真空膨胀过程p外=0,W=0,Q=∆U理想气体(Joule实验)结果:d T=0,W=0,Q=∆U=0,∆H=0(3) 恒外压过程:例1:1mol 理想气体于27℃、101325Pa状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃,则压力升到1013.25kPa。
物理化学知识点归纳
物理化学知识点归纳物理化学是化学领域中研究物质的性质以及与能量之间相互关系的学科。
它基于物理学和化学的原理,研究了物质的构成、结构、性质和变化规律等方面的知识。
本文将对物理化学的一些重要知识点进行归纳,以便读者更好地理解和掌握这门学科。
1. 热力学热力学是研究热、能量和它们之间相互转化关系的学科,是物理化学的核心内容之一。
它涉及热容、焓、熵、自由能等概念,用于描述化学反应的热效应和平衡条件。
热力学定律包括热力学第一定律(能量守恒定律)和热力学第二定律(熵增定律)。
2. 动力学动力学是研究化学反应速率、反应速度方程和反应机理的学科。
它关注反应速率与反应物浓度、温度、催化剂等因素之间的关系。
通过动力学研究,可以确定反应的速率常数和反应级数,从而预测和控制化学反应的进行。
3. 量子化学量子化学是利用量子力学原理研究分子和原子的结构、性质和变化的学科。
它通过求解薛定谔方程来描述物质微观粒子的行为,并解释了许多化学现象,如键的形成、光谱学等。
量子化学对于研究化学反应的活化能和反应机理有重要意义。
4. 分子结构与光谱学分子结构与光谱学研究分子的构型、键长和键角等参数,以及分子在不同波长的光下的吸收、散射和发射谱线。
这些数据对于确定分子的结构和识别化合物具有重要意义。
常见的光谱学技术包括红外光谱、核磁共振光谱和质谱等。
5. 电化学电化学是研究电和化学反应之间相互关系的学科。
它包括电解池的构成、电极反应、电动势和电解质溶液等内容。
电化学可应用于电池、电解、电镀和电化学分析等领域,对于能源转换和环境保护具有重要意义。
6. 界面化学界面化学研究物质在界面上的相互作用和现象。
界面可以是液体与气体、液体与固体、液体与液体等之间的交界面,研究内容包括吸附、表面活性剂、胶体稳定性和界面反应等。
界面化学在化妆品、涂料、纳米材料等领域具有广泛应用。
7. 热力学统计热力学统计是将热力学和统计力学相结合的学科,用于解释热力学现象的微观机制。
大学物理化学知识点归纳只是分享
⼤学物理化学知识点归纳只是分享⼤学物理化学知识点归纳第⼀章⽓体的pvT 关系⼀、理想⽓体状态⽅程pV=(m/M )RT=nRT(1.1)或pV m =p (V/n )=RT (1.2)式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。
V m =V/n 称为⽓体的摩尔体积,其单位为m 3·mol 。
R=8.314510J ·mol -1·K -1称为摩尔⽓体常数。
此式适⽤于理想,近似于地适⽤于低压下的真实⽓体。
⼆、理想⽓体混合物1.理想⽓体混合物的状态⽅程(1.3)pV=nRT=(∑BB n )RTpV=mRT/M mix (1.4)式中M mix 为混合物的摩尔质量,其可表⽰为M mix def∑BByM B(1.5)M mix =m/n= ∑BB m /∑BBn(1.6)式中M B 为混合物中某⼀种组分B 的摩尔质量。
以上两式既适⽤于各种混合⽓体,也适⽤于液态或固态等均匀相混合系统平均摩尔质量的计算。
2.道尔顿定律p B =n B RT/V=y B p (1.7)P=∑BB p(1.8)理想⽓体混合物中某⼀种组分B的分压等于该组分单独存在于混合⽓体的温度T 及总体积V 的条件下所具有的压⼒。
⽽混合⽓体的总压即等于各组分单独存在于混合⽓体的温度、体积条件下产⽣压⼒的总和。
以上两式适⽤于理想⽓体混合系统,也近似适⽤于低压混合系统。
3.阿马加定律V B *=n B RT/p=y B V (1.9)V=∑V B *(1.10)V B *表⽰理想⽓体混合物中物质B 的分体积,等于纯⽓体B 在混合物的温度及总压条件下所占有的体积。
理想⽓体混合物的体积具有加和性,在相同温度、压⼒下,混合后的总体积等于混合前各组分的体积之和。
以上两式适⽤于理想⽓体混合系统,也近似适⽤于低压混合系统。
三、临界参数每种液体都存在有⼀个特殊的温度,在该温度以上,⽆论加多⼤压⼒,都不可能使⽓体液化,我们把这个温度称为临界温度,以T c 或t c 表⽰。
2012华南理工大学材料物理化学 主要内容--复习要点
相变
成核生长相变 • 相变推动力(过冷度等) • 形核热力学(临界核胚尺寸及临界形核势垒) • 形核速率及生长速率 • 如何通过控制形核长大相变过程制备材料?
烧结
• 烧结的定义,易与之混淆的概念 • 烧结过程的认识
认识颈部对烧结的作用,通过固相烧结机理:重排、 扩散传质、晶粒长大、气孔排除了解烧结过程。了解晶界 在烧结中的作用,气孔如何排除,晶粒异常长大的原因及 防止
热力学应用-Φ 函数法
• 1.定义: • 热力学势函数Φ
'
T
GT HT0
T
一般T0取298K, • 由于热力学基本函数G和H都是状态函数,Φ函 数在相变点具有连续性,所以也是一连续的状态 函数,故而对于每一种物质有形成热力学势:
GT H 298 T T '
GT H 298 T T
• 对任一反应有: G H • T • ' R T ( R ' )生成物 - (R ' )反应物 • i i • 可得反应吉布斯函变为:
' R T R 298 R
T
' R GT =R H -TR T 298
固相反应
• 纯固相反应的特点和过程:以接触为条件,包括界面上化 学反应和扩散迁移过程,并在高温下进行。 • 没有液、气相参与的纯固相反应,只有H<0(放热)反应才 能进行-范特荷甫规则 • 动力学方程:以扩散控制的两个方程为主: 1). 杨德方程:F(G)=[1-(1-G)1/3]2=Kt 2). 金氏方程:F(G)=1-2/3G-(1-G)2/3=Kt 3). 两方程比较:了解运用范围和出现误差原因 几何模型不同,杨德用了平板模型结果,只适用于初相,金 氏可适用于全过程 • 分析影响固相反应各因素:化学组成、反应物活性、温度、 压力、气氛、主要了解颗粒度、活性影响。
大学课程《物理化学》各章节知识点汇总
A (p1V1)
p
D
A S1(等 温)C S2 (等容) B
S
S1
S2
nR ln
V2 V1
C T2
T1 V
dT T
A S '1(等温) D S '2(等压) B
S S '1 S '2 nR ln
p1 p2
C T2
T1 p
dT T
B (p2V2)
T2
C T1
V
dU TdS pdV
dH TdS Vdp (
dU TdS pdV
U S
V ,ni
T
,
U V
S ,ni
p
G U pV TS
dU dG pdV Vdp TdS SdT
dG SdT Vdp BdnB
B
dU TdS pdV BdnB
B
dU TdS pdV
U
nB
dnB
S ,V ,n j B
U B
某系统经一过程由状态1变为状态2之后,如果采用任何 方法都无法使系统和环境都完全复原,则该过程为不可 逆过程。
准静态压或膨胀过程,如果没有因摩擦而造成能量 损失等情况下就是一可逆过程。
可逆过程的主要特点: 1.可逆过程是以无限小的变化进行,系统始终无限接近 平衡态。 2.系统在可逆过程中作最大功,环境在可逆过程中作最 小功即可逆过程效率最高。
B
dH TdS Vdp BdnB
B
dF SdT pdV BdnB
B
dG SdT Vdp BdnB
B
纯理想气体的化学势
p
T
Gm p
T
Vm
d Vmdp
(T , p) (T ) RT ln p
物理化学大一知识点笔记
物理化学大一知识点笔记一、热力学1. 热力学基本概念- 系统与环境- 状态函数与过程函数- 热力学第一定律2. 理想气体状态方程- 环境压强与气体压强- 环境温度与气体温度- 理想气体状态方程及其推导3. 内能、焓和焓变- 内能的定义和性质- 焓的定义和性质- 焓变与热量的关系4. 熵和熵变- 熵的定义和性质- 熵增原理- 熵变与热量的关系5. 等温、绝热过程- 等温过程的性质和示意图- 绝热过程的性质和示意图- 理想气体的等温、绝热过程公式6. 热力学循环- 闭合系统的热力学循环- 热机效率和制冷系数- 卡诺循环和卡诺定理二、化学反应动力学1. 反应速率与反应级数- 反应速率的定义和表达式- 反应级数与反应速率的关系- 零级、一级和二级反应速率方程2. 碰撞理论- 碰撞理论的基本思想- 反应物分子碰撞的能量、角动量要求- 碰撞理论与反应速率的关系3. 简单化学反应动力学公式- 推导简单化学反应速率方程- 求解反应速率常数和反应级数- 缓慢反应和快速反应的判断4. 温度对反应速率的影响- 温度对反应速率的影响规律- 阿伦尼乌斯方程及其应用- 活化能和反应速率常数的关系5. 反应速率与浓度的关系- 工程级数和动力学级数的定义与区别- 工程级数和动力学级数的计算方法- 浓度对反应速率的影响规律6. 反应平衡和化学平衡常数- 反应平衡的条件- 平衡常数的定义和性质- 平衡常数与反应热力学的关系三、电化学1. 电化学基本概念- 电解质与非电解质- 电解和电极- 电池和电解槽2. 电解过程- 电解过程的基本方程- 电解过程的质量和电荷关系- 电解过程的电动势和电压3. 电池和电池电势- 电池的基本构成和工作原理- 电池的电动势和电动势方程- 电池电势和标准氢电极的关系4. 氧化还原反应- 氧化还原反应的基本概念- 氧化还原反应的电子转移和离子转移- 氧化还原反应的电子转移系数5. 电化学动力学- 过电位和极化现象- 极化曲线和电解过程的动力学- 电化学反应的速率方程和电流效率6. 腐蚀与防护- 金属腐蚀的基本机理- 腐蚀速率与电流密度的关系- 防腐涂层和电阻涂层的应用以上是物理化学大一知识点的笔记,涵盖了热力学、化学反应动力学和电化学三个方面的基础概念和公式。
华南理工大学无机化学、物理化学考研复习心得与资料准备
华南理工大学物理化学、无机化学考研复习心得与资料准备华南理工大学的物理化学和无机化学专业考研考试科目都为:101思想政治理论、201英语一、629物理化学(一)和866无机化学。
其中无机化学专业对外招生约5人,物理化学对外招生约10人(除去推免保送),可以说招生人数很少。
另外补充一些数据,每年华工化学与华工学院的考研人数超过1200人,招生约240,其中保研人数约1/3,所以考研成功的概率约15%-20%(报录比),竞争压力是很大的。
尤其是热门专业的竞争更剧烈,录取率更低。
看到这可能很多人已经犹豫要不要放弃或者转考其他学校了。
其实不必紧张,热门学校必然有值得你去拼搏的地方。
考研决心很重要,尽管很多人考研,但是真正认真备考坚持下来的并不多。
之前看过别人写的经验,讲自己考研挺轻松,没花多少时间,那大多数是假的,当然我也不否定有些天才的存在。
如果没有理由和动力去支撑自己的考研之路,是很难坚持走下去的。
我的理由之一就是实现我高考遗落的目标——华南理工大学。
我本科是普通二本学校,经过大半年的努力,考取初试总分404(政治74/英语69 /物化130无机131),排名第6位(前5名是保研的),处于考前位置。
复试比较顺利,英语口语发挥得不是很好,分数比较低,最后得了二等奖学金,不用交学费,挺爽的。
回想当时考研复习的时光,我经历了很多,其中有苦有乐,也有很多经验想和大家分享。
近来有师弟师妹问我复习经验和资料,于是写下这篇心得,仅供各位参考。
若还有其他问题可以加我探讨一下,相互学习,共同进步(但是不要骚扰哦,呵呵)。
一、学校指定的专业课考试参考书目629物理化学(一):《物理化学》(第五版)傅献彩等编著,高等教育出版社。
852物理化学(二):《无机化学》(第二版)华南理工大学无机教研室古国榜、李朴主编,化学工业出版社2007年。
心得:其实这些书都就是自己本科学的专业教材或者相似教材。
很多人都会问,有没有复习重点呀?事实上,看过历年真题就知道,考的多数是很基础的内容,但是考研不是期末考试,想考高分还是得把书本好好复习,争取把课本上的每个知识点都看一遍。
物理化学课堂笔记
第一章:化学热力学一.绪论。
1.物理化学从化学现象与物理现象之间的联系着手,用物理学的理论和实验方法来研究化学变化,相变化及其P,V,T,物理变化本质。
了解物质的性质与其结构之间的关系规律的科学。
(简而言之就是用物理方法研究化学问题)其它定义:研究物质系统发生 pVT 变化、相变化和化学变化过程的基本原理,主要是平衡规律和速率规律以及与这些变化规律有密切联系的物质结构及性质(宏观性质、微观性质、界面性质和分散性质等)。
2.物理化学的基本组成①化学热力学:任一过程的方向和限度。
(研究化学反应的方向与限度。
例如:合成氨、人造金刚石、人造饼干等等。
)②化学动力学:任一过程的速度和机理(一个过程具体的每个步骤)。
(研究化学速率与反应机理,例H2与O2混合。
鞭炮。
4.电化学、表面化学、胶体化学。
)③结构化学:(研究物质结构与性质之间内在联系。
)3.研究方法①热动力学方法:以大量指点所构成的宏观系统为研究对象,直接从宏观实验和观察为基础,处理问题只关注起始和终止,不考虑宏观物体个别分子的行为不研究宏观系统个别粒子的结构及其变化的具体细节。
②统计力学方法:从宏观到微观的方法研究对象:大量粒子组成的宏观系统出发点:系统中微观粒子的性质(如质量、振动频率、转动惯量等)③量子力学方法:以量子力学为基础,以原子和分子为研究对象,揭示物质性质及其内在关系。
1-1基本性质(Basic Concept)1.系统和环境(System and Surrounding)①System: The materials of interest is defined as system.(研究的物质被定义为系统)Surrounding: The everything else is defined as surrounding.(其余的东西被定义为环境)②系统的分类(Classification of system)根据系统和环境,物质和能量交换方式,系统可分为敞开系统(Open),封闭系统(Closed),隔离系统(isolated)。
大学物理化学知识点总结归纳
大学物理化学知识点总结归纳第一章气体的pvT关系一、理想气体状态方程pV=(m/M)RT=nRT(1.1)或pVm=p(V/n)=RT(1.2)式p、V、T及n的单位分别为P a 、m3、K及mol。
Vm=V/n称为气体的摩尔体积,其单位为m3·mol。
R=8.314510J·mol-1·K-1称为摩尔气体常数。
此式适用于理想,近似于地适用于低压下的真实气体。
二、理想气体混合物1.理想气体混合物的状态方程(1.3)pV=nRT=(∑Bn)RTpV=mRT/Mmix(1.4)式Mmix为混合物的摩尔质量,其可表示为Mmix def ∑BBy M B(1.5)Mmix=m/n=∑BBm/∑Bn(1.6)式MB为混合物某一种组分B的摩尔质量。
以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。
2.道尔顿定律pB=nBRT/V=yBp(1.7)P=∑Bp(1.8)理想气体混合物某一种组分B的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。
而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。
以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
3.阿马加定律V B *=nBRT/p=yBV(1.9)V=∑V*(1.10)VB*表示理想气体混合物物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。
理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。
以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc 或tc表示。
我们将临界温度Tc时的饱和蒸气压称为临界压力,以p表示。
在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以Vm,c 表示。
物理化学笔记
物理化学笔记
物理化学是研究物质的微观结构、性质和变化规律的学科,它同时融合了物理学和化学的原理和方法。
以下是一些物理化学的重点内容和笔记概要:
1. 热力学与热化学
- 热力学第一定律:能量守恒定律,热量与能量的关系;
- 热力学第二定律:熵增加定律,热量的自然流动方向;
- 热力学第三定律:绝对零度,熵为零的状态。
2. 状态方程与气体行为
- 状态方程:描述气体性质的数学关系,例如理想气体状态方
程 PV=nRT;
- 理想气体与非理想气体:理想气体假设与修正,非理想气体
的涨落与相互作用。
3. 相平衡与相变
- 相平衡条件:平衡态的热力学基准状态,物质的自由能最小;- 相变过程:固液气体之间的相互转变,如蒸发、熔化、凝固等;
- 相变的热力学分析:相变的熵变、焓变和自由能变化。
4. 反应动力学
- 反应速率:化学反应的速度与反应物浓度的关系,速率方程;- 反应机理与活化能:反应的分子层面过程解释,活化能的影响;
- 影响反应速率的因素:温度、浓度、催化剂等。
5. 量子化学
- 波粒二象性:介绍粒子和波特性在微观领域的表现,不确定性原理;
- 量子力学:电子和其他微观粒子的行为和性质,波函数、薛定谔方程;
- 原子结构和分子结构:原子和分子轨道的描述,化学键与化学反应。
这些只是物理化学的一部分内容,学习过程中还需要进一步深入理解和应用。
希望这些简要笔记能够帮助你对物理化学有一个初步的认识。
物理化学学习笔记
绪论§0.1物理化学课程的内容一、物理化学课程的内容1.物理化学课程简介是从化学现象与物理现象的联系去寻找化学变化规律的学科。
2.物理化学主要的研究内容:(1)物质的相变化及化学变化。
(2)变化的可能性和变化的速率。
变化的可能性:化学热力学变化的速率:化学动力学3.物理化学构成:化学热力学、化学动力学、结构化学。
4.物理化学的主要理论支柱:热力学、统计力学、量子力学。
热力学——宏观系统量子力学——微观系统统计力学——两者桥梁§0.2学习物理化学的要求及方法§0.3物理量的表示及运算一、物理量的表示:1.物理量A是由其单位[A]和以单位[A]表示的量的数值{A}表示。
A={A}·[A]2.量与单位的比值A/[A]={A}表示。
p/Pa=101325 p/kPa=101.325二、对数中的物理量对数中的物理量应先除以起单位后才能进行计算。
三、量值的计算量方程第一章 气体的PVT 关系§1.1理想气体状态方程一、理想气体状态方程:1、低压气体pVT 关系三个经验定律:(1)波义尔(Boyle R)定律: 一定)常数(T n pV ,=(2)盖-吕萨克(Gay J-Lussac J )定律: V/T = 常数(n ,p 一定)(3)阿伏加德罗(Avogadro A )定律: V/n = 常数(T ,p 一定)2、理想气体状态方程:(1)nRT pV =p :单位为Pa ;V 的单位为m 3;n 的单位为mol ,T 的单位为K ;R :为摩尔气体常数,R=8.314510 J ·mol -1·K -1R=8.315 J ·mol -1·K -1(计算中)(2) 理想气体状态方程其它形式为:RT pV m =RT M m pV )/(=二、理想气体模型1、 分子间力:兰纳德-琼斯(Lennard-Jones )理论: 126r B r A E E E +-=+=排斥吸引2、 理想气体模型理想气体在微观上具备两个特征:(1) 分子间无相互作用力;(2) 分子本身不占有体积。
华南理工大学 本科物理化学复习笔记2
第七章 电化学一、重要概念阳极、阴极,正极、负极,原电池,电解池,电导L ,电导率κ,(无限稀释时)摩尔电导率Λ,迁移数t ,可逆电池,电池的电动势E ,电池反应的写法,分解电压,标准电极电位、电极的类型、析出电位,电极极化,过电位,电极反应的次序 二、重要定律与公式 1.电解质部分(1) 法拉第定律:对反应 氧化态+ z e -→ 还原态 n M = Q /zF = It / zF (2) 电导 G =1/R = A /l电导率: G (l/A ),(l/A )-称为电导池常数 摩尔电导率:☹m = c摩尔电导率与浓度关系:稀的强电解质☹m = ☹m ∞- A c(3) 离子独立定律:无限稀释溶液,电解质 -+-+-++→z z v v v v A C A C☹m ∞= v +☹m ∞,++ v - ☹m∞,-(4) 电导应用:i. 计算弱电解质的解离度和解离常数 对反应 HA H ++ A - 解离度 α = ☹m /☹m ∞平衡常数 K θ = [ α ☎ α✆] (c θ/c) ii. 计算难溶盐的溶解度难溶盐(电解质)溶液电导率的加和性: ☯溶液 ☯难溶盐 ☯水 → ☯难溶盐→ 摩尔电导率☹m ≈☹m ∞→ 溶解度c = ☯难溶盐 /☹m(5) 平均活度及活度系数:电解质-+-+-++→z z v v v v A C A C-+-+±==v v v a a a a ,-+-+±=v v vb b b ,v = v + + v - , a ±=γ±b ±/ b θ (6) 德拜-许克尔公式: I z Az ||lg -+±-=γ,其中 A =0.509(mol -1·kg)1/2 ,I = (1/2) ∑ b B Z B 22. 原电池 (1) 热力学 ∆ G = -zFE∆ S = -(∂G /∂ T )p = zF (∂ E /∂ T)p ∆ H =∆ G + T ∆ S = -zFE +zFT (∂ E /∂ T )p Q ir = T ∆ S =zFT (∂ E /∂ T )p (2) 能斯特方程∆ r G m θ = -zFE θ = -RT ln K θ∏-=B B θB ln va zF RT E E当T =298.15K 时,Vln 05916.0B B θB ⎥⎦⎤⎢⎣⎡∏-=v a z E E (3) 电极电势对于还原反应: 氧化态+ z e -→ 还原态电极电势∏∏-=B B B B θBBln ((氧化态)(还原态)(电极)电极)v va a zF RTE E电池的电动势 E = E + - E - 电池的写法:负极 正极界面表示: ┆┆盐桥 ┆可分液相接触 | 不同相 ,无法区分的界面三、关键的计算题类型1.电解质溶液部分由摩尔电导率计算解离率、解离平衡常数以及迁移数相关的题型。
物理化学下期末复习
③ dlnK
dT
RrHT2m
范霍夫公式从热力学角度说明温度对平衡常数的
影响,而阿累尼乌斯公式从动力学的角度说明温度对速率常数的
影响.
2021/6/12
32
7.各类典型复合反应的主要公式及基本要求 (1)对行反应:
对行反应的净速率等于正向速率减去逆向 速率,当达到平衡时,净速率为零。
IR越正,越先还原析出
注意:求单个电极的电势时 必须求还原电极电势。
2021/6/12
阳极反应: IR 越负,越易氧化析出
21
(1)析氢腐蚀
金属的电化学腐蚀
酸性介质中 H +在阴极上还原成氢气析出:
H + e 1 2H 2(g )
(H + |H 2)R F Tlna a H H + 2
设 aH2 1, aH+107
O H (a)ㅣ A g2O (s)ㅣ A g(s)
A g2O (s)2H 2O2e 2A g(s)2O H (a)
2021/6/12
19
(3)第三类电极
在同一溶液中存在某离子的氧化态和还原态,它们借助 惰性电极作导体,发生电极反应。
4.原电池设计举例
从化学反应设计成电池,抓住三个环节: 1.确定电解质溶液 2.确定电极 3.复合反应
2021/6/12
27
4.掌握简单级数反应的动力学特征(速率常数 的单位、线性关系、半衰期)
用体积浓度表示的反应速率,如: r=kcn, 则k指kc
若用分压表示的反应速率,如:r'=kppn
k、kP两者的关系为 kp = k (RT) 1 - n
2021/6/12
华南理工大学 本科物理化学复习笔记(1)
本科物理化学复习提纲(I)(华南理工大学物理化学教研室葛华才,2004年6月)第一章气体一.一.重要概念理想气体,分压,分体积,临界参数,压缩因子,对比状态二.二.重要关系式(1) 理想气体:pV=nRT , n = m/M(2) 分压或分体积:p B=c B RT=p y B(3) 压缩因子:Z = pV/RT第二章热力学第一定律与热化学一、重要概念系统与环境,隔离系统,封闭系统,(敞开系统),广延量(加和性:V,U,H,S,A,G),强度量(摩尔量,T,p),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q,W),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓二、重要公式与定义式1. 体积功:δW= -p外dV2. 热力学第一定律:∆U = Q+W,d U =δQ +δW3.焓的定义:H=U + pV4.热容:定容摩尔热容C V,m = δQ V /dT = (∂U m/∂T )V定压摩尔热容C p,m = δQ p /dT = (∂H m/∂T )P理性气体:C p,m- C V,m=R;凝聚态:C p,m- C V,m≈0理想单原子气体C V,m =3R/2,C p,m= C V,m+R=5R/25. 标准摩尔反应焓:由标准生成焓∆f H Bθ (T)或标准燃烧焓∆c H Bθ (T)计算∆r H mθ = ∑v B∆f H Bθ (T) = -∑v B∆c H Bθ (T)6. 基希霍夫公式(适用于相变和化学反应过程)∆r H mθ(T2)= ∆r H mθ(T1)+⎰21TT∆r C p,m d T7. 恒压摩尔反应热与恒容摩尔反应热的关系式Q p-Q V = ∆r H m(T) -∆r U m(T) =∑v B(g)RT8. 理想气体的可逆绝热过程方程:p1V1♑= p2V2♑ ,p1V1/T1 = p2V2/T2,♑=C p,m/C V,m三、各种过程Q、W、∆U、∆H的计算1.解题时可能要用到的内容(1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N2,O2,H2等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科物理化学复习提纲(I)(华南理工大学物理化学教研室葛华才,2004年6月)第一章气体一.一.重要概念理想气体,分压,分体积,临界参数,压缩因子,对比状态二.二.重要关系式(1) 理想气体:pV=nRT , n = m/M(2) 分压或分体积:p B=c B RT=p y B(3) 压缩因子:Z = pV/RT第二章热力学第一定律与热化学一、重要概念系统与环境,隔离系统,封闭系统,(敞开系统),广延量(加和性:V,U,H,S,A,G),强度量(摩尔量,T,p),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q,W),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓二、重要公式与定义式1. 体积功:δW= -p外dV2. 热力学第一定律:∆U = Q+W,d U =δQ +δW3.焓的定义:H=U + pV4.热容:定容摩尔热容C V,m = δQ V /dT = (∂U m/∂T )V定压摩尔热容C p,m = δQ p /dT = (∂H m/∂T )P理性气体:C p,m- C V,m=R;凝聚态:C p,m- C V,m≈0理想单原子气体C V,m =3R/2,C p,m= C V,m+R=5R/25. 标准摩尔反应焓:由标准生成焓∆f H Bθ (T)或标准燃烧焓∆c H Bθ (T)计算∆r H mθ = ∑v B∆f H Bθ (T) = -∑v B∆c H Bθ (T)6. 基希霍夫公式(适用于相变和化学反应过程)∆r H mθ(T2)= ∆r H mθ(T1)+⎰21TT∆r C p,m d T7. 恒压摩尔反应热与恒容摩尔反应热的关系式Q p-Q V = ∆r H m(T) -∆r U m(T) =∑v B(g)RT8. 理想气体的可逆绝热过程方程:p1V1♑= p2V2♑ ,p1V1/T1 = p2V2/T2,♑=C p,m/C V,m三、各种过程Q、W、∆U、∆H的计算1.解题时可能要用到的内容(1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N2,O2,H2等。
恒温过程d T=0,∆U=∆H=0,Q=W非恒温过程,∆U = n C V,m ∆T,∆H = n C p,m ∆T单原子气体C V,m =3R/2,C p,m = C V,m+R = 5R/2(2) 对于凝聚相,状态函数通常近似认为只与温度有关,而与压力或体积无关,即∆U≈∆H= n C p,m ∆T2.恒压过程:p外=p=常数,无其他功W'=0(1) W= -p外(V2-V1),∆H = Q p =⎰21TT n C p,m d T,∆U =∆H-∆(pV),Q=∆U-W(2) 真空膨胀过程p外=0,W=0,Q=∆U理想气体(Joule实验)结果:d T=0,W=0,Q=∆U=0,∆H=0(3) 恒外压过程:例1:1mol 理想气体于27℃、101325Pa状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃,则压力升到1013.25kPa。
求整个过程的W、Q、∆U及∆H。
已知该气体的C V,m恒定为20.92J mol-1 K-1。
解题思路:需先利用理想气体状态方程计算有关状态:(T1=27℃, p1=101325Pa,V1)→(T2=27℃, p2=p外=?,V2=?)→(T3=97℃, p3=1013.25kPa,V3= V2) 首先计算功W,然后计算∆U,再计算Q,∆H。
3. 恒容过程:d V=0W=0,Q V =∆U =⎰21TT n C V,m d T,∆H=∆U+V∆p4.绝热过程:Q=0(1) 绝热可逆过程W=⎰21TT-p d V = ∆U =⎰21TT n C V,m d T,∆H=∆U+∆pV理想气体:p1V ♑ = p2V ♑, p1V T1= p2V T2(2) 绝热一般过程:由方程W =⎰21TT-p外d V = ∆U =⎰21TT n C V,m d T建立方程求解。
5.节流过程(等焓过程):∆H=0,Q=0焦耳-汤姆逊系数μJ-T = (∂T/∂p)H,理想气体μJ-T =0,实际气体μJ-T≠06. 相变过程S(α)→S(β):(1) 可逆相变(正常相变或平衡相变):在温度T对应的饱和蒸气压下的相变,如水在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等过程。
由温度T 1下的相变焓计算另一温度下的相变焓T∆ H m θ(T 2)= ∆ H m θ(T 1)+⎰21T T ∆ C p ,m d T(2) 不可逆相变:利用状态函数与路径无关的特点,根据题目所给的条件,设计成题目给定或根据常识知道的(比如水的正常相变点)若干个可逆过程,然后进行计算。
例2:水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即H 2O(l ,1 mol ,-5℃ ,p θ)H 2O(s ,1 mol,-5℃,p θ)↓△H 2 ↑△H 4H 2O(l ,1 mol , 0℃,p H 2O(s ,1 mol ,0℃,p θ) 7.化学过程:标准反应焓∆r H m θ的计算(1) 由298.15K 时的标准摩尔生成焓或标准摩尔燃烧焓计算标准摩尔反应焓, ∆r H m θ=∑v B ∆f H m θ(B) =-∑v B ∆c H m θ(B)再利用基希霍夫公式计算另一温度T 时的标准反应焓。
注意:生成反应和燃烧反应的定义,以及标准摩尔生成焓或标准摩尔燃烧焓存在的联系。
例如 H 2O(l)的生成焓与H 2的燃烧焓,CO 2 的生成焓与C(石墨)的燃烧焓数值等同。
(2)一般过程焓的计算:基本思想是(1),再加上相变焓等。
(3)燃烧反应系统的最高温度计算:整个系统作为绝热系统看待处理由系统焓变 ∆ H =0 建立方程计算。
第三章 热力学第二定律一、重要概念卡诺循环,热机效率,熵,摩尔规定熵,标准熵,标准反应熵,亥姆霍兹函数,吉布斯函数二、主要公式与定义式1. 热机效率: = -W / Q 1 =(Q 1+Q 2)/ Q 1 = 1 - T 2 / T 1 (T 2 , T 1 分别为低温,高温热源) 2.卡诺定理:任何循环的热温熵小于或等于0Q 1 / T 1 + Q 2 / T 2 ≤0 克老修斯(R.Clausius) ∆ S ≥⎰21δQ r / T3.熵的定义式:dS = δQ r / T4.亥姆霍兹(helmholtz)函数的定义式: A =U -TS 5.吉布斯(Gibbs)函数的定义式:G =H -TS ,G =A +pV6.热力学第三定律:S*(0K,完美晶体)= 07.过程方向的判据:(1) 恒T、恒p、W ’=0过程(最常用):d G<0,自发(不可逆);d G=0,平衡(可逆)。
(2) 一般过程:∆S(隔离)>0,自发(不可逆);∆ S(隔离)=0,平衡(可逆)。
(3) 恒T、恒V、W ’=0过程:d A<0,自发(不可逆);d A=0,平衡(可逆)。
8.可逆过程非体积功的计算(1) 恒温可逆过程功:W r = ∆T A,W r ' = ∆T,V A,(2) 恒温恒压过程非体积功:W r' =∆T,p G9. 热力学基本方程(封闭系统,不需可逆)关键式:d U =T d S-p d V(源由:d U =δQ +δW,可逆过程:δQ r = T d S,δW r = p d V ) 其他式重点掌握:d G = -S d T + V d p( 来源:H=U+pV,G=H-TS,微分处理得) 恒压下:d G= -S d T和恒温:d G= -V d p 。
10. 克拉佩龙方程与克-克方程:任意相变S(α)→S(β) 的蒸气压p与T的关系(1)克拉佩龙方程:任意相变d p/d T =∆H m* / (T∆V m* )(2)克劳修斯-克拉佩龙方程:一相为气相且认为是理想气体;凝聚相为固相或液相的体积忽略,∆H m*近似与温度无关,则ln (p2/p1)=∆H m* (T2-T1) / RT1T2(3) 对于同一物质的相变,相变焓有如下的近似关系:∆升华H m* = ∆熔化H m* + ∆蒸发H m*三、∆S、∆A、∆G的计算1.∆S的计算(1)理想气体pVT过程的计算d S=δQ r / T =(d U-δW r)/T =(nC V,m d T-p d V)/T (状态函数与路径无关,理想气体:p=nRT/V) 积分结果:∆S = nC V,m ln(T2/T1) +nR ln(V2/V1) (代入:V=nRT/p)= nC p,m ln(T2/T1) + nR ln(p1/p2) (C p,m = C V,m +R)特例:恒温过程:∆S = nR ln(V2/V1)恒容过程:∆S =nC V,m ln(T2/T1)恒压过程:∆S =nC p,m ln(T2/T1)(2) 恒容过程:∆S =⎰21TT(nC V,m/T )d T(3) 恒压过程:∆S =⎰21TT(nC p,m/T )d T(4) 相变过程:可逆相变∆S =∆H/T;非可逆相变需设路径计算(5) 环境过程:认为是恒温的大热源,过程为可逆∆S = Q r(环)/T(环) = -Q(系)/T(环)(6) 绝对熵的计算:利用热力学第三定律计算的熵为绝对熵,过程通常涉及多个相变过程,是一个综合计算过程。
具体看书中有关部分。
(7) 标准摩尔反应熵的计算∆r S mθ = ∑v B S mθ (B,T)2.∆G的计算(1) 平衡相变或反应过程:∆G=0(2) 恒温过程:∆G=∆H-T∆S(3) 非恒温过程:∆G=∆H-∆T S =∆H-(T2S2-T1S1)=∆H-(T2∆S-S1∆T)诀窍:题目若要计算∆G,一般是恒温过程;若不是恒温,题目必然会给出绝对熵。
3.∆A的计算(1) 恒温恒容不做非体积功可逆过程:∆A=0(2) 恒温:∆A=∆U-T∆S=∆G-∆ (pV)(3) 非恒温过程:∆G=∆U-∆T S =∆U-(T2S2-T1S1)=∆U-(T2∆S-S1∆T)诀窍:题目若要计算∆A,一般是恒温过程;若不是恒温,题目必然会给出绝对熵。
4. 综合计算例例1. 1mol 理想气体从300K ,100kPa下等压加热到600K,求此过程的Q、W、∆U、∆H、∆S、∆G。
已知此理想气体300K时的S mθ=150.0J·K-1·mol-1,c p,m=30.00 J·K-1·mol -1。
(10分)解:W=-p∆V=-p(V2-V1) =-pV2+pV1= -nRT2+ nRT1= nR(T1-T2)=1mol×8.315J·K-1·mol-1×(300K-600K)= -2494.5J∆U= n c V,m (T2-T1) =1mol×(30.00-8.315)J·K-1·mol-1×(600K-300K)= 6506J∆H= n c p,m (T2-T1) =1mol×30.00J·K-1·mol-1×(600K-300K)= 9000JQ p= ∆H =9000J∆S = n c p,m ln(T2/T1) =1mol×30.00J·K-1·mol-1×ln(600K/300K)= 20.79J·K-1·mol-1由S mθ(600K)=S mθ(300K)+∆S=(150.0+20.79)J·K-1·mol-1=170.79J·K-1·mol-1∆TS =n(T2S2-T1S1)=1mol×(600K×170.79J·K-1·mol-1-300K×150.0J·K-1·mol-1)=57474J∆G = ∆H -∆TS =9000J -57474J =-48474J 。