课程设计-图的遍历
图的遍历算法
1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。
如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。
下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。
其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
数据结构实验报告图的遍历讲解
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
图的遍历 实验报告
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
深度与广度优先搜索:迷宫问题
《数据结构课程设计》报告题目:深度与广度优先搜索--迷宫问题专业计算机科学与技术学生姓名李柏班级B计算机115学号1110704512指导教师巩永旺完成日期2013年1月11日目录1简介 (1)2算法说明 (1)3测试结果 (3)4分析与探讨 (7)5小结 (9)附录 (10)附录1 源程序清单 (10)迷宫问题1 简介1、图的存储结构图的存储结构又称图的表示,其最常用的方法是邻接矩阵和邻接表。
无论采用什么存储方式,其目标总是相同的,既不仅要存储图中各个顶点的信息,同时还要存储顶点之间的所有关系。
2、图的遍历图的遍历就是从指定的某个顶点(称其为初始点)出发,按照一定的搜索方法对图中的所有顶点各做一次访问过程。
根据搜索方法不同,遍历一般分为深度优先搜索遍历和广度优先搜索遍历。
本实验中用到的是广度优先搜索遍历。
即首先访问初始点v i,并将其标记为已访问过,接着访问v i的所有未被访问过的邻接点,顺序任意,并均标记为已访问过,以此类推,直到图中所有和初始点v i有路径相通的顶点都被访问过为止。
鉴于广度优先搜索是将所有路径同时按照顺序遍历,直到遍历出迷宫出口,生成的路径为最短路径。
因此我们采用了广度优先搜索。
无论是深度优先搜索还是广度优先搜索,其本质都是将图的二维顶点结构线性化的过程,并将当前顶点相邻的未被访问的顶点作为下一个顶点。
广度优先搜索采用队列作为数据结构。
本实验的目的是设计一个程序,实现手动或者自动生成一个n×m矩阵的迷宫,寻找一条从入口点到出口点的通路。
具体实验内容如下:选择手动或者自动生成一个n×m的迷宫,将迷宫的左上角作入口,右下角作出口,设“0”为通路,“1”为墙,即无法穿越。
假设一只老鼠从起点出发,目的为右下角终点,可向“上、下、左、右、左上、左下、右上、右下”8个方向行走。
如果迷宫可以走通,则用“■”代表“1”,用“□”代表“0”,用“☆”代表行走迷宫的路径。
输出迷宫原型图、迷宫路线图以及迷宫行走路径。
数据结构课程设计python
数据结构课程设计python一、课程目标知识目标:1. 理解数据结构的基本概念,掌握常用数据结构如列表、元组、字典和集合的特点及应用场景。
2. 学习并掌握栈和队列的操作原理及其在Python中的实现方法。
3. 掌握树和图的基本概念,了解二叉树、遍历算法及图的表示方法。
技能目标:1. 能够运用Python语言实现基本数据结构,并对其进行增、删、改、查等操作。
2. 能够利用栈和队列解决实际问题,如递归、函数调用栈、任务调度等。
3. 能够运用树和图解决实际问题,如查找算法、路径规划等。
情感态度价值观目标:1. 培养学生严谨的逻辑思维,提高分析问题和解决问题的能力。
2. 激发学生对数据结构和算法的兴趣,培养良好的编程习惯。
3. 引导学生认识到数据结构在实际应用中的重要性,增强学习热情和责任感。
课程性质:本课程为高年级数据结构课程,旨在使学生掌握Python语言实现数据结构的方法,提高编程能力和解决问题的能力。
学生特点:学生具备一定的Python编程基础,具有较强的逻辑思维能力,对数据结构有一定的了解。
教学要求:结合实际案例,采用任务驱动法,引导学生通过实践掌握数据结构的基本原理和应用方法。
注重培养学生的动手能力和团队协作精神,提高学生的综合素质。
通过本课程的学习,使学生能够具备独立设计和实现小型项目的能力。
二、教学内容1. 数据结构基本概念:介绍数据结构的概念、作用和分类,结合Python语言特点,分析各类数据结构在实际应用中的优势。
- 列表、元组、字典和集合的原理与应用- 栈与队列的操作原理及实现2. 线性表:讲解线性表的概念,重点掌握顺序表和链表的操作方法。
- 顺序表和链表的实现及操作- 线性表的查找和排序算法3. 树与二叉树:介绍树的基本概念,重点讲解二叉树的结构及其遍历算法。
- 树的基本概念和表示方法- 二叉树的性质、存储结构、遍历方法4. 图:讲解图的基本概念,掌握图的存储结构及遍历方法。
- 图的基本概念和表示方法- 图的遍历算法(深度优先搜索、广度优先搜索)- 最短路径和最小生成树算法5. 算法分析与设计:结合实例,分析算法性能,掌握基本的算法设计方法。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
实现图的遍历算法实验报告
实现图的遍历算法实验报告实现图的遍历算法实验报告⼀实验题⽬: 实现图的遍历算法⼆实验要求:2.1:(1)建⽴如图(p126 8.1)所⽰的有向图 G 的邻接矩阵,并输出之(2)由有向图G的邻接矩阵产⽣邻接表,并输出之(3)再由(2)的邻接表产⽣对应的邻接矩阵,并输出之2.2 (1)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(递归算法)(2)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(⾮递归算法)(3)输出如图8.1所⽰的有向图G从顶点0开始的⼴度优先遍历序列三实验内容:3.1 图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:R={VR}VR={|v,w∈V且P(v,w),表⽰从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G。
DestroyGraph( &G )初始条件:图G存在。
操作结果:销毁图G。
LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。
操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。
GetVex( G, v )初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的值。
PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。
初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的第⼀个邻接顶点。
若顶点在G中没有邻接顶点,则返回“空”。
NextAdjVex( G, v, w )初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。
操作结果:返回v的(相对于w的)下⼀个邻接顶点。
若w是v 的最后⼀个邻接点,则返回“空”。
InsertVex( &G, v )初始条件:图G存在,v和图中顶点有相同特征。
数据结构课程设计-图的遍历和构建
摘要图(Graph)是一种复杂的非线性结构。
图可以分为无向图、有向图。
若将图的每条边都赋上一个权,则称这种带权图网络。
在人工智能、工程、数学、物理、化学、计算机科学等领域中,图结构有着广泛的应用。
在图结构中,对结点(图中常称为顶点)的前趋和后继个数都是不加以限制的,即结点之间的关系是任意的。
图中任意两个结点之间都可能相关。
图有两种常用的存储表示方法:邻接矩阵表示法和邻接表表示法。
在一个图中,邻接矩阵表示是唯一的,但邻接表表示不唯一。
在表示的过程中还可以实现图的遍历(深度优先遍历和广度优先遍历)及求图中顶点的度。
当然对于图的广度优先遍历还利用了队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。
这不仅让我们巩固了之前学的队列的基本操作,还懂得了将算法相互融合和运用。
目录第一章课程设计目的..................................................................................... 错误!未定义书签。
第二章课程设计内容和要求....................................................................... 错误!未定义书签。
2.1课程设计内容.................................................................................. 错误!未定义书签。
2.1.1图的邻接矩阵的建立与输出ﻩ错误!未定义书签。
2.1.2图的邻接表的建立与输出............................................... 错误!未定义书签。
2.1.3图的遍历的实现.................................................................... 错误!未定义书签。
数据结构课程设计题目
数据结构课程设计题目以下7个题目任选其一。
1.排序算法比较利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且(1)统计每一种排序上机所花费的时间。
(2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。
(3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。
(4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。
2.图的深度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用堆栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现图的深度优先搜索遍历。
画出搜索顺序示意图。
3.图的广度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度优先搜索遍历。
画出搜索顺序示意图。
4.二叉树的遍历对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。
画出搜索顺序示意图。
5.链表操作利用链表的插入运算建立线性链表,然后利用链表的查找、删除、计数、输出等运算反复实现链表的这些操作(插入、删除、查找、计数、输出单独写成函数的形式),并能在屏幕上输出操作前后的结果。
画出搜索顺序示意图。
6.一元稀疏多项式简单计数器(1)输入并建立多项式(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。
序列按指数降序排列。
(3)多项式a和b相加,建立多项式a+b,输出相加的多项式。
(4)多项式a和b相减,建立多项式a-b,输出相减的多项式。
用带头结点的单链表存储多项式。
测试数据:(1)(2x+5x8-3.1x11)+(7-5x8+11x9)(2)(6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)7.实现两个链表的合并基本功能要求:(1)建立两个链表A和B,链表元素个数分别为m和n个。
实验四 图的遍历算法
实验四图的遍历算法4.1.实验的问题与要求1.如何对给定图的每个顶点各做一次且仅做一次访问?有哪些方法可以实现图的遍历?2.如何用这些算法解决实际问题?3.熟练掌握图的基本存储方法4.熟练掌握图的两种搜索路径的遍历方法5.掌握有关图的操作算法并用高级语言实现4.2.实验的基本思想和基本原理和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
遍历常用两种方法:深度优先搜索遍历;广度优先搜索遍历4.2.1 深度优先搜索(Depth-First Traversal)深度优先搜索是一种递归的过程,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。
在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续下去。
当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。
这一过程一直进行到已发现从源结点可达的所有结点为止。
如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。
1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v 为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
图的遍历操作实验报告
图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
实验中使用的数据结构为邻接表来表示图。
三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。
它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。
(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。
它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。
四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。
例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。
第8章图第3讲-图的遍历 - 副本
19/21
图搜索算法设计一般方法 图搜索算法设计
转化
DFS或BFS算法求解 提示:两个遍历算法是图搜索算法的基础,必须熟练掌sited[i]
10/21
采用邻接表的BFS算法:
void BFS(AdjGraph *G,int v) { int w, i; ArcNode *p; SqQueue *qu; InitQueue(qu); int visited[MAXV]; for (i=0;i<G->n;i++) visited[i]=0; printf("%2d",v); visited[v]=1; enQueue(qu,v);
1 初始点 2 3
4
0
DFS:1→2 →4 …
2 1
用栈保存访问过的顶点
栈
如何确定一个顶点是否访问过? 设置一个visited[] 全局数组, visited[i]=0表示顶点i没有访问; visited[i]=1表示顶点i已经访 问过。
i visited[i]
5/21
采用邻接表的DFS算法:
void DFS(AdjGraph *G,int v) { ArcNode *p; int w; visited[v]=1; //置已访问标记
} }
该算法的时间复杂度为O(n+e)。
6/21
深度优先遍历过程演示
0 1 2 3 4
v0
v1 v2 v3 v4
1 2 3 4
1 0 1 0 0
3 2 3 1 2
4 3 4 2 3
∧ ∧ ∧
4
∧
∧
0
v=2的DFS序列: 2 1 0 遍历过程结束
3
shuju文档
数据结构课程设计题目,图的建立以及遍历。
2011-1-17 14:47提问者:doraprince|悬赏分:50 |浏览次数:1134次*问题描述:要求建立一个菜单,菜单包含4个菜单项供选择:1、建立图的邻接矩阵;2、建立图的邻接表;3、对图进行深度优先遍历;4、对图进行广度优先遍历。
要求从键盘输入无向有权图的顶点数、边数、每条边的起始顶点序号、终点序号、权值,将每条边的信息存入到邻接矩阵和邻接表中。
从键盘输入深度优先遍历和广度优先遍历图时初始出发的顶点的序号,要求在遍历过程中输出访问过的结点序号。
请用C语言编写,要求在TURBO C2.0下测试通过。
2011-1-23 13:33最佳答案//图的遍历算法程序//图的遍历是指按某条搜索路径访问图中每个结点,使得每个结点均被访问一次,而且仅被访问一次。
图的遍历有深度遍历算法和广度遍历算法,程序如下:#include <iostream>//#include <malloc.h>#define INFINITY 32767#define MAX_VEX 20 //最大顶点个数#define QUEUE_SIZE (MAX_VEX+1) //队列长度using namespace std;bool *visited; //访问标志数组//图的邻接矩阵存储结构typedef struct{char *vexs; //顶点向量int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵int vexnum,arcnum; //图的当前顶点数和弧数}Graph;//队列类class Queue{public:void InitQueue(){base=(int *)malloc(QUEUE_SIZE*sizeof(int));front=rear=0;}void EnQueue(int e){base[rear]=e;rear=(rear+1)%QUEUE_SIZE;}void DeQueue(int &e){e=base[front];front=(front+1)%QUEUE_SIZE;}public:int *base;int front;int rear;};//图G中查找元素c的位置int Locate(Graph G,char c){for(int i=0;i<G.vexnum;i++)if(G.vexs[i]==c) return i;return -1;}//创建无向网void CreateUDN(Graph &G){int i,j,w,s1,s2;char a,b,temp;printf("输入顶点数和弧数:");scanf("%d%d",&G.vexnum,&G.arcnum);temp=getchar(); //接收回车G.vexs=(char *)malloc(G.vexnum*sizeof(char)); //分配顶点数目printf("输入%d个顶点.\n",G.vexnum);for(i=0;i<G.vexnum;i++){ //初始化顶点printf("输入顶点%d:",i);scanf("%c",&G.vexs[i]);temp=getchar(); //接收回车}for(i=0;i<G.vexnum;i++) //初始化邻接矩阵for(j=0;j<G.vexnum;j++)G.arcs[i][j]=INFINITY;printf("输入%d条弧.\n",G.arcnum);for(i=0;i<G.arcnum;i++){ //初始化弧printf("输入弧%d:",i);scanf("%c %c %d",&a,&b,&w); //输入一条边依附的顶点和权值temp=getchar(); //接收回车s1=Locate(G,a);s2=Locate(G,b);G.arcs[s1][s2]=G.arcs[s2][s1]=w;}}//图G中顶点k的第一个邻接顶点int FirstVex(Graph G,int k){if(k>=0 && k<G.vexnum){ //k合理for(int i=0;i<G.vexnum;i++)if(G.arcs[k][i]!=INFINITY) return i;}return -1;}//图G中顶点i的第j个邻接顶点的下一个邻接顶点int NextVex(Graph G,int i,int j){if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理for(int k=j+1;k<G.vexnum;k++)if(G.arcs[i][k]!=INFINITY) return k;}return -1;}//深度优先遍历void DFS(Graph G,int k){int i;if(k==-1){ //第一次执行DFS时,k为-1for(i=0;i<G.vexnum;i++)if(!visited[i]) DFS(G,i); //对尚未访问的顶点调用DFS}else{visited[k]=true;printf("%c ",G.vexs[k]); //访问第k个顶点for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS }}//广度优先遍历void BFS(Graph G){int k;Queue Q; //辅助队列QQ.InitQueue();for(int i=0;i<G.vexnum;i++)if(!visited[i]){ //i尚未访问visited[i]=true;printf("%c ",G.vexs[i]);Q.EnQueue(i); //i入列while(Q.front!=Q.rear){Q.DeQueue(k); //队头元素出列并置为kfor(int w=FirstVex(G,k);w>=0;w=NextVex(G,k,w))if(!visited[w]){ //w为k的尚未访问的邻接顶点visited[w]=true;printf("%c ",G.vexs[w]);Q.EnQueue(w);}}}}//主函数void main(){int i;Graph G;CreateUDN(G);visited=(bool *)malloc(G.vexnum*sizeof(bool));printf("\n广度优先遍历: ");for(i=0;i<G.vexnum;i++)visited[i]=false;DFS(G,-1);printf("\n深度优先遍历: ");for(i=0;i<G.vexnum;i++)visited[i]=false;BFS(G);printf("\n程序结束.\n");}输出结果为(红色为键盘输入的数据,权值都置为1):输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1广度优先遍历: a b d h e c f g 深度优先遍历: a b c d e f g h 程序结束.只能劝之为1。
图的建立及输出(图的遍历)
数据结构课程设计题目图的建立及输出学生姓名学号院系专业指导教师二O一O年12 月16 日目录一、设计题目 (2)二、运行环境(软、硬件环境) (2)三、算法设计的思想 (2)3.1邻接矩阵表示法 (2)3.2图的遍历 (4)3.3邻接矩阵的输出 (5)四、算法的流程图 (6)五、算法设计分析 (7)5.1无向网邻接矩阵的建立算法 (7)5.2无向图邻接矩阵的建立算法 (7)5.3图的深度优先遍历 (7)5.4图的广度优先遍历 (8)六、源代码 (8)七、运行结果分析 (14)八、收获及体会 (15)一、设计题目:图的建立及输出*问题描述:建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。
二、运行环境(软、硬件环境)*软件环境:Windows7、 Windows Vista、 Windows Xp等*硬件环境:处理器:Pentium4以上内存容量: 256M以上硬盘容量:40GB 以上三、算法设计的思想1、邻接矩阵表示法:设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。
G的邻接矩阵是一个他有下述性质的n阶方阵:1,若(Vi,Vj)∈E 或<Vi,Vj>∈E;A[i,j]={0,反之图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2:M1=┌0 1 0 1 ┐│ 1 0 1 0 ││ 1 0 0 1 │└0 0 0 0 ┘M2=┌0 1 1 1 ┐│ 1 0 1 0 ││ 1 1 0 1 │└ 1 0 1 0 ┘注意无向图的邻接是一个对称矩阵,例如M2。
用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。
因此其类型定义如下:VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量AdjMatrix arcs; // 邻接矩阵int vexnum, arcnum; // 图的当前顶点数和弧(边)数GraphKind kind; // 图的种类标志若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。
数据结构课程设计参考题目(一)
数据结构课程设计参考题目(一)数据结构是计算机科学中的一门基础课程,它主要研究数据的组织、存储、管理和操作等方面的问题。
随着计算机技术的发展,数据结构逐渐成为各个领域必不可少的一门课程。
而数据结构课程设计参考题目是该课程的一项重要内容,它能够帮助学生更好地掌握课程知识,提高对数据结构的理解和应用能力。
以下是几个数据结构课程设计参考题目。
1.链表操作设计一个链表类,使得它能够实现插入、删除、查找和遍历链表的操作。
要求采用单向链表或双向链表实现,并考虑链表的循环操作。
同时,要求能够对链表进行排序操作。
2.栈与队列操作设计一个栈和队列类,使得它们能够实现入栈、出栈、入队和出队的操作。
要求采用数组或链表实现,并可用于表达式转换和括号匹配等相关问题。
3.堆排序算法实现堆排序算法,要求能够对整型数列进行排序,并输出其排序后的结果。
要求堆的构建、删除和调整操作均可用最大堆或最小堆实现。
同时,要求能够对算法的时间复杂度进行分析,并与快速排序等算法进行比较。
4.哈希表实现设计一个哈希表类,使其能够实现插入、删除和查找等操作。
要求采用链地址法或开放地址法实现,同时需要考虑哈希函数和扩容等问题。
要求能够对哈希冲突的解决方法进行比较和分析。
5.树与图的遍历实现二叉树、B树或B+树的遍历操作,要求能够实现先序、中序和后序遍历,并能够循环遍历或递归遍历。
同时,要求能够对树的平衡性进行探究和讨论。
另外,树的遍历也是图的遍历的基础,可以通过深度优先搜索或广度优先搜索实现图的遍历。
以上是一些常见的数据结构课程设计参考题目,它们可以锻炼学生的编程能力、算法分析能力和数据处理能力,同时也可以增强学生对数据结构知识的理解和掌握。
七桥问题c语言课程设计
七桥问题c语言课程设计一、课程目标知识目标:1. 理解并掌握七桥问题的背景、定义及数学模型;2. 学会运用C语言实现图的表示和遍历算法;3. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)算法的应用;4. 了解贪心算法和回溯算法在解决七桥问题中的应用。
技能目标:1. 能够运用C语言编写程序,解决七桥问题,实现从一个顶点到另一个顶点的所有路径的搜索;2. 学会分析算法的时间复杂度和空间复杂度,对算法进行优化;3. 能够运用调试工具,找出并修正程序中的错误;4. 培养逻辑思维和问题解决能力,提高编程实践技能。
情感态度价值观目标:1. 培养学生对计算机科学和数学建模的兴趣,激发学生的学习热情;2. 培养学生的团队协作意识和沟通能力,提高合作解决问题的能力;3. 培养学生面对问题的积极态度,敢于挑战困难,善于从失败中汲取经验教训;4. 引导学生认识到编程在解决实际问题中的重要作用,增强学生的社会责任感和使命感。
二、教学内容1. 图的基本概念与表示方法:- 图的定义、分类及基本术语;- 邻接矩阵和邻接表的表示方法;- C语言实现图的创建、添加边和顶点。
2. 图的遍历算法:- 深度优先搜索(DFS)算法原理与实现;- 广度优先搜索(BFS)算法原理与实现;- 分析DFS和BFS算法的时间复杂度和空间复杂度。
3. 解决七桥问题:- 七桥问题的背景介绍及数学模型;- 贪心算法和回溯算法在七桥问题中的应用;- C语言实现七桥问题的解决方案。
4. 算法优化与调试:- 分析算法性能,探讨优化策略;- 介绍常见的编程错误和调试方法;- 实践环节:编写、调试并优化七桥问题的解决方案。
5. 教学案例分析:- 结合实际案例,分析七桥问题的解题过程;- 讨论案例中算法的优缺点,引导学生进行思考和改进。
教学内容安排与进度:第1课时:图的基本概念与表示方法;第2课时:图的遍历算法(DFS和BFS);第3课时:解决七桥问题的算法原理;第4课时:编写、调试并优化七桥问题的解决方案;第5课时:教学案例分析及讨论。
图遍历的演示实习报告c++
数据结构课程设计图遍历的演示题5.3 图遍历的演示实习报告题目:试设计一个程序,演示在连通和非连通的无向图上访问全部结点的操作一、需求分析1、以邻接多重表为存储结构;2、实现连通和非连通的无向图的深度优先和广度优先遍历;3、要求利用栈实现无向图的深度优先遍历;4、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和生成树的边集;5、用凹入表打印生成树;6、求出从一个结点到另外一个结点,但不经过另外一个指定结点的所有简单路径;6、本程序用C++语言编写,在TURBO C++ 3.0环境下通过。
二、概要设计1、设定图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为点集.数据关系R:R={VR}VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P:CreatGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合.操作结果:按V和VR是定义构造图G.DestroyGraph(&G)初始条件:图G存在操作结果:销毁图GLocateVex(G,u)初始条件: 图G存在,u和G中顶点有相同的特征操作结果:若图G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息GetVex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的值FirstAjvex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的第一个邻接顶点,若顶在图中没有邻接顶点,则返回为空NextAjvex(G,v,w)初始条件: 图G存在,v是G中顶点,w是v的邻接顶点操作结果:返回v的下一个邻接顶点,若w是v的最后一个邻接顶点,则返回空DeleteVexx(&G,v)初始条件: 图G存在,v是G中顶点操作结果:删除顶点v已经其相关的弧DFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果: 对图进行深度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败BFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果:对图进行广度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败}ADT Graph2、设定栈的抽象数据类型:ADT Stack{数据对象:D={ai | ai∈CharSet,i=1,2,……,n,n≥0}数据关系:R1={<ai-1,ai> | ai-1,ai∈D,i=2,……,n}基本操作:InitStack(&S)操作结果:构造一个空栈S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、课题的主要功能 (2)1.1设计内容 (2)1.2对课程设计功能的需求分析 (2)二、课题的功能模块的划分 (2)2.1模块划分 (2)2.2系统的概要设计 (3)三、主要功能的实现 (4)3.1算法思想 (4)1.图的邻接矩阵的建立 (4)2.图的遍历的实现 (4)3.2数据结构 (4)3.3主函数流程图 (5)3.4深度优先遍历流程图 (6)3.5深度优先遍历递归 (7)3.6深度优先遍历流程图 (9)3.7广度优先遍历递归流程图 (10)四、程序调试 (11)4.1程序的调试分析 (11)4.2程序的测试结果 (11)五、总结 (16)六、附件 (16)6.1源程序一、课题的主要功能1.1设计内容演示图的深度优先, 广度优先遍历过程,并输出原图结构及遍历结果。
要求图的结点数不能少于6个。
可以由系统随机生成图,也可以由用户手动输入图。
报告中要写出画图的思路;画出图的结构,有兴趣的同学可以进一步改进图的效果。
1.2对课程设计功能的需求分析图的遍历并不需要是一个过于复杂的工作环境,一般来说:最合适的才是最好的。
软件设计必须符合我们使用实际情况的需要。
根据要求,图的遍历主要功能如下:1.用户可以随时建立一个有向图或无向图;2.用户可以根据自己的需要,对图进行深度遍历或广度遍历;3.用户可以根据自己的需要对图进行修改;4.在整个程序中,用户可以不断的按照不同的方式对图进行遍历,若不继续,用户也可以随时跳出程序,同时,如果用户输入的序号错误,程序会提示用户重新输入序号;二、课题的功能模块的划分2.1模块划分1.队列的初始化、进队、出队、队列空、队列满的函数void InitQueue(CirQueue *Q) //初始化队列int QueueEmpty(CirQueue *Q)//队列是否为空int QueueFull(CirQueue *Q)//队列满Void EnQueue(CirQueue *Q,int x)//将队员进队int DeQueue(CirQueue *Q)//将队员出队2.创建图的函数void CreateMGraph(MGraph *G)//根据用户需要创建一个图3.图的深度优先遍历递归void DFSM(MGraph *G,int i)/*含有输出已访问的顶点的语句*/4.图的广度优先遍历递归void BFSM(MGraph *G,int k) /*含有输出已访问的顶点的语句*/5.深度优先遍历void DFSTraverseM(MGraph *G)/*调用DFSM函数*/6.广度优先遍历void BFSTraverseM(MGraph *G) /*调用BFSM函数*/7.主函数main() /*包含一些调用和控制语句*/2.2系统的概要设计开始信息录入菜单选择深度优先修改信息广度优先退出程序三、主要功能的实现3.1算法思想本课题所采用的是邻接矩阵的方式存储图,实现图的深度、广度两种遍历,并将每种遍历结果输出来。
1.图的邻接矩阵的建立对任意给定的图(顶点数和边数自定),根据邻接矩阵的存储结构建立图的邻接距阵。
2.图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。
对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。
首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。
并以队列是否为空作为循环控制条件。
对于深度优先遍历则采用递归或非递归算法来实现,这里我所采用的是递归算法。
3.2数据结构#define Max 10#define FALSE 0#define TRUE 1#define Error printf#define QueueSize 30typedef struct{char vexs[Max];int edges[Max][Max];int n,e;int visited[Max]; typedef struct {int front; int rear; int count;int data[QueueSize]; }CirQueue;3.3主函数流程图0 12 3CreateMGraph (G);Ch1=’y ’Ch1=’y ’真登陆开始输入ch2Ch2Ch1=’n ’CreateMGraph(G)DFSTraverseM(G) BFSTraverseM(G)B r e a k3.4深度优先遍历流程图真非零 零3.5深度优先遍历递归真i=0 i<G->n visited[i]=FALSE i++ i=0 !visited[i] DFSM(G ,i) i<G->n i++ DFSM(MGraph *G ,int i) visited[i]=T RUEj<G->n j=0 G->edges[i][j]=结束程序结束程序DFSTraverseM(MGraph *G) 输出G->vexs[i]3.6深度优先遍历流程图真非零 零3.7广度优先遍历递归流程图真DFSM(G ,i) J++结束程序BFSTraverseM(MGraph *G)i=0 i<G->n visited[i]=FALSE i++ i=0 !visited[i] BFS(G ,i) i<G->n i++结束程序BFSM(MGraph *G ,int k)InitQueue(&Q)输出G->vexs[k] !visited[i] DFSM(G ,i) j<G->ni++结束程序四、程序调试4.1程序的调试分析在调试过程中,程序中出现了许多的错误,有错误的调用,一些变量没有定义等等。
不断的对程序进行调试以得到最好的结果,程序中特别要注意的是类的对象作为作为参数时要注意如何去调用它,使程序有一个令人满意的结果,具体的调试是在上机过程中进行的,在编写程序的过程中主要有如下错误:1.在编写程序的过程出现了一些函数名、变量的大小写不统一的错误,导致程序在运行的过程中出现函数名、变量没有被定义等问题;2.在编写程序的过程中数组的大小写没有被确定;3.在编写程序的过程中一些变量没有被定义,导致程序出错;4.数组visited[Max]应定义为全局变量,若不是则会出错;5.函数的返回类型要确定,是void还是其他类型要十分注意;6.在编程的过程中,函数里一些控制语句的嵌套使用,括号要引起注意,4.2程序的测试结果初始进入程序时,程序提示按格式输入图的顶点个数和边数。
输入顶点数和边数后,程序提示输入顶点的序号,为各顶点依次进行编号。
将各顶点进行编号后,程序提示按格式输入边的顶点序号。
按格式依次输入边的顶点序号后,按enter键程序会出现“选择菜单”,用户根据需要进行选择。
用户选择2进入深度优先搜索,并输出深度优先遍历后的序列,再次输出菜单栏,进行选择。
用户再次选择3进入广度优先搜索,并输出广度优先遍历后的序列,再次输出菜单栏,进行选择。
用户选择1后进入更改数据,重新创建一个图。
用户选择0,则退出程序。
五、总结通过这次数据结构课程设计实践,我学到了很多东西。
本次课程设计对我来说正是一个提高自己能力的机会,我好好的抓住机会,努力做好每一步,完善每一步。
自己的C语言知识和数据结构知识得到了巩固,编程能力也有了一定的提高。
同时也学会了解决问题的方法。
总结起来,自己主要有以下几点体会:1.必须牢固掌握基础知识。
由于C语言是大一所学知识,有所遗忘,且未掌握好上学期所学的《数据结构》这门课,所以在实践之初感到棘手。
不知如何下手,但在后来的实习过程中自己通过看书和课外资料,并请教其他同学,慢慢地对C语言和数据结构知识有所熟悉,这时才逐渐有了思路。
所以今后一定要牢固掌握好专业基础知识。
2.必须培养严谨的态度。
自己在编程时经常因为一些小错误而导致出现问题,不够认真细致,这给自己带来了许多麻烦。
编程是一件十分严谨的事情,容不得马虎。
所以在今后自己一定要培养严谨的态度。
我想这不仅是对于程序设计,做任何事都应如此。
3.这次课程设计也让我充分认识到《数据结构》这门课的重要性。
它给我们一个思想和大纲,让我们在编程时容易找到思路,不至于无章可循。
同时它也有广泛的实际应用。
在实践过程中,我遇到了许多困难,但都一一克服了。
最终我圆满的完成此次课程设计,学到了很多东西。
同时,程序还存在着一些缺陷,我会继续努力思考,完善程序,做到最好。
总的来说,本次课程设计,不仅我的知识面有所提高,另外我的综合素质也有所提高,这次课程设计为我以后更好的学习和使用c语言打下了基础。
六、附件6.1源程序#include<stdio.h>#include<stdlib.h>#define Max 10#define FALSE 0#define TRUE 1#define Error printf#define QueueSize 30typedef struct{char vexs[Max];int edges[Max][Max];int n,e;}MGraph;/*以邻接矩阵作为图的存储结构*/int visited[Max];/*将visited[Max]定义为全局变量并分配最大空间*/ typedef struct{int front;int rear;int count;int data[QueueSize];}CirQueue;/*定义队列的数据结构*///初始化队列void InitQueue(CirQueue *Q){Q->front=Q->rear=0;Q->count=0;}//队列空int QueueEmpty(CirQueue *Q){return Q->count=QueueSize;/*返回队列的最大长度*/}//队列满int QueueFull(CirQueue *Q){return Q->count==QueueSize;/*返回队列的最大长度*/}//进队void EnQueue(CirQueue *Q,int x){if(QueueFull(Q))/*队列满则出错*/{Error("Queue overflow");}else{Q->count++;/*否则count++,将x进队*/Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}//出队int DeQueue(CirQueue *Q){int temp;/*定义整型的变量*/if(QueueEmpty(Q))/*若为真则出错*/{Error("Queue underflow");}else/*为假则count--,将队员出队*/{temp=Q->data[Q->front];/*用temp返回其值*/ Q->count--;Q->front=(Q->front+1)%QueueSize;return temp;/*返回出队元素值*/}}//建立一个图void CreateMGraph(MGraph *G){int i,j,k;/*定义整型变量*/char ch1,ch2;/*定义字符型变量*/printf("\n请输入顶点数,边数(格式:3,4):");scanf("%d,%d",&(G->n),&(G->e));/*输入图的顶点数和边数*/for(i=0;i<G->n;i++){getchar();printf("\n请输入第%d个顶点序号",i+1);scanf("%c",&(G->vexs[i]));/*输入顶点的序号*/}for(i=0;i<G->n;i++){for(j=0;j<G->n;j++){G->edges[i][j]=0;/*初始化矩阵*/}}for(k=0;k<G->e;k++){getchar();printf("\n请输入第%d条边的顶点序号(格式:i,j):",k+1); scanf("%c,%c",&ch1,&ch2);/*输入边的顶点序号*/for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;/*有边则赋值为1*/}}//深度优先遍历递归void DFSM(MGraph *G,int i){int j;printf("%c ",G->vexs[i]);visited[i]=TRUE;/*标记visited[i]*//*依次优先搜索访问visited[i]的每个邻接点*/for(j=0;j<G->n;j++)/*若visited[i]的一个有效邻接点visited[j]未被访问过,则从visited[j]出发进行递归调用*/if(G->edges[i][j]==1&&!visited[j])DFSM(G,j);}//广度优先遍历递归void BFSM(MGraph *G,int k){int i,j;CirQueue Q;/*定义一个队列Q,初始化队列为空*/InitQueue(&Q);printf("%c ",G->vexs[k]);/*访问初始点,并将其标记已访问过*/visited[k]=TRUE;EnQueue(&Q,k);/*将以访问过的初始点序号k入队*/while(!QueueEmpty(&Q))/*队列非空进行循环处理*/{i=DeQueue(&Q);/*将队首元素出队*/for(j=0;j<G->n;j++)/*依次搜索vexs[k]的每一个可能的邻接点*/{if(G->edges[i][j]==1 &&! visited[j]){visited[j]=TRUE;/*标记vexs[j]已访问过*/EnQueue(&Q,j);/*顶点序号j入队*/}}}}//深度优先遍历void DFSTraverseM(MGraph *G){int i;printf("\n 深度优先遍历序列:");for(i=0;i<G->n;i++){visited[i]=FALSE;/*访问标志数组初始化*/}for(i=0;i<G->n;i++){if(!visited[i])/*对尚未访问的顶点调用DFSM*/ {DFSM(G,i);}}}//广度优先遍历void BFSTraverseM(MGraph *G){int i;printf("\n 广度优先遍历序列:");for(i=0;i<G->n;i++){visited[i]=FALSE;/*访问标志数组初始化*/}for(i=0;i<G->n;i++){if(!visited[i])/*对尚未访问的顶点调用BFSM*/ {BFSM(G,i);}}}main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t 深度优先搜索和广度优先搜索 \n"); CreateMGraph(G);/*调用创建图矩阵的函数*/getchar();ch1='y';/*设置控制语句标志*/while(ch1=='y'||ch1=='Y'){ /*菜单栏*/printf("\n");printf(" 选择菜单");printf("\n\t\t******************************************\n"); printf("\t\t* 更改数据请按:1 *\n"); printf("\t\t* 深度优先搜索请按:2 *\n"); printf("\t\t* 广度优先搜索请按:3 *\n"); printf("\t\t* 退出搜索请按:0 *\n"); printf("\t\t******************************************\n"); printf("\n\t\t请选择菜单号(0-3):");scanf("%d",&ch2);getchar();switch(ch2){case 1:CreateMGraph(G);/*选1创建一个新的图矩阵*/break;case 2:DFSTraverseM(G);/*选2进入深度优先搜索*/break;case 3:BFSTraverseM(G);/*选3进入广度优先搜索*/break;case 0:/*选0结束搜索,退出程序*/ch1='n';break;default:system("cls");printf("\n\t\t输入有误!\n");break;}if(ch2==1||ch2==2||ch2==3)printf("\n\n\t\t ");/*控制格式*/}}计算机与通信学院课程设计评分表课程名称:项目评价设计方案的合理性与创造性设计与调试结果设计说明书的质量答辩陈述与回答问题情况课程设计周表现情况综合成绩教师签名:日期:(注:1.此页附在课程设计报告之后;2.综合成绩按优、良、中、及格和不及格五级评定。