用放缩法证明不等式的方法与技巧答案
大学中常用不等式放缩技巧
大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)
47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn
在
x
轴上的截距为
an
.点
Bn
的横坐标为
bn
,
n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1
,
x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。
专题10 放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型 方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n 项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型. 放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小. 放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解). 放缩的方法:(1)当我们要证明多项式M A <时,我们无法直接证明两者的大小,这时我们可以将多项式M 放大为1N ,当我们能够证明1N A <,也间接证明了M A <.切不可将M 缩小为2N ,即使能够证明2N A <,M 与A 的关系无法得证.(2)当我们要证明多项式M A >时,这时我们可以将多项式M 缩小为1N ,当我们能够证明1N A >,也间接证明了M A >.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1. 常见的放缩形式:(1)()()21111211n n n n n n<=-≥--; (2)()2111111n n n n n >=-++;(3)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭; (5(()2121n n n n n n n n==--≥+-+; (6(211n n n n n n n =>=++++;(7222212111212122n n n n nn n n n ==--++-++-++; (8)()()()()()()()1211222211212121212122212121nn n n n n n n n n n n n ---=<==----------()2n ≥;(12)()()()111121122121212121n nn n n n n ---<=-≥-----.类型一:裂项放缩 【经典例题1】求证22221111.....2123n ++++< 【解析】因为()()2211111211n n n n n n n n <==-≥---,所以2222222211111111111111..........11.....=22123122332231n n n n n n ++++<++++=+-+-++--<----,所以原式得证. 为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证222211117 (1234)n ++++< 【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以222222221111111111111111........11....1231213112324351n n n n ⎛⎫++++<++++=+-+-+-+- ⎪----⎝⎭11117=112214n n ⎛⎫++--< ⎪+⎝⎭,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证222211115 (1233)n ++++<【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以 222222222111111111111111111........1....12312311222435461n n n n ⎛⎫++++<++++=++-+-+-++- ⎪---⎝⎭11111151115=1=422313213n n n n ⎛⎫⎛⎫+++---+< ⎪ ⎪++⎝⎭⎝⎭,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知2,2n n n a b n ==,设1n n nc a b =+,求证:1243n c c c +++<.【解析】已知2,2n n na b n ==,因为 222441122(21)2(21)(21)(21)2121n c n n n n n n n n n n ⎛⎫===<=- ⎪+++-+-+⎝⎭所以1221111112224233557212133132n c c c n n n ⎛⎫+++<+-+-++-=+-< ⎪-++⎝⎭,故不等式得证.【经典例题3】已知数列{}n a 满足11a =,*11(2,)n n n a a n n n--≥∈=N , (1)求n a ;(2)若数列{}n b 满足113b =,*121()n n n b b n a ++∈=N ,求证:2512n b <. 【答案】(1)n a n =;(2)证明见解析. 【详解】 (1)由题意11n n a na n -=-(2n ≥), ∴321121231121n n n a a a na a n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=-,11a =也适合.所以n a n =(*n N ∈); (2)由已知1125312b =<,214251312b b =+=<,32214119252341212b b =+=+=<, 当3n ≥时,121111(1)1n n b b n n n n n+-=<=---, 因此1343541()()()n n n b b b b b b b b ++=+-+-++-1911111125125()()()12233411212n n n <+-+-++-=-<-, 则1212512n n b b n +=-< 综上,2512n b <.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解. 【经典例题4】证明:12311115 (212121213)n ++++<----【解析】令121n na =-,则1111212111212222n n n n n n n n a a a a ++++--=<=⇒<-- 又因为1211,3a a ==,由于不等式右边分母为3 ,因此从第三项开始放缩,得21121222111115321122312n n n a a a a a a a --⎛⎫- ⎪⎛⎫⎝⎭+++<++++=+<⎪⎝⎭-故不等式得证.【经典例题5】已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ;(2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 【答案】(1)证明见解析,2nn a n =⋅;(2)1(1)22n n S n +=-+;(3)证明见解析.【详解】(1)证明:1111122211222222n n n n n n nn n n n n na a a a a a ++++++-=-=+-=, ∴2n na ⎧⎫⎨⎬⎩⎭是首项为1112a =,公差为1的等差数列, ∴1(1)12nn a n n =+-=,∴2n n a n =⋅. (2)∵1231222322n nS n =⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, ∴234121222322n n S n +=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, 两式相减得:123122222n n n S n +-=+++⋅⋅⋅⋅⋅⋅-⋅,()1212212n n n n S +-=-⋅--,∴1(1)22n n S n +=-+.(3)证明:∵2n n a n =⋅,∴11(1)2n n a n ++=+⋅,∴1(2)2n n n a a n +-=+⋅,当*n N ∈时,22n +>,∴1(2)22n n n ++⋅>, ∴111(2)22n n n +<+⋅,∴21324311111n n a a a a a a a a ++++⋅⋅⋅⋅⋅⋅----234111112222n ++++⋅⋅⋅⋅⋅⋅< 111421111122212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-.【练习1】已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<. 【答案】(1)证明见解析;(2)证明见解析 【解析】(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.【练习2】已知数列{}n a 的前n 项和为n S ,且112n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:32n T <. 【答案】(1)()*1n a n n N =+∈.(2)见解析【解析】(1)当1n =时,111112S a a =+-,即12a =, 当2n ≥时,112n n n S na a =+-①,()1111112n n n S n a a ---=-+-②, ①-②,得:()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+, 11n n a a n n-∴=+,且112a=,∴数列1n a n ⎧⎫⎨⎬+⎩⎭是以每一项均为1的常数列,则11n a n =+,即()*1n a n n N =+∈;(2)由(1)得1n a n =+,()()2222211221n a n n n n n ∴=<=-+++, 11111111113113243522122n T n n n n ∴<-+-+-++-=+--<+++.【练习3】已知函数()32x f x x=-,数列{}n a 中,若1()n n a f a +=,且114a =.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)设数列{}n a 的前n 项和为n S ,求证:12n S <. 【答案】(1)见解析;(2)见解析 【解析】 (1)由函数()32x f x x=-,在数列{}n a 中,若1()n n a f a +=,得:132n n n a a a +=-, 上式两边都倒过来,可得:11n a +=32n na a -=3n a ﹣2,∴11n a +﹣1=3n a ﹣2﹣1=3n a ﹣3=3(1n a ﹣1).∵11a ﹣1=3.∴数列11n a ⎧⎫-⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)由(1),可知:11n a -=3n ,∴a n =131n +,n ∈N*.∵当n ∈N*时,不等式131n +<13n成立. ∴S n =a 1+a 2+…+a n =2121111111 (313131333)nn +++<++++++=11133113n⎛⎫⋅- ⎪⎝⎭-=12﹣12•13n<12.∴1S 2n <.【练习4】已知函数2()2f x x x =-,数列{}n a 的前n 项和为n S ,点(),n n P n S 均在函数()y f x =的图象上.若()132n n b a =+ (1)当2n ≥时,试比较1n b +与2nb 的大小;(2)记)*1n nc n N b =∈试证1240039c c c ++⋯+<. 【答案】(1)12bnn b +<;(2)证明见解析. 【详解】(1)2()2f x x x ∴=-,故22n S n n =-,当2n ≥时,123n n n a S S n -=-=-, 当1n =时,111a S ==-适合上式,因此()*23n a n n N =-∈.从而1,1,22nb nn n b n b n +==+=,当2n ≥时,()01211 1nn n n C C n =+=++⋯>+故122nb nn b +<=(2)1n n c b n=11c =,()*2(1),21n n n N n n n n n n =<=-∈≥++- )12400 (12212)32 (2)400399c c c +++<++++400139==.◆题型二:放缩法证明数列不等式之函数型 方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数()f n 的不等关系,即12()n a a a f n +++<或者数列前n 项积与函数()f n 的不等关系,即12n a a a ⋅⋅⋅<()f n 的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将()f n 看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对n a 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列*113,31,2n n a a a n N +==-∈ (1)若数列{}n b 满足12n n b a =-,求证:数列{}n b 是等比数列。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
用“放缩法”证明不等式的基本方法
用“放缩法”证明不等式的基本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。
特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。
“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。
1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。
本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-Λ)(2121)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
常见的不等式的放缩方法
常见的不等式的放缩方法天门中学高三数学组一、先求和再放缩类型1、设数列{}n a 的前n 项的和为,n S 42n n a n=-,设2n n n T S =,1,2,3,n =⋅⋅⋅,证明:132nii T =<∑解: 由得S n = 4n 2nna =-23×(2n+1-1)(2n-1) T n = ⇒2n S n= 32×2n (2n+1-1)(2n-1) = 32×(12n -1 - 12n+1-1),所以, = 1ni =∑i T 321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 322、已知2113,12n n n a a a a +==-+,求证:20101112k ka =<<∑。
证明:2112737(1)0,,416n n n n n a a a a a a a ++-=->⇒>==>321 ⇒ 当时,,3n ≥2n a >13(1)113n n n n n a a a a a a n n +=-+>+⇒>+-=-()20112011120100,11a a ⇒>⇒∈-21111111(1)11n n n n n n n n a a a a a a a a +++=-+⇒-=-⇒=---1na ()20101112011201111111112111111k n n n ka a a a a a a =+⇒=-⇒=-=-∈-----∑,2 二、先放缩为等比数列再求和类型1、设,证明:n N +∈11nni i e n e =⎛⎫<⎪-⎝⎭∑ 证明:()ln(1)1x x x +≤<- 111111ln 1ln 1111nnnn n ii i i i i i i i i i e e e n n n n n e --+∞--===⎛⎫⎛⎫⎛⎫⎛⎫i -∴-≤-⇒-≤-⇒-≤⇒-<<=⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑11111nni i e n e e =⎛⎫⇒<+=⎪--⎝⎭∑2、已知:113443n n n a k k --⋅=⋅+-,当13k <<时,求证:138nii n k a k =->∑。
"放缩法"在不等式证明中的应用
边每 一项 进 行放 大 变 形 , 后 再 求 和. 考 虑 到左 边 然 但 通项 中含 有符 号 因子 ( ) , 以为 了既 便 于 确定 一1 一 所
a 、 8’
探 究 1 这 是 一 道 涉 及 探 求 递 推 数 列 的 通 项 公
不等 式成 立.
,
所 以
a 一2 n+2 一 1 一 × ( 1 + 一 )
2 一 × ( 1 + … + 2× ( 1 一 一 。 一 ) 一 )
2 + ( 1 r 一 2 一 + ( ) 一 ) ( ) 一2 一 + … +
能求 和 了. 当 >4且 为偶 数 时 , + +… + : +
i
i
+ ( + ) +
‘
◇
江西
李 清 泰
“ 缩法 ” 放 是不 等 式证 明的 重要 思 想 方 法. 在证 明
不等 式 的过 程 中 , 要 我 们 抓 住 不 等 式 的 结 构 特 征 , 需 选择 恰 当的 策 略 进 行 放 缩 变 形 , 以达 到证 明 的 目的.
符号 , 易于 放缩 , 又 我们 要对 m 的奇偶性 进行 讨论 , 同
时对 相邻 两项 之 和 + —L 进 行 放 大 变 形. 实 上 , 事 当 m( m≥ 3 为奇数 时 , )
式, 特殊 数列 求和 , 缩法 证 明 不等 式 的题 目 , 放 有较 强
的综 合性 . ( )由 口 一 S — 2 1 1 得 a — 1 1 1 1 a— , 1 . 由 a +n 一 S — 2 2 ( 1 得 a — 0 1 2 2 a + 一 ), 2 . 由 a + a +a 一 S = 2 3 ( 1 。 得 a — 2 1 2 3 3= a + 一 ) , 3 . = ( )当 ≥ 2时 , 2 有
用放缩法证明数列中的不等式 (1)
1 1 1 1 例1 求证: 2 3 n 1 (n N ) 2 2 2 2
分析 不等式左边可用等比数列前n项和公式求和.
1 1 (1 ) 1 2 2 左边 1 n 1 1 2 1 2
n
表面是证数列不等式, 实质是数列求和
1 2 3 n 变式1 求证: 2 3 n 2 (n N ) 2 2 2 2
1 1 1 2 (n 2) n
当n = 1时,不等式显然也成立.
变式2 (2013广东理19第(3)问) 1 1 1 7 求证: 1 2 2 2 ( n N ) 2 3 n 4
分析 变式2的结论比变式1强,要达目的,须将
变式1放缩的“度”进行修正,如何修正?
保留前两项, 1 1 1 1 1 2 ( ) (n 3) 从第三项开 2 n n 1 2 n 1 n 1 始放缩
1 1 1 1 1 1 1 1 ) 左边 1 2 ( ) ( ) ( 2 2 2 4 3 5 n 1 n 1 1 1 1 1 5 1 1 1 1 1 1 1 ( ) 1 ( ) (n 3) 4 2 2 3 3 4 2 2 3 n n 1
模型
2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 n 1 (n N ) 2 2 2 2
当n = 1时,不等式显然也成立.
例3 (2009珠海二模理20第(2)问) 1 1 1 求S 1 的整数部分. 2 3 100 1 分析 不能直接求和式 S ,须将通项 放缩为裂项相消模型后求和. n
证明数列不等式的常用放缩方法技巧(含答案)
证明数列不等式的常用放缩方法技巧(含答案)work Information Technology Company.2020YEAR证明数列不等式的常用放缩方法技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:aa >+12;n n n >+)1(⑵将分子或分母放大(或缩小)⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅; 2)1()1(++<+n n n n⑷二项式放缩: n n n n n n C C C +++=+= 10)11(2,1210+=+≥n C C n n n , 2222210++=++≥n n C C C n n n n )2)(1(2≥->n n n n(5)利用常用结论:Ⅰ.的放缩 <Ⅱ. 21k 的放缩(1) : 2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ.21k 的放缩(3):2214112()412121kk k k <=+--+(程度更小)Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b ma mb ab 和)0,0(>>>++<m b a ma mb ab 记忆口诀“小者小,大者大”。
解释:看b ,若b 小,则不等号是小于号,反之亦然. Ⅵ.构造函数法 构造单调函数实现放缩。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
用放缩法证明不等式时如何放缩
n + C 以 十D
又 因 为 2 =( 1 + 1 ) c n o + c +c A+c +c 1 +
十 八 槲1 > 2 川, 所 以 n ) > 者 。
3 “ 添舍” 放缩
< 2。
通过对 不等 式的一 边进行 添项 或减项 以达 到解题 目的 , 这是常规思路 。
的氛 围 , 为开展探究活 动做好思 想上 、 心理上 的准备。在探 究 解决 了学生 的学习态度 、 学习 习惯 问题 , 使教 学质 量的提高和 过程 中 , 教师 要通 过巡视 、 观察 、 参 与讨 论等方 式给 学生 以积 学生 学习能力 的发 展有了可靠保证 。 同时 , 也 创设了富有生机
1 分 式 放 缩
一
证明: 由题意 知 , ( , z ) 一 n 丁=
" 十 l
, ’ 十
I
一 n 丁= ( 1 一
"十 l
, _ 十
l
) 一
r 一 : : 二 1 丝 ± 2
3 , 所 以只须证 2 一 >2 n +1 ,
n + l
n + l 2 1 ( n + 1 ) ( 2 1 )’
个分式若 分子变大则 分式值变 大 ,若分 母变大 则分式
又因为 n EA r 且
值 变小 , 一个真 分式 , 分子、 分母 同时 加上 同一个 正数 则分式 值 变大 , 利用这些 性质 , 可达到证题 目的 。 例 1 :已知 a 、 b 、 c为三 角 形 的三 边 ,求 证 : 1 < L +
,
—
证明 : 由题 设得 a 2 + a b + b a + b, 于是( 口 + ) >a 2 +a b + +— + — , 又 口 , b , c为三 角形 的 边 , 故 + a +b +c ’a +b +c 。 a+b +c ’ ~ “’ ’ 。 — — n 工’ 。 b 2 =a + b , 又a + b >0 , 得 n + >l , 又 < 1( 日 + 6 ) i l i i ( 日 + 6 ) =
放缩法证明不等式例题
放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。
所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。
放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。
二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。
放缩法
1 =2- <2. n
三 反证法与放缩法
22
3.设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (1)求数列{an}的通项公式an; 解 由Sn=nan-2n(n-1)得 an+1=Sn+1-Sn=(n+1)an+1-nan-4n, 即an+1-an=4. ∴数列{an}是以1为首项,4为公差的等差数列, ∴an=4n-3.
y 2 y y x+ =x+ ≥x+ . 2 2 2
z 同理可得: y2+yz+z2≥y+ , 2 x z2+zx+x2≥z+ , 2 由于 x,y,z 不全为零,故上述三式中至少有一式取不到等 号,所以三式相加,得 x2+xy+y2+ y2+yz+z2+ z2+zx+x2>
三 反证法与放缩法
19
1 1 1 1 1.设 n 是正整数,求证: ≤ + +„+ <1. 2 n+1 n+2 2n
1 1 1 2.求证:1+22+32+„+n2<2(n∈N+).
3.设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(1)求数列{an}的通项公式an; 1 1 1 的前 n 项和为 Tn,求证: ≤Tn< . (2)设数列 5 4 anan+1
三 反证法与放缩法
14
5.若正数 a,b,c 满足 a+b>c, a b c 求证: + > . 1+a 1+b 1+c
证明 ∵a+b>c,∴a+b-c>0,由真分数的性质: c+a+b-c a+b c < = 1+c 1+c+a+b-c 1+a+b a b a b = + < + 1+a+b 1+a+b 1+a 1+b a b c ∴ + > . 1+a 1+b 1+c
数学所有不等式放缩技巧及证明方法
文档收集于互联网,已重新整理排版word 版本可编辑•欢迎下载支持.高考数学所有不等式放缩技巧及证明方法一、裂项放缩畀 2 15例1.⑴求芥门 --------- 7的值; (2)求证:>2 7T V —・A=1 4* — 1Ar = l k3例2・⑴求证:1 +丄+丄+・・・+ —>1-一!一> 2)32 52⑵Li ), 6 2(2n-1)1 1 1 1 114 16 364n 2 2 4n⑶求证丄+12+空+」"•…⑵i2 2-4 2-4-6 2-4-6••…2n例 3•求证: ---- - ---- <i + l +l + ... + -L<-(n +1)( 2/1 + 1)4 9 ir 3例4・(2008年全国一卷)设函数f ⑴二X-H1U.数列仇}满足0<q<l ・% 明:畋+】>b.例 5.已知",加 e 他,兀 > -1,S,” 二 r n + T +3川 + …+ 心求证:/严 < (m +1)5,, <(〃 + 1严 -1例 6.已知® = 4" - T , T n= ------ 二 ----- ,求证:£+◎+◎人 < —.a { + a 2 + ・• • + a n2例7.已知坷=1, £ = < W (mi,"Z),求证:亠*亠+ •..+亠>逅(耐®訓) W - l(n = 2k 、k wZ) 护2 ・x 3 化・x 5.. 4丁 /、 In 2a In 3a In n a hr -n-l例 9.求证——<^—^^>2)例 10.求证:—+ - + ・・・ + —< ln(n + 1) < 1 + —4-・・• +」■2 3 77 + 1 2 n例 11.求证:(1 + \(1 +、•….(1 + ^-Xe 和(1 + ;)(1 + 厶)•….(1 + 点)<辰 2! 3! n\ 9 81 3" 例 12•求证:(1 +1 x 2) • (1 + 2 x 3) ••…[1 + n(n +1)] > 严I12例14.已知4=1。
20181207放缩法证明不等式
(2)若 f (x) 在定义域内为增函数,求a 的取值范围;
(3)设 g(x) f (x) x2 1 ,当a 1 时,
求证:① g(x) 0在其定义域内恒成立;
求证:②
ln 22 ln 32 22 32
ln n2 n2
2n2 n 1
2n 1
。
例4. 证明: x2ex-lnx>1 .
O
1
x
x 1
x 1
x
≤lnx≤ x ≤ 1
y x
y
2
y=x-1
y=lnx
y x1 x
O
1
x
x1 ≤
x 1 x≤lnx≤ x-1
x
2
(0<x≤1)
6.(本小题满分 14 分)设函数 f (x) ln x x2 ax 。 (1)若 f (x) 在x 1 处取得极值,求a 的值;
O
1
x
方法三:
方法四:
又由
f '(x0)=0
得:( x02
2 x0 ) ex0
1 x0
0
e x0
1 x02 ( x0
2)
x02 e x0
1 x0 2
f (x)≥ f (x0)=
x02ex0 ln x0 =
1 x0 2 ln x0
构造函数 h(x)=
1 ln x x2
,
x
放缩法证明不等式
放缩的方法
1。运用基本不等式和常见结论进行放缩 2。运用切线方程进行放缩 3。运用题目给出的不等式进行放缩。 4。运用参数范围进行放缩
切线放缩原理及常见的切线放缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用放缩法证明不等式的方法与技巧一.常用公式 k(k +1)k(k -1)2. _____________ w ___ £ ________ ____k 2 2 >k (k > 4) k 4. 1 x 2x 3x”…X k >2 (k > 2) 丄凸丄 k ! 2 ( k_1)! b (待学) 二•放缩技巧 (1)所谓放缩的技巧:即欲证 A < B ,欲寻找一个(或多个)中间变量 C ,使A < C < B , 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 若 t 〉0, a+t >"a,a — t ■<a (2) (3)J n —1 V T n, 2亦〉T n + J n -1 , J n +1 _1〉作—1, J n(n ■+1) >7^^ = n 1 1 1 —— --- = -------- n n +1 n(n +1) (4) 2( J n +1- >/n)= 1 1 11,^ <p < --------- = ---- —一(n A 1) n 2n(n -1) n-1 n 2 2 1 < ——(5) (6) (7) U n +1 + v n v n +v n v n v n +j n -1 卄-a a aa +m 右 a, b,m 匸 R 则一 > ----- ,一 < ----b b+m b b 1 “1 + 1 . . 1 n! 2 22 2n」 1 1 1 1 + …c 1 +(1 —一) +(— 一一) n 2 2 3 + 1 3!1 (7) (8)=2(V n - J n -1)J 2! 1 + — + — 22 32 1 1 1--)(因为—< -------------- ) n n (n-1) n 丄+丄+丄1 n +1 n +2 n +3 或丄十丄十丄 n +1 n +2 n +31 +丄+丄+…+丄 …亠丄 2n n +1 ,丄」 2n A 丄+丄+… 需T n +丄 n +1 十丄+ 2n 2n •+丄 T n "丄 n +1 2n —<1 n +1_ n _ 1 —2n — 2 -n= V n 等等。
v n三•常见题型 (一).先求和再放缩: 1•设 s, =! + 1+ 丄+■- + 2 6 12 n(n+1) 1,求证:Si <11 M2 .设0=— ( n 匸N ),数列{b n b n^}的前n 项和为T n ,求证: n(二).先放缩再求和:3 .证明不等式:1+^—+一1——1 1x2 1x2x3----------- <2 1 x2x3x■…X n1 1 4.设S n / +尹+孑+■■■(1)求证:当n >2时,丄n +1<S n <2 ;(2)试探究:当n >2时,是否有5<S^-?说明理由-(n +1)(2 n+1) 3 6n5.设b n _ 1 "2(1) b n 2n —1 求证:6 .设an 求证2nV J2n十厂=n , b n =((2)a n + a n+b l +b2 +b3 十"+b n < J2n+1-1)22E a n + an+ 7n(^1)n * (2)D +b2 + b3 十"+bn W——(n 忘N )n+17.设b n =(n+1)2,a n = n(n +1),求证:1+ 1+…+a j +0 a2 +b2 a n8 .蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形, 7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第1 1 5<+ b n 12如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有(1)试给出f(4), f(5)的值,并求f(n)的表达式(不要求证明);(2)证明: --- +---- +----f(1) f(2)+…+1 4--- <—.9 . (10广州) 设S n为数列牯訂的前n项和,对任意的n亡N *,都有S n =(m+1 )—ma n (m为常数,且m^O).(1)求证:数列{a j是等比数列;(2)设数列{an }的公比q = f (m ),数列fc n >满足 d = Za^b n = f (gj ) (n >2,N* ),求数列{bn} 的通项公式;(3)在满足(2)的条件下,求证:数列{b n2}的前n项和T n c89.1810 . ( 010 深圳)在单调递增数列{a n }中,31=1 ,32 =2,且a 2n , a 2n , a 2n 半成等差数列,a 2n , a 2n 甲,32^|2成等比数列,n = 1,2,3「"".1)]T n =b 1b 3 +b 2b 4 +b 3b 5 卡"b n bi *1 1 1 1 132 43 5円厂6)*+(丁忌)] 1 1 + +1X2 1X2X3 <1+1+丄丄=2-丄 <2'2 2?2*4 2“』<1 22 .2n 4n4•解:(1)•••当 n>2时,2< 1n (n -1)n n T n 1 1 1 /. 1 + — + —十"+——' _2 -2 22 3 n 1 1 1 <5—)七-尹•• 2 (2 n T n +1 1 1)]=2———<2n +1n(n +1) n n +1 =1」 n +1 n +1 n +1二当n >2时, n+1V Sn V 2=2((2n —1)(2n+1) 2n-1 2n +1(1) 分别计算a 3, a 5和34, a 6的值;(2) 求数列{a n }的通项公式(将a n 用n 表示); (3) 设数列{丄_}的前n 项和为S n ,证明:S nn +2a n2 .证:bn bb^ =1b n =—n1乙丄- n(n +2) 2 n—-)<3.42 n +1n +23 .证明:10 . ( 010 深圳)在单调递增数列{a n }中,31=1 ,32 =2,且a 2n , a 2n , a 2n 半成等差数列,a 2n , a 2n 甲,32^|2成等比数列,n = 1,2,3「"".1)]十2^+尹一書"扬—少弋-1严+(12n-1 2n+15 23 "2 n+1 5 <3当n >2时,要S n6n 6n > ---------------- 只需—n — >(n +1)(2 n +1) n +1 (n +1)(2 n +1)即需2n +1 >6,显然这在n >3时成立 而 s 2 =1 +14 6n=5,当n >2时 4(n +1)(2 n +1) (2+1)(4+1) 55显然4即当n >2时S n6n> ----------- (n +1)(2 n+1) 也成立 综上所述:当 n >2时,有6n cSn <2. (n +1)(2 n+1) 3 5 .证法一: 2 2 2 2 2•- 4n -1<4n , •- (2n -1)(2n+1)<4n = (2n-1) (2n+1)<4n (2n -1).2n —1 2n J 2n —1 < J 2n +厂 2n —1 2n 怎亦…J 2n -1 亦 x/7 j 2n +1 J 2n +1 10分证法二: 2n -1 2n -1----< 2n 证法三: J (2 n)2 -1 J2n 日,下同证法一 J 2n +110分(利用对偶式)设A=12 5, 6 1 2 2 则 AiB n = ----------.又 4n 2 —1 c 4n 2,也即 2n2n —1 2n 2n+1又因为 A n 2n +1 2n 2n < ----2n +1 所以 21A ^Bn ,也即 An "nBn=2^>0,所以A n J 2n +1 .即5 p^—6 2n —1 2n V j 2n +1 ■ 10分证法四:(数学归纳法) X 1L ,命题成立; 43②假设n = k 时,命题成立,即1 - 2 45 Ir^—62k —1 1 ---- < 2k1 3 则当n =k +1时,-F —2 45…2k -16 2k 中1 2k+12k 2(k +1)J 2k +1 2(k+1)如中12(k +2)111分-12<0(k + 1)(2k +3)2(k +2)k +1 < ----k +2 k +1 二 d +b 2 +…+bk +k 中1 (k +1) +12k +11 (2k+1)(2k +3)-4(k +1)2—— = 24(k +1) 2k +34(2k +3)(k +1)(4k 2 +8k +3) -(4k 2 +8k +4)2丈 0=2=4(2 k +3)(k +1) 4(2k +3)(k +1)亠即込1.亠2k +3 2k +2 J 2k +32k -1 2k +1 ” 1 2k 2(k+1) T k +3故当n =k +1时,命题成立. 综上可知,对一切非零自然数n ,不等式②成立.②由于 ”, a J 「 一 < J 2k +1 - J 2k -1, 72k +1 J 2k +1 +J 2k -11所以b k 吒jJ 2k +16.证明:(法一)k +1 k +22 2 2= k(k +2)(2k +3) +4(k +1)(k +2) —(k +1) (2k +3) — 2(k +1)(2k +3) (k +2)2 2 2(2k +3) [k(k +2) —(k +1) ]+4(k +3k +2)(k +1)(2k +3)2(k +2) -12k +1 4(k +1)210分< J 2k +1 - J 2k -1, 从而b , + b 2屮"b n 也即b i + b 2屮"b nc (73—1 )+(75-两 +…+(J 2n +1 - J 2n -1) = 丁2 n +1-1. c J 2an +11 ,,,,,,14分a n +a n 十2anan +)2 < 1n(n +1)' 2 1an中 an +J a * £n 即b n <——1—— ... n(n +1) J n(n +1)"1+b 2+b 3-+bn <1.2L+丄 2 ”3 +…n(n +1) =1丄12丄…丄丄 2 3 n n +1=1-丄 n 中1 12分(法二)(1) 当n =1时,右=0=(n +1£右=19-,显然成立,,,,2 (2)假设n =k 时,kV (急)2即当n = k +1时,不等式成立,由(1)(2)可得原不等成立。