一元一次方程 综合测试题练习
《一元一次方程》综合测试题(A)
… … … … … … …
:
矗: _ 二
. … … … … ~, , ,
3 9
T a eb c me ad e e ni ep i i g f h s oh v u e e ・ o h v e o e p r ma t r l eo o ewh a es f r d sh ve t
… … … … … … … … … … … … … … … … … … … …
磷 瞄 巴【 , 翟
圈
:
\ \
儿
I 'JJ - ∥ I tf . 肚  ̄k rl册
,、, -
温馨提示 :. 1 考试 时间 6 O分. 2 本 套 测试题 共三道大 题 。 分 1 0分 . 。 满 0
题 号 总 分
得
分
所需 要 的
、
、
、
、 、… … … …
、
。
、
、
变 得 更 深 谋 远 虑是 受 过 苦 的人 的特 权 。— — 奥 斯 卡 ・ 尔 德 王
Wh n t o me u i e saw y g e n i b sn s l a sa 孢e, n f h m n e e s r . w n o eo e i u n c sa y t s
当你 意 志 坚 强了 , 你前 进 的 脚 步 就轻 快 了。— — 乔 治 ・ 伯 特 赫
2 . 8
2 . 9
3 . 0
P o l o o l ks e g ; e c i . e pe ta rn t t y a kwl d n c i h h l 1
, . ,,
, . //
一 一 一 一 一 ~如 果业 务一 两 个一 的 意 见始 终 一一 , 一 一一 个 人就 是一 一的 。— — 小威 廉一 一 一 一 一 一 一 , 一 一 一 一 一 一 一 一 上 一 一人 一 一 一 一 一致 一 中韵一 一 一 一 多余一 一 一 一 一 一 . 格 利 一 一 一 , 一 一 一 一 一 一 一 一 一 一 一其 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 雷 /
一元一次方程的综合训练题及答案
第三章一元一次方程综合测试题姓名: 日期:一、填空题(每题3分,共30分)1、解一元一次方程的步骤是:去_______,去________,移项,合并______, 将未知数的系数化为1。
2、一根铁丝长a 米,用去一半还多1米,还剩___________米。
3、当x=_____时, 代数式5x+3与 6x+8的值相等4、2是方程3x+5a=8的解 则a= _______5、工厂去年年产值为a 万元,今年计划在去年的基础上提高15%,今年的产值为________万元6、.若x 与x 44-的值互为相反数,则x 的值为 。
7、某两位数,个位数字为a ,十位数字为b ,这个两位数可以表示为_______.8、某商品原价为a 元,为了促销,商店决定对顾客实行8折优惠,实际售 价为__________元9、已知5x m+1+8=0是一个一元一次方程,则m=_______。
10、m=_______时,关于x 的方程mx+5=2x -3无解二、选择题(每题3分,共24分)1、下列各式中,是一元一次方程的是 ( )A . x+3=5B x1+3=5 C x+3y=5 D. 2+4=6 2、若 2(3x+4)的值比5(2x -7)的值大7,那么x 的值为 ( )A .10 B.223 C. 9 D.不能确定 3、方程2x -21=21x -3解是 ( ) A .-53 B. 53 C. -35 D 35 4、一项工程,单独完成,甲队要a 天,乙队要b 天,合作完成需( )天 A a+b B.a 1+b 1 C 1÷(a 1+b 1) D a 1-b1 5、若 x=3 是方程ax+4=8的一个解,则a 的值是( )A -4B 4C 34D 34-6、已知a 是一位数,b 是两位数,若将a 置于b 的左边,那么所成的三位数可表示为( )A. ab B 10(a+b ) C 100a+10b D 100a+b7、x 的4倍正好等于x 的5倍减去15,可列出方程 ( )A 4x+5x=15B 5x=4x -15C 4x=5x -15D 4x=5x+148、方程2x+1=3与方程2-2(a -3x)=0的解相同,那么a 的值为( )A 1B 2C 3D 4三、解下列方程 (1、2小题每题3分,其余每题5分,共26分)① 4+x=3-11x ② -0.7x+0.2=-0.3x+0.1③ 3(1-2x)-5(4-x)=10(x -2)-6 ④6)12(-x -8)14(+x =1⑤ 2.4+532.01.0x x =- ⑥ 103.02.017.07.0=--x x四、列方程解应用题 (1、2每题5分,3题10分,共20分)1、 一项工作,甲做12天完成,乙做15天完成,现甲先做一部分后中途离去,再由乙完成剩下的工作,两人共做了14天,问甲、乙各做了多少天?2、商品的进价是1000元,按标价的8折出售后,仍然获得了10%的利润,问商品的标价是多少?3、一列慢车以每小时48千米/时的速度从甲站出发,一列快车以60千米/时的速度从乙站开出,甲、乙两站相距81公里。
人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分30分)1.下列方程是一元一次方程的是()A.=5x+2008B.3x2+1=3xC.2y2+y=3D.6x﹣3y=1002.下列方程变形正确的是()A.13x﹣15x+x=﹣3变形为x=﹣3B.9﹣3y=5y+5变形为﹣3y﹣5y=5+9C.﹣1=变形为3(3y﹣1)﹣12=2(5y﹣7)D.2(10﹣0.5y)=﹣(1.5y+2)变形为20﹣y=1.5y+23.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=14.若式子2(3x﹣5)与式子6﹣(1﹣x)的值相等,则这个值是()A.8B.3C.2D.5.下列运用等式的性质对等式进行的变形中,错误的是()A.若x=y,则x﹣5=y﹣5B.若a=b,则ac=bcC.若,则2a=2b D.若x=y,则6.已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个7.已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.28.已知单项式和是同类项,则代数式x﹣y的值是()A.﹣3B.0C.3D.69.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.10.有以下计算过程:①﹣3+5=﹣(5﹣3)=﹣2;②5×;③20﹣(﹣1)2=20+1=21;④x2﹣5x2=﹣4;⑤解2x+5=﹣2,移项得2x=﹣2﹣5;⑥解,去分母得x+2(3﹣x)=1.其中计算正确的有()A.2道B.3道C.4道D.5道二.填空题(共5小题,满分15分)11.当x=时,代数式4x的值比5+2x的值大4.12.若x=﹣1是方程2x+a=0的解,则a=.13.一元一次方程3x=2(x+1)的解是.14.在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数.如果小红想了一个数,并告诉小月操作后的结果是﹣1,那么小红所想的数是.15.如图:内、外两个四边形都是正方形,阴影部分的宽为3,且面积为51,则内部小正方形的面积是.三.解答题(共8小题,满分75分)16.解方程:(1)3x﹣9=6x﹣1;(2)﹣=1.17.解下列方程①7x+5=8﹣6x;②4x﹣3(20﹣x)=3;③;④.18.已知(2m﹣8)x2﹣(2﹣3m)x+4m=6是关于x的一元一次方程,求m的值.19.解方程(1)3(x﹣2)+1=x﹣(2x﹣1)(2)﹣=﹣x.20.当k取何值时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同?21.一辆汽车已经行驶了12000km,计划每月在行驶800km,几个月后这辆汽车将行驶20800km?22.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲顾客平均每天要消费多少个鸡蛋才不会浪费?23.如图,正方形的边长为1,请认真观察如图,第一次取出正方形的一半,第二次取出剩下圆形的一半…,以此类推,每一次都取出剩下图形的一半,共进行n次这样的操作进行的次数123…n剩下图形的面积…(1)请将表填完整;(2)请你利用这个几何图形求+++…+的值为(结果用含有n的代数式表示);(3)延伸与拓展,将一根小木棒从中间断开,取出一半:剩下的那一半再从中间断开,又取出一半…,依此类推,每次都取出一半,若进行n次后剩下的木棒长为1,则用含n 的代数式表示木棒的原长为.参考答案一.选择题(共10小题,满分30分)1.解:A、符合一元一次方程的定义;B、含有一个未知数,未知数的最高次数为2,故不是一元一次方程;C、含有一个未知数,未知数的最高次数为2,故不是一元一次方程;D、含有两个次数为1的未知数,故不是一元一次方程.故选:A.2.解:A、由13x﹣15x+x=﹣3变形为x=1.故本选项错误;B、由9﹣3y=5y+5变形为﹣3y﹣5y=5﹣9.故本选项错误;C、由﹣1=变形为3(3y﹣1)﹣12=2(5y﹣7).故本选项正确;D、由2(10﹣0.5y)=﹣(1.5y+2)变形为20﹣y=﹣1.5y﹣2.故本选项错误.故选:C.3.解:解是x=4的方程是3x﹣8=4,故选:C.4.解:根据题意得:2(3x﹣5)=6﹣(1﹣x),去括号得:6x﹣10=6﹣1+x,移项合并得:5x=15,解得:x=3,则2(3x﹣5)=8,故选:A.5.解:A、根据等式性质1,x=y两边同时减去5得x﹣5=y﹣5,原变形正确,故这个选项不符合题意;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,等式两边同时乘以2c应得2a=2b,原变形正确,故这个选项不符合题意;D、根据等式性质2,a可能为0,等式两边同时除以a,原变形错误,故这个选项符合题意.故选:D.6.解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.7.解:根据题意,得:6x﹣12+4+2x=0,移项,得:6x+2x=12﹣4,合并同类项,得:8x=8,系数化为1,得:x=1.故选:C.8.解:由题意可得,2x﹣1=5,3y=9,解得x=3,y=3,所以x﹣y=3﹣3=0,故选:B.9.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.10.解:①﹣3+5=2,﹣(5﹣3)=﹣2,故①不正确;②5×(﹣)=﹣,﹣(5×)=﹣,故②正确;③20﹣(﹣1)2=20﹣1=19,故③不正确;④x2﹣5x2=﹣4x2,故④不正确;⑤2x+5=﹣2,移项得2x=﹣2﹣5,故⑤正确;⑥,去分母得,x+2(3﹣x)=4,故⑥不正确;综上所述:②⑤正确,故选:A.二.填空题(共5小题,满分15分)11.解:由题意4x﹣(5+2x)=44x﹣5﹣2x=42x=9x=故答案为.12.解:把x=﹣1代入方程得:﹣2+a=0,解得:a=2.故答案为:2.13.解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=214.解:设小红所想的数是x,由题意得,(4x﹣8)×+4=﹣1,解得:x=﹣,故答案为:﹣.15.解:设内部小正方形的边长为x,根据题意得,(x+3)2﹣x2=51,(x+3+x)(x+3﹣x)=51,2x+3=17,2x=14,x=7,所以,内部小正方形的面积=72=49.故答案是:49.三.解答题(共8小题,满分75分)16.解:(1)3x﹣9=6x﹣1;移项,得3x﹣6x=﹣1+9,合并同类项,得:﹣3x=8,解得:x=﹣;(2)﹣=1,去分母,得5(3x﹣1)﹣2(4x+2)=10,去括号,得15x﹣5﹣8x﹣4=10移项,得15x﹣8x=10+5+4,合同类项,得7x=19,解得x=.17.解:(1)7x+6x=8﹣5,13x=3,x=;(2)4x﹣60+3x=3,7x=63,x=9;(3)6﹣2x=3(8﹣2x),6﹣2x=24﹣6x,4x=18,x=;(4)方程可变形为=+,6(8x+9)=15(x+5)+10(3x﹣2),48x+54=15x+75+30x﹣20,3x=1,x=.18.解:∵(2m﹣8)x2﹣(2﹣3m)x+4m=6是关于x的一元一次方程,∴2m﹣8=0,2﹣3m≠0,解得:m=4.19.解:(1)去括号得:3x﹣6+1=x﹣2x+1,移项合并得:4x=6,解得:x=1.5;(2)去分母得:2x+6﹣2+3x=4﹣8x,移项合并得:13x=0,解得:x=0.20.解:解2(2x﹣3)=1﹣2x,得x=,把x=代入8﹣k=2(x+),得8﹣k=2(+),解得k=4,当k=4时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同.21.解:设x个月后将行使20800 km.12000+800x=20800,x=11.答:11个月后将行使20800 km.22.解:(1)顾客乙买两箱鸡蛋节省的钱2×(14﹣12)=4(元)顾客乙丢掉的20个坏鸡蛋浪费的钱12×=8(元)因为4元<8元,所以顾客乙买的两箱鸡蛋不合算.(2)设顾客甲买了x箱鸡蛋.由题意得:12x=2×14x﹣96.解这个方程得:x=6,6×30÷18=10(个)答:甲顾客平均每天要消费10个鸡蛋才不会浪费.23.解:(1)填表如下:进行的次数123…n剩下图形的面积…(2)由已知,原正方形分成各个小长方形的面积之和为+++…++,则由面积法可知+++…++=1,则+++…+=1﹣,故答案为:1﹣;(3)设木棒原长为x由题意列方程为x+x+x+…+x+1=x,由(2)+++…+=1﹣,原方程可化为(1﹣)x+1=x解得x=2n故答案为:2n。
(完整版)一元一次方程测试题及答案
一元一次方程测试卷(满分 150分)一、选择题(每小题3,共36)1.在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x4.下列两个方程的解相同的是( )A .方程635=+x 与方程42=xB .方程13+=x x 与方程142-=x xC .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 5.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x 是( )A .3B .5C .2D .46.某种商品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为( )。
A .80元B .85元C .90元D .95元7.下列等式变形正确的是( )A.如果ab s =,那么as b =; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y8、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979 B C D 9797A --、、、、 9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( )A 17200元,B 16000元,C 10720元,D 10600元;10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时。
一元一次方程计算专项训练
一元一次方程计算专项训练(100题)【人教版】1.解方程:−r12=35+1.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).3.解方程:0.3K0.10.2−2r93=−6.4.解方程:2−15(x+2)=12(x﹣1).5.解方程:K34−1=5K43.6.解方程:2K23+1=r12.7.解方程:r24−2K36=1.8.解方程:2K13−3r16=1.9.解方程:23=4K89−2.10.解方程:2.4−K42=35.11.解方程:K32−1=2r13.12.解方程:1−K133=9−32+x.13.解方程:4x+3=2(x﹣1)+1.14.解方程:K23−1=3r24.15.解方程:1−2K13=2r12.16.解方程:2r14−K36=1.17.解方程:35+2.7=4.8.18.解方程:r12−K1=3.19.解方程:K14=1−3−2.20.解方程:4r16−2K12=1.21.解方程:25x﹣8=14−15x.22.解方程:K12−1=2+33.23.解方程:2K13−r46=1.24.解方程:3(x﹣2)=x﹣(8﹣8x).25.解关于x的方程:mx﹣3x=2(2﹣x).26.解方程:3﹣6(x+23)=23.27.解方程:2r35=1−K42.28.解方程:3K14−1=5K76.29.解方程:5−23−3r12=−1.30.解方程:K64−3r52=1.31.解方程:5r72−r173=3.32.解方程:0.4r30.2−K0.10.3=2.33.解方程:1−5K38=2+4.34.解方程:1−3−x=3−r22.35.解方程:x﹣1﹣3(x+2)=6x+1.36.解方程:r32=52+4K15.37.解方程:2r13−5K12=1.38.解方程:2r13=K14+1.39.解方程:4−2−2r13=4.40.解方程:r14−3K18=1.41.解方程:2K13=3r24−1.42.解方程:y−r12=2−r25.43.解方程:2x−13(x+2)=﹣x+2.44.解方程:3−23−2=3r112.45.解方程:x−r22=2K13−1.46.解方程:K30.2−r40.5=1.47.解方程:5K14=1−2−3.48.解方程:2r13−K15=1.49.解方程:1−3K14=3+2.50.解方程:14%x﹣9%(x+10)=7%x+0.2 51.解方程:2+K46=−K33.52.解方程:4(x+12)+9=5﹣3(x﹣1)53.解方程:2r15−1=K2354.解方程:5K76+1=3K14.55.解方程:x−K25=2K53−1.56.解方程:2r13−K16=1.57.解方程:K73−1+2=1.58.解方程:2K13=2r16−1.59.解方程:r13−2=x−K12.60.解方程:x−K12=23−r23.61.解方程:6(12−4)+2=7−(13−1).62.解方程:3x+K12=3−2K13.63.解方程:2K13−5r12−1=0.64.解方程:4(2x﹣1)﹣3(5x+1)=14.65.解方程:4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).66.解方程:2−3−3(K1)2=1.67.解方程:K22+2(r2)5=2−210+1.68.解方程:x−r10.2=0.5.69.解方程:3−K35=3K12−x.70.解方程:16(2x﹣1)=18(5x+1)71.解方程:(x﹣4)−(K4)−12=3−(K4)+23 72.解方程:K0.20.4−0.37r10.2=173.解方程:0.1K0.20.02−r10.5=3.74.解方程:32[2(x−12)+23]=5x.75.解方程:2K13−r56=2x+1;76.解方程:13[x−12(x﹣1)]=23(x﹣2).77.解方程:0.2K0.40.5−=0.05K0.20.03.78.解方程:34[43(12t−14)﹣8]=32t﹣1.79.解方程:12(4x﹣3)﹣2=r13+2;80.解方程:12[3−12(32x﹣1)]=12,81.解方程:2K13−3=0.3r0.50.2.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);83.解方程:0.4r0.90.5−0.03+0.020.03=K52.84.解方程:2−5r116=1+2K43.85.解方程:0.8r0.90.5=r52+0.3K0.20.3.86.解方程:13[−12(−1)]=23(−2).87.解方程:0.4r30.2−K0.10.3=2.88.解方程:−K12=2−r25;89.解方程:10.2(+1)−=2K30.3.90.解方程:3r12−2=3K210−2r35,91.解方程:0.5(x﹣3)−4r15=1,92.解方程:4−60.01−6.5=0.2−200.2−7.5,93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);95.解方程:3+0.20.2−0.2+0.030.01=0.75 96.解方程:2K13−5r26=1−22−2;97.解方程:3.1+0.20.2−0.2+0.030.01=32.98.解方程:0.8−91.2−1.3−30.2=5r10.3.99.解方程:0.1−0.20.3−1=0.7−0.4.100.解方程:3+0.20.2−0.2+0.030.01=0.75.一元一次方程计算专项训练(100题)参考答案与试题解析1.解方程:−r12=35+1.【解答】解:去分母得:10x﹣5(x+1)=6x+10,去括号得:5x﹣5=6x+10,移项得:5x﹣6x=10+5,合并得:﹣x=15,解得:x=﹣15.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).【解答】解:去括号得:3x﹣(4x+4)=3﹣(4x﹣10),即3x﹣4x﹣4=3﹣4x+10,移项合并得:3x=17,解得:x=173.3.解方程:0.3K0.10.2−2r93=−6.【解答】解:方程整理得:3K12−2r93=−6,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项合并得:5x=﹣15,解得:x=﹣3.4.解方程:2−15(x+2)=12(x﹣1).【解答】解:去分母,可得:20﹣2(x+2)=5(x﹣1),去括号,可得:20﹣2x﹣4=5x﹣5,移项,可得:﹣2x﹣5x=﹣5﹣20+4,合并同类项,可得:﹣7x=﹣21,系数化为1,可得:x=3.5.解方程:K34−1=5K43.【解答】解:去分母,可得:3(x﹣3)﹣12=4(5x﹣4),去括号,可得:3x﹣9﹣12=20x﹣16,移项,可得:3x﹣20x=﹣16+9+12,合并同类项,可得:﹣17x=5,系数化为1,可得:x=−517.6.解方程:2K23+1=r12.【解答】解:2K23+1=r12,方程两边同时乘6,得2(2x﹣2)+6=3(x+1),去括号,得4x﹣4+6=3x+3,移项,得4x﹣3x=3+4﹣6,合并同类项,得x=1.7.解方程:r24−2K36=1.【解答】解:方程两边同乘以12得:12×r24−12×2K36=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.8.解方程:2K13−3r16=1.【解答】解:去分母,可得:2(2x﹣1)﹣(3x+1)=6,去括号,可得:4x﹣2﹣3x﹣1=6,移项,可得:4x﹣3x=6+2+1,合并同类项,可得:x=9.9.解方程:23=4K89−2.【解答】解:23=4K89−2,去分母,得6x=4x﹣8﹣18,移项,得6x﹣4x=﹣8﹣18,系数化为1,得x=﹣13.10.解方程:2.4−K42=35.【解答】解:去分母,可得:24﹣5(x﹣4)=6x,去括号,可得:24﹣5x+20=6x,移项,可得:﹣5x﹣6x=﹣24﹣20,合并同类项,可得:﹣11x=﹣44,系数化为1,可得:x=4.11.解方程:K32−1=2r13.【解答】解:去分母,得:3(x﹣3)﹣6=2(2x+1),去括号,得:3x﹣9﹣6=4x+2,移项,得:3x﹣4x=2+9+6,合并同类项,得:﹣x=17,系数化1,得:x=﹣17.12.解方程:1−K133=9−32+x.【解答】解:去分母得:6﹣2(x﹣13)=3(9﹣3x)+6x,去括号得:6﹣2x+26=27﹣9x+6x,移项得:﹣2x+9x﹣6x=27﹣6﹣26,合并同类项得:x=﹣5.13.解方程:4x+3=2(x﹣1)+1.【解答】解:4x+3=2(x﹣1)+1,去括号,得4x+3=2x﹣2+1,移项,得4x﹣2x=1﹣2﹣3,合并同类项,得2x=﹣4,系数化为1,得x=﹣2.14.解方程:K23−1=3r24.【解答】解:去分母,得4(x﹣2)12=3(3x+2),去括号,得4x﹣8﹣12=9x+6,合并同类项,得﹣5x=26,系数化为1,得=−265.15.解方程:1−2K13=2r12.【解答】解:去分母得:6﹣2(2x﹣1)=3(2x+1),去括号得:6﹣4x+2=6x+3,移项得:﹣4x﹣6x=3﹣6﹣2,合并得:﹣10x=﹣5,解得:x=0.5.16.解方程:2r14−K36=1.【解答】解:去分母得:3(2x+1)﹣2(x﹣3)=12,去括号得:6x+3﹣2x+6=12,移项得:6x﹣2x=12﹣3﹣6,合并同类项得:4x=3,系数化为1得:x=34.17.解方程:35+2.7=4.8.【解答】解:移项得:35x=4.8﹣2.7,合并同类项得:35x=2.1,系数化为1得:x=3.5.18.解方程:r12−K1=3.【解答】解:去分母,可得:a(x+1)﹣2(x﹣1)=6a,去括号,可得:ax+a﹣2x+2=6a,移项,可得:ax﹣2x=6a﹣a﹣2,合并同类项,可得:(a﹣2)x=5a﹣2,系数化为1,可得:x=5K2K2(a≠2)或x无解(a=2).19.解方程:K14=1−3−2.【解答】解:去分母,可得:x﹣1=4﹣2(3﹣x),去括号,可得:x﹣1=4﹣6+2x,移项,可得:x﹣2x=4﹣6+1,合并同类项,可得:﹣x=﹣1,系数化为1,可得:x=1.20.解方程:4r16−2K12=1.【解答】解:去分母,可得:4x+1﹣3(2x﹣1)=6,去括号,可得:4x+1﹣6x+3=6,移项,可得:4x﹣6x=6﹣1﹣3,合并同类项,可得:﹣2x=2,系数化为1,可得:x=﹣1.21.解方程:25x﹣8=14−15x.【解答】解:去分母,可得:8x﹣160=5﹣4x,移项,可得:8x+4x=5+160,合并同类项,可得:12x=165,系数化为1,可得:x=13.75.22.解方程:K12−1=2+33.【解答】解:去分母,可得:3(x﹣1)﹣6=2(2+3x),去括号,可得:3x﹣3﹣6=4+6x,移项,可得:3x﹣6x=4+3+6,合并同类项,可得:﹣3x=13,系数化为1,可得:x=−133.23.解方程:2K13−r46=1.【解答】解:去分母,可得:2(2x﹣1)﹣(x+4)=6,去括号,可得:4x﹣2﹣x﹣4=6,移项,可得:4x﹣x=6+2+4,合并同类项,可得:3x=12,系数化为1,可得:x=4.24.解方程:3(x﹣2)=x﹣(8﹣8x).【解答】解:去括号,可得:3x﹣6=x﹣8+8x,移项,可得:3x﹣x﹣8x=﹣8+6,合并同类项,可得:﹣6x=﹣2,系数化为1,可得:x=13.25.解关于x的方程:mx﹣3x=2(2﹣x).【解答】解:mx﹣3x=2(2﹣x),去括号,得mx﹣3x=4﹣2x,移项,得mx﹣3x+2x=4,合并同类项,得(m﹣1)x=4,当m﹣1≠0,即m≠1时,方程的解是x=4K1;当m﹣1=0,即m=1时,方程无解.26.解方程:3﹣6(x+23)=23.【解答】解:3﹣6(x+23)=23,则3﹣6x﹣4=23,﹣6x=53,解得:x=−518.27.解方程:2r35=1−K42.【解答】解:2r35=1−K42,去分母,得2(2x+3)=10﹣5(x﹣4),去括号,得4x+6=10﹣5x+20,移项,得4x+5x=10+20﹣6,合并同类项,得9x=24,系数化为1,得=83.28.解方程:3K14−1=5K76.【解答】解:去分母得:3(3x﹣1)﹣12=2(5x﹣7)去括号得:9x﹣3﹣12=10x﹣14移项得:9x﹣10x=﹣14+15合并得:﹣x=1系数化为1得:x=﹣1.29.解方程:5−23−3r12=−1.【解答】解:5−23−3r12=−1,去分母,得2(5﹣2x)﹣3(3x+1)=﹣6,去括号,得10﹣4x﹣9x﹣3=﹣6,移项,得﹣4x﹣9x=3﹣6﹣10,合并同类项,得﹣13x=﹣13,系数化为1,得x=1.30.解方程:K64−3r52=1.【解答】解:K64−3r52=1,去分母,得x﹣6﹣2(3x+5)=4,去括号,得x﹣6﹣6x﹣10=4,移项,得x﹣6x=4+10+6,合并同类项,得﹣5x=20,系数化为1,得x=﹣4.31.解方程:5r72−r173=3.【解答】解:去分母得:3(5x+7)﹣2(x+17)=18,去括号得:15x+21﹣2x﹣34=18,移项得:13x=31,解得:x=3113.32.解方程:0.4r30.2−K0.10.3=2.【解答】解:0.4r30.2−K0.10.3=2,化简,得2+15−10K13=2,去分母,得6x+45﹣(10x﹣1)=6,去括号,得6x+45﹣10x+1=6,移项,得6x﹣10x=6﹣1﹣45,合并同类项,得﹣4x=﹣40,系数化为1,得x=10.33.解方程:1−5K38=2+4.【解答】解:去分母,可得:8﹣(5x﹣3)=2(2+x),去括号,可得:8﹣5x+3=4+2x,移项,可得:﹣5x﹣2x=4﹣8﹣3,合并同类项,可得:﹣7x=﹣7,系数化为1,可得:x=1.34.解方程:1−3−x=3−r22.【解答】解:去分母,可得:2(1﹣x)﹣6x=18﹣3(x+2),去括号,可得:2﹣2x﹣6x=18﹣3x﹣6,移项,可得:﹣2x﹣6x+3x=18﹣6﹣2,合并同类项,可得:﹣5x=10,系数化为1,可得:x=﹣2.35.解方程:x﹣1﹣3(x+2)=6x+1.【解答】解:去括号,可得:x﹣1﹣3x﹣6=6x+1,移项,可得:x﹣3x﹣6x=1+1+6,合并同类项,可得:﹣8x=8,系数化为1,可得:x=﹣1.36.解方程:r32=52+4K15.【解答】解:去分母,可得:5(x+3)=25+2(4x﹣1),去括号,可得:5x+15=25+8x﹣2,移项,可得:5x﹣8x=25﹣2﹣15,合并同类项,可得:﹣3x=8,系数化为1,可得:x=−83.37.解方程:2r13−5K12=1.【解答】解:去分母得:2(2x+1)﹣3(5x﹣1)=6,去括号得:4x+2﹣15x+3=6,移项得:4x﹣15x=6﹣2﹣3,合并得:﹣11x=1,解得:x=−111.38.解方程:2r13=K14+1.【解答】解:2r13=K14+1,方程两边同时乘以12得4(2x+1)=3(x﹣1)+12,∴8x+4=3x﹣3+12,∴5x=5,解得:x=1.39.解方程:4−2−2r13=4.【解答】解:去分母,可得:3(4﹣x)﹣2(2x+1)=24,去括号,可得:12﹣3x﹣4x﹣2=24,移项,可得:﹣3x﹣4x=24﹣12+2,合并同类项,可得:﹣7x=14,系数化为1,可得:x=﹣2.40.解方程:r14−3K18=1.【解答】解:去分母得:2(x+1)﹣(3x﹣1)=8,去括号得:2x+2﹣3x+1=8,移项得:2x﹣3x=8﹣2﹣1,合并得:﹣x=5,解得:x=﹣5.41.解方程:2K13=3r24−1.【解答】解:去分母得:4(2x﹣1)=3(3x+2)﹣12,去括号得:8x﹣4=9x+6﹣12,移项得:8x﹣9x=6﹣12+4,合并得:﹣x=﹣2,解得:x=2.42.解方程:y−r12=2−r25.【解答】解:去分母,可得:10y﹣5(y+1)=20﹣2(y+2),去括号,可得:10y﹣5y﹣5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4+5,合并同类项,可得:7y=21,系数化为1,可得:y=3.43.解方程:2x−13(x+2)=﹣x+2.【解答】解:去分母,可得:6x﹣(x+2)=﹣3x+6,去括号,可得:6x﹣x﹣2=﹣3x+6,移项,可得:6x﹣x+3x=6+2,合并同类项,可得:8x=8,系数化为1,可得:x=1.44.解方程:3−23−2=3r112.【解答】解:去分母,可得:2(3﹣2x)﹣12=3(3x+11),去括号,可得:6﹣4x﹣12=9x+33,移项,可得:﹣4x﹣9x=33﹣6+12,合并同类项,可得:﹣13x=39,系数化为1,可得:x=﹣3.45.解方程:x−r22=2K13−1.【解答】解:去分母,可得:6x﹣3(x+2)=2(2x﹣1)﹣6,去括号,可得:6x﹣3x﹣6=4x﹣2﹣6,移项,可得:6x﹣3x﹣4x=﹣2﹣6+6,合并同类项,可得:﹣x=﹣2,系数化为1,可得:x=2.46.解方程:K30.2−r40.5=1.【解答】解:去分母得:5(x﹣3)﹣2(x+4)=1,去括号得:5x﹣15﹣2x﹣8=1,移项得:5x﹣2x=1+8+15,合并得:3x=24,解得:x=8.47.解方程:5K14=1−2−3.【解答】解:去分母,可得:3(5x﹣1)=12﹣4(2﹣x),去括号,可得:15x﹣3=12﹣8+4x,移项,合并同类项,可得:11x=7,系数化为1,可得:x=711.48.解方程:2r13−K15=1.【解答】解:去分母,可得:5(2x+1)﹣3(x﹣1)=15,去括号,可得:10x+5﹣3x+3=15,移项,合并同类项,可得:7x=7,系数化为1,可得:x=1.49.解方程:1−3K14=3+2.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=−15.50.解方程:14%x﹣9%(x+10)=7%x+0.2【解答】解:方程整理得:14x﹣9(x+10)=7x+20,去括号得:14x﹣9x﹣90=7x+20,移项合并得:﹣2x=110,解得:x=﹣55.51.解方程:2+K46=−K33.【解答】解:去分母得:12+x﹣4=6x﹣2x+6,移项合并得:﹣3x=﹣2,解得:x=23.52.解方程:4(x+12)+9=5﹣3(x﹣1)【解答】解:去括号,得4x+2+9=5﹣3x+3,移项,得4x+3x=5+3﹣2﹣9,化简,得7x=﹣3,两边同除以x的系数7,得x=−37,所以,方程的解为x=−37.53.解方程:2r15−1=K23【解答】解:方程左右两边同时乘以15,得3(2x+1)﹣15=5(x﹣2),去括号得:x﹣2+8=4﹣4﹣2x,移项合并同类项得:x=2.54.解方程:5K76+1=3K14.【解答】解:2(5x﹣7)+12=3(3x﹣1),10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,x=﹣1.55.解方程:x−K25=2K53−1.【解答】解:15x﹣3(x﹣2)=5(2x﹣5)﹣15,15x﹣3x+6=10x﹣25﹣15,15x﹣3x﹣10x=﹣25﹣15﹣6,2x=﹣46,x=﹣23.56.解方程:2r13−K16=1.【解答】解:去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,得:4x﹣x=6﹣2﹣1,合并同类项,得:3x=3,系数化为1,得:x=1.57.解方程:K73−1+2=1.【解答】解:去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.58.解方程:2K13=2r16−1.【解答】解:去分母得:4x﹣2=2x+1﹣6,移项合并得:2x=﹣3,解得:x=﹣1.5.59.解方程:r13−2=x−K12.【解答】解:去分母得:2(x+1)﹣12=6x﹣3(x﹣1),去括号得:2x+2﹣12=6x﹣3x+3,移项得:2x﹣6x+3x=3﹣2+12,合并得:﹣x=13,解得:x=﹣13.60.解方程:x−K12=23−r23.【解答】解:去分母得:6x﹣3x+3=4﹣2x﹣4,移项合并得:5x=﹣3,解得:x=﹣0.6.61.解方程:6(12−4)+2=7−(13−1).【解答】解:原方程可化为:3−24+2=7−13+1,即5+13=24+8,163=32,解得x=6.62.解方程:3x+K12=3−2K13.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=2325.63.解方程:2K13−5r12−1=0.【解答】解:去分母得,2(2x﹣1)﹣3(5x+1)﹣6=0,去括号的,4x﹣2﹣15x﹣3﹣6=0,移项得,4x﹣15x=2+3+6,合并同类项得,﹣11x=11,系数化为1得,x=﹣1.故答案为:x=﹣1.64.解方程:4(2x﹣1)﹣3(5x+1)=14.【解答】解:4(2x﹣1)﹣3(5x+1)=14,去括号,得8x﹣4﹣15x﹣3=14,移项,得8x﹣15x=14+4+3,合并同类项,得﹣7x=21,系数化为1,得x=﹣3.65.4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).【解答】解:4x+3(2x﹣3)=12﹣(x+4),去括号得,4x+6x﹣9=12﹣x﹣4,移项得,4x+6x+x=12﹣4+9,合并同类项得,11x=17,系数化为1得,x=1711.检验:把x=1711代入方程,左边:4x+3(2x﹣3)=4×1711+3×(2×1711−3)=6811+311=7111;右边=12﹣(x+4)=12−(1711+4)=12−6111=7111,∴左边=右边,∴x=1711是方程的解.66.解方程:2−3−3(K1)2=1.【解答】解:2−3−3(K1)2=1,去分母,得:2(2﹣x)﹣9(x﹣1)=6,去括号,得:4﹣2x﹣9x+9=6,移项,得:﹣2x﹣9x=6﹣4﹣9,合并同类项,得:﹣11x=﹣7,系数化1,得:x=711.67.解方程:K22+2(r2)5=2−210+1.【解答】解:去分母得:5(x﹣2)+4(x+2)=2﹣2x+10,去括号得:5x﹣10+4x+8=2﹣2x+1,整理得:9x﹣2=12﹣2x,即9x+2x=12+2,化简得:11x=14,解得:x=1411.68.解方程:x−r10.2=0.5.【解答】解:−r10.2=0.5,去分母得:x﹣5(x+1)=2x,去括号得:x﹣5x﹣5=2x,移项得:x﹣5x﹣2x=5,合并同类项得:﹣6x=5,系数化为去得:x=−56.69.解方程:3−K35=3K12−x.【解答】解:方程可变形为:30﹣2(x﹣3)=5(3x﹣1)﹣10x,去括号得:30﹣2x+6=15x﹣5﹣10x,移项得:﹣2x﹣15x+10x=﹣5﹣6﹣30,合并得:﹣7x=﹣41,系数化为1,得:x=417.70.解方程:16(2x﹣1)=18(5x+1)【解答】解:去分母得:4(2x﹣1)=3(5x+1),去括号得:8x﹣4=15x+3,移项合并得:﹣7x=7,解得:x=﹣1.71.解方程:(x﹣4)−(K4)−12=3−(K4)+23【解答】解:去分母得:6(x﹣4)﹣3(x﹣5)=18﹣2(x﹣2),去括号得:6x﹣24﹣3x+15=18﹣2x+4,移项合并得:5x=31,解得:x=6.2;72.解方程:K0.20.4−0.37r10.2=1【解答】解:方程整理得:10K24−37r10020=1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.73.解方程:0.1K0.20.02−r10.5=3.【解答】解:方程整理得:10K202−10r105=3,即5y﹣10﹣2y﹣2=3,移项合并得:3y=15,解得:y=5.74.解方程:32[2(x−12)+23]=5x.【解答】解:去中括号得:3(x−12)+1=5x,去小括号得:3x−32+1=5x,移项得,3x﹣5x=﹣1+32,合并同类项得:﹣2x=12,解得:x=−14.75.解方程:2K13−r56=2x+1;【解答】解:去分母得:2(2x﹣1)﹣(x+5)=12x+6,去括号得:4x﹣2﹣x﹣5=12x+6,移项合并得:﹣9x=13,解得:x=−139;76.解方程:13[x−12(x﹣1)]=23(x﹣2).【解答】解:去括号得:13x−16(x﹣1)=23(x﹣2),去分母得:2x﹣(x﹣1)=4(x﹣2),去括号得:2x﹣x+1=4x﹣8,移项合并得:﹣3x=﹣9,解得:x=3.77.解方程:0.2K0.40.5−=0.05K0.20.03.【解答】解:方程可化为,2(0.2x﹣0.4)﹣x=5K203,去分母,得6(0.2x﹣0.4)﹣3x=5x﹣20,去括号,得1.2x﹣2.4﹣3x=5x﹣20,移项,得1.2x﹣3x﹣5x=2.4﹣20,合并同类项,得﹣6.8x=﹣17.6,把未知数系数化为1,得x=4417.78.解方程:34[43(12t−14)﹣8]=32t﹣1.【解答】解:34[43(12t−14)﹣8]=32t﹣1,12−14−6=32−1,移项,得12−32=6+14−1,合并同类项,得﹣t=214,系数化为1,得t=−214.79.解方程:12(4x﹣3)﹣2=r13+2;【解答】解:去分母,得3(4x﹣3)﹣12=2(x+1)+12,去括号,得12x﹣9﹣12=2x+2+12,移项,得12x﹣2x=2+12+9+12,合并同类项,得10x=35,系数化为1,得x=3.5;80.解方程:12[3−12(32x﹣1)]=12,【解答】解:去分母,得6[3−12(32x﹣1)]=x,化简,得2x﹣3(32x﹣1)=x,去括号,得2x−92+3=x,移项,得2x−92−x=﹣3,合并同类项,得−72=−3,系数化为1,得x=67.81.解方程:2K13−3=0.3r0.50.2.【解答】解:整理,得2K13−3=5(0.3+0.5),去分母,得2x﹣1﹣9=15(0.3x+0.5),去括号,得2x﹣1﹣9=4.5x+7.5,移项,得2x﹣4.5x=1+9+7.5,合并同类项,得﹣2.5x=17.5,系数化成1,得x=﹣7.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);【解答】解:4y﹣3(2+y)=5﹣2(1﹣2y),去括号,得4y﹣6﹣3y=5﹣2+4y,移项,得4y﹣3y﹣4y=5﹣2+6,合并,得﹣3y=9,解得:y=﹣3;83.解方程:0.4r0.90.5−0.03+0.020.03=K52.【解答】解:整理,得4r95−3+23=K52,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,系数化为1,得x=9.84.解方程:2−5r116=1+2K43.【解答】解:去分母得:3x﹣(5x+11)=6+2(2x﹣4),去括号得:3x﹣5x﹣11=6+4x﹣8,移项得:3x﹣5x﹣4x=6﹣8+11,合并得:﹣6x=9,解得:x=−32;85.解方程:0.8r0.90.5=r52+0.3K0.20.3.【解答】解:方程整理得:8r95=r52+3K23,去分母得:6(8x+9)=15(x+5)+10(3x﹣2),移项得:48x﹣15x﹣30x=75﹣20﹣54,合并得:3x=1,解得:x=13.86.解方程:13[−12(−1)]=23(−2).【解答】解:整理,得−12(−1)=2(−2),去分母,得2x﹣(x﹣1)=4(x﹣2),去括号,得2x﹣x+1=4x﹣8,移项,得2x﹣x﹣4x=﹣8﹣1,合并同类项,得﹣3x=﹣9,系数化为1,得x=3;87.解方程:0.4r30.2−K0.10.3=2.【解答】解:整理,得5(0.4y+3)−103(y﹣0.1)=2,去分母,得15(0.4y+3)﹣10(y﹣0.1)=6,去括号,得6y+45﹣10y+1=6,移项,得6y﹣10y=6﹣1﹣45,合并同类项,得﹣4y=﹣40,系数化为1,得y=10.88.解方程:−K12=2−r25;【解答】解:去分母,可得:10y﹣5(y﹣1)=20﹣2(y+2),去括号,可得:10y﹣5y+5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4﹣5,合并同类项,可得:7y=11,系数化为1,可得:y=117.89.解方程:10.2(+1)−=2K30.3.【解答】解:去分母,可得:3(x+1)﹣0.6x=2(2x﹣3),移项,可得:3x﹣0.6x﹣4x=﹣6﹣3,合并同类项,可得:﹣1.6x=﹣9,系数化为1,可得:x=458.90.解方程:3r12−2=3K210−2r35,【解答】解:去分母,得5(3x+1)﹣20=3x﹣2﹣2(2x+3),去括号,得15x+5﹣20=3x﹣2﹣4x﹣6,移项,得15x﹣3x+4x=20﹣5﹣2﹣6,合并同类项,得16x=7,系数化为1,得x=716;91.解方程:0.5(x﹣3)−4r15=1,【解答】解:去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项,得5x﹣8x=10+15+2,合并同类项,得﹣3x=27,系数化为1,得x=﹣9;92.解方程:4−60.01−6.5=0.2−200.2−7.5,【解答】解:整理,得100(4﹣6x)﹣6.5=5(0.2﹣20x)﹣7.5,去括号,得400﹣600x﹣6.5=1﹣100x﹣7.5,移项,得100x﹣600x=﹣400+6.5+1﹣7.5,合并同类项,得﹣500x=﹣400,系数化为1,得x=45;93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),【解答】解:去分母,得18(x+1)﹣2(x﹣1)=12(x﹣1)﹣3(x+1),去括号,得18x+18﹣2x+2=12x﹣12﹣3x﹣3,移项,得18x﹣2x﹣12x+3x=﹣12﹣3﹣18﹣2,合并同类项,得7x=﹣35,系数化为1,x=﹣5.94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);【解答】解:去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;95.解方程:3+0.20.2−0.2+0.030.01=0.75【解答】解:方程整理得:30+22−20+31=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=−238.96.解方程:2K13−5r26=1−22−2;【解答】解:去分母,得2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号,得4x﹣2﹣5x﹣2=3﹣6x﹣12,移项,得4x﹣5x+6x=3﹣12+2+2,合并,得5x=﹣5,系数化为1,得x=﹣1;97.解方程:3.1+0.20.2−0.2+0.030.01=32.【解答】解:5(3.1+0.2p5×0.2−100(0.2+0.03p100×0.01=3×0.52×0.5,整理,得15.5+x﹣20﹣3x=1.5,移项,得x﹣3x=1.5﹣15.5+20,合并,得﹣2x=6,所以x=﹣3.98.解方程:0.8−91.2−1.3−30.2=5r10.3.【解答】解:方程整理得:8−9012−13−302=50r103,去分母得:8﹣90x﹣6(13﹣30x)=4(50x+10),去括号得:8﹣90x﹣78+180x=200x+40,移项得:﹣90x+180x﹣200x=40﹣8+78,合并同类项得:﹣110x=110,把x系数化为1得:x=﹣1.99.解方程:0.1−0.20.3−1=0.7−0.4.【解答】解:方程整理得:1−23−1=7−104,去分母得:4(1﹣2x)﹣12=3(7﹣10x),去括号得:4﹣8x﹣12=21﹣30x,移项合并得:22x=29,解得:x=2922.100.解方程:3+0.20.2−0.2+0.030.01=0.75.【解答】解:30+22−20+31=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=−238.。
(完整)一元一次方程练习题
一元一次方程练习题基本题型: 一、选择题:1、下列各式中是一元一次方程的是( )A 。
y x -=-54121 B 。
835-=--C 。
3+xD 。
146534+=-+x xx 2、方程x x 231=+-的解是( )A. 31- B 。
31C 。
1D 。
—13、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( ) A. 10 B. 8 C 。
10- D. 8-4、下列根据等式的性质正确的是( )A 。
由y x 3231=-,得y x 2= B 。
由2223+=-x x ,得4=xC. 由x x 332=-,得3=xD. 由753=-x ,得573-=x5、解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B 。
111024=--+x x C. 611024=--+x x C 。
611024=+-+x x6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A 。
0.81a 元 B. 1.21a 元 C 。
21.1a 元 D 。
81.0a元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A 。
不赚不亏B 。
赚8元C 。
亏8元D 。
赚8元 9、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =-10、方程212=-x 的解是( )(A );41-=x (B );4-=x (C );41=x (D).4-=x11、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a(C);523+=bc ac (D ).3532+=b a 12、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).813、解方程2631xx =+-,去分母,得( ) (A );331x x =-- (B );336x x =-- (C);336x x =+- (D ).331x x =+- 14、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x(C)方程2332=t ,未知数系数化为1,得;1=x(D )方程15.02.01=--xx 化成.63=x 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -= (C )();3235x x -= (D).326x x -=17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地。
《一元一次方程》综合测试卷(A)及答案
第四单元《一元一次方程》综合测试卷(A)考试时间:90分钟 满分:100分一、选择题.(每题2分,共20分)1. 下列方程,其中一元一次方程是( )A.243x x -=B.0x =C.20x y +=D.11x x -=2. 如果方程各2531157n x --=是关于x 的一元一次方程,那么n 的值为( ) A.2 B.4 C.3 D.13. 把方程2113332x x x -++=-去分母正确的是( ) A. 182(21)183(1)x x x +-=-+B. 3(21)3(1)x x x +-=-+C. 18(21)18(1)x x x +-=-+D. 32(21)33(1)x x x +-=-+4. 已知4y =是方程25(2)33y m y -=-的解,则2(31)m +的值为( ) A.163B.8C.225D.289 5. 已知0x <,且230x x ++=,则x 等于( )A.1-B.2-C.23-D.3- 6. 方程23132x x ---=■中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是1x =-,那么墨水盖住的数字是( ) A.27 B.1 C.1311- D.0 7. 工地上有72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才能使挖出的土能及时运走?设可派x 人挖土,其他人运土,列方程:①7213x x -=;②723x x -=;③372x x +=;④2372x x=-.上述所列方程正确的个数为( ) A.1 B.2 C.3 D.48. 一件商品按成本价提高50%后标价,再打8折销售,售价为240元.设这件商品的成本价为x 元.根据题意可列方程为( )A. 50%80%240x ⨯=gB. (150%)80%240x +⨯=C. 24050%80%x =⨯⨯D. 50%24080%x =⨯g9. 当21(35)m --取得最大值时,方程5432m x -=+的解是( )A. 79B. 97C.79-D.97- 10. 一艘轮船在两个港口之间行驶,顺水行驶要5h ,逆水行驶要7h ,水流速度是5 km/h ,则两个港口的距离是( )A. 210 kmB. 180 kmC. 175 kmD. 105 km二、填空题.(每题2分,共16分)11. 若关于x 的方程50ax -=的解是 2.5x =-,则a = .12. 若213m n x y -与2xy -是同类项,则m = ,n = .13. 当x = 时,代数式21x +的值是2x +的值的3倍.14. 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%.现售价为b 元,则原售价为 元(用含a ,b 的代数式表示).15. 服装店销售某款服装,标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.16. 某人计划开车用3h 从甲地到乙地,因为每小时比原计划多行驶16 km,结果用了2. 5 h就到达了乙地,则甲、乙两地相距 km.17. 一根内径为3 cm 的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8 cm 、高为1. 8 cm 圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了 cm.18. 某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券. (奖券购物不再享受优惠)根据上述促销方法,顾客在该商场购物可获得双重优惠.如果胡老师在该商场购一家用电器获得的优惠总额为120元,则这一家用电器的标价为 元.三、解答题.(共64分)19. (12分)解方程.(1) 5(8)6(27)5x x +=-+(2)223146x x +--=(3) 356444y y -=+(4) 0.10.2130.020.5x x -+-=20. ( 6分)定义一种新运算:34a b a b *=-(1) 求5(5)*-的值;(2) 解方程:2(2)34x **=-.21. (4分)设a ,b ,c ,d 为有理数,现规定一种新的运算: a bad bx c d =-,那么当35727x-=时,x 的值是多少?22. ( 4分)已知关于x 的方程2312a x -=,在解这个方程时,粗心的小伟误将3x -看成了3x +,从而解得3x =,请你帮他求出正确的解.23. ( 4分)已知代数式42y +的值比12136y -的值小2,求y 的值.24. ( 5分)某超市销售甲、乙两种商品.甲商品每件进价10元,乙商品每件进价30元.若该超市同时一次购进甲、乙两种商品共80件,恰好用去1 600元,求购进甲、乙两种商品各多少件.25. (5分)敌我两军相距25 km ,敌军以5 km/h 的速度逃跑,我军同时以8 km/h 的速度追击,并在相距1 km 处发生战斗,那么战斗是在开始追击多长时间后发生的?26. ( 6分)某车间有16名工人,每人每天可加工5个甲种零件或4个乙种零件.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一天共获利1 440元,求这一天有几名工人加工甲种零件.27. ( 8分)如图公,线段20AB = cm(1) 点P 沿线段AB 自点A 向点B 以2 cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3 cm/s 的速度运动,几秒后点P 、Q 两点相遇?(2) 如图②2AO PO ==,60POQ ∠=︒,现点P 绕点O 以30°/s 的速度顺时针旋转一周后停止,同时点Q 沿直线BA 自B 点向点A 运动,假若P 、Q 两点在运动过程中也能相遇,求点Q 运动的速度.28. (10分)某市水果批发部门欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/h ,其他主要参考数据见下表.(1) 如果选择汽车的总费用比选择火车的总费用多1 100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答;(2) 如果A 市与本市之间的距离为s km ,且知道火车与汽车在路上耽误的时间分别为2h 和3. 1 h.①本市与A 市之间的路程是多少千米时,两种运输方式费用相同?②若你是A 市水果批发部门的经理,要想将这种水果运往其他地区销售.你将选择哪种运输方式比较合算呢(请直接写出结果)?参考答案1. B2. C3. A4. C5. D6. B7. B8. B9. A 10.C11. 2-12. 113. 5- 14. 54a b +15. 20016. 24017. 12.818. 45019. (1)54012425x x +=-+51242540x x -=-+-777x -=-11x = (2)3(2)2(23)12x x +--=364612x x +-+=0x -=0x =(3)536444y y -=+ 22y =1y = (4)10201010325x x -+-= 510223x x ---=315x =5x = 20. (1)5(5)354(5)152035*-=⨯-⨯-=+=(2)2(2)34x **=-2(64)34x *-=-64(64)34x --=-6241634x -+=-1616x =-1x =-21. 372(5)7x ⨯--=211027x -+=24x =-2x =-22. 把3x =代人2312a x -=得2912a += 解得32a = 所以原方程为323122x ⨯-= 解得3x =-所以正确的解为3x =-23. 由题意得41213226y y +-=- 去分母,得3(4)121312y y +=--去括号,移项,合并同类项,得937y -=- 解得379y = 24. 设购进甲种商品x 件,则购进乙种商品(80)x -件.依题意,得10(80)301600x x +-⨯=解得40x =即购进甲种商品40件,购进乙种商品804040-=(件).25. 设战斗是在开始追击x h 后发生的.根据题意,得25581x x +-=解得8x =即战斗是在开始追击8h 后发生的.26. 设这一天有x 名工人加工甲种零件,则这一天加工甲种零件5x 个,加工乙种零件4(16)x -个.根据题意,得165244(16)1440x x ⨯+⨯-=解得6x =即这一天有6名工人加工甲种零件27. (1)设经过t s 后,P 、Q 两点相遇.依题意,有2320t t +=解得4t =即经过4s 后,P 、Q 两点相遇;(2)点P 、Q 只能在线段AB 上相遇,则点P 旋转到线段AB 上的时间为60230=(s)或60180830+=(s) 设点Q 的速度为y cm/s则有2204y =-解得8y =或820y =解得 2.5y =即点Q 的速度为8 cm/s 或2. 5 cm/s.28. (1)设本市与A 市之间的路程是x km.选择汽车的费用为2008020900x x ÷+⨯+选择火车的费用为200100152000x x ÷+⨯+所以可以列出方程:2008020900(200100152000)1100x x x x ÷+⨯+-÷+⨯+= 解得400x =即本市与A 市之间的路程是400 km;(2)选择汽车的费用为22.51520s +,选择火车的费用为172400s +①当两者相等时,22.51520172400s s +=+解得160s =即路程是160 km 时,两种运输方式费用相同.②当160s >时,选择火车合算;③当160s <时,选择汽车合算.。
一元一次方程_综合测试题练习题
一元一次方程综合练习题一、选择题:1.方程12x 3x 1532-+=-的解是( ). A.x =5 B.x =6 C.x =7 D.x =82.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x; B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y; D.由44153x y +-=,得12x-1=5y+20 3.已知方程112332x x x ---=+-与方程2224334kx x k +--=-的解相同,则k 的值为( ) A.0 B.2 C.1 D.-14.若m 使得代数式()2135m --取得最大值,则关于x 的方程54320m x -=+的解是( )A.79x =B.97x =C.79x =-D.97x =- 5.已知方程233m x x -=+的解满足10x -=,则m 的值是( ) A.6- B.12-C.6-或12-D.任何数 6.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( )A.12B.6C.6-D.12-7.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是( )A.0.4B. 2.5C.-0.4D.-2.5※8.某件商品连续两次9折销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92a 元B.1.12a 元C.1.12a 元D.0.81a 元 9.有一列数,按一定规律排列成1,-2,4,-8,16,…,其中某两个相邻数的和是-256,求这两个数.设这两个相邻数的第一个数为x ,根据题意,可以列出方程是( ).A.x +2x=-256B.x-2x=-256C.-x-2x=-256D.-x +2x=-25610.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( )A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)11.某商品以八折的优惠价出售一件少收入15元,那么购买这件商品的价格是( )A .35元B .60元C .75元D .150元12.文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。
(完整版)一元一次方程综合练习题
一元一次方程综合练习题一、填空题1.已知4x 2n-5+5=0是关于x 的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和3x-11的值互为相反数.4.已知x 与x 的3倍的和比x 的2倍少6,列出方程为________.5.在方程4x+3y=12中,用x 的代数式表示y ,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题9.方程2m+x=1和3x-1=2x+1有相同的解,则m 的值为( ).A. 0B. 1C. 21D. -210.方程│3x │=18的解的情况是( ).A. 有一个解是6B. 有两个解,是±6C. 无解D. 有无数个解11.若方程2ax-3=5x+b 无解,则a ,b 应满足( ).A.a ≠25 ,b ≠3B.a=25 ,b=-3C.a ≠25 ,b=-3D.a=25 ,b ≠-3 12.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( ).A. 10分B. 15分C. 20分D. 30分13.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A. 增加10%B. 减少10%C. 不增也不减D. 减少1%14.在梯形面积公式S=21(a+b)h 中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米. A. 5 B. 4 C. 3 D. 115.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A. 从甲组调12人去乙组B. 从乙组调4人去甲组C. 从乙组调12人去甲组D. 从甲组调12人去乙组,或从乙组调4人去甲组16.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A. 3B. 4C. 5D. 6三、解答题17.解方程:41(x-1)152-(3x+2)=30121-(x-1).18.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.19.某公园的门票价格规定如下表:某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)20.据了解,火车票价按“总里程数实际乘车里程数全程参考价⨯”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:例如:要确定从B 站至E 站火车票价,其票价为15004021130180)(-⨯=87.36≈87(元). (1)求A 站至F 站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车(要求写出解答过程).一元一次方程综合练习题答案:一、1. 3 2. -3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. 3[点拨:解方程 x-1=-(3x-11),得x=3]4. x+3x=2x-65. y=434x6. 525 (点拨:设标价为x 元,则0.6x-300=300×5%,解得x=525元)7. 18,20,22[点拨:设中间数为x 元,另两数为x-2、x+2,则(x-2)+x+(x+2)=60,解得x=20] 8. 4 [点拨:设需x 天完成,则x(61+121)=1,解得x=4]二、9. C 10. B (点拨:用分类讨论法:当x ≥0时,3x=18,∴x=6;当x<0时,-3x=18,∴x=-6 故本题应选B) 11.D (点拨:由2ax-3=5x+b ,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a=25,b+3≠0,b ≠-3,故本题应选D.)12. C (点拨:当甲、乙两人第一次相遇时,甲比乙多跑了800•米,列方程得300t-260t=800,或260t+800=300t ,解得t=20) 13. D14. B (点拨:由公式S=21(a+b)h ,得b=5厘米) 15. D 16. C三、 17.解:去分母,得 15(x-1)-8(3x+2)=2-30(x-1) ∴21x=63 ∴x=318.解:设十位上的数字为x ,则个位上的数字为3x-2,百位上的数字为x+1,故 100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171 解得x=3 答:原三位数是437.19.解:(1)∵103>100 ∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数 ∴甲班多于50人,乙班有两种情形: ①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x)人,依题意,得 5x+4.5(103-x)=486 解得x=45,∴103-45=58(人) 即甲班有58人,乙班有45人. ②若乙班超过50人,设乙班x 人,则甲班有(103-x)人,根据题意,得 4.5x+4.5(103-x)=486 ∵此等式不成立,∴这种情况不存在. 故甲班为58人,乙班为45人.20.解:(1)由已知可得火车票每千米价格=0.12元A 站至F 站的实际里程数为1500-219=1281(千米)所以A 站至F 站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x 千米,根据题意,得 0.12x=66解得x=550,对照表格可知,D 站与G 站距离为550千米,所以王大妈是在D 站或G•站下车.。
一元一次方程经典40题
一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。
A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。
只有C选项符合一元一次方程的定义,所以答案是C。
2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。
3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。
4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。
5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。
6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。
一元一次方程20道练习题
一元一次方程20道练习题1. 解方程:2x + 3 = 72. 解方程:5x 2 = 133. 解方程:3x + 4 = 194. 解方程:4x 5 = 115. 解方程:7x + 2 = 396. 解方程:8x 3 = 357. 解方程:6x + 5 = 418. 解方程:9x 4 = 459. 解方程:10x + 3 = 8310. 解方程:11x 5 = 7711. 解方程:12x + 4 = 9612. 解方程:13x 6 = 9313. 解方程:14x + 5 = 11914. 解方程:15x 7 = 11315. 解方程:16x + 6 = 13216. 解方程:17x 8 = 12917. 解方程:18x + 7 = 15518. 解方程:19x 9 = 15119. 解方程:20x + 8 = 16820. 解方程:21x 10 = 167请仔细阅读每个方程,理解其含义,并使用一元一次方程的解法来求解。
祝您练习愉快!一元一次方程20道练习题1. 解方程:3x 7 = 42. 解方程:5x + 6 = 293. 解方程:7x 2 = 454. 解方程:9x + 3 = 725. 解方程:11x 4 = 876. 解方程:13x + 5 = 1067. 解方程:15x 6 = 1238. 解方程:17x + 7 = 1409. 解方程:19x 8 = 15710. 解方程:21x + 9 = 17411. 解方程:23x 10 = 19112. 解方程:25x + 11 = 20813. 解方程:27x 12 = 22514. 解方程:29x + 13 = 24215. 解方程:31x 14 = 25916. 解方程:33x + 15 = 27617. 解方程:35x 16 = 29318. 解方程:37x + 17 = 31019. 解方程:39x 18 = 32720. 解方程:41x + 19 = 344请仔细阅读每个方程,理解其含义,并使用一元一次方程的解法来求解。
《一元一次方程》综合测试题(B)
.
第 1 题图 6
1. 8 父亲 今年 4 1岁 , 子 今年 1 儿 3岁 , 过 再
年后 父亲 的年 龄正 好是 儿 子年 龄 的 2倍 .
— —
1. 9 一艘 轮 船 在相 距 1 0千米 的 两地 之 间航 行 , 顺 流航 行 需 4小 时 , 流 航行 需 5小 时 , 2 若 逆 则水
/
一至
画
: 而 : … … … , 二 , ,
4 3
2 . 案 不 唯一 . 如 6答 例 问 : 车 相 向 而行 . 时相 遇 ? 两 何 解: 设 小 时 后 相 遇 , 由题意 , ( 5+4 =4 , 得 3 5 0
朝 着理 想 的 方 向 自信 地 勇 往 直 前 , 你想 过 的生 活 。— — 亨利 ・ 罗 过 梭
1. 0 足球 比赛 的规则 为 胜 一 场得 3分 , 一 场 得 1分 , 一 场 得 O分 , 个 队 打 l 比赛 , 5 平 负 一 4场 负
场, 共得 1 9分 , 则这 个 队胜 ( A 3场 . B 4场 . ) . C 5场 . D. 6场
流 速 度 为 千米/ . 时
2 . 明家 到学校共 有 2 0小 8千米 , 除公共 汽车 外 , 还需 步行 一段路 程 , 共 汽车 速度 为 3 公 6千米/ , 时
步行 速度 为 4千 米/ , 程共 需 l 时 , 时 全 小 则步 行所 用 时 间是
三 、 答题 ( 6 解 共 0分 )
≮ A 曹 . 嚣 0
A. Y= 1 0
B _ 1
B. y=2 0
C2 . _
c. 一 1 0
D毒 _ 一 2
) .
2022-2023学年鲁教版(五四学制)六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)
2022-2023学年鲁教版(五四学制)六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下列式子中,是一元一次方程的是()A.x+4>2B.C.x﹣3=y+5D.2.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bx D.若a=b,则3.下列方程中解是x=2的方程是()A.3x+6=0B.﹣2x+4=0C.D.2x+4=04.在解方程x﹣3=3x时,下列移项正确的是()A.x+3x=1B.x﹣3x=1C.x+3x=3D.x﹣3x=35.关于x的方程x﹣=1与2x﹣3=1的解相等,则a的值为()A.7B.5C.3D.16.若代数式比的值多1,则a=()A.﹣5B.﹣C.5D.7.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.8.东方商场把进价为1850元的某商品按标价的8折出售,仍获利10%,则该商品的标价为()A.2635元B.2168元C.2480元D.2543.75元9.成都市某电影共有4个大厅和5个小厅其中1个大厅,2个小厅,可同时容纳1680人观影;2个大厅、1个小厅,可同时容纳2280人观影.设1个小厅可同时容纳x人观影,由题意得下列方程正确的是()A.x+2(1680﹣x)=2280B.x+2(1680﹣2x)=2280C.x+2(2280﹣x)=1680D.x+(2280﹣x)=168010.出售某品牌扫地机器人,已知该扫地机器人的进价为1800元,标价为2475元,双“十二”期间打折出售,且每件仍可获得180元的利润,设该扫地机器人按标价打x折出售,则下列方程正确的是()A.2475×﹣1800=180B.2475﹣1800×=180C.2475×﹣1800×=180D.1800﹣2475×=180二.填空题(共7小题,满分28分)11.若2x a﹣1+1=0是一元一次方程,则a=,代数式﹣a2+2a的值是.12.如果关于x的方程2x+1=3和方程2﹣=1的解相同,那么a的值为.13.若代数式(a、b为常数)的值与字母x、y 的取值无关,则方程3ax+b=0的解为.14.兰山某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为76分,则他答对了道题.15.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设有x人,则根据题意可列方程.16.某型号彩电每台标价为5250元,按标价的八折销售,此时每台彩电的利润率是5%,则该型号彩电的进价为每台元.17.用符号※定义一种新运算a※b=ab+2(a﹣b),若3※x=2021,则x的值为.三.解答题(共6小题,满分52分)18.解方程:(1)3x﹣1=5x+9;(2)4﹣4(x+3)=3(x+2);(3);(4).19.(1)将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a,(第一步)∴5=4.(第二步)上述过程中,第一步的依据是什么?第二步得出错误的结论,其原因是什么?(2)如果关于x的方程﹣6=﹣的解与关于x的方程4x﹣(3a+1)=6x+a+1的解互为相反数,求a的值.20.某建筑工地有一大一小两个水池,用同样的输水管给两个水池注水,大水池需6小时注满,小水池需4小时注满.现在为了施工的需要,同时往两个水池注水,但在注水的过程中,电路出现问题,两个水池的注水被迫同时停止,经过测量发现:大水池剩余的需注水量是小水池需注水量的2倍,你能推测出输水用时多久吗?21.某通讯公司推出以下收费套餐,甲选择了套餐A,乙选择了套餐B,设甲的通话时间为t1分钟,乙的通话时间为t2分钟.月租费(元/月)不加收通话费时限(分)超时加收通话费标准(元/分)套餐A581500.3套餐B883500.2(1)请用含t1(t1>150)、t2(t2>350)的代数式表示甲和乙的通话费用;(2)若甲9月份通话时间为390分钟,乙通话费用和甲相同,求乙通话时间;(3)若甲和乙在10月份通话时间和通话费用都一样,则通话时间为.22.如图,点A、B在数轴上表示的数分别为﹣12,16(规定:数轴上两点A,B之间的距离记为AB).点P与点Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,它们运动的时间为t秒.①点P与点Q在A,B两点之间相向运动,当它们相遇时,求时间t的值.②点P与点Q都向左运动,当Q追上点P时,求点P对应的数.③点P与点Q在点A与点B之间相向运动,当PQ=8时,t的值是.23.自10月1日开始实施新的个人所得税政策,个人所得税起征点由原来的每月3500元提高到每月5000元(即工资5000元以下不交税),纳税人每月的工资扣除5000元后所得的余额作为应纳税所得额(不考虑其他因素),根据个人所得税税率表(如下表)计算每月上交的个人所得税.个人所得税税率表级数全月应纳税所得额税率1不超过3000元的3%2超过3000元至12000元部分10%3超过12000元至25000元部分20%4超过25000元至35000元部分25%5……例如:小明妈妈月工资5000元,当月纳税额为0元;小王爸爸月工资9000元,应纳税额为3000×3%+(9000﹣5000﹣3000)×10%=190元.根据以上信息回答问题:(1)2020年,小明妈妈和爸爸月工资分别为7000元,11000元,分别求他们每月上交的个人所得税.(2)2021年,小明爸爸和妈妈月工资同时增长,小明爸爸说:“2021年我的月工资是你妈妈的两倍.”小明妈妈说:“你爸爸每个月交个人所得税是我的10倍还多40元.”小明爸爸说:“我们的个人所得税的税率级数相对2020年没有变化.”请根据以上对话,求小明爸爸、妈妈2021年的月工资是多少元?(3)若小明爸爸、妈妈的月工资分别为a,b元,其中(17000<a≤40000),(5000<b ≤8000),爸爸每月的个人所得税是妈妈的m倍,请用a,b的代数式表示m.参考答案一.选择题(共10小题,满分40分)1.解:A选项,不是等式,不是方程,故该选项不符合题意;B选项,这个方程不是整式方程,故该选项不符合题意;C选项,这个方程含有2个未知数,故该选项不符合题意;D选项,这个方程是一元一次方程,故该选项符合题意;故选:D.2.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.3.解:A.将x=2代入3x+6=0,可得6+6=12≠0,故A不符合题意;B.将x=2代入﹣2x+4=0,可得﹣4+4=0,故B符合题意;C.将x=2代入,可得=1≠2,故C不符合题意;D.将x=2代入2x+4=0,可得4+4=8≠0,故D不符合题意;故选:B.4.解:x﹣3=3x则x﹣3x=3.故选:C.5.解:2x﹣3=1,解得:x=2,∴x=2是方程x﹣=1的解,将x=2代入方程x﹣=1得:2﹣=1,解得:a=5.故选:B.6.解:根据题意得:﹣=1,去分母,得7(a+3)﹣4(2a﹣3)=28,去括号,得7a+21﹣8a+12=28,移项,得7a﹣8a=28﹣21﹣12,合并同类项,得﹣a=﹣5,系数化成1,得a=5,故选:C.7.解:∵|2x﹣6|=0,∴2x﹣6=0,解得:x=3.故选:A.8.解:设该商品的标价为x元,由题意得:0.8x﹣1850=1850×10%,解得:x=2543.75.答:该商品的标价为2543.75元.故选:D.9.解:由题意知,1个大厅可同时容纳(1680﹣2x)人观影,∵2个大厅、1个小厅,可同时容纳2280人观影.∴2(1680﹣2x)+x=2280,故选:B.10.解:根据题意得,2475×﹣1800=180,故选:A.二.填空题(共7小题,满分28分)11.解:由题意可知:a﹣1=1,∴a=2,∴原式=﹣4+4=0,故答案为:2,012.解:方程2x+1=3,解得:x=1,把x=1代入第二个方程得:2﹣=1,去分母得:6﹣a+1=3,解得:a=4,故答案为:413.解:原式=(1﹣)x2﹣5y+4﹣ax2﹣by﹣8=(﹣a)x2﹣(b+5)y﹣4,由结果与字母x、y的取值无关,得到﹣a=0,b+5=0,解得:a=,b=﹣5,代入方程得:5x﹣5=0,解得:x=1,故答案为:x=114.解:设该考生答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故答案为:16.15.解:设有x人,由题意,得8x﹣3=7x+4.故答案是:8x﹣3=7x+4.16.解:设彩电的进价为每台x元,由题意得,5250×80%﹣x=5%x,解得x=4000,答:彩电的进价为每台4000元.故答案为:4000.17.解:根据题中的新定义化简得:3x+2(3﹣x)=2021,去括号得:3x+6﹣2x=2021,移项合并得:x=2015.故答案为:2015.三.解答题(共6小题,满分52分)18.解:(1)3x﹣1=5x+9,移项,得3x﹣5x=9+1,合并同类项,得﹣2x=10,系数化成1,得x=﹣5;(2)4﹣4(x+3)=3(x+2),去括号,得4﹣4x﹣12=3x+6,移项,得﹣4x﹣3x=6﹣4+12,合并同类项,得﹣7x=14;系数化成1,得x=﹣2;(3),去分母,得10y﹣5(y﹣1)=20﹣2(y+2),去括号,得10y﹣5y+5=20﹣2y﹣4,移项,得10y﹣5y+2y=20﹣4﹣5,合并同类项,得7y=11,系数化成1,得y=;(4),原方程化为:﹣=3,5x﹣10﹣2x﹣2=3,移项,得5x﹣2x=3+10+2,合并同类项,得3x=15,系数化成1,得x=5.19.解:(1)上述过程中,第一步的依据是:等式的性质1,第二步得出错误的结论,其原因是:等式的两边同除以了一个可能等于零的a.(2)解:解方程,得,解方程4x﹣(3a+1)=6x+a+1,得x=﹣2a﹣1,因为两个方程的解互为相反数,所以=0,解得.20.解:设输水速度为v,输水时间为t小时,依题意有6v﹣vt=2(4v﹣vt),解得t=2.故输水时间为2小时.21.解:(1)依题意得:甲的通话费用为58+0.3(t1﹣150)=(0.3t1+13)元;乙的通话费用为88+0.2(t2﹣350)=(0.2t2+18)元.(2)依题意得:0.2t2+18=0.3×390+13,解得:t2=560.答:乙的通话时间为560分钟.(3)当t1=t2时,设甲、乙的通话时间均为t分钟,当0<t≤150时,显然不符合题意;当150<t≤350时,0.3t+13=88,解得:t=250;当t>350时,0.3t+13=0.2t+18,解得:t=50(不符合题意,舍去).∴若甲和乙在10月份通话时间和通话费用都一样,则通话时间为250分钟.故答案为:250分钟.22.解:(1)由题意可得:2t+4t=16+12,解得t=.故时间t的值为;(2)由题意可得:4x﹣2x=16+12,∴x=14,∴﹣12﹣2×14=﹣40,∴点P对应的数为﹣40;(3)∵PQ=8,∴|16﹣4t﹣(﹣12+2t)|=8,解得t1=,t2=6.故t的值是或6.故答案为:或6.23.解:(1)妈妈应交的个人所得税为:(7000﹣5000)×3%=60(元),爸爸应交的个人所得税为:3000×3%+(11000﹣5000﹣3000)×10%=90+300=390(元),答:妈妈应交的个人所得税为60元,爸爸应交的个人所得税为390元;(2)设妈妈的月工资为x元,则爸爸的月工资为2x元,依题意得:3%(x﹣5000)×10+40=3000×3%+(2x﹣5000﹣3000)×10%,解得:x=7500,则爸爸的月工资为:2x=15000(元),答:小明爸爸、妈妈2021年的月工资分别是15000元,7500元;(3)妈妈应交的个人所得税为:3%(b﹣5000)=3%b﹣150,①当爸爸的工资17000<a≤30000元时,应交的个人所得税为:3000×3%+(12000﹣3000)×10%+(a﹣12000﹣5000)×20%=20%a﹣2410,则m=;②当爸爸的工资30000<a≤40000元时,应交的个人所得税为:3000×3%+(12000﹣3000)×10%+(25000﹣12000)×20%+(a﹣25000﹣5000)×25%=25%a﹣3910,则m=.。
7年级数学上册(人教版)精品训练及答案—第3章一元一次方程综合练习
《一元一次方程》综合练习一. 希望你能填得又快又准 1. 若x =2是方程2x -a =7的解,那么a =_______.2. |2y-x|+|x-2|=0,则x=________,y=__________ .3. 若9a x b 7 与 – 7a3x –4b 7是同类项,则x= .4.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是______.5.关于x 的方程2x -4=3m 和x +2=m 有相同的根,那么m =_________6. x 关于的方程是一元一次方程,那么()|m |m x m ++==+13027. 若m -n =1,那么4-2m +2n 的值为___________8. 某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天的日期分别是______________二. 相信自己,精心选一选,其中只有一个结论是正确的。
9. 下列方程中,一元一次方程是( )A. 2X=1B. 3X –5C. 3+7=10D. X 2+X=1 10.下列变形正确的是( )A. 4x – 5 = 3x+2变形得4x –3x = –2+5B. 32x – 1 = 21x+3变形得4x –6 = 3x+18C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6D. 3x = 2变形得x =2311. 若x =2是方程k (2x -1)=kx +7的解,那么k 的值是( ) A. 1 B. -1 C. 7 D. -712. 某商店上月的营业额是m 万元,本月比上月增长15%,那么本月的营业额是( )A. (m +1)·15%万元B. 15%万元C. (1+15%)m 万元D. (1+15%)2m 万元13. 某班分两组去两处植树,第一组22人,第二组26人。
现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人则可列方程 ( )A.26222⨯=+xB.()x x -=+26222C.()x x -=+26222D.()x -=2622214. 小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的31,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积分别为(单位:平方米)( ) A. 340,320B. 30, 10C. 15, 5D.12,8 15. 下列变形中,正确的是()A 、若ac=bc ,那么a=b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程综合测试题练习一元一次方程综合练习题 一、选择题: 1.方程12x 3x 1532-+=-的解是( ).A.x =5B.x =6C.x =7D.x =82.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x; B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y; D.由44153x y +-=,得12x-1=5y+20 3.已知方程112332x x x ---=+-与方程2224334kx x k +--=-的解相同,则k 的值为( ) A.0 B.2 C.1 D.-1 4.若m 使得代数式()2135m --取得最大值,则关于x 的方程54320m x -=+的解是( )A.79x =B.97x =C.79x =-D.97x =- 5.已知方程233m x x -=+的解满足10x -=,则m 的值是( ) A.6- B.12- C.6-或12- D.任何数6.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( )A.12B.6C.6-D.12-7.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是( )A.0.4B. 2.5C.-0.4D.-2.5※8.某件商品连续两次9折销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92a 元B.1.12a 元C.1.12a 元D.0.81a 元 9.有一列数,按一定规律排列成1,-2,4,-8,16,…,其中某两个相邻数的和是-256,求这两个数.设这两个相邻数的第一个数为x ,根据题意,可以列出方程是( ).A.x +2x=-256B.x-2x=-256C.-x-2x=-256D.-x +2x=-25610.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( )A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)11.某商品以八折的优惠价出售一件少收入15元,那么购买这件商品的价格是( )A .35元B .60元C .75元D .150元12.文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。
其中一台盈利20%,另一台亏本20%,则这次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元13.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )A.280千米,240千米B.240千米,280千米C.200千米,240千米D.160千米,200千米14.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( )A.120x=(x+2)xB.1202x x =+ 120120120120.3.322C D x x x x-==+++ 15.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A.40% B.20% C25% D.15%16.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( )A.约700元B.约773元C.约736元D.约865元16.某单位A,B,C 三个部门的人数依次是84人、56人、60人,如果每个部门都按相同的比例裁减人员,使三个部门共留下150人,那么A 部门留下的人数是( ). A.65人 B.63人 C.60人 D.56人二、填空题:17.关于x 的方程230m mx m ++-=是一个一元一次方程,则m =_______.18.方程5(y -1)-2(2y +3)=0的解是y =19.若3522-m b a 与n m n b a +--313是同类项,则m = ,n =20.关于x 的方程()112436x x m +=-+的解是116-,则))1((2013--m =_______. 21.关于x 的方程39x =与4x k +=解相同,则代数式212k k -的值为_______. 22.假定每个工人的工作效率相同,如果x 个工人y 天生产m 支牙刷,那么y 个工人做x 支牙刷要_______天.23.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_____,方程的解为_______. 24.当x =_______时,代数式12x -与113x +-的值相等. 25.解方程132x -=,则x =_______. 26.已知方程4231x m x +=+和方程3261x m x +=+的解相同,则代数式20142013)23()2(---m m 的值为27.在日历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期分别为_______28.今年母女二人年龄之和是53,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可将方程 。
29.有一工程需在规定x 天完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是 。
30.我校球类联赛期间买回排球和足球共16个,花去900元钱,已知排球每个42元,足球每个80元,则排球买了________个.31.若a ,b 互为相反数,c,d 互为倒数,p 的绝对值为2则关于x 的方程(a+b)x 2+cdx-p 2=0的解是 32.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,现我军以7千米/小时的速度追击______小时后可追上敌军.33.某地区人口数为m ,原统计患碘缺乏症的人占15%,最近发现又有a 人患此症,那么现在这个地区患此症的百分比是34.翻开数学书,连续看了3页,这三页页码和为453,则这3页的页码分别是第_______页.35.甲水池有31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,_______小时后,甲池的水与乙池的水一样多.※36.在400米的环形跑道上,男生每分钟跑320米,女生每分钟跑280米,男女生同时同地同向出发,t 分钟第2次相遇,则t=三、综合题:37.解下列方程: (1)x 1x 2x 225-+-=- (2)511241263x x x +--=+ (3)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦(4)432.50.20.05x x ---= (5)34[43(12x-14)-8]=32x+1 (6)3.02.03.0255.09.08.0-++=+x x x(7)0533321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x (8)201320142013433221=⨯++⨯+⨯+⨯x x x x38.已知2y m my m +=-.(1)当4m =时,求y 的值;(2)当4y =时,求m 的值.39.方程23(1)0x -+=的解与关于x 的方程3222k x k x +--=的解互为倒数,求k 的值。
40.关于 x 的方程52-=-x k kx 的解为整数,求整数k.41.一份数学试卷有20道选择题,规定做对一题得5分,不做或做错倒扣1分,结果某学生得分为76分,问他做对了几道题?42.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?43.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?44.A、B两地相距49千米,某人步行从A地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.※45.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,这时汽车离山谷多远?(声音的速度以340m/s计算)46.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?47.已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。
48.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。
49.甲、已两个团体共120人去某风景区旅游。
风景区规定超过80人的团体可购买团体票,已知每张团体票比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买50.某商场在元旦其间,开展商品促销活动,将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?※51.某企业生产一种产品,每件成本400元,销售价为510元,本季度销售了m件,于是进一步扩大市场,该企业决定在降低销售价的同时见地成本,经过市场调研,预测下季度这种产品每件销售降低4%,销售量提高10%,要使销售利润保持不变,该产品每件成本价应降低多少元?52.某中学拟组织九年级师生去南山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?53.小明想在两种灯中选购一种,其中一种是10瓦的节能灯,售价32元;另一种是40瓦的白炽灯,售价为2元。
两种灯的照明效果一样,使用寿命也相同。