高一数学函数单调性的性质
高一数学必修一第三讲《函数的单调性与奇偶性》
注意:
①函数的奇偶性是函数的整体性质;
②定义域内的任意一个 x,则-x 也一定是定义域内的一个自变量
(即定义域关于原点对称)。
★★★利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 f(-x)与 f(x)的关系;
③作出相应结论:
若 f(-x) = f(x) 或 f(-x)-f(x) = 0,则 f(x)是偶函数;
f (a2 1) f (a 1) 0 的实数 a 的取值范围.
家长签字:
第五讲 函数单调性与奇偶性的复习 一、必备基础
1.单调函数:增函数,减函数,单调性,单调区间 2.奇偶函数定义:奇偶函数图象性质
3.最值:设函数 y f x 定义域为 I,如果存在实数满足:①对于任意的 x I ,都有 f x M 。②存在 x0 I 使得 f x0 M ,那么称函数 y f x 有最大值为 M。
2、画出反比例函数 y 1 的图象。 x
(1)这个函数的定义域 是什么? (2)它在定义域 上的单调性是怎样的?证明你的结论。
家长签字:
第3页共8页
一、偶函数
暑期预科:函数
第四讲 奇偶性
勤动笔,多思考! 各位,加油!!
画出函数 f (x) x 2 和函数 f (x) | x | 的图象,思考并讨论以下问题:
你能仿照函数最大值的定义,给出函数 y f (x) 的最小值 (min imum value )的定义吗? 例 5、求函数 f (x) x 1 在区间 (0,2) 上的最小值。
x
第2页共8页
暑期预科:函数
勤动笔,多思考! 各位,加油!!
例
6、已知函数
y
2( x 1
高一数学函数单调性的性质
知识探究(一)
f ( x)
思考1:对于函数 f ( x) 定义域内某个区间
D上的任意两个自变量的值
若
f ( x1 ) f ( x2 ) 0, x1 x2
x1 , x2 ( x1 x2
则函数 f ( x)在区间D上的单调性如何?
f ( x1 ) f ( x2 ) 0 呢? 若 x1 x2
知识探究(一)
思考2:若函数 f ( x )在区间D上为增 a f ( x) 函数, a 0 为常数,则函数 af ( x) 的单调性如何?
g ( x)在区间D上 思考3:若函数 f ( x) 、 都是增函数,则函数 f ( x) g ( x)、 f ( x) g ( x)在区间D上的单调性 能否确定?
o 图1
x o 图2 x
思考6:一般地,若函数 f ( x )在区间
A、B上是单调函数,那
理论迁移
例1 函数f ( x )是 0, 上的增函数, f 1 1
求不等式 f ( x 2) 1的解集.
例2、求证:f ( x) x 2ax在[ a,)
高一年级数学
第一章 1.3 集合与函数概念 函数单调性的性质
湖南师大附中 彭萍
复习巩固
试确定函数
x 1 f ( x) 在区间 x
2
(0, ) 上的单调性.
问题提出
1.函数在区间D上是增函数、减函数 的定义是什么?
f ( x)
对于函数 f ( x)定义域内某个区间D上的任 意两个自变量的值x1 , x2,若当 x1 x 时, 2 都有 (1) f ( x1 ) f ( x2 ) ,则称函数 f ( x) 在区间D 上是增函数; (2) f ( x1 ) f ( x2 ),则称函数 f ( x)在区间D 上是减函数.
高一数学单调性知识点总结
高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
函数的单调性课件-高一数学人教A版(2019)必修第一册
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?
= 2
=
= >0
升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性
= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大
;
你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:
∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =
数学高一(上)沪教版(函数的性质 单调性)学生版
例1、判断函数 在区间 上的单调性。
变式练习1:已知 ,判断 在 上的单调性,并证明。
变式练习2:证明:函数 在 上是减函数。
例2、求下列函数的单调区间
(1) (2) (3)
例3、已知 为偶函数,且当 时单调递减,求 的单调区间。
变式练习1:设 是定义在 上的单调函数,且
(1)求 的值;
A B C D
课题
函数的性质--单调性(二)
教学目的
3、掌握函数单调性的概念,并能判断一些简单函数的单调性;
2、掌握函数单调性与函数图像的关系。
教学内容
【知识梳理】
1.函数单调性的定义?
2.证明函数单调性的步骤是什么?
3.求函数的单调区间
4.利用函数单调性解决一些问题;
5.抽象函数与函数单调性结合运用
【课堂小练】
1.“ 是奇函数”是“存在定义域内无数个 ,使 成立”的()
A.充分非必要条件B必要非充分条件
C充要条件D既非充分又非必要条件
2.设函数 为R上的奇函数,瑞对任意实数 ,当 时,总有 成立,则函数 为R上的()
A增函数B减函数C不能确定D以上均不正确
3.若 为奇函数, 为偶函数,且 ,则 _________
2.若函数 在定义域上是单调的,则 的图像与x轴的交点个数最多有一个.
3.求复合函数的单调区间的一般步骤是:(1)求函数的定义域;(2)求内层函数的单调区间;(3)考察外层函数的单调性;(4)由“同增异减”确定复合函数的单调区间.
4.当内层函数在单调区间上的值域是外层函数的单调区间的子集时,刚只要直接求出内层函数的单调区间,由“同增箅减”即可得到复合函数的单调区间,反之,则应对内层函数的单调区间进行分段,以满足上述要求。
【高中数学考点精讲】考点一 函数的单调性的判断
考点08 函数单调性与最值1、函数单调性的判断方法(1)定义法:在定义域内的某个区间上任取并使得,通过作差比较与的大小来判断单调性。
(2)性质法:若函数为增函数,为增函数,为减函数,为减函数,则有①为增函数,②为增函数,③为减函数,④为减函数。
(3)图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。
由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)复合函数法:对于函数,可设内层函数为,外层函数为,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D上单调递减.增函数减函数增函数减函数增函数减函数减函数增函数随着的增大而增大随着的增大而增大随着的增大而减小随着的增大而减小增函数增函数减函数减函数2、函数单调性的应用(1)比较大小.比大小常用的方法是①利用单调性比大小;②搭桥法,即引入中间量,从而确定大小关系;③数形结合比大小。
注:一般三个数比较大小使用中间量法(一个大于1,一个介于0-1之间,一个小于0)再结合函数的图像判断大小。
(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.解抽象函数不等式问题(如:f(a2+a-5)<2.)的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.(3)利用函数单调性求参数的取值范围.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②二次函数的单调性与开口和对称轴(对称轴左右两侧单调性相反)有关。
3.2.1函数的性质单调性说课课件高一上学期数学人教A版
只要x1 x2,就有f (x1) f (x2 )
六、 教学过程
情境创设
思考: 这里对x1, x2有什么要求?只取 0, 上的某些数是否可以? 请举例说明
六、 教学过程 画出函数f(x)=x2的图象,观察其变化规律:
情境创设
当x≥0时,y随x的增大而增大
y
x
… 1 2 3 4…
f (x) = x2 … 1 4 9 16 …
学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
四、教学重难点
重点:函数单调性定义的符号语言刻画。
难点:归纳函数单调性的定义及用定义 证明函数的单调性。
学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
五、教学方法
教师为主导
启发 引导 点拨
通过活动 创设情境
y
y x 1
y x2 y
O
x
O
x
增函数、减函数是针对的是函数的整个定义域,是函数的整体性质, 而函数的单调 性是对定义域下的某个区间,是函数的局部性质. 一个函数在定义域下的某个区间具有单调性,但在整个定义域上不一定具有单调性.
六、 教学过程
概念剖析
六、 教学过程
例题解析
例题探究---证明函数的单调性 例1. 根据定义,研究函数f(x)=kx+b(k≠0)的单调性.
当x从1增到2, f (x)则从1增大到4;
O
x
当x从2增到3, f (x)则从4增大到9; 当x从3增到4, f (x)则从9增大到16;
……
思考: 你觉得更严格的表达应该是怎样的?
六、 教学过程 画出函数f(x)=x2的图象,观察其变化规律:
高一数学必修1函数知识点总结
高一数学必修1函数知识点总结一、函数的基本概念函数的定义:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫做函数的值域。
二、函数的性质函数的奇偶性:若f(x)是偶函数,那么f(x)=f(-x);若f(x)是奇函数,且0在其定义域内,则f(0)=0;判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或f(x)≠f(-x);奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性。
函数的单调性:通过对函数求导,可以判断函数的单调性。
若导数大于0,则函数在此区间内单调递增;若导数小于0,则函数在此区间内单调递减。
三、复合函数复合函数的定义域:若已知g(x)的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;复合函数的单调性:由同增异减判定,即内外函数单调性相同时,复合函数单调性相同;内外函数单调性相反时,复合函数单调性相反。
四、对数函数对数函数的定义域为大于0的实数集合;对数函数的值域为全部实数集合;对数函数总是通过(1,0)这一点;当底数a大于1时,对数函数为单调递增函数,并且上凸;当0<a<1时,对数函数为单调递减函数,并且下凹。
五、函数图像与对称性函数图像的对称性可以通过观察图像或利用函数的性质进行判断;对于某些特定的函数,如反比例函数,其图像具有特定的对称性。
六、指数函数与幂函数指数函数的形式通常为y=a^x,其中a为底数,x为指数;幂函数的形式为y=x^n,其中n为实数。
这些知识点构成了高一数学必修1中关于函数的基本框架。
在学习过程中,需要深入理解每个知识点的概念、性质和应用,同时结合具体的例题和习题进行练习,以加深对知识点的理解和掌握。
高一函数的概念与性质
高一函数的概念与性质高一数学中,函数是一种重要的数学概念,也是解决实际问题的重要工具。
理解函数的概念和性质对于学生学好高中数学非常关键。
本文将详细介绍函数的概念与性质。
一、函数的概念函数是自变量与因变量之间的一种对应关系。
具体来说,设有两个非空数集合A和B,若对于集合A中的每个元素,集合B中都有对应的唯一元素与之对应,则称这种对应关系为函数,记作y=f(x),其中x是自变量,y是因变量。
例如,设A={1,2,3},B={2,4,6},若设f(x)=2x,则可以得到以下对应关系:x,123f(x),246这种对应关系满足每个自变量都对应着唯一的因变量,因此可以称之为函数。
函数还可以通过图象来表示。
函数的图象是平面直角坐标系上的一条曲线,其中自变量x的取值范围对应着横轴,因变量y的取值范围对应着纵轴。
函数的图象有助于我们更直观地理解函数的性质。
二、函数的性质1.定义域和值域函数的定义域是指自变量x可以取的值的集合。
在函数的定义域内,函数是有意义的。
如果一个值不在函数的定义域内,将没有对应的函数值。
函数的值域是函数在定义域内所有可能的函数值的集合。
它是因变量的取值范围。
2.单调性与增减性函数可以具有单调递增性或单调递减性。
函数f(x)是单调递增的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≤f(x2)。
函数f(x)是单调递减的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≥f(x2)。
若函数在定义域的每一段上都是单调递增或单调递减的,则称该函数为增函数或减函数。
3.奇偶性函数的奇偶性是指函数图象关于坐标系的一些特点的对称性。
一个函数f(x)是奇函数,当且仅当f(-x)=-f(x),即函数图象关于原点对称。
一个函数f(x)是偶函数,当且仅当f(-x)=f(x),即函数图象关于y轴对称。
4.周期性函数的周期性是指函数图象具有其中一种重复性质,即函数值在一定范围内以其中一数值为间隔重复出现。
高一数学导数与函数的单调性与极值
高一数学导数与函数的单调性与极值函数的单调性和极值是数学中的重要概念,对于理解函数的性质和解决实际问题都具有重要意义。
在这篇文章中,我们将探讨高一数学中导数与函数的单调性和极值的概念、性质及其应用。
一、导数与函数的单调性函数的单调性是指函数在定义域上的变化趋势。
在数学中,导数是描述函数变化率的重要工具。
1.1 导数的定义对于函数 y=f(x),若函数在点 x0 处可导,则导数 f'(x0) 的定义如下:f'(x0) = lim(h->0) [f(x0+h) - f(x0)] / h其中,lim 表示极限,h 为自变量的增量。
1.2 单调性的判定通过导数的符号来判断函数的单调性:若在某一区间内,f'(x)>0,函数单调递增;若在某一区间内,f'(x)<0,函数单调递减;若在某一区间内,f'(x)=0,函数在该区间内可能有极值点。
1.3 单调性的应用函数的单调性在实际问题的建模和求解中具有重要应用,例如在经济学中,可以利用函数的单调性来研究供求关系、市场行为等问题。
在求解最优化问题时,函数的单调性也是一个重要考虑因素。
二、导数与函数的极值函数的极值包括最大值和最小值,用于描述函数的局部极限。
2.1 极值点的定义对于函数 y=f(x),若存在 a,使得 f(a) 是函数在该点上的最大值或最小值,则称 a 为函数的极值点,而 f(a) 称为函数的极值。
2.2 极值点的判定通过导数的性质来判断函数的极值点:1) 若 f'(x) 在 a 点两侧变号,则 a 点是函数的极值点;2) 若 f'(x) 在 a 点两侧保持符号相同,则 a 点不是函数的极值点。
2.3 极值点的应用函数的极值在实际问题的求解中起着重要的作用。
例如,在工程中优化设计问题,可以通过求解函数的极值来找到最优解。
在生物学中,可以利用极值点来研究生物体的最佳生长环境。
总结:通过学习导数与函数的单调性和极值,我们可以更深入地理解函数的性质和变化趋势。
高一函数的性质知识点
高一函数的性质知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一函数的性质知识点函数的性质是高一数学的重要内容,有哪些知识点要学生了解?下面给大家分享一些关于高一函数的性质知识点,希望对大家有所帮助。
高一数学函数单调性的性质
只见这个这件怪物儿,一边狂舞,一边发出“吱吱”的异声……!猛然间月光妹妹高速地使了一套盘坐狂跳揍鸭蛋的怪异把戏,,只见她妙丽的透射着隐隐天香的玉白色腕花
中,萧洒地涌出五簇耍舞着⊙金丝芙蓉扇@的城堡煤筋马状的弹头,随着月光妹妹的晃动,城堡煤筋马状的弹头像肥肠一样在双腿上华丽地组织出飘飘光罩……紧接着月光妹
,求不等式
例2数,求实数 的取值范围.
例3 已知定义在R上的函数 满足:对任
意 R,都有
,且当
时,
,试确定函数的单调性.
作业: P39 习题1.3A组:1,2,4.
1.3.1 单调性与最大(小)值 第二课时 函数单调性的性质
问题提出
1. 函数在区间D上是增函数、减函数的定义是什 么? 2. 增函数、减函数的图象分别有何特征?
3. 增函数、减函数有那些基本性质?
f (x)
知识探究(一)
对于函数 f (x)定义域内某个区间D上的任意两
个自变量的值 x1, x2 ,若当 x1 x2时,都有
知识探究(二)
如果函数y=f(x)在区间D上是增函数或减函数,则 称函数 f (x)在这一区间具有(严格的)单调性,区 间D叫做函数 f ( x)的单调区间,此时也说函数 f (x) 在这一区间上是单调函数. 思考1:函数 f ( x) kx b 是单调函数吗?
思考2:函数 f ( x) | x | 在R上具有单调性吗? 其单调区间如何?
(1)f (x1) f (x2 ) ,则称函数 f (x) 在区间D上是 增函数;
(2)f (x1) f (x2 ) ,则称函数 f (x) 在区间D上是 减函数.
思考1:对于函数 f (x)f(定x) 义域内某个区间D上的任意
两个自变量的值 x1, x2 (x1 x2 ),若 f (x1) f (x2) 0 ,
高中数学函数单调性的几种常见题型总结
高中数学函数单调性的几种常见题型总结在高中数学学习中,函数是非常重要的一部分内容。
其中,函数的基本性质——单调性更是重中之重。
在对函数问题的考查中,函数的单调性占很大的比重。
因此,需要对函数单调性的常见题型进行系统的归纳总结。
本文将从以下四方面结合具体的例子来分析总结涉及到函数单调性的几种常见题型。
一、分段函数单调性问题目前,高中数学教材必修一中这样定义函数单调性:一般地,设函数定义域为 :如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。
根据定义,我们可以得到,若函数在上单调递增,则满足两个条件:(1)在上单调递增,在上单调递增;(2);同理,若函数在上单调递减,则满足两个条件:(1)在上单调递减,在上单调递减;(2) .例题:已知函数在上是减函数,则的取值范围是.这道题考查的是分段函数的单调性问题。
根据题意,时,是二次函数,在对称轴左侧单调递减;时,是对数函数,在时单调递减;再利用端点处的函数值大小关系即可得出满足条件的的取值范围。
解答:当时,为二次函数,对称轴为,在对称轴左侧单调递减,所以,解得;当时,,当时单调递减。
所以可得到,需满足,解得 .所以答案为.这里需要注意的是端点处函数值的大小关系是学生容易忽略或出错的地方,我们在教学中需要加以解释与强调。
利用函数单调性参数取值范围在这一类问题中,我们重点分析以下这种与对数函数相关的复合函数类型的题目,这是学生们的易错点,我们在上课时需要引起重视。
例题:若在区间上递减,则的取值范围为().这道题考查与对数函数相关的复合函数的单调性,我们知道复合函数单调性遵从“同增异减”的原则。
解答:令,则,由题意,在区间上,的取值需令真数,且函数在区间上单调递减。
配方得,故对称轴为,如图所示:由图像可知,当对称轴时,在区间上单调递减,又真数,二次函数在上单调递减,故只需当时,,则时,真数恒成立,代入解得,所以得取值范围是 .故选 .在教学过程中,我发现“真数大于0”这一条件在解题过程中很容易被忽略,或者有的学生对“真数大于0”这一条件该如何列不等式计算模棱两可,所以这一类型的题目在学生们中出现了“屡教不改”的现象。
高一数学函数单调性的性质
知识探究(一)
思考2:若函数f (x)在区间D上为增
函数a, 0 为常数,则函数a f (x)
afx)在区间D上
都是增函数,则函数 f (x) g(x)、 f (x) g(x)在区间D上的单调性
能否确定?
问题提出
思考:函数 f (x) kx b 是单调函数吗
若 f (x1) f (x2 ) 0 ,
x1 x2
则函数 f (x)在区间D上的单调性如何?
若 f (x1) f (x2 ) 0 呢?
x1 x2
; https:/// 网上游戏棋牌
;
走,心中有一份心安理得的坦然。。 一种令人怅然以致走入恐惧的想像,像雾霭一般不可避免地缓缓升起,模糊了我们的来路和去处,令人不得不断然打住思绪。我们的生命,端坐于概率垒就的金字塔的顶端。面对大自然的鬼斧神功,我们还有权利和资格说我不重要吗? 你的身体是跟 随你终身的好朋友,在它那里,居住着你自己的灵魂。如果它粉碎了,你所有的理想都成飘萍。身体是会报复每一个不爱惜不尊重它的人的。如果你浑浑噩噩地摧残它,它就会冷峻地给你一点颜色看。一旦它衰微了,你将丧失聪慧的智力和充沛的体力,难以自强自立于世。。 很多东西, 不是因为它的价值高或是身世奇特我们才珍视它,是因为它其中蕴含了我们太多的心意和太久的眷恋。 如果一个人把自己的血液和骨髓捐献出来帮助别人,那么这个人的一生就超越了自我,被放大成人类最美丽的故事,成为一种充满勇敢和友爱的慈悲。。 我们有幸成为这颗星球上最高 等智慧的人类当中的一员,我觉得有一种使命感,就是要把自己的生命充分利用起来。这些是什么人告诉我的?如果一定要说是谁告诉我的,那我想是严酷的自然告诉我的,对生命的一份短暂的珍贵。 沙尘暴里也有鱼的种子 ?很多人衣橱里的婚纱还熠熠生辉,婚姻已被蠹出千疮百孔。到 底哪
08.高一寒假数学讲义:函数的单调性(定义法、图象法、性质法)(应用)【讲师版】
高一寒假数学讲义“函数的单调性(定义法、图象法、性质法)(应用)”学生姓名 授课日期 教师姓名授课时长这一部分知识一般是综合题中最基本的组成部分,先有正确的判断才会有后面一系列顺利的解题,所以相当重要。
函数的单调性1.函数的单调性我们把自变量在定义域中逐渐增加时,函数值逐渐增加(或减小)的性质叫做函数的单调性.对于某个区间上的自变量的任意两个值21,x x 当21x x <时,都有)()(21x f x f <,则函数)(x f 在这个区间上是增函数。
这个区间叫做函数)(x f 的单调增区间.对于某个区间上的自变量的任意两个值21,x x 当21x x <时,都有)()(21x f x f > 则函数)(x f 在这个区间上是减函数,这个区间叫做函数)(x f 的单调减区间.2.常见函数单调性的判断有关单调函数,我们还可以证明以下一些重要结论:(1)若函数y =f (x )和y =g (x )在公共区间A 内都是增(减)函数,则函数y =f (x )+g (x )在A 内是增(减)函数.(2)若两个正值函数y =f (x )和y =g (x )在公共区间A 内都是增(减)函数,则函数y =f (x )•g (x )在区间A 内也是增(减)函数.(3)若两个负值函数y =f (x )和y =g (x )在公共区间A 内都是增(减)函数,则函数y =f (x )•g (x )在区间A 内是减(增)函数.3.复合函数单调性的判断设有函数y =f (u ),及u =g (x ),则我们称形如y =f [g(x)]的函数是复合函数,例如32)(2-+=x x x f 以看作是由u y =和322-+=x x u 复合而成的复合函数,像这样的函数有很多,其中u =g (x )又称之为内层函数,y =f (u ),称之为外层函数.有关复合函数的单调性,我们很容易证明以下结论(证明留给读者自己完成)(见下表)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้