高频通信开关电源的设计

合集下载

48V10A高频开关电源设计

48V10A高频开关电源设计

.摘要随着大规模集成电路的开展,要求电源模块实现小型化,因而需要不断提高开关频率和采用新的电路拓扑构造,这就对高频开关电源技术提出了更高的要求。

本文设计的是一款具有实时监控、显示的高频开关电源。

采用软开关技术可以有效的降低开关损耗和开关应力,有助于变换器效率的提高。

而PFC 技术可以提高AC/DC变换器的输入功率因数,减少对电网的谐波污染。

系统以MOS管作为功率开关器件,构成移相全桥ZVS PWM直流变换器,采用脉宽调制PWM技术,PWM控制信号由集成控制器UC3875产生,从输出实时采样电压反响信号,以控制输出电压的变化,控制电路和主电路之间用变压器进展隔离,并设计了软启动和保护电路。

显示、监控用AT89C52、TLC2543和1602模块实现。

最后利用仿真验证本设计,分析该系统能平安可靠运行,到达了设计要求。

关键字:高频开关电源,Boost变换器,相移ZVS-PWM变换器,仿真.AbstractWith the development of large scale integrated circuit, power supply module to realize miniaturization, so need to constantly improve the switch frequency and adopts the new circuit topology, it is of high frequency switching power supply technology put forward higher request.Is a design in this paper has real-time monitoring, display of high frequency switch power supply. The soft switch technology can effectively reduce the switching loss and switch stress, help to enhance the efficiency of converter. PFC technology can improve the input power factor of AC/DC converter, reduce the harmonic pollution to power network. System to MOS tube as power switching device, constitute the phase shifting full bridge ZVS PWM dc converter, using pulse width modulation PWM technology, PWM control signal generated by the integrated controller UC3875, and from the output voltage feedback signal real-time sampling and to control the change of the output voltage, the control circuit and main circuit between isolation transformer, and design the soft start and protection circuit. Display, monitoring using AT89C52, TLC2543 and 1602 module implementation. Finally validate this design by simulation analysis of the system can be safe and reliable operation, has reached the design requirements.Keywords: HF SwitehPowerSuPPly, Boost-Converter,Phase-shifted ZVS PWM converter, Simulation.目录摘要 (I)AbstractII第1章绪论01.1高频开关电源的开展现状 01.2高频开关电源的概念21.3课题简述 (4)45第2章总体方案设计62.1设计内容62.2高频开关电源667摘要 (I)Abstract (II)第1章绪论 01.1高频开关电源的开展现状 01.2高频开关电源的概念 (2)1.3课题简述 (4)1.3.1本课题的意义 (4)1.3.2本课题的研究方法 (5)第2章总体方案设计 (6)2.1设计内容 (6)2.2高频开关电源 (6)2.2.1高频电源开关的根本原理 (6)2.2.2开关电源的电路组成 (7)2.2.3电路单元介绍及设计内容 (8)第3章输入电路设计 (9)3.1EMI电源滤波器 (9)3.2整流滤波单元 (10).3.2.2元件参数计算 (11)3.3输入电路原理图 (12)第4章功率因素校正(PFC) (13)4.1功率因数校正概述 (13)4.2软开关技术 (15)4.2.1软开关技术原理 (15)4.2.2软开关技术的根本实现方法 (17)4.3单相软开关有源校正主电路的选择 (17)4.5 Boost变换器参数计算 (19)4.6 Boost变换器驱动电路设计 (21)第5章直流变换器设计 (28)5.1开关器件的选择 (28)5.2主电路拓扑构造设计 (29)5.3高频变压器设计 (33)5.3.1变压器设计方法 (33)5.3.2变压器参数计算 (34)5.4谐振电感电容 (37)5.5 PWM控制控制电路设计 (37)5.5.1电路参数计算 (38)5.5.2波形分析 (39)5.6驱动电路 (40)5.7输出滤波电路设计 (41)第6章辅助及保护电路设计 (43)6.1辅助电源设计 (43)6.2保护电路设计 (44)第7章显示、监控模块设计 (47)7.1 AD芯片TLC2543介绍 (47)7.2单片机模块简介 (49)7.3 LCM1602液晶简介 (50)7.4 显示、监控模块原理图 (50)7.5主程序设计 (51)第8章仿真与分析 (52).8.2功率因素校正(APFC) (53)未加功率因数校正器仿真分分析 (54)8.2.2加功率校正器仿真分析 (55)8.3基于UC3875的移相变换器仿真分析 (58)PWM控制电路仿真分析 (58)移相全桥ZVZCS变换器仿真分析 (60)8.4显示、监控模块仿真分析 (61)结论 (64)致谢 (65)参考文献 (66)第3章输入电路设计93.1EMI电源滤波器93.2整流滤波单元1010113.3输入电路原理图12第4章功率因素校正(PFC)134.1功率因数校正概述134.2软开关技术1515174.3单相软开关有源校正主电路的选择174.5 Boost变换器参数计算194.6 Boost变换器驱动电路设计21第5章直流变换器设计285.1开关器件的选择错误!未定义书签。

(完整版)高频开关电源设计毕业设计

(完整版)高频开关电源设计毕业设计

目录引言......................................................... 1本文概述 .................................................1.1选题背景............................................................................................................................1.2本课题主要特点和设计目标 ...........................................................................................1.3课题设计思路.................................................................................................................... 2SABER软件................................................2.1SABER简介 .....................................................................................................................2.2SABER仿真流程 .............................................................................................................2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计..................................3.1工作原理............................................................................................................................3.1.1 三相桥式全控整流电路的特点......................................................................................3.2保护电路............................................................................................................................3.2.1 过电压产生的原因..........................................................................................................3.2.2 过压保护 (1)3.2.3 过电流产生的原因 (1)3.2.4 过流保护 (1)3.3SABER仿真 (1)3.3.1 设计规范 (1)3.3.2 建立模型 (1)3.3.3 仿真结果 (1)3.3.4 结果分析 (1)3.4本章小结 (2)4功率因素校正技术 (2)4.1谐波 (2)4.1.1 谐波的危害 (2)4.1.2 谐波补偿和功率因素校正 (2)4.2有源功率因数校正 (2)4.2.1 APFC技术分类 (2)4.2.2 临界导电模式APFC的控制原理 (2)4.2.3 功率因素校正电路的缺点及解决方法 (2)4.3本章小结 (2)5软开关功率变换技术 (2)5.1软开关技术的提出 (2)5.1.1 开关损耗的成因 (2)5.2软开关技术 (2)5.2.1 软开关技术的一般实现方法 (2)5.2.2 软开关的发展历程主要分类 (2)5.3本章小结 (3)6双管正激变换器的设计 (3)6.1工作原理 (3)6.2SG3525的功能介绍以及应用 (3)6.2.1 SG3525基本工作原理和应用特点 (3)6.2.2 SG3525在双管正激开关电源中的应用 (3)6.3启动电路的改进 (3)6.4SABER仿真 (3)6.4.1 设计步骤简介 (3)6.4.2 设计规范 (3)6.4.3 开环设计(功率电路设计) (3)6.4.4 调制器设计和闭环仿真 (4)6.5仿真结果 (4)6.6本章小结 (4)7BOOST变换器的设计 (4)7.1工作原理 (4)7.2SABER仿真 (5)7.2.1 设计规范 (5)7.2.2 参数设计 (5)7.2.3 仿真结果 (5)7.3本章小结 (5)8系统集成调试 (5)9结论与展望 (5)谢辞 (5)参考文献 (5)附录 (5)引言人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。

高频开关电源设计与应用实例

高频开关电源设计与应用实例

高频开关电源设计与应用实例
 电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。

这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。

 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。

使电源的工作特性就像一个电阻一样,而不在是容性的。

 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。

而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。

DCM 模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。

CCM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。

介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MOS管。

这种类型的控制方式,在小功率PFC电路中非常常见。

 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。

 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:
 已知参数:
 交流电源的频率fac——50Hz
 最低交流电压有效值Umin——85Vac
 最高交流电压有效值Umax——265Vac。

48V25A直流高频开关电源设计_1

48V25A直流高频开关电源设计_1

摘要目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展,本论文设计了一种通信系统常采用的48V/25A直流高频开关电源。

本论文首先对高频开关电源的主电路进行了设计,分析了零电压软开关技术在移相全桥电路中的应用,开关电源的软开关技术采用移相PWM控制,通过相移芯片UC3875产生具有一定相序的脉冲去触发MOSFET管。

在主电路设计中,进行了高频变压器的设计,并对输出整流电路进行了分析、研究与设计。

其次,对开关通信电源的控制电路进行了设计。

控制电路以UC3875芯片为控制核心,采用闭环控制模式,实现系统的稳压和限流。

另外,对控制系统的过电流保护、过压保护、过热保护电路等保护电路进行了设计。

最后,用SABER仿真软件对电路进行了系统仿真与验证,仿真结果表明了设计的正确性。

关键词:软开关,UC3875,移相控制AbstractAt present, the switching power supply developed high frequency, high reliability, low energy consumption, low noise, interference and modular direction. That is to develop the inverter power source controlled by microcomputer which adopts soft-switches .This researching task is put forward on the base of discussing the characteristics and virtues of the welding inverter. The phase-shift chip UC3875 is adopted phase-shift pulse width modulate. The design about high frequency transformer is given .The amplified circuit and the commuted circuit are designed. The paper mostly researches and designs the soft-switch control system.Secondly, the control circuit, the protect circuit of the power supply are analyzed and designed. Its control circuit is centered on UC3875, uses a control that based regulation to realize the function is composed of analog of voltage-stabilization and current-limited.In addition, the safeguard circuit that mainly consists of over current, over heat, over voltage and circuit are studied and designed in the paper.And the circuit is simulated by the SABER, Simulation results show that the design is correct.Key words: soft-switch, UC3875, phase-shift目录摘要 (I)Abstract (II)目录.......................................................................................................................... I II 第一章引言.. (1)1.1开关通信电源系统的介绍 (1)1.1.1通信设备对开关通信电源的要求 (1)1.1.2通信电源系统的组成 (2)1.2通信直流开关电源的发展现状和发展方向 (2)1.2.1开关电源的发展和趋势 (2)1.2.2软开关技术的发展 (3)1.3本文的主要工作 (4)第二章高频开关电源主电路的设计与实现 (6)2.1高频开关电源的技术指标 (6)2.2高频开关电源主电路的硬件设计 (6)2.2.1输入整流电路的设计 (6)2.2.2直流变换器的设计 (7)2.2.3输出整流电路的设计 (8)2.3移相全桥谐振软开关电路[2][3][7] (9)2.3.1移相全桥零电压PWM软开关电路的工作原理 (9)2.3.2移相零电压软开关电路存在问题的解决 (11)2.3.3 ZVS的实现及副边占空比丢失 (12)2.3.4 结论 (13)2.4主电路元件参数的选择 (14)2.4.1 输入电路参数的选择[8] (14)2.4.2高频变压器的设计[1] (15)2.4.3输出滤波电感的设计 (17)2.4.4输出滤波电容的选择 (17)2.4.5 吸收电路器件的选择 (18)2.4.6功率器件的选择 (19)2.5本章小结 (19)第三章高频开关电源控制电路的硬件设计与实现 (21)3.1移相控制芯片UC3875的概述 (21)3.3.1 UC3875电气特性 (21)3.1.2 UC3875外围电路的设计 (22)3.1.3 UC3875输出波形的分析 (25)3.1.4 光电耦合器 (26)3.2保护电路的设计 (26)3.2.1电压与电流的保护 (27)3.2.2过热保护电路 (28)3.3 辅助电源设计 (28)3.4 本章小结 (29)第四章电路的仿真及分析 (30)结论 (34)参考文献 (35)致谢 (36)附录 (37)第一章引言1.1开关通信电源系统的介绍开关通信电源是通信设备的重要组成部分之一,因此也被称为通信设备的“心脏”。

高频开关电源毕业设计论文

高频开关电源毕业设计论文

摘要通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本设计分析了国内外高频开关电源的发展和现状,研究了高频开关电源的基本原理以及高频开关电源在电力直流操作电源系统中的应用,设计出一种实用于电力系统的高频开关电源,以替代传统的相控电源。

该系统以MOSFET作为功率开关器件,构成带隔离变压器的推挽式直流斩波开关变换器,采用脉宽调制PWM技术,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器或光电耦合器进行隔离,并设计了软启动和过流保护电路。

关键词高频开关电源推挽式变换器MOSFETAbstractThe correspondence power switch is the telecommunication network energy, its power supply quality quality relates directly to the entire telecommunication network unimpededness, The Paper analyze the Present situation and development of h1gh_frequency Switching power supply(HF SPS) domestically and overseas,study and research the basal principle of HF SPS and its application in electric power system,then design HF SPS applied in e1eetric power system in order to replace the old supply controlled by phase angle. The feedback voltage achieved from output is used to control the change of the output.The primary circuit and the control circuit are insulated by transformer or photo coupler. The Soft_Start and the Over Current Self_protection are also designed.Keywords HF Switch power Supply Push-pull Converter MOSFET目录摘要 (I)Abstract................................................................................................................. I I第1章绪论 (1)1.1 本设计研究的意义 (1)1.2国内外的研究现状 (2)1.3通信高频开关电源的发展 (4)1.4 设计内容 (8)第2章主电路的设计 (9)2.1 高频开关电源的基本原理 (9)2.2 滤波电路的设计 (11)2.3 整流电路的设计 (14)2.4 变换电路的设计 (15)2.4.1 变换器中的开关元件 (20)2.4.2 功率开关管的选择 (25)2.4.3 变压器的设计 (27)第3章控制电路设计 (34)3.1 控制芯片 (34)3.2 触发脉冲生成电路 (38)第4章驱动电路的设计 (42)第5章保护电路的设计 (47)5.1 谐振软开关电路 (47)5.2 MOSFET管保护电路 (50)5.2.1 门极过电压保护 (50)5.2.2 漏源过电压保护 (51)5.2.3 负载过压保护 (52)第6章辅助电源 (54)经济与社会效益分析 (56)结论 (57)致谢 (58)参考文献 (59)附录1 (61)CONTENTS Abstract (I)Chapter 1Introduction (1)1.1 The significance of this research (1)1.2The current research at home and abroad (2)1.3The development of the communication frequency switching powersupply (4)1.4 Design content (8)Chapter 2The design of the main circuit (9)2.1 The basic principles of high-frequency switching power supply (9)2.2 The design of the filter circuit (11)2.3 The design of the rectifier circuit (14)2.4 Input devices to protect (15)2.4.1 Surge current suppression (20)2.4.2 Thermistor technical analysis (25)2.4.3 The design of the transformer (27)Chapter 3 The control circuit design (34)3.1 Control chip (34)3.2 Trigger pulse generating circuit (38)Chapter 4 The design of the drive circuit (42)Chapter 5 The design of the protection circuit (47)5.1 Resonant soft-switching circuit (47)5.2 MOSFET protection circuit (50)5.2.1 Gate over-voltage protection (50)5.2.2 Drain-source voltage protection (51)5.2.3 Load over-voltage protection (52)Chapter 6Auxiliary power supply (54)The economic and social bencfit and analysis (56)Conclusion (57)Acknowledgements (58)Reference (59)Appendix 1 (61)第1章绪论通信用高频开关电源,英文译为Communication with the high-frequency switching power supply)是指用通过电路控制开关管进行高速的道通与截止。

高频开关电源的设计

高频开关电源的设计

目录1绪论 (1)1.1高频开关电源概述 (1)1.2意义及其发展趋势 (2)2高频开关电源的工作原理 (3)2.1高频开关电源的基本原理 (3)2.2高频开关变换器 (5)2.2.1单端反激型开关电源变换器 (5)2.2.2多端式变换器 (6)2.3控制电路 (8)3高频开关电源主电路的设计 (9)3.1P W M开关变换器的设计 (9)3.2变换器工作原理 (10)3.3变换器中的开关元件及其驱动电路 (11)3.3.1开关器件 (11)3.3.2M O S F E T的驱动 (11)3.4高频变压器的设计 (13)3.4.1概述 (13)3.4.2变压器的设计步骤 (13)3.4.3变压器电磁干扰的抑制 (15)3.5整流滤波电路 (15)3.5.1整流电路 (15)3.5.2滤波电路 (16)4总结 (19)参考文献 (20)1 绪论1.1高频开关电源概述八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。

由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。

近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。

究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。

五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。

有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。

这些问题和要求可归纳为以下五个方面:(l)能否全面贯彻电磁兼容各项标准?(2)能否大规模稳定生产或快捷单件特殊生产?(3)能否组建大容量电源?(4)电气额定值能否更高(如功率因数)或更低(如输出电压)?(5)能否使外形更加小型化、外形适应使用场所要求?这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。

高频开关电源设计与应用

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。

这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。

功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。

使电源的工作特性就像一个电阻一样,而不在是容性的。

目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。

而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。

DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。

C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。

介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。

这种类型的控制方式,在小功率PFC电路中非常常见。

今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。

要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:已知参数:交流电源的频率fac——50Hz最低交流电压有效值Umin——85Vac最高交流电压有效值Umax——265Vac输出直流电压Udc——400VDC输出功率Pout——600W最差状况下满载效率η——92%开关频率fs——65KHz输出电压纹波峰峰值Voutp-p——10V那么我们可以进行如下计算:1,输出电流Iout=Pout/Udc=600/400=1.5A2,最大输入功率Pin=Pout/η=600/0.92=652W3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。

高频开关电源的电磁兼容设计

高频开关电源的电磁兼容设计

高频开关电源的电磁兼容设计随着电子技术的发展,高频开关电源已经成为各种电子产品的重要电源模块。

但是,由于高频开关电源工作时存在较强的电磁辐射和抗干扰能力较弱的特点,使得它的电磁兼容性设计成为了电子设备设计中的一个非常重要的问题。

本文将介绍高频开关电源的电磁辐射的形成原因和电磁兼容性设计的方法。

高频开关电源的电磁辐射高频开关电源的工作原理是将交流电压转化为直流电压,然后通过高频开关器进行变换,将电压升高到所需的水平后,再通过输出滤波电路对输出电压进行调整和滤波,输出一般为直流电压或脉冲电压。

在高频开关电源的变换过程中,由于高速开关所产生的高频电流和高电压在电源电路中快速变化,会引起电磁波从电源向周围的空气和导体传播,造成电磁辐射。

高频开关电源的电磁辐射主要有以下几种形式:1.磁场辐射:在高频开关电源的开关元件中,由于电流变化快、交叉磁路多,容易产生较强的磁场,从而导致磁场辐射。

2.电场辐射:在高频开关电源的开关元件中,由于电压变化快、高速切换,容易产生较强的电场,从而导致电场辐射。

3.导线辐射:电路中的导线会以天线的形式辐射出电磁波,是一种常见的辐射形式。

高频开关电源的电磁兼容设计方法高频开关电源的电磁兼容性设计是确保电源的正常工作同时尽可能减少电磁辐射干扰其他电子设备的过程。

下面介绍几个高频开关电源的电磁兼容性设计方法:1.增加滤波和补偿电容在高频开关电源中,可以增加滤波和补偿电容,以减少高频电压漂移和电流谐波干扰。

同时还可以减少开关瞬间开启或关闭时所产生的电磁辐射。

2.优化电源设计在高频开关电源的设计中,应尽量采用集成电感和微波集成电路,同时注意用电容和电感进行平衡。

另外,电源的设计还要注重对地电路的设计,包括对于地线的布局和选择等。

3.提高电源的抗干扰能力对于高频开关电源,可以通过加装抑制器、磁屏蔽等方法来提高电源的抗干扰能力。

另外,还可以通过增加电源的防雷措施来避免由于感应产生的过电压和过电流问题。

高频开关电源的设计

高频开关电源的设计

高频开关电源的设计摘要从90年代开始,开关电源逐步得到广泛的应用。

开关电源的核心是DC-DC变换器。

影响开关电源的主要因素是其拓扑结构、开关频率、控制方式及关键元器件,如开关管、储能电感或脉冲变压器等。

本文首先介绍了本次设计的高频开关电源的现实意义和需要达到的目标要求,并介绍了主电路和控制电路的设计,采用了理论分析和实际硬件实验相结合的研究方法。

该系统以MOSFET作为功率开关器件,构成全桥开关变换器,整个电源由输入电路、主逆变器、输出滤波电路、辅助电源等部分组成。

系统主电路逆变部分采用了脉宽调制技术(PWM),PWM信号由集成控制器UC3875产生,从输出端实时采样电压、电流反馈信号,以控制输出电压和电流的变化。

实现了功率开关管的零电压开通和近似零电压关断,设计出高效率(达90%)、高可靠性、低电磁干扰的高频开关整流模块(48V/20A)。

关键词:高频开关电源;相移脉宽调制;零电压开关;DC-DC变换AbstractSince the nineteen's of last century, switch power has been used worldwide step by step. The core of switch power is DC-DC converter. The main factors that afect the performance of switch power is its topology, switch frequency,control mode and its key device units such as the switch tube, energy-storage inductor and pulse transformer.This paper introduces the practical significance of the high frequency switching power supply designed by us, and introduces the corresponding railway standards of the People'sRepublic of China. The main circuit and the control circuit are introduced in this paper, the research method includes the theory analysis and the practical experiments.The full-bridge converter is made up of four MOSFET. The system consists of the AC input stage, main inverter, output low-pass filter, auxiliary power supply etc. The theory of PWM is used in the system, and single of PWM is offered by controller UC3875.The feedback voltage and current achieved from output is used to control the change of the output. The Zero-Voltage Switching on and approximate Zero-Voltage Switching of the power devices are realized. High frequency switching rectifier module (48V/20A) has been designed with high efficiency (90%), high reliability and low EMI.Key words:High frequency switching power, Phase-Shifting PWM ZVS,Zero Voltage Switching,DC-DC Conversion高频开关电源的构成及其基本原理高频开关电源是将交流输入(单相或三相)电压变成所需要的直流电压的装置。

高频开关电源原理

高频开关电源原理

高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。

其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。

首先,接入整流电路将交流电转换为直流电。

整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。

2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。

输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。

3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。

此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。

4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。

这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。

5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。

输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。

6. 输出调节:高频开关电源需要对输出电压进行精确的调节。

通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。

总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。

它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。

基于DSP高频通讯全桥开关电源的研究与设计的开题报告

基于DSP高频通讯全桥开关电源的研究与设计的开题报告

基于DSP高频通讯全桥开关电源的研究与设计的开题报告一、研究背景及目的随着移动通信、互联网、智能家居等技术的不断发展,人们对高频通讯系统的需求越来越高。

在高频通讯系统中,全桥开关电源作为重要的电源模块,可以提供稳定的高频交流电源,保证高频电路的正常工作。

本文旨在研究基于DSP控制的全桥开关电源,设计可靠稳定、效率高的高频通讯系统的电源模块。

二、研究内容和方法本文主要研究内容包括:1. 全桥开关电源的原理和设计方法;2. DSP控制技术在全桥开关电源中的应用;3. 电路实现方案的设计和验证实验;4. 整个系统的性能测试和评估。

研究方法主要采用理论研究与实验研究相结合的方法。

首先通过文献阅读与分析,深入了解全桥开关电源的原理和设计方法。

接着结合DSP控制技术,确定电路实现方案,并进行仿真验证。

最后进行实验研究,对所设计的电源模块进行性能测试和评估。

三、研究意义和创新性本文研究的基于DSP控制的全桥开关电源,具有以下意义和创新性:1. 提高电源模块的效率和稳定性,保证高频通讯系统的正常工作。

2. 减少传统电源模块的体积和重量,方便携带和使用。

3. 推广DSP控制技术在电源系统中的应用,提高电源系统的智能化。

四、进度安排1. 研究文献,深入理解全桥开关电源的原理与设计方法(1-2周);2. 结合DSP控制技术,确定电路实现方案,并进行仿真验证(2-4周);3. 设计原理图和PCB板,并进行电路实现(4-6周);4. 对设计的电源模块进行性能测试和评估(6-8周);5. 撰写论文,完成毕业设计(8-10周)。

五、预期成果1. 设计一种基于DSP控制的全桥开关电源;2. 确定电路实现方案,进行仿真验证和实验验证;3. 实现高效、稳定的电源模块,保证高频通讯系统的正常工作;4. 撰写论文,完成毕业设计,并能够进行实际应用。

高频软开关通信电源的设计思路探讨

高频软开关通信电源的设计思路探讨

动脉冲进行输 出,而主控制其按 照输 出 体 性 能 状 况 。 站 在 产 品 维 护 性 视 角 上 管脚 进行 灵 活控 制 ,促使 其 实现 软停
的AD采 样值 ,借 助 相应 的软件 措 施针 对 看 ,实 际 高频 开 关 电源 产 品 中大 部 分 选 止 ,从而为开关电源提供有效保护。
以免 干 扰 电 网 运行 ,应 在 电 网以 及 开关
其 四 ,硬 件保 护在 具 体实 现 上相 式 来 满 足 大 电流 在 输 出方 面 的 具 体 设 计
电源 输 入 之 间加 用 功 率 因数 校 正 技术 。 对 较 复 杂 ,不 利 于 提 高 系 统 的运 行 可 靠 要 求 。该 结 构 图 中 ,TV代 表 着 霍 尔 电压
相对较短 ,但 是其
因为 开关 电源 的高频 率 ,其余 开 较弱 ,不 具备 通信 功能或者通信 功能较
路的有效保护 。直接控制在具体实现方 关 电源的控制技术也慢慢走 向数字化方 差 ,输出范围有待加 大。本次研究 中设
该 电源 系统 中 ,选 ̄ -3WI32F 103ZET6
实现
控制系统相关给定信号 ,研究具体 的输 芯片作为主控制其 的芯片 ,借助多通 道
传 统 开关 电源 由于 工 作 原理 以及 控 出采样电路反馈信号 ,将两者进行有效 高速AD转换器实现对传感器输 出信号的
制 方 式 等 方 面存 在 缺 陷 ,其 功 能相 对 比 比价 ,同时实现对控制脉 冲的 自动化调 有 效 采 样 。 采 样结 果 能 够 发 挥 良好 的 电
第 二 种是 间接 控 制 模 式 。直 接控 制 模 式 控制模 式时 ,其反馈 回路 的具体设计情 好 的 过 流 保 护 。 如果 发 现 紧 急情 况 ,电

48V10A高频开关电源设计

48V10A高频开关电源设计

48V10A高频开关电源设计高频开关电源是一种常见的电源形式,它具有高效率、高功率密度和小尺寸等优点。

在设计48V10A高频开关电源时,需要考虑以下几个方面:输入电源、开关电源拓扑结构、控制电路、功率器件和保护电路。

首先,输入电源是指输入到开关电源的电源电压。

对于48V10A高频开关电源,一般可以采用220V交流电作为输入电源。

由于输入电压范围较大,需要加入输入滤波电路以减小电源干扰。

其次,选择合适的开关电源拓扑结构是关键。

常见的开关电源拓扑结构有Boost、Buck、Buck-Boost和Cuk等。

对于输出电压较高的48V10A高频开关电源,可以选择Boost拓扑结构。

Boost拓扑结构可以将输入电压放大到较高的输出电压,同时提供稳定的输出电流。

然后,控制电路是控制开关电源的关键部件。

常见的控制方式有固定频率PWM控制和变频PWM控制。

对于48V10A高频开关电源,可以选择固定频率PWM控制。

固定频率PWM控制可以保证开关电源的稳定性和可靠性。

接着,功率器件是开关电源设计中非常重要的组成部分。

在选择功率器件时,需要考虑其导通损耗和开关损耗。

一般可以选择MOSFET或IGBT作为功率器件。

MOSFET具有开关速度快、导通损耗小的优点,适合进行高频开关。

IGBT则适合用于高压和大电流的开关场合。

最后,保护电路是保护开关电源和负载的安全和稳定运行的重要部分。

常见的保护电路有过压保护、过流保护和短路保护等。

这些保护电路可以保证开关电源和负载在异常情况下的安全运行。

在设计48V10A高频开关电源时,需要综合考虑以上几个方面。

设计过程中,可以采用开关电源设计软件和仿真工具来辅助设计和优化。

设计完成后,还需要进行实际的测试和验证,确保开关电源的性能和可靠性。

总结起来,设计48V10A高频开关电源需要考虑输入电源、拓扑结构、控制电路、功率器件和保护电路等多个方面。

通过合理选择和设计,可以实现高效率、高功率密度和小尺寸的高频开关电源。

高频开关电源系统整流电路设计

高频开关电源系统整流电路设计

高频开关电源系统整流电路设计
要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再
设计系统的各个部分。

高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。

它们的设计具有特殊的内容和方法。

1 设计要求和具体电路设计
通信基础开关电源系统的关键部分是开关电源整流模块。

整流模块的规
格很多,结合在工
作中遇到的实际情况,提出该模块设计的硬指标如下:
1) 电网允许的电压波动范围
单相交流输入,有效值波动范围:220 V±20%,即176~264 V; 频率:45~65 Hz。

2) 直流输出电压,电流
输出电压:标称-48V,调节范围:浮充,43~565V;均充,45~58V。

输出电流:额定值:50A。

3) 保护和告警性能
①当输入电压低到170 VAC 或高到270 VAC,或散热器温度高到75 ℃时,自动关机。

②当模块直流输出电压高到60 V,或输出电流高到58~60 A 时,自动关机。

③当输出电流高到53~55 A 时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数
模块的效率不低于88%,功率因数不低于0.99。

一种中小功率的高频开关式通信电源的设计

一种中小功率的高频开关式通信电源的设计

一种中小功率的高频开关式通信电源的设计
针对通信电源中DC/DC 变换器的移相全桥主电路进行了分析和研究,在此基础上提出了采用改进型倍流整流移相全桥电路,来克服传统ZVS PWM 全桥变换器存在的一些问题。

1 集中供电方式通信电源系统
为了保证稳定、可靠、安全供电,通信电源系统可采用集中供电、分散
供电、混合供电或一体化供电方式。

其中集中供电方式通信电源系统的组成框
图如图1 所示。

图1 集中供电通信电源系统示意图
目前,国内外通信电源仍然大都采用模拟和数字相结合的控制方式,大量应用数字化技术的还主要是保护和监控电路以及与系统的通信,完成电源
的起动、输入与输出的过、欠压保护,输出的过流与短路保护及过热保护等,
通过特定的界面电路,也能完成与系统间的通信与显示,但PWM 部分仍然采用专门的模拟芯片。

如中兴和华为目前还是采用传统的模拟技术,艾默生已
有部分产品采用了全数字的控制,但其EMC、环路稳定性等问题还有待于改善。

本文针对通信电源的特点及现状,采用倍流整流的移相全桥变换器作为主电路,进行了关键参数的计算,并设计出样机进行分析仿真结果。

2 改进型倍流整流移相全桥变换器关键参数设计
倍流整流主电路结构如所图2 示。

该电路由全桥逆变和倍流整流电路组成,根据负载大小的不同,该电路可工作在断续和连续模式,在断续状态下,。

通信高频开关电源的设计

通信高频开关电源的设计

目录第1部分课程设计的目的 (2)第2部分,课程设计的内容 (2)2.1, 通信高频开光电源的设计 (2)2.2,新电解大功率直流可控电源的设计 (3)2.3 ,设计一台交直交PWM变频电源 (3)第3部分,课题的选择 (4)第4部分,课程设计主体部分 (4)4.1,总体设计方案 (4)4.2,高频开关电源电路原理 (5)4.3 通信高频开关电源电路 (6)4.3.1主电路 (6)4.3.2控制电路 (8)4.3.3检测电路 (8)4.3.4辅助电源 (8)4.4.高频变压器设计 (9)4.5,功率开关器件的选择 (11)4.5.1,电阻的择 (11)4.5.2,二极管的择 (11)4.5.3功率开关管的选择 (12)4.5.4,电感的选择 (13)4.5.5,电容的择 (14)4.5.6,高频变压器的选择 (14)4.6,驱动电路的设计 (14)4.6.1 电力MOSFET的驱动电路 (15)4.6.2 IGBT的驱动 (16)4.7,设计中各参数的计算 (16)4.7.1谐振电感的计算 (17)4.7.2稳压电路参数计算 (17)4.8主电路图各部分组成介绍 (18)4.8.1.抗干扰滤波和全桥整流 (18)4.8.2升压型功率因数校正电路 (19)4.8.3能量恢复吸收电路 (19)4.8.4 半桥型直流变换器 (20)4.9,副边滤波电感电容的设计 (21)4.10,稳压电路的设计 (21)第1部分:课程设计的目的本课程设计是在学习完《电力电子技术》课程之后进行的一个重要的实践性教学环节,是工程技术应用型人才培养目标的重要组成部分.在教师指导下让学生独立完成,一方面巩固课程知识,加深对理论知识的理解,一方面训练学生综合运作所学的理论知识,掌握一定的设计方法和设计思想,能初步解决一些实际问题;培养学生查阅资料,立即获取新知识,新信息的能力.在规定时间内通过分析任务书,查阅收集资料,充分发挥主动性与创造性,在老师的指导下联系实际,掌握正确的方法,理清思路,独立完成课程设计,撰写设计说明书,其格式和字数应符合规定.根据要求设计出实际可行的电路,并计算电路中所用元器件的参数,确定其规格型号;课程设计说明书要求整洁,完备,内容正确,概念清楚,文字通畅,并绘制出相应的电路图,符合规范.第2部分,课程设计的内容2.1, 通信高频开光电源的设计输出直流电压48v,输出电流I0=25A,输出电压文波波峰值不超过0.24V,输出电流 2.5V时,付边电感电流仍然连续,采用pwm控制方案,最大占空比Dmax=0.8设计内容1)总体设计方案2)高频电压器设计3)功率开光电源的选择4)驱动电路的设计5)谐振电感的设计6)复变滤波电感电容的设计与选择第3部分,课题的选择本次课程设计我们小组选择的是第一个课题----通信高频开光电源的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论
1.1高频通信开关电源的概述
通信电源是整个电信网的重要组成部分,电源设备质量的优劣,决定着整个电信网能否安全稳定运行。

通信设备发生故障时,可能会影响部分用户或使接通率下降。

而电源发生故障时,将会造成通信全部中断,所以人们一直将电源视为整个通信系统的心脏,受到足够的重视。

通信电源分为一次电源和二次电源两大类,一次电源将交流电转换成稳定的直流电接入通信设备,二次电源一般位于通信设备内部,将一次电源的直流电转换成多种电压值的稳定直流电以供通信设备内部各部分使用。

自1957 年第一只可控硅(SCR)问世后,可控硅取代了笨重而且效率低下的硒或氧化亚铜整流器件,可控硅整流器就作为通信设备的一次电源使用。

在随后的20年内,由于半导体工艺的进步,可控硅的电压、电流额定值及其它特性参数得到了不断提高和改进,满足了通信设备不断发展的需要,因此,直到70年代,发达国家还一直将可控硅整流器作为大多数通信设备的一次电源使用。

虽然可控硅整流器工作稳定,能满足通信设备的要求,但其是相控电源,工作于工频,有庞大笨重的电源变压器、电感线圈、滤波电容,噪声大,效率低,功率因数低,稳压精度也较低。

因此,自 1947 年肖克莱发明晶体管,并在随后的几年内对晶体管的质量和性能不断完善提高后,人们就着力研究利用晶体管进行高频变换的方案。

1955年美国罗耶(GH·Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换电路的开始,1957年美国查赛(J. J. Jen Sen)又发明了自激式推挽双变压器变换器电路。

在此基础上,1964年,美国科学家提出了取消工频变压器的串联开关电源的设想,并在 NEC 杂志上发表了“脉宽调制应用于电源小型化”等文章,为使电源实现体积和重量的大幅下降提供了一条根本途径。

随着大功率硅晶体管的耐压提高和二极管反向恢复时间的缩短等元器件性能的改善,1969 年终于做成了25KHz的开关电源。

电源界把开关电源的频率提高到20KHz以上称为电源技术的“20KHz 革命”。

开关电源技术的这一新的发展,在世界上引起了强烈的反响和重视,开关电源的研究成了国际会议的热门话题。

经过几年的努力,从开关电源的电路拓扑型式到相配套的元器件等研究都取得了相当大的进展。

在电路拓扑型式上开发出了单端贮能式反激电路、双反激电路、单端正激式电路、双正激电路、推挽电路、半桥电路、全桥电路,以适应不同应用场合、不同功率档次的需要;在元器件方面,功率晶体管和整流二极管的性能也有了较大的提高。

1976年美国硅通用公司第一个做出了
SG1524的脉宽调制(PWM,Pulse Width Modulation)控制芯片,极大地提高了开关电源的可靠性,并进一步减小了体积。

尽管如此,由于功率器件的电压、电流额定值的限制,直到上世纪70 年代末开关电源主要用于通信设备的二次电源,而通信设备的一次电源大多数仍采用可控硅整流器(相控电源)。

在随后的几年中,大功率晶体管(GTR)和功率场效应管(MOSFET)相继被研制出来,其电压、电流额定值大为提高,工作频率也提高较多,可靠性也显著增加。

在电路拓扑、功率器件和控制芯片发展的基础上,80 年代初,英国研制出48V 成套直流电源,作为通信设备的一次电源使用,一个机架包括多个整流模块,交、直流配电模块等,这是当时利用高频直流变换技术为主开发的新成果。

在1982 年国际通信能源会议上,关于这一成果发表的论文受到了普遍重视。

这一新技术,在研究开发和应用方面得到了迅速的发展。

到80年代中后期,绝缘栅双极晶体管(IGBT)已研制出来并投入了市场,各种通信设备所需的一次电源大多采取PWM集成控制芯片、双极型晶体管、场效应管、绝缘栅双极晶体管;半桥或桥式变换电路;开关频率约为几十KHZ,效率约90%左右的高频开关电源。

随着微电子学的发展和元器件生产技术的提高,相继开发出了耐压高 (400~500V)的功率场效应管(VMOS管)和高电压、大电流的绝缘栅晶体管(IGBT),具有软恢复特性的大功率高频整流管,各种用途的集成脉宽调制控制器和高性能的铁氧体磁芯,高频用的电解电容器,低功耗的聚丙烯电容等。

主要元器件技术性能的提高,为高频开关电源向大功率、高效率、高可靠性方向发展奠定了良好基础。

考虑到将交流电直接整流滤波后给开关电源供电时,由于 PWM 直流——直流变换将使交流电网侧功率因数恶化,对交流电网不利。

人们经过努力研制了功率因数校正电路(PFC,Power Factor Corrector),该种电路将交流电压经全波整流滤波得到的直流电压进行直流——直流变换,并使输入电流平均值自动跟随全波整流直流电流基准,并且保持输出电压稳定,从而实现对 PWM 直流变换器稳压输出和接近单位输入功率因数。

当高频开关整流模块的功率容量较大时,加上功率因数校正电路就避免了对交流电网的影响。

为减少开关损耗和提高工作频率,在电路拓扑方面也取得了较大进展,在90 年代设计并研制出准谐振开关变换器(QRC,Quasi Resonant Convertor)和多谐振变换器(MRC,Multi Resonant Convertor),在这方面日本九洲大学原田(耕介)研究室、美国佛吉尼亚理工学院等走在前面,研制出了功率密度为3W/cm3,开关频率从
2.5~
3.85MHz、效率达80~83%的多谐振变换器。

这种变换器的优点是实现了软开关,大大降低了开关损耗,可以吸收电路的寄生参数(不在乎电路寄生参数的存
在),而且几乎不产生电磁干扰。

缺点是输出同样功率时,比PWM 方式的电压、电流值大,对开关器件要求较高,而且工作频率随输入电压和负载变化有一定的变化范围,不便设计输出滤波电路的参数。

到90 年代初,国外通信一次电源应用最多的是采用PWM 控制集成芯片、大功率高压功率场效应管或绝缘栅双极晶体管的开关整流器,德国、英国、法国、澳大利亚、加拿大、日本等国家的开关整流器的开关频率为50-100KHz,功率因数接近1,单模块容量最大可达200A/48V。

1.2课题简介
随着工业、航空、航天、军事等应用领域技术的不断革新,通信业的迅速发展。

人们对开关稳压电源的要求也越来越高。

高频通信开关电源在通信系统中处于核心地位,并已成为现代通信供电系统的主流。

开关电源高频化将是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

另外高频通信开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

在生产实际中提高设备利用率,减小输入电流波形畸变,以及对电网造成污染。

达到“绿色”电源的效果。

在本系统中,我们先通过对高频开关电源的主电路拓扑结构的分析,并结合系统的技术参数,确定系统的主电路拓扑,设计出主电路;然后,通过实验对系统的动态性能进行仿真分析,并结合系统的具体情况,设计出滤波、整流、软启动和保护控制部分。

主要研究内容为:
①确定48V/100A新型高频开关电源的整体方案和各部分的电路方案。

整机由高频开关整流模块、交流配电模块、直流配电模块、监控模块组成,置于同一机柜内。

该电源既可接入单相交流电,也可接入三相交流电,具有多路直流稳压输出,可分别给程控交换机、光端机等通信设备供电。

由于该电源全自动化工作,又具有远程集中监控功能,可实现机房的无人值守。

②研制48V/100A相移脉宽调制零电压(零电流)(PS PWM ZVS)谐振全桥变换器电路和以集成相移脉宽调制控制器为核心的控制电路。

经电路仿真和实验优化主要电路参数,使高频开关整流模块稳定可靠工作转换效率达93%,稳压精度达±0.5%。

③设计以MCS-51单片机电路为核心的监控模块和单片机接入以太网的接口电路及相应的通信软件,实现监控模块对交、直流屏,多个高频开关整流模块的监控,。

相关文档
最新文档