(完整版)高频电子线路课程设计
高频电子线路课程设计.
目录一设计总体思路及比较 (2)二单元电路思路 (6)输入回路 (6)本机荡回路 (8)中频滤波器匹配参数 (10)限频电路 (12)鉴频电路 (13)低频放大电路 (14)三总结体会 (15)四总原理图 (16)参考资料 (17)第一章设计总体思路及方案比较一.调频收音机的主要指标调频接收机的主要指标有:1工作频率范围接收系统可以接受到的无线电波的频率范围称为接收机的工作频率范围。
接受系统的工作频率必须与发射机的工作频率工作频率相对应。
调频接收机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MH。
2 灵敏度接收系统接受微弱信号的能力称为灵敏度。
一般用输入信号电压的大小来表示。
接收的输入信号越小,灵敏度越高。
调频接收机的灵敏度一般为5~30uv。
3选择性接收系统从各种信号和干扰信号中选出所需信号,抑制不需要的信号的能力称为选择性,单位用dB表示,dB数越高,选择性越好。
调频接收机的中频干扰应大于50dB。
4 频率特性接收系统的频率响应范围称为频率特性或通频带。
5 输出功率负载输出的最大不失真功率称为输出功率。
二调频接收机的系统方框图调频接收机的系统方框图如所示,它是由输入回路,高频放大器,混频器,本机振荡,中频放大器,鉴频器,低频放大器等电路组成。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大器放大进入混频级。
本机振荡器输出的另一高频f2也进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
三MC3362芯片特点MC3362是低功耗窄带双变频超外差式调频接收机系统集成电路,它的片内包含两个本征,两个混频器,两个中放和正交鉴频等功能电路。
MC3362的接收频率可达450MHz,采用内部本征时,也可达到200MHz。
高频电子线路课程设计
高频课程设计姓名:学号:1110510227班级:1105102本课程设计包括中波电台发射系统和中波电台接受系统。
其中发射系统包括主振级、缓冲级、音频放大、AM调制、输出网络几个部分;接受系统包括高频小信号放大、混频器、本地振荡、包络检波、放大几个部分。
本设计分别介绍了系统框图中的每一个模块的电路及仿真结果,然后再仿真。
关键词:中波超外差接收机调制检波一、中波电台发射系统设计1.1设计目的与任务:学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《通信电子线路》中所学的理论知识和实验技能,掌握通信电子系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
技术指标要求:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。
调制频率500Hz~10kHz。
1.2、功能框图电路图如图:C4C5Vcc=12V 选择的晶体管型号是3DG12B (仿真是实选与其相近的D42C12),其放大倍数β=50,ICQ=3mA ,VCEQ=6V,VEQ=0.2VCC.依据电路计算:R3= (VCEQ- VEQ)/ ICQ=(12-6-0.2×12)V/3×310-mA=1.2K Ω, R4=VEQ/ICQ=0.2×12V/3×310-mA=800Ω. IBQ=ICQ/β=3mA/50=0.06 mA,R1=VBQ/10IBQ=(VEQ+0.7)V/10×0.06×310-mA=5.1K Ω, R2=VCC-VBQ/10IBQ=(12-3.1)V/0.6×310-mA=15K Ω, 因为 4331211114C C C C C C C +≈+++=C5为旁路电容,取C5=33 nF ,又12C C 不能太小,Rp 变大,振幅增大,波形受限,会增加输出波形的高次谐波,12C C 太大,又不能完全补偿振荡电路损耗,而停振,故取12C C =2。
高频电子线路课程设计
实验内容
用模拟乘法器MC1496实现普通调幅,观 察并记录输入和输出信号的频率、幅度和 波形,测出ma; 用模拟乘法器MC1496实现平衡调幅,观 察并记录输出波形; 实现混频和倍频,观察并记录输入和输出 信号的频率、幅度和波形。
高频电子线路课程设计 12
实验注意事项
模拟乘法器在通信中的应用b级课设题目一高频电子线路课程设计10模拟乘法器在通信中的应用b技术指标?要求在中心频率f05mhz负载电阻rl10k?的情况下使mc1496各管脚静态值满足设计要求并不失真的输出普通调幅波输出普通调幅波双边带调幅波倍频混频波形
高频电子线路课程设计
哈尔滨工程大学实验示范中心
高频电子线路课程设计 1
高频电子线路课程设计 6
六、成绩评定
基础单元实验占总成绩的40%(其 中实验和报告各占50%)。 课程设计占总成绩60%(其中设计 报告、实验报告占50%;操作 50% )。
高频电子线路课程设计
7
七、课设题目
•
•
课程设计有3个题目供大家选择,题目 分为A、B、两个等级,A级题目优 秀起评,B级题目良好起评。 根据自己的实际情况在3个题目中任 选一个,按照所选题目的要求进行 设计并书写设计报告。
课设题目二
变容二极管调频振荡器设计(A)
高频电子线路课程设计
17
技术指标
1. 2. 3. 4. 中心频率 : 输出电压 : 频率稳定度: 最大频偏 : f0=6.5MHz Uom≥180mV(最大值) △f/f0≤10-4/半小时 △fm≥75kHz 并算出其调制灵敏度。
高频电子线路课程设计
18
采用变容二极管设计一个调频振荡器, 在中心频率处测试振荡器的频率稳定 度,输出电压幅度。在波形不失真的 情况下达到设计指标; 改变变容二极管两端电压使振荡器的 频率在f0左右变化,在保持输出电压 幅度不变的情况下,测出最大频偏; 绘出变容二极管特性曲线。
(完整版)高频电子线路课程设计(DOC)
通信与信息工程学院高频电子线路课程设计班级:通信工程姓名:学号:指导教师:设计时间:2016年1月4日-2016年1月8日成绩:评通信与信息工程学院二〇一三年摘要调幅式收音机一般都采用超外差式,它具有灵敏度高、功能工作稳定、选择性好及失真度小等优点。
所谓外差,是指天线输入信号和本机振荡信号产生一个固定中频信号的过程,超外差收音机在检波之前,先进行变频和中频放大,然后检波,音频信号经过低频放大送到扬声器。
由于其中的中频放大器对固定中频信号进行放大,所以该收音机的灵敏度和选择性课大大提高,但同时也会附带中频干扰。
关键词:收音机、组装、调试1.设计任务及目的1.1设计任务完成超外差式收音机的组装与调试1.2目的通过这次实验可以让我们更进一步理解巩固所学的基本理论和基本技能,培养运用仪器仪表检测元器件的能力以及焊接、布局、安装、调试电子线路的能力,培养及锻炼我们测试排查实际电子线路中故障的能力,加强对电子工艺流程的理解熟悉。
2. 超外差式调幅收音机的原理及电路图2.1 超外差式调幅收音机电路原理图如图2-1为超外差式收音机的电原理图:图2-12.2超外差式调幅收音机的工作原理分析超外差式收音机主要由输入电路、混频电路、中放电路、检波电路、前置低频放大器、功率放大电路和喇叭或耳机组成2.2.1输入调谐电路输入调谐电路由双连可变电容器的CA和T1的初级线圈Lab组成,是一并联谐振电路,Tl是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l/2πLabCA,当改变CA时,就能收到不同频率的电台信号。
2.2.2变频电路本机振荡和混频合起来称为变频电路。
变频电路是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。
VTl、T2、Cb等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。
高频电子线路课程设计
高频电子线路课程设计背景高频电子线路是电子工程中重要的一门学科,它涉及到射频信号处理、微波电路、天线设计等领域。
基本电路设计知识在高频电子线路中同样适用,但需要深入理解和掌握高频电路特性和性能参数,设计复杂又具有挑战性。
本文将针对高频电子线路课程设计进行详细阐述,帮助学生加深对于高频电子线路的理解和知识,同时具备实际应用价值。
设计目标设计一个5GHz的放大器电路,输入信号功率为-10dBm,输出信号功率为18dBm,增益不小于15dB。
设计步骤1. 确定放大器类型初步确定本次设计需要采用低噪声放大器(LNA),由于输入信号功率较低,需要保证输入电路的低噪声水平,同时保证放大器输出功率足够。
2. 设计输入电路输入电路的设计需要注意两点:一是适应5GHz信号的高频特性,二是实现低噪声。
输入电路可以采用微带线或共面波导作为传输线,并且要与放大器贴片封装相匹配。
3. 选择放大器器件在选择放大器器件时,需要注意输入/输出功率、增益、稳定性、电源电压等参数。
按照本次设计的要求,需要满足输入功率为-10dBm,输出功率为18dBm,且增益大于15dB。
因此,可以选择如下几个型号的器件:•Avago ATF-54143•NXP BFG425W/X•Linear Technology LTC2216CUJ-TRPBF4. 设计放大器电路放大器电路分为两个部分:共源放大器和输出级放大器。
在搭建放大器电路之前,需要评估器件的参数,包括输入阻抗、输出阻抗、谐振频率等。
放大器电路中还需要加入偏置电路,以保证放大器器件工作的稳定性。
具体放大器电路设计如下:5. 仿真和调试在完成放大器电路设计后,需要进行仿真和调试。
使用ADS软件对放大器电路进行仿真,评估电路的性能,如增益、频率响应、稳定性等。
在仿真过程中,可以通过调整偏置电路的元件值、调整电缆长度、改变传输线贴片等方式对电路进行调整,直到达到设计要求。
仿真结果如下:6. 实验验证在验证电路的性能之前,需要制作PCB板,将电路固定在板子上。
高频电子线路教案
高频电子线路教案一、教学目标1.理解高频电子线路的基本概念和特点。
2.掌握高频电子线路的设计和计算方法。
3.熟悉高频电子线路的常见应用。
4.培养学生的实际动手能力和创新思维能力。
二、教学内容1.高频电子线路的概述1.1高频电子线路的定义和基本特点1.2高频信号与低频信号的区别1.3高频电子线路的主要应用领域2.高频放大电路设计2.1高频放大电路的基本原理2.2高频放大电路的设计步骤和注意事项2.3高频放大电路中的常见问题及解决方法3.高频滤波电路设计3.1高频滤波电路的工作原理3.2高频滤波电路的设计方法和计算公式3.3高频滤波电路的常见应用场景4.高频混频电路设计4.1高频混频电路的基本原理4.2高频混频电路的设计方法和计算公式4.3高频混频电路的实际应用案例三、教学方法1.讲授法:通过教师的讲解,介绍高频电子线路的基本概念和设计方法。
2.实验法:设计实验让学生动手搭建高频电子线路并进行测试和仿真。
3.讨论法:引导学生以小组为单位进行讨论,在实践中交流和分享设计经验。
四、教学过程1.导入(10分钟)向学生介绍高频电子线路的基本概念和特点,以及其在通信、雷达、无线电等领域的重要作用。
2.理论讲解(30分钟)讲解高频放大电路、高频滤波电路和高频混频电路的基本原理、设计步骤和计算方法。
3.设计实践(60分钟)将学生分为小组,每个小组根据所学的理论知识设计一个高频电子线路,并在实验室中搭建并测试该电路。
4.讨论交流(20分钟)每个小组展示他们的设计成果,并对其他小组的设计进行评价和讨论。
5.展示总结(10分钟)教师总结本节课的教学内容,并对学生的表现和收获进行评价和总结。
五、教学评价1.学生设计的高频电子线路是否按照要求进行搭建和测试。
2.学生在讨论中是否能够深入思考和交流设计中的问题,并提出合理的解决方案。
3.学生在实践中动手能力和创新思维能力的表现。
六、教学反思本节课采用了理论讲解、设计实践和讨论交流等多种教学方法,使学生能够更加深入地理解和掌握高频电子线路的设计和计算方法。
(完整版)高频电子线路课程设计
课程设计班级:电信12-1班*名:**学号:**********指导教师:**成绩:电子与信息工程学院信息与通信工程系目录摘要 (1)引言 (2)1. 概述 (3)1.1 LC振荡器的基本工作原理 (3)1.2 起振条件与平衡条件 (4)1.2.1 起振条件 (4)1.2.2平衡条件 (4)1.2.3 稳定条件 (4)2. 硬件设计 (5)2.1 电感反馈三点式振荡器 (5)2.2 电容反馈三点式振荡器 (6)2.3改进型反馈振荡电路 (7)2.4 西勒电路说明 (8)2.5 西勒电路静态工作点设置 (9)2.6 西勒电路参数设定 (10)3. 软件仿真 (11)3.1 软件简介 (11)3.2 进行仿真 (12)3.3 仿真分析 (13)4. 结论 (13)4.1 设计的功能 (13)4.2 设计不足 (13)4.3 心得体会 (14)参考文献 (14)徐雷:LC振荡器设计摘要振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。
种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。
通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。
继而通过Multisim设计电路与仿真。
关键词:振荡器;西勒电路;MultisimAbstractThe oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim1高频电子线路课程设计引言在信息飞速发展的时代,对信息的获取、传输与处理的方法越来越受到人们的重视。
高频电子线路课程设计
电路设计与仿真
学生根据设计方案使用电路仿真软件进行电路设 计和仿真,验证设计的可行性和正确性。这一阶 段通常需要2-3周的时间。
撰写报告与答辩
学生完成实验后,需撰写课程设计报告,并根据 指导教师的要求准备答辩。这一阶段通常需要1-2 周的时间。
02 高频电子线路基础知识
高频电子线路的基本概念
信号频率
图表绘制
根据实际需要,绘制相应的图表,如电路原理图、波形图等,使报告 更加直观易懂。
文字表述
使用准确、简洁的语言描述设计过程和结果,避免出现技术性错误和 歧义。
报告提交
按照学校或课程要求,将设计报告提交给指导老师或相关部门进行评 审。
05 课程设计总结与展望
课程设计的收获和不足
01
收获
02
深入理解高频电子线路的基本原理和应用。
03
电容
在高频电路中,电容的作 用主要是隔直流通交流, 对高频信号呈现较小的阻 抗。
电感
电感在高频电路中的作用 主要是阻止高频信号通过, 对直流呈现较小的阻抗。
电阻
在高频电路中,电阻的作 用与低频电路相似,用于 限制电流。
高频电子线路的基本电路
调谐电路
调谐电路是高频电子线路中的基本电路之一,用 于选择特定频率的信号。
高频电子线路课程设 计
目录
CONTENTS
• 课程设计概述 • 高频电子线路基础知识 • 课程设计题目解析 • 课程设计实践 • 课程设计总结与展望
01 课程设计概述
课程设计的目标
01
掌握高频电子线路的基本原理和应用
通过课程设计,学生将深入理解高频电子线路的基本原理,包括信号传
输、放大、滤波等,并能够掌握其在通信、雷达、无线电等领域的应用。
高频电子线路课程设计
高频电子线路课程设计DSB波的调制与解调目录一、概述二、技术指标三、系统框图四、部分电路分析五、电路工作原理及设计说明六、总电路的图设计一、概述调制电路是用待传输的低频信号控制高频载波某个参数电路的电路。
解调是调试的逆过程,就是从已调的信号里还原出原调制信号。
抑制掉调幅信号频谱结构中无用的载频分量,仅传输两个边频的调制方式成为抑制载波的双边带调制,简称双边带调制。
DSB在调制部分,将一个小信号和一个高频载波经乘法器电路,就会输出抑制载波的双边带调幅波。
在解调部分利用相干解调原理同步检波,因为在调制和解调过程中,有复杂的频率变换,所以根据DSB波的性质,我们选用非线性器件——两个模拟乘法器来组成本设计的基本电路。
在检波之后产生很多新频率,我们用一个低通滤波器把不符合要求的频率滤除,取出我们需要的频率,这样我们就完成了DSB波的发送和接收原理设计。
二、技术指标(1) 调制信号的参数设置信号 正弦信号幅度 400mVp 频率 100kHz 相位 0deg(2) 载波信号的参数设置信号正弦信号幅度 40mVp 频率 5MHz 相位 0deg (3) 本振信号的参数设置信号 正弦信号幅度 20mVp 频率 5MHz 相位 0deg三、系统框图(1)、本课题DSB调制与解调总框图(图1)如下:①模拟乘法器1 用于调制部分,即在发送端输入一个低频小信号和一个高频载波,产生DSB 波;② 模拟乘法器2 用于解调部分,即将DSB 波与本地载波(与高频载波同频同幅)相乘,恢复小信号;③ 低通滤波器 滤除从检波器解调出来的无用频率分量,取出所需要的原调制信号。
将三个模块连在一起,就完成了整个DSB 波的发送和接收。
(2)、调制电路原理框图(图2)如下:高频信号发生器产生载波,低频信号发生器产生小信号,输入乘法器之后,调幅波即是DSB 波.(3)、解调电路原理框图(图3)如下:图3 原理框图高频信号发生器产生与调制同频同幅的载波,已调信号为DSB 波,经过乘法器即输出含有调制信号的信号组。
(完整版)高频电子线路课程设计方案docx
高频电子线路课程设计设计题目:小功率调幅发射机的设计目录摘要 (3)1.调幅发射机的主要性能指标 (4)2.调幅发射机的原理和框图 (4)2.1调幅发射机方框图 (4)2.2调幅发射机的电路形式及工作原理 (5)2.2.1高频振荡器电路 (5)2.2.2隔离放大电路 (6)2.2.3受调放大级电路 (6)2.2.4 话筒和音频放大电路 (7)2.2.5 传输线与天线 (8)2.2.6 功率放大级电路 (8)2.2.7 传输线与天线 (9)3.电路调试 (9)3.1 本振级调试 (9)3.2 放大级调试 (9)3.3 末级调试 (9)3.4 通调 (9)4.心得体会 (10)参考文献 (12)附录一 (13)附录二 (14)摘要小功率调幅发射机常用于通信系统和其他无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。
原因是调幅发射机实现条幅简便,调制所占的频带宽,并且与之对应的调幅接收设备简单,所以调幅发射机广泛用于广播发射。
本课题的设计目的是要求掌握最基本的小功率调幅发射系统的设计、调试与安装对各级电路进行详细的探讨。
【关键词】:小功率调幅发射机设计调试1、调幅发射机的主要性能指标由于调幅发射机实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。
调幅发射机的主要性能指标如下:工作频率范围:调幅制一般适用于中、短波广播通信,其工作频率范围为300kHz~30MHz。
发射功率:一般是指发射机送到天线上的功率。
只有当天线的长度与发射频率的波长可比拟时,天线才能有效地把载波发射出去。
调幅系数:调幅系数ma是调制信号控制载波电压振幅变化的系数,ma的取值范围为0~1,通常以百分数的形式表示,即0%~100%。
非线性失真<包络失真):调制器的调制特性不能跟调制电压线性变化而引起已调波的包络失真为调幅发射机的非线性失真,一般要求小于10%。
线性失真:保持调制电压振幅不变,改变调制频率引起的调幅度特性变化称为线性失真。
(完整版)高频电子线路教案
高频电子线路教案说明:1. 教学要求按重要性分为3个层次,分别以“掌握★、熟悉◆、了解▲”表述。
学生可以根据自己的情况决定其课程内容的掌握程度和学习目标。
2. 作业习题选自教材:张肃文《高频电子线路》第五版。
3. 以图表方式突出授课思路,串接各章节知识点,便于理解和记忆。
1. 第一章绪论第一节无线电通信发展简史第二节无线电信号传输原理第三节通信的传输媒质目的要求1. 了解无线电通信发展的几个阶段及标志2. 了解信号传输的基本方法3.熟悉无线电发射机和接收机的方框图和组成部分4. 了解直接放大式和超外差式接收机的区别和优缺点5. 了解常用传输媒质的种类和特性讲授思路1. 课程简介:高频电子技术的广泛应用课程的重要性课程的特点详述学习方法与前导课程(电路分析和模拟电路)的关系课程各章节间联系和教学安排参考书和仿真软件2. 简述无线电通信发展历史3. 信号传输的基本方法:图解信号传输流程哪些环节涉及课程内容两种信号传输方式:基带传输和调制传输▲三要素:载波、调制信号、调制方法各种数字调制和模拟调制方法▲详述AM、FM、PM(波形)4. 详述无线电发射机和接收机组成:◆图解无线电发射机和接收机组成(各单元电路与课程各章对应关系)超外差式和直接放大式比较5. 简述常用传输媒质:常用传输媒质特点及应用有线、无线双绞线、同轴电缆、光纤天波、地波各自适用的无线电波段(无线电波段划分表)作业布置思考题:1、画出超外差式接收机电路框图。
2、说明超外差式接收机各级的输出波形。
1. 第二章选频网络第一节串联谐振回路第二节并联谐振回路第三节串、并联阻抗的等效互换与回路抽头时的阻抗变换目的要求1. 掌握串联谐振回路的谐振频率、品质因数和通频带的计算2. 掌握串联谐振回路的特性和谐振时电流电压的计算3.掌握串联谐振回路的谐振曲线方程4.了解串联谐振回路的相位特性曲线5.了解电源内阻和负载电阻对串联谐振回路的影响6.掌握并联谐振回路的谐振频率、品质因数和通频带的计算7.掌握并联谐振回路的特性和谐振时电流电压的计算8.掌握并联谐振回路的谐振曲线方程9.了解并联谐振回路的相位特性曲线10.了解电源内阻和负载电阻对并联谐振回路的影响11.了解低Q值并联谐振回路的特点12.熟悉串并联电路的等效互换计算13.了解并联电路的一般形式14.熟悉抽头电路的阻抗变换计算讲授思路★◆▲1. 选频网络概述:选频网络(后续章节的基础)谐振回路(电路分析课程已讲述)滤波器单振荡回路耦合振荡回路(耦合回路+多个单振荡回路)串联谐振回路并联谐振回路2. 详述串联谐振回路:串联谐振回路电路图详述回路电流方程的推导(运用电路分析理论)谐振状态特性非谐振状态特性★计算谐振频率、特性阻抗、能量关系、★幅频特性曲线、▲相频特性曲线阻抗特性、电压特性、空载品质因数▲计算有载品质因数★计算通频带(电源内阻和负载电阻对品质因数的影响)串联谐振回路适用场合3. 简述并联谐振回路:参照串联谐振回路的讲述过程运用串联、并联电路的对偶性4. 详述串并联电路的等效互换和抽头电路的阻抗变换:运用上述标准串联或并联谐振回路的已知结论,分析复杂谐振回路混联电路到串联或并联电路推导抽头电路到无抽头电路的等效互换◆推导串并联电路的等效互换电感抽头电容抽头(依据等效前后阻抗虚实部恒等)谐振回路的应用电路只需推导串联或并联电路形式之一不考虑互感、谐振条件下推导◆推广到一般情况(非谐振、有互感)抽头电路等效互换举例1. 第二章选频网络第五节耦合回路第六节滤波器的其他形式目的要求1. 了解耦合回路的一般性质2.掌握耦合回路频率特性曲线及方程3.掌握耦合因数η不同时曲线形状的变化及特点4. 了解LC集中选择性、石英晶体、陶瓷和表面声波滤波器特性和应用讲授思路1. 详述耦合回路:单振荡回路缺点(阻抗变换不灵活 + 选频特性不理想)耦合回路+多个单振荡回路互感耦合串联型(串并联电路可等效互换)电容耦合并联型推导耦合回路反射阻抗(电路分析课程已讲述)★推导耦合回路频率特性方程(节点电压法或KCL)▲反射阻抗性质★频率响应曲线克服单振荡回路缺点:阻抗变换不灵活临界耦合、过耦合、欠耦合★推导通频带克服单振荡回路缺点:选频特性不理想2. 简述各种滤波器特点及应用:LC选频网络缺点(选频特性不理想+体积大)LC集中选择性(选频特性好)石英晶体、陶瓷和表面声波滤波器(选频特性好+体积小)▲根据Q值、通频带、插入损耗比较各种滤波器优缺点作业布置思考题:1、在调谐放大器的回路两端并联一个电阻,放大器的通频带将如何变化?2、串联谐振回路发生谐振时,电容两端的电压大小与输入电压有什么关系?3、若已知并联谐振回路的R、L、C,则并联谐振频率为多少?4、耦合回路的频率响应曲线当η<1和η>1时,曲线的形状有什么不同?5、并联谐振回路发生谐振时,流过电感的电流大小与输入电流有什么关系?6、若已知串联谐振回路的R、L、C,则谐振回路的品质因数为多少?7、选频网络分为两大类。
(完整)W高频电子线路课程设计——高频功率放大器的设计
课程设计题目高频电子线路课程设计——高频功率放大器的设计学院信息工程学院专业通信工程班级姓名指导教师2010 年1月月26日日课程设计任务书学生姓名:专业班级:通信0704指导教师:工作单位:信息工程学院题目:高频电子线路课程设计——高频功率放大器的设计初始条件:1、可选元件:晶体管、高频磁环、电阻、电容、开关等2、仿真软件:EWB要求完成的主要任务:电路的主要技术指标:输出功率Po≥125mW,工作中心频率fo=6MHz, >65%,已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。
时间安排:1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。
(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。
指导教师签名: 2010年 1月日系主任(或责任教师)签名: 2010 年 1月日目录摘要 (I)Abstract (II)1 高频功率放大器概述 (1)1.1 基本原理框图 (2)1.2 放大器工作状态特点 (3)2 设计原理 (4)2.1 整体介绍 (4)2.2 谐振放大器基本原理 (4)2.3 电路动态特性 (6)3 单元电路设计与参数计算 (8)3.1 设计要求及思路 (8)3.2 丙类功率放大器的设计及参数计算 (9)3.2.1确定放大器的工作状态 (9)3.2.2 基极偏置电路计算 (10)3.2.3 谐振回路与耦合线圈的参数计算 (10)3.2.4 电源去耦滤波元件选择 (11)3.3 甲类功率放大器的设计 (11)3.3.1 电路性能参数计算 (11)3.3.2 静态工作点计算 (12)4 高频功率放大器总电路图 (12)5 仿真结果及分析 (13)5.1 甲类放大器、丙类功率放大器静态直流工作点的测量与比较 (14)5.2末级谐振功率放大器(丙类)仿真 (14)5.3 仿真遇到的问题 (15)6 总结与体会 (16)参考文献 (17)附录 (19)元件清单 (19)本科生课程设计成绩评定表 (20)摘要高频功率放大器是通信系统中发送装置的重要组件,广泛应用在发射机、高频加热装置和微波功率源等待脑子设备中。
高频电子线路课程教案
本讲授课内容
授课内容——课程介绍;第一章绪论
知识点——无线电广播系统组成以及各部分功能
重点——调制的通信系统
难点——调制与解调的概念
本讲所用方法和手段
除了用课件进行教学外,讲课内容中的“无线电广播系统”部分,再采用动画放映。
本讲师生互动设计
本讲是第一次课,师生间先相互认识。教师作自我介绍,了解教师的教学要求,以便相互配合。学生的介绍可先采取点名的方式进行,以后再增强了解。
知识点——1、直流馈电电路;
2、自给偏压环节;
3、输入输出匹配网络
4、倍频电路的原理及电路;
5、集成放大电路的简介与应用;
重点——1、串馈和并馈电路的原理与应用;
2、自给偏压环节的原理与应用;
3、倍频电路的原理思想;
难点——1、串馈电路的实际应用;
2、并馈电路的实际应用;
3、自给偏压环节的原理与应用;
本讲授课内容
授课内容——小信号调谐放大器;晶体管Y
知识点——电路形式,基本原理、评价指标
重点——电路形式
难点——评价指标
本讲所用方法和手段
复习上一讲的重点
板书、课件与动画放映结合,尤其是重要公式要板式。
本讲师生互动设计
本讲布置的作业、思考题等
思考题:高Q的LC并联谐振回路的选频作用如何?
思考题:LC回路的部分接入的含义、功能如何?
提问:动态特性曲线的三个特殊的点是如何定义的?
本讲布置的作业、思考题等内容
思考题:谐振功率放大器的功率和效率的基本变化关系;
思考题:临界点的横坐标与纵坐标是如何定义的?要会分析、使用它。
作业:3-11,3-14,3-22,3-23
『原创』高频电子线路课程设计---FM波调制与解调
1
《高频电子线路》课程设计
第章
1.1 调频概述
频率调制与解调
角 度 调 制 : 用 调 制 信 号 去 控 制 高 频 载 波 的 频 率 称 为 调 频 (Frequency Modelation),控制高频载波的相位称为调相(Phase Modeulation),调频和调相都 表现为高频载波的瞬时相位随调制信号的变化而变化,总称为角度调制。 调频与鉴频:调频是利用缓变信号来控制等幅高频振荡波(载波) ,使其振 荡频率偏移量和信号电压成正比。 所以调频波是随信号幅值而变化的疏密不等的 等幅波,调频波的频率随缓变信号的幅值而变化,其频谱结构很复杂,用简单的 信号函数难以描述。 但经过调频的信号, 其信息储存在频率中, 不易错乱或失真。 所以抗干扰能力很强,便于远距离传输以及数字处理。在 LC 谐振回路中,如果 使位移、应力、应变等物理量引起电容传感器的电容变化,则谐振回路的振荡频 率将变化。 也就是被测物理量的变化直接引起高频振荡波的频率变化,产生了调 频波。 1.2 调频波的分析 设 调 制 信 号 为 单 一 频 率 信 号 u (t ) u cos t , 未 调 载 波 电 压 为
图 1.1 调频波的波形
调频指数实际上是最大的相位偏移,它与调制信号的振幅成正比,与调制频 率成反比,它等于最大频偏除以调制频率。 1.3 FM 波的产生 根据调频的定义, 调频波的瞬时频率与调制信号成正比。它的瞬时相位与调 制信号的积分成正比。由此可以得到两种产生调频波的方法:一是直接调频法, 用调制信号直接控制振荡器的频率,使振荡频率跟随调制信号变化,二是间接调 频法,使振荡信号经过的调相电路,再用调制信号的积分去控制调相电路,使调 相电路的输出相位与控制信号成正比,由于频率是相位的微分,因此输出信号的
高频电子线路教案(完整)
高频电子线路教案(完整)《高频电子线路》课程教案一、讲授题目:本课程的研究对象二、教学目标使学生知道本课程的研究对象,方法及目标三、教学重点难点教学重点:接收设备的组成及原理教学难点:接收设备的组成及原理四、教学过程高频电子线路是电子信息、通信等电子类专业的一门技术基础课,它的研究对象是通信系统中的发送设备和接收设备的各种高频功能电路的功能、原理和基本组成。
*消息(NEWS,MESSAGE):-- 关于人或事物情况的报道。
-- 通信过程中传输的具体对象:文字,语音,图象,数据等。
*信息(INFORMATION):-- 有用的消息*信号(SIGNAL):-- 信息的具体存载体。
*输入变换器-- 将输入信息变换为电信号。
*发送设备-- 将输入电信号变换为适合于传输的电信号。
*传输信道-- 信号传输的通道。
-- 有线信道:平行线、同轴电缆或光缆,也可以是传输无线电波。
-- 无线信道:自由空间或某种介质。
*接收设备-- 将输入电信号变换为适合于变换的电信号。
*输出变换器-- 将接收设备输出的电信号变换成原来的信息,如声音、文字、图像等。
通信系统方框图通信系统分类:1)按通信业务分类*单媒体通信系统:如电话,传真等*多媒体通信系统:如电视,可视电话,会议电话等*实时通信系统:如电话,电视等*非实时通信系统:如电报,传真,数据通信等*单向传输系统:如广播,电视等*交互传输系统:如电话,点播电视等*窄带通信系统:如电话,电报,低速数据等*宽带通信系统:如点播电视,会议电视,高速数据等2)按传输媒体分类a)有线传输介质:*双绞线(屏蔽双绞线,非屏蔽双绞线)损耗大,几千比特/秒~ 几百兆比特/秒*同轴电缆损耗小,价高,抗干扰能力强,几百兆比特/秒*光纤损耗小,价高,抗干扰能力强,带宽大,体积小,重量轻,几千兆比特/秒。
实例:光纤在几千米距离内,数据率= 2 GHZ / S同轴电缆在1千米距离内,数据率= 几百MHZ / S双绞线在1千米距离内,数据率= 几MHZ / Sb)无线传输信道:自由空间或某种介质。
《高频电子线路》—教学教案
第1章绪论1.1 教学基本要求一、了解“高频电子线路”课程研究的主要内容和特点。
二、掌握无线电发送设备、接收设备的基本组成、简单工作原理。
三、建立无线电信号的发送与接收的初步概念。
四、了解通信的传输媒质,无线电信号的传播方式。
1.2 重点、难点接收设备、发送设备的组成框图及其简单的工作原理、工作波形、各部分的作用。
1.3 教学主要内容与重点、难点剖析一、主要教学内容“高频电子线路”讨论的主要内容通信系统组成,通信系统根据信道分类无线通信系统发送设备的主城框图及简单工作原理接收设备的组成及简单工作原理无线电信号的划分及传播方式。
二、重点、难点剖析“高频电子线路”课程是电子信息、通信等专业的一门技术基础课。
研究的主要内容是以通信系统为主要对象,研究构成发送设备、接收设备的各单元电路,典型线路的工作原理。
本课程讨论的功能电路的工作频率范围在几百千赫至几百兆赫的高频频段,主要特点是电路负载不再是纯电阻,而是以RLC谐振回路作负载,利用有源器件(晶体管、场效应管或集成电路)的非线性特性实现电路的各种功能,由于电路工作在高频频段,所以有源器件的极间电容不能忽略,研制电路时必须考虑分布电容对电路的影响。
分析电路的"功能",通常是利用电路的输入信号和输出信号的数学表示式、波形和频谱来实现,所谓电路的"功能"。
是指基本电路能够完成的信号传输和信号变换处理的具体工作任务。
当然,对于同一功能电路,可以用不同的器件和不同的电路形式构成,但功能电路的功能和输入信号、输出信号的频谱关系是不会变的。
1、无线通信系统(1)无线通信系统的基本组成(2)声音是如何通过自由空间传到远方的?(3)无线电发送设备组成框图交变的电振荡可以利用天线向空中辐射出去,为何不能将交变的音频信号通过天线直接向空中辐射?(A)高频部分的作用(B)调制的概念(4)无线电接收设备组成框图最简单的接收机方框图及工作原理。
高频电子线路课程设计
高频电子线路课程设计一、课程目标知识目标:1. 让学生掌握高频电子线路的基本原理,理解高频信号的特点及其传输方式。
2. 使学生掌握常用高频元器件的原理、功能及应用,并能正确选用。
3. 培养学生分析并设计简单高频电子线路的能力。
技能目标:1. 培养学生运用所学知识进行高频电子线路搭建、调试及故障排除的能力。
2. 提高学生运用仿真软件进行高频电子线路设计的能力。
情感态度价值观目标:1. 培养学生热爱电子技术,对高频电子线路产生浓厚的兴趣。
2. 培养学生具备团队协作精神,善于沟通交流,敢于面对挑战。
3. 培养学生严谨的科学态度和良好的工程素养,注重实践与创新。
本课程针对高年级电子专业学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,使学生能够掌握高频电子线路的基本知识,具备实际操作能力,并在此基础上培养学生的创新意识和团队协作能力,为后续的专业课程学习和职业发展打下坚实基础。
二、教学内容本章节教学内容主要包括以下三个方面:1. 高频电子线路基本原理- 高频信号特点及其传输方式- 高频电路的基本组成与功能- 常用高频元器件的原理、功能及应用教学内容参考教材第1章至第3章,让学生掌握高频电子线路的基本概念和原理。
2. 高频电子线路设计与实践- 高频放大器、振荡器、混频器的设计原理- 高频电路的PCB设计技巧- 高频电子线路的搭建、调试及故障排除教学内容参考教材第4章至第6章,通过实践操作,提高学生的高频电子线路设计和实践能力。
3. 仿真软件在高频电子线路设计中的应用- 仿真软件的基本操作与使用方法- 高频电子线路仿真案例分析- 仿真软件在实际高频电子线路设计中的应用教学内容参考教材第7章,使学生掌握仿真软件在高频电子线路设计中的应用。
教学进度安排如下:1-2周:高频电子线路基本原理3-4周:高频电子线路设计与实践5-6周:仿真软件在高频电子线路设计中的应用教学内容具有科学性和系统性,结合教材章节和实际教学需求,旨在帮助学生全面掌握高频电子线路的相关知识和技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计班级:电信12-1班*名:**学号:**********指导教师:**成绩:电子与信息工程学院信息与通信工程系目录摘要 (1)引言 (2)1. 概述 (3)1.1 LC振荡器的基本工作原理 (3)1.2 起振条件与平衡条件 (4)1.2.1 起振条件 (4)1.2.2平衡条件 (4)1.2.3 稳定条件 (4)2. 硬件设计 (5)2.1 电感反馈三点式振荡器 (5)2.2 电容反馈三点式振荡器 (6)2.3改进型反馈振荡电路 (7)2.4 西勒电路说明 (8)2.5 西勒电路静态工作点设置 (9)2.6 西勒电路参数设定 (10)3. 软件仿真 (11)3.1 软件简介 (11)3.2 进行仿真 (12)3.3 仿真分析 (13)4. 结论 (13)4.1 设计的功能 (13)4.2 设计不足 (13)4.3 心得体会 (14)参考文献 (14)徐雷:LC振荡器设计摘要振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。
种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。
通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。
继而通过Multisim设计电路与仿真。
关键词:振荡器;西勒电路;MultisimAbstractThe oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim1高频电子线路课程设计引言在信息飞速发展的时代,对信息的获取、传输与处理的方法越来越受到人们的重视。
如何高效快捷且没有失真传递信息成为关注的热点。
通过对高频电子线路课程的学习,了解到高频信号发生器主要用来向各种电子设备和电路提供高频能量或者高频标准信号,以便测试各种电子设备和电路的电气特性。
一般采用LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
为此,振荡器是电子技术领域中最基本的电子线路。
振荡器主要分为晶体振荡器和LC振荡器,本次课设采用LC振荡器。
LC振荡器中的基本电路就是通常所说的三点式振荡器,即LC回路的三个端点与晶体管的三个电极分别连接而成的电路。
其中三点式又分为两种基本电路。
根据反馈网络由电容还是电感完成的分为电容反馈振荡器和电感反馈振荡器。
同时为了提高振荡器的稳定度,通过对电容三点式振荡器的改进可以得到克拉泼振荡器和西勒振荡器两种改进型的电容反馈振荡器。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
通过对各电路的比较,以及根据课设要求工作频率5MHz ,频率稳定度10-4,电源电压15V,波形质量较好,有适当的输出功率。
等综合考虑,最终选择西勒振荡器,并完成相关的技术指标。
2徐雷:LC振荡器设计1. 概述1.1LC振荡器的基本工作原理振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。
LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成。
振荡器根据自身输出的波形可分为正弦波振荡器和非正弦波振荡器,正弦波振荡器在广播通讯、自动控制、仪器仪表、高频加热、超声探伤等领域有着广泛的应用;而非正弦振荡器能产生出矩形波(方波)、三角波、锯齿波等信号,这些信号可以用于测量设备、数字系统、自动控制及计算机设备中。
本设计讨论的就是正弦波振荡器。
其框图如图1-1所示。
图1-1振荡器原理框图放大器的增益:A= V0/ V i(1-1)反馈系数:F= Vf/ V0 (1-2)由所学知识可知,构成一个振荡器必须具备下列三个条件:(1)一套振荡回路,包含两个(或两个以上)储能元件。
在这两个元件中,当一个释放能量时,另一个就接收能量。
释放与接收能量可以往返进行,其频率决定于元件的数值。
(2)一个能量来源,补充由振荡回路电阻所产生的能量损失。
在晶体管振荡器中,这个能源就是直流电源。
(3)一个控制设备,可以使电源功率在正确的时刻补充电路的能量损失,以维持等幅振荡。
这是由有源器件和正反馈电路完成的。
3高频电子线路课程设计41.2 起振条件与平衡条件1.2.1 起振条件振荡电路在刚接通电源时候,晶体管中电流从零跃变到某一数值,同时,电路中还有噪声,它们具有很宽的频谱。
由于放大器负载回路的选频作用,其中只有某个频率分量才能通过反馈网络加到放大器的输入端,这就是振荡器最初激励信号。
为了使振荡器在接通直流电源后能够自动起振,则要求反馈电压在相位上与放大器输入电压同相,在幅度上则要求Vf 〉V i ,起振的充分必要条件。
可以写成:FA >1 (1-3)ΨA+ΨF=2nπ n=0,1,2,3,… (1-4)(1-3)是振幅起振条件,(1-4)是相位起振条件。
两者必须同时满足才能起振1.2.2 平衡条件当反馈信号等于放大器的输入信号时,振荡电路的输出电压不再发生变化,电路达到平衡状态。
振荡的平衡条件包括振幅平衡条件(1-5)和相位平衡条件(1-6),分别为:AF=1 (1-5)ΨA+ΨF=2nπ n=0,1,2,3,… (1-6)1.2.3 稳定条件当振荡器受到外部因素的扰动(如电源电压波动、 温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。
如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。
反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态, 则表明原平衡状态是稳定的。
振荡器的稳定条件相应地可分为振幅稳定条件和相位稳定条件。
(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。
具体来说,就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。
徐雷:LC 振荡器设计5(2)相位稳定条件同理,要使相位稳定,振荡器在其平衡点必须具有阻止相位变化的能力。
即有振荡器的相位稳定条件。
0<∂∂ωϕ (1-7) 2. 硬件设计2.1 电感反馈三点式振荡器电感三点式振荡器(哈特莱振荡器),其原理电路如图所示图2-1 电感三点式震荡器电路振荡频率:(2-1)电感反馈振荡电路的优点是:由于1L 和2L 之间有互感存在,所以容易起振。
其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。
这种电路的主要缺点是:与电容反馈振荡电路相比,其振荡波形不够好。
这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,故对于LC 回路中的高次谐波反馈较强,波形失真较大。
其次是当工作频率较高时,由于1L 和2L 上的分布电容和晶体管的极间电容均并联于1L 与2L 两端,这样,反馈系数F 随频率变化而变化。
工作频率愈高,分布参数的影响也愈严重,甚至可能使F 减小到满足不了起振条件。
因此,这种电路尽管它的工作频率也能达到甚高频波段,但是在甚高频波段里,优先选择的还是电容反馈振荡器。
()M L L C LC f 2π21π21≈21++≈高频电子线路课程设计62.2 电容反馈三点式振荡器电容三点式振荡器(考毕兹振荡器),其原理电路如图:图2-2 电容三点式震荡器电路振荡频率的近似为(2-2) 与电感三端振荡电路相比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减少,波形更加接近于正弦波。
其次,该电路中的不稳定电容(分布电容、器件的结电容等)都是与该电路并联的,因此适当的加大回路电容量,就可以减弱不稳定因素对振荡器的影响,从而提高了频率稳定度。
最后,当工作频率较高时,甚至可以只利用器件的输入和输出电容作为回路电容。
因而本电路适用于较高的工作频率。
这种电路的缺点是:调1C 或2C 来改变振荡频率时,反馈系数也将改变。
但只要在L两端并上一个可变电容器,并令1C 与2C 为固定电容,则在调整频率时,基本上不会影响反馈系数。
21212121C C C C LC f +≈≈ππ徐雷:LC 振荡器设计72.3 改进型反馈振荡电路克拉波电路振荡器克拉泼电路时一种高稳定度的LC 振荡电路,电路图如下:图2-3克拉波电路它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C3,其取值比较小,要求C3<< C1,C3<< C2。
先不考虑各极间电容的影响,这时谐振回路的总电容量CΣ为C1、C2 和C3的串联,即 4321Σ≈1111C C C C C ++=(2-3) 于是,振荡频率为 4Σ0π21≈π21≈LC LC f (2-4)使上式成立的条件是C1和C2都要选得比较大,由此可见,C1、C2对振荡频率的影响显著减小,那么与C1、C2并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。