超声波测距系统设计

合集下载

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。

在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。

一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。

其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。

超声波的发射频率通常在40kHz左右,适合在空气中传播。

2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。

3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。

以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。

4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。

二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。

设计好电源电路以及超声波传感器与单片机之间的连接方式。

2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。

包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。

3.硬件连接和调试:将硬件连接好后,对系统进行调试。

包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。

5.优化和改进:根据实际测试结果,对系统进行优化和改进。

如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。

三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。

该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。

同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。

超声波测距系统

超声波测距系统
20XX
超声波测距系 统
-
引言
目录
系统设计
引言
超声波测距是一种非接触式的测 量方法,具有精度高、可靠性强、
对环境适应性强等优点
本设计以51单片机为核心,利用 超声波传感器进行距离测量,实 现成
本系统主要由51单片机、超声波传感器、显示模块和电源模块组成
电路连接
系统设计
将超声波传感器的Trig和 Echo分别连接到51单片机的 P1.0和P1.1口 将LCD显示屏的RS、RW和E分 别连接到51单片机的P0.0、 P0.1和P0.2口
电源模块通过杜邦线连接到 51单片机和超声波传感器: 为它们提供工作电压
系统设计
软件设计
主要步骤
初始化:包括初始化LCD显示屏和超声波传感器 发送超声波:通过51单片机的P1.0口发送一个10微秒的脉冲信号,触发超声波传感器 发送超声波
THANKS
系统设计
接收回声:超声波传感器接 收到回声后,通过P1.1口将 信号发送到51单片机
计算距离:51单片机接收到 回声信号后,根据超声波传 感器的工作原理,计算出距 离
显示结果:将计算出的距离 通过LCD显示屏显示出来
系统设计
主要代码
由于代码较长,这里只给出部分关键代码,具体可以参考以下示例代码
-
51单片机:作为系统的核心,负责处理和发送超声 波传感器的信号,并控制显示模块显示距离信息
超声波传感器:采用HC-SR04型号,该传感器具有测 量范围广、精度高等优点。其工作原理是利用超声 波的回声进行距离测量 显示模块:采用LCD显示屏,用于实时显示测量得到 的距离信息 电源模块:为整个系统提供稳定的工作电压

超声波测距系统的设计详解

超声波测距系统的设计详解

超声波测距系统的设计详解超声波测距系统是一种基于超声波测量原理进行距离测量的系统。

它利用超声波在空气中的传播速度较快且能够穿透一定程度的障碍物的特点,通过向目标物体发射超声波并接收反射回来的波形信号,从而计算出目标与传感器之间的距离。

下面将详细介绍超声波测距系统的设计过程。

首先,超声波测距系统的设计需要明确测量的范围和精度要求。

根据需求确定测量距离的最大值和最小值,以及所需的测量精度。

这将有助于选择合适的超声波传感器和测量方法。

其次,选择合适的超声波传感器。

超声波传感器一般包括发射器和接收器两部分,发射器用于发射超声波,接收器用于接收反射回来的波形信号。

传感器的选择应考虑其工作频率、尺寸、功耗等因素。

一般来说,工作频率越高,测距的精度越高,但传感器的尺寸和功耗也会增加。

接下来是超声波信号的发射和接收电路的设计。

发射电路负责产生超声波信号,并将其发送到目标物体上。

接收电路负责接收反射回来的波形信号,并将其转换成可用的电信号。

发射电路常采用谐振频率发射,以提高发射效率和功耗控制。

接收电路则需要设计合适的放大和滤波电路,以增强接收到的信号并去除噪声。

然后是超声波信号的处理和计算。

接收到的波形信号需要进行模数转换和数字信号处理,以获取目标物体与传感器之间的距离。

常见的处理方法包括峰值检测、时差测量、相位比较等。

峰值检测法通过检测波形信号的峰值来判断目标距离;时差测量法通过测量发射和接收信号之间的时间差来计算距离;相位比较法通过比较两个信号的相位差来测量距离。

最后是系统的校准和调试。

校准是调整测距系统的参数,使其达到预定的测量精度。

常见的校准方法包括距离校准和零位校准。

调试是对整个系统进行功能和性能测试,确保其正常工作。

在调试过程中需要注意测距系统与其他系统的干扰和噪声问题,并进行相应的抑制和滤波处理。

总之,超声波测距系统的设计涉及到传感器选择、电路设计、信号处理和系统调试等多个方面。

合理的设计和调试能够保证系统的稳定性和可靠性,从而满足测量的要求。

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。

STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。

本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。

二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。

同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。

三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。

我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。

在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。

这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。

我们还考虑到了系统的可扩展性。

通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。

我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。

本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。

31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。

超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。

STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计
超声波测距系统是一种常见的测距技术,它利用超声波的特性来测量物体与传感器之间的距离。

基于单片机的超声波测距系统是一种常见的应用,它可以广泛应用于工业自动化、智能家居、机器人等领域。

基于单片机的超声波测距系统主要由超声波传感器、单片机、LCD 显示屏和电源等组成。

超声波传感器是测距系统的核心部件,它可以发射超声波信号并接收反射回来的信号。

单片机是控制系统的核心部件,它可以对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

LCD显示屏可以显示测量结果,方便用户进行观察和操作。

在设计基于单片机的超声波测距系统时,需要注意以下几点:
1.选择合适的超声波传感器。

传感器的频率和探测距离是选择传感器时需要考虑的重要因素。

2.选择合适的单片机。

单片机的处理速度和存储容量是选择单片机时需要考虑的重要因素。

3.编写合适的程序。

程序需要能够对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

同时,程序还需要能够将测量结果显示在LCD显示屏上。

4.进行系统测试。

在完成系统设计后,需要进行系统测试,确保系统能够正常工作,并且测量结果准确可靠。

基于单片机的超声波测距系统具有测量精度高、响应速度快、体积小等优点,可以广泛应用于各种领域。

在未来,随着技术的不断发展,基于单片机的超声波测距系统将会得到更广泛的应用。

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。

超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。

本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。

其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。

二、硬件设计。

1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。

2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。

3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。

4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。

5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。

三、软件设计。

1.控制模块:编写程序实现超声波信号的发射与接收。

其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。

超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。

(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。

(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。

(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。

2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。

具体步骤如下:(1)等待串口接收数据。

(2)当接收到数据时,将数据转换成浮点数格式。

(3)根据测量结果控制LED灯的亮灭。

以上就是基于单片机控制的超声波测距系统的设计。

该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。

超声波测距设计方案

超声波测距设计方案

超声波测距设计方案1. 概述超声波测距是一种利用超声波传感器对目标物体进行距离测量的技术。

它具有非接触、精度高、速度快等优点,广泛应用于工业自动化等领域。

本设计方案旨在实现一个基于Arduino的超声波测距系统,可以测量距离在2cm~400cm之间的目标物体,并将结果显示在液晶屏上,以方便用户观察和使用。

2. 系统组成本系统由硬件和软件两部分组成,硬件系统包括超声波传感器、Arduino主控板、液晶屏、电源等部分;软件系统包括Arduino的程序。

2.1 超声波传感器超声波传感器是本系统中最关键的部分,它通过发射超声波信号并接收回波信号,测量目标物体与传感器的距离。

常用的超声波传感器有HC-SR04、JSN-SR04T等型号,本设计方案使用HC-SR04超声波传感器。

2.2 Arduino主控板Arduino是一种开源的嵌入式系统,具有方便、易用、可扩展等特点,可以实现各种各样的控制任务。

本设计方案使用Arduino UNO主控板,它是一种基于ATmega328P芯片的开发板,具有丰富的接口和较高的性能和稳定性。

2.3 液晶屏液晶屏是显示距离测量结果的部分,本设计方案采用16*2字符型液晶屏,能够显示2行16个字符,显示结果清晰、直观。

2.4 电源本系统采用外接直流电源供电,电压为5V,可以通过USB接口或外部电源插头供电。

3. 系统原理本系统的测距原理基于超声波传感器发射超声波信号并接收回波信号的原理。

当超声波传感器发射超声波信号后,信号会以声速传播在空气中,当遇到目标物体后,部分波信号会被目标物体反射回来,形成回波信号,超声波传感器接收到回波信号后,再通过计算超声波信号的来回时间、声速等参数,便可以计算出目标物体与传感器的距离。

4. 系统设计超声波传感器通过接口连接到Arduino主控板,并需要外接电源,具体接线图如下所示:超声波传感器 VCC -> Arduino 5V液晶屏 RW -> Arduino GND整个系统的软件设计主要包括两部分,一部分是超声波测距的程序,另一部分是液晶屏显示的程序。

超声波测距系统的设计

超声波测距系统的设计

超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。

在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。

2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。

3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。

4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。

在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。

二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。

2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。

3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。

4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。

三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。

2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。

3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。

总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。

超声波测距设计毕业设计

超声波测距设计毕业设计

超声波测距设计毕业设计一、引言距离测量在许多领域都具有重要的应用,如工业自动化、机器人导航、汽车防撞等。

超声波测距作为一种非接触式的测量方法,具有测量精度高、响应速度快、成本低等优点,因此在实际工程中得到了广泛的应用。

本次毕业设计旨在设计一种基于超声波的测距系统,实现对目标物体距离的准确测量。

二、超声波测距原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。

超声波测距的原理是通过发射超声波脉冲,并测量其从发射到接收的时间间隔,然后根据声速和时间间隔计算出目标物体与传感器之间的距离。

假设发射超声波脉冲的时刻为 t1,接收到回波的时刻为 t2,声速为c,距离为 d,则距离 d 可以通过以下公式计算:d = c ×(t2 t1) / 2三、系统硬件设计(一)超声波发射模块超声波发射模块主要由超声波换能器和驱动电路组成。

超声波换能器将电信号转换为超声波信号发射出去,驱动电路则提供足够的功率和电压来驱动换能器工作。

(二)超声波接收模块超声波接收模块主要由超声波换能器、前置放大器、带通滤波器和比较器组成。

换能器将接收到的超声波信号转换为电信号,前置放大器对信号进行放大,带通滤波器去除噪声和干扰,比较器将信号整形为方波信号。

(三)控制与处理模块控制与处理模块采用单片机作为核心,负责控制超声波的发射和接收,测量时间间隔,并计算距离。

同时,单片机还可以将测量结果通过显示模块进行显示,或者通过通信模块与上位机进行通信。

(四)显示模块显示模块用于显示测量结果,可以采用液晶显示屏(LCD)或数码管。

(五)电源模块电源模块为整个系统提供稳定的电源,包括 5V 和 33V 等不同的电压等级。

四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机的初始化、定时器的初始化、端口的初始化等。

然后进入主循环,不断地发射超声波脉冲,并等待接收回波。

当接收到回波后,计算距离,并进行显示或通信。

基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计超声波测距系统是一种常见的非接触式测距技术,通过发送超声波信号并测量信号的回波时间来计算距离。

本文将介绍基于51单片机的超声波测距系统的毕业设计。

首先,我们需要明确设计的目标。

本设计旨在通过51单片机实现一个精确、稳定的超声波测距系统。

具体而言,我们需要实现以下功能:1.发送超声波信号:通过51单片机的IO口控制超声波发射器,发送一定频率和波形的超声波信号。

2.接收回波信号:通过51单片机的IO口连接超声波接收器,接收并放大返回的超声波信号。

3.信号处理:根据回波信号的时间延迟计算出距离,并在显示器上显示出来。

4.稳定性和精确性:设计系统时需考虑测量过程中误差的影响,并通过合适的算法和校准方法提高系统的稳定性和精确性。

接下来,我们需要选择合适的硬件和软件配合51单片机实现上述功能。

硬件方面:1.51单片机:选择一款性能稳定、易于编程的51单片机,如STC89C522.超声波模块:选择一款合适的超声波传感器模块,常见的有HC-SR04、JSN-SR04T等。

模块一般包括发射器和接收器,具有较好的测距性能。

3.显示设备:选择合适的显示设备,如7段LED数码管或LCD显示屏,用于显示测距结果。

软件方面:1.C语言编程:使用C语言编写51单片机的程序,实现超声波测距系统的各项功能。

2.串口通信:通过串口与上位机进行通信,可以对系统进行监控和远程控制。

3.算法设计:选择合适的算法计算超声波回波时间延迟,并根据时间延迟计算距离值。

在设计过程中,我们需要进行以下步骤:1.硬件连接:按照超声波模块的说明书,将模块的发射器和接收器通过杜邦线与51单片机的IO口连接。

2.软件编程:使用C语言编写51单片机的程序,实现超声波模块的控制、信号接收和处理、距离计算等功能。

3.系统测试:进行系统的功能测试和性能测试,验证系统的可靠性和准确性,同时调试系统中出现的问题。

4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精确性。

车用超声波测距系统设计与应用

车用超声波测距系统设计与应用

车用超声波测距系统设计与应用随着科技的发展,车用超声波测距系统已经成为新一代车辆安全研发的主流方向。

相比传统的车辆安全系统,车用超声波测距系统拥有更高的精度和更广泛的适用性。

本文旨在介绍车用超声波测距系统的设计原理、重要组成部分以及应用场景。

一、设计原理车用超声波测距系统主要依靠声波探测器和控制器两大部分构成。

声波探测器通过发送一定频率的声波,利用回声信号来计算距离。

控制器则负责控制整个系统的工作,将探测器接收到的信号处理转换为实际距离值,并根据测距结果执行相应的动作。

在使用时,车用超声波测距系统通过探测器向前发送一定频率的声波,当声波遇到物体时会发生反射。

探测器接收到反射的声波信号,并计算出物体与车辆之间的距离。

控制器将测量出的距离值与预设距离进行比较,如果差距达到预设范围,则控制器会触发相应的报警或减速措施,确保车辆安全行驶。

二、重要组成部分1.声波探测器:声波探测器是车用超声波测距系统中最关键的部分,它能够探测到周围物体,并将信号传递给控制器。

声波探测器通常由发射器和接收器组成,使用时发射器会发送一定频率的声波,接收器则接收周围物体反射回来的声波信号。

2.控制器:控制器可以根据声波探测器接收到的信号计算出物体到车辆的距离,并将距离值转换为实际的距离数值。

控制器还可以根据测量结果触发相应的警报或减速机制,确保车辆安全行驶。

3.显示屏:车用超声波测距系统的显示屏可以用来显示测量结果以及警报信息,帮助驾驶员更加清晰地了解车辆周围的情况。

4.电源系统:电源系统负责为整个车用超声波测距系统提供稳定可靠的电源。

三、应用场景车用超声波测距系统的应用场景非常广泛,可以用于车辆的前、后、左、右四个方向的监测。

以下是车用超声波测距系统的几种常见应用场景:1.倒车雷达:倒车雷达是车用超声波测距系统最为常见的应用场景之一。

在倒车过程中,探测器会向后发送声波,并根据接收到的反射信号计算出距离,从而帮助驾驶员更加精准地掌握车辆距离障碍物的距离。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。

随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。

超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。

本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。

二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。

系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。

通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。

三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。

STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。

2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。

通过超声波的发送与接收,实现对目标的距离计算。

3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。

电源模块需考虑到功耗问题,以实现系统的长时间运行。

4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。

5. 显示模块:实时显示测距结果,方便用户观察与操作。

四、软件设计1. 主程序:负责整个系统的控制与数据处理。

主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。

2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。

通过计算超声波的发送与接收时间差,计算出目标物体的距离。

3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。

4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。

五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。

教学项目10超声波测距系统设计

教学项目10超声波测距系统设计

教学项目10超声波测距系统设计超声波测距系统是一种基于超声波传感技术,通过发送超声波脉冲并接收反射回来的超声波脉冲,从而测量目标物体与传感器之间的距离。

本教学项目旨在教授如何设计和实现一个简单的超声波测距系统。

以下是该项目的详细步骤:1.材料准备:- Arduino Uno控制板-超声波传感器模块(如HC-SR04)-面包板-杜邦线2.连接电路:- 将Arduino Uno控制板插入面包板,并让其稳固地固定在面包板上。

- 使用杜邦线将超声波传感器模块连接到Arduino Uno控制板上,确保正确连接,VCC与5V引脚相连,Trig与9引脚相连,Echo与10引脚相连,GND与GND引脚相连。

3.编写代码:- 打开Arduino开发环境,创建一个新的空白文件。

-编写代码以初始化引脚,并定义距离变量。

-编写一个函数来测量距离,该函数将使用超声波发送脉冲并接收回来的脉冲,并计算出目标物体与传感器之间的距离。

-在主循环中调用测量函数,并将测量结果打印到串行监视器中。

以下是一个示例代码:```c++const int trigPin = 9;const int echoPin = 10;void setupinMode(trigPin, OUTPUT);pinMode(echoPin, INPUT);Serial.begin(9600);void loolong duration, distance;digitalWrite(trigPin, LOW);delayMicroseconds(2);digitalWrite(trigPin, HIGH);delayMicroseconds(10);digitalWrite(trigPin, LOW);duration = pulseIn(echoPin, HIGH);distance = duration * 0.034 / 2;Serial.print("Distance: ");Serial.print(distance);Serial.println(" cm");delay(1000);```4.上传代码:- 将Arduino Uno控制板通过USB连接到电脑。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。

本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。

该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。

二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。

通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。

系统具有高精度、抗干扰能力强、测量范围广等特点。

三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。

通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。

2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。

通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。

3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。

当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。

4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。

电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。

四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。

主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。

当接收到触发信号时,开始测距流程。

2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。

当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。

超声波测距系统设计

超声波测距系统设计

超声波测距系统设计一、设计原理超声波测距原理基于声波的传播速度和时间的关系。

声波在空气中传播的速度约为343m/s。

当声波发射到目标物体上后,部分声波会被目标物体反射回来。

通过测量声波从发射到接收的时间差,再乘以声速即可计算出目标物体与传感器的距离。

二、硬件设计1.超声波发射器:超声波发射器是实现超声波测距的关键部件,它负责产生超声波脉冲并将其发射出去。

常用的超声波发射器是压电传感器,它具有快速响应、高灵敏度等特点。

2.超声波接收器:超声波接收器用于接收从目标物体反射回来的超声波,并将其转化为电信号。

同样,压电传感器也可以用作超声波接收器。

3.控制电路:控制电路负责控制超声波发射器和接收器的工作。

例如,它可以通过控制超声波发射器的工作时间来产生超声波脉冲。

同时,控制电路还需要接收超声波接收器输出的电信号,并通过计时器来测量声波从发射到接收的时间差。

4.显示屏:显示屏用于显示测距结果,通过显示屏可以直观地观察到目标物体与传感器的距离。

三、软件设计1.信号处理:在接收到超声波接收器输出的电信号后,需要对信号进行处理。

通常情况下,控制电路会将接收到的信号由模拟信号转换为数字信号。

然后,可以使用特定的算法对数字信号进行处理,例如滤波、峰值检测等,以获取稳定的距离数据。

2.距离计算:根据声波从发射到接收的时间差和声速,可以计算出目标物体与传感器的距离。

计算公式为:距离=速度×时间差。

3.结果显示:最后,将计算得到的距离结果显示在屏幕上,用户可以直接观察到距离结果。

四、总结超声波测距系统是一种简单、实用的测距技术。

通过合理的硬件设计和严密的软件设计,可以实现可靠、准确的测距功能。

同时,超声波测距系统还具有成本低、测量范围广等优点,被广泛应用于自动控制、车辆定位和智能机器人等领域。

基于单片机的超声波测距系统设计

基于单片机的超声波测距系统设计

基于单片机的超声波测距系统设计一、本文概述随着科技的飞速发展,超声波测距技术以其非接触、高精度、实时性强等优点,在众多领域如机器人导航、自动驾驶、工业控制、安防监控等中得到了广泛应用。

单片机作为一种集成度高、控制灵活、成本较低的微控制器,是实现超声波测距系统的理想选择。

本文旨在探讨基于单片机的超声波测距系统的设计原理、硬件构成、软件编程及实际应用,以期为相关领域的科研人员和技术人员提供参考。

本文将首先介绍超声波测距的基本原理和关键技术,包括超声波的传播特性、测量原理及误差分析。

接着,详细阐述基于单片机的超声波测距系统的硬件设计,包括单片机的选型、超声波收发模块的选择与连接、信号处理电路的设计等。

在此基础上,本文将介绍系统的软件设计,包括超声波发射与接收的时序控制、距离数据的处理与显示等。

还将讨论系统的低功耗设计、抗干扰措施以及在实际应用中的优化策略。

本文将通过具体实例,展示基于单片机的超声波测距系统在机器人定位、障碍物检测等场景中的应用,以验证系统的可行性和实用性。

本文期望能为相关领域的研究提供有益的参考,推动超声波测距技术的进一步发展和应用。

二、超声波测距原理超声波测距系统主要基于超声波在空气中的传播速度以及反射原理进行设计。

超声波是一种频率高于20kHz的声波,其传播速度在标准大气条件下约为343米/秒。

在超声波测距系统中,超声波发射器向目标物体发射超声波,当超声波遇到目标物体后,会发生反射,反射的超声波被超声波接收器接收。

测距的原理在于测量超声波从发射到接收的时间差。

设超声波发射器发射超声波的时间为t1,接收器接收到反射波的时间为t2,则超声波从发射到接收所经历的时间为Δt = t2 - t1。

由于超声波在空气中的传播速度是已知的,所以可以通过测量时间差Δt来计算目标物体与测距系统之间的距离D。

距离D的计算公式为:D = V * Δt / 2,其中V为超声波在空气中的传播速度。

在实际应用中,为了确保测量的准确性,通常会采用一些技术手段来减少误差。

超声波测距系统课程设计

超声波测距系统课程设计

超声波测距系统课程设计一、课程目标知识目标:1. 理解超声波的基本概念,掌握超声波测距的原理;2. 学会使用超声波传感器,了解超声波测距系统的组成;3. 掌握超声波测距系统中涉及的计算公式和数据处理方法。

技能目标:1. 能够独立操作超声波测距系统,进行实际距离的测量;2. 培养学生动手实践能力,提高解决问题的能力;3. 学会分析实验数据,提高数据处理和误差分析的能力。

情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发探索科学的热情;2. 培养学生的团队合作精神,提高沟通协调能力;3. 增强学生对科技创新的认识,培养创新精神和实践能力。

分析课程性质、学生特点和教学要求,本课程旨在让学生通过实际操作,掌握超声波测距的基本原理和方法,培养实际应用能力。

课程目标具体、可衡量,以便学生和教师能够清晰地了解课程的预期成果。

通过本课程的学习,学生将能够独立完成超声波测距系统的操作和数据处理,提高自身综合素质。

二、教学内容1. 超声波基本概念:超声波的定义、特点及应用领域;2. 超声波测距原理:超声波发射与接收、声速、时间测量及距离计算;3. 超声波传感器:传感器类型、结构、工作原理及性能参数;4. 超声波测距系统组成:传感器、信号处理电路、显示与控制模块;5. 实验操作与数据处理:操作步骤、数据处理方法、误差分析;6. 教学案例:分析典型超声波测距系统案例,理解实际应用中的问题及解决方法。

教学内容依据课程目标,结合教材相关章节进行选择和组织。

教学大纲安排如下:第一课时:超声波基本概念、测距原理及传感器介绍;第二课时:超声波测距系统组成、实验操作方法;第三课时:数据处理、误差分析及教学案例讨论。

教学内容确保科学性和系统性,注重理论与实践相结合,提高学生对超声波测距系统知识的掌握和应用能力。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性,提高教学效果。

1. 讲授法:通过教师对超声波基本概念、测距原理、传感器等理论知识的系统讲解,使学生掌握基本理论和方法。

超声波测距系统

超声波测距系统

超射波测距系统设计1.应用背景测距的原理和方法有很多,根据信息载体的不同可分为光学方法、无线电方法和超声波方法。

随着电子技术的发展,先后出现了激光、超声波及红外线等非接触式测距方法。

激光测距虽然测距精度高,操作简单,但是受环境的影响比较大,且系统检测维护不便,价格相对昂贵,一般多在军事领域应用。

红外测距属于电磁波的一种,超声波是声波测距,实现起来更容易且不受电磁干扰影响,并且在同等距离的情况下,超声波的传播时间远大于红外,往返时间更易测量。

超声波在测距方面具有以下突出的优点:(1)环境介质可为空气、液体或固体等,适用范围广泛;(2)对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强等恶劣环境中,可以降低劳动强度;(3)超声波传感器结构简单,体积小,费用低,信息处理简单可靠,易于小型化和集成化;由于超声波具有以上特点被广泛应用于测量物体的距离、厚度、液位等领域。

在超声波探伤、自动泊车系统和倒车雷达系统中,超声波测距有其重要的应用。

随着科学技术的发展,超声波测距技术在国防、汽车工业及日常生活中无处不在,因此被广泛应用于无损探伤,距离测量、距离开关、汽车倒车防撞、智能机器人等领域。

2.测量原理超声波探头主要由压电晶片、吸收块、保护膜组成。

压电晶片多为圆板型,厚度为δ。

超声波频率f与其厚度δ成反比。

压电晶片的两面镀有银层,做导电的极板。

吸收块的作用是降低晶片的机械品质,吸收声能量。

如果没有吸收块,当激励的电脉冲信号停止时,晶片将会继续震荡,加长超声波的脉冲宽度,使分辨率变差。

保护膜的作用是防止晶片与外界接触和摩损,并起声阻抗匹配作用。

在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。

就是探头接通电源后以一定的频率不断发出声波,当声波遇到障碍物时便会反射回来,反射回来的声波遇到探头就会对探头产生振动,从而产生相应的电压。

利用超声波测量距离的原理如图l所示,主要由超声波发射、超声波接收与信号转换、温度传感器电路组成。

超声波测距系统的设计

超声波测距系统的设计

超声波测距系统的设计引言:超声波测距系统是一种常见的距离测量技术,利用超声波在空气中传播时的特性进行测量。

相对于光学传感器,超声波测距系统具有较低的成本、较小的体积和更大的测量范围。

因此,在工业自动化、机器人导航和智能设备等领域具有广阔的应用前景。

本文将介绍超声波测距系统的设计原理、硬件配置和软件实现,以及一些常见的应用案例。

一、设计原理:超声波测距系统的设计基于声音在空气中的传播速度,即声速。

根据超声波经过物体并反射回来所花费的时间,可以计算出物体与传感器之间的距离。

一般来说,超声波传感器由发射器和接收器组成。

发射器发出超声波脉冲,然后接收器接收到反射回来的超声波信号。

通过计算发射和接收的时间差,可以得到物体与传感器的距离。

由于超声波的传播速度与环境条件有关,如温度、湿度等,所以在进行距离计算时需要进行修正。

二、硬件配置:选择合适的超声波传感器是设计中的第一步。

一般来说,超声波传感器的频率越高,测量精度越高,但测量距离也越短。

因此,在选择传感器时需要根据具体应用需求进行权衡。

另外,传感器的外观尺寸和接口类型也需要考虑,以便与其他硬件设备进行连接。

控制电路主要由单片机和时钟模块组成。

单片机负责接收超声波信号,并通过定时器记录接收到信号的时间点。

时钟模块用于计时,以确定超声波传播的时间差。

显示电路可以选择LCD显示屏或数码管等设备。

显示电路的设计取决于测量结果的格式和精度要求。

一般来说,LCD显示屏具有更好的显示效果,但成本较高,而数码管则相对便宜但显示效果较差。

根据具体应用需求选择合适的显示电路。

三、软件实现:距离计算部分根据接收到信号的时间差和声速进行计算。

由于超声波的传播速度与环境条件有关,所以需要根据实际环境和传感器的特性进行修正。

通常可以通过校准来确定修正系数,并将其应用于距离计算公式中。

除了基本的测距功能,超声波测距系统还可以提供其他功能,如障碍物检测、移动物体跟踪等。

这些功能的实现主要依靠信号处理和算法设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)题目超声波测距系统设计(二)内容及要求1)设计内容采用40KHz的超声波发射和接收传感器测量距离。

可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。

功能:1)LCD液晶显示测量距离,精确到小数点后一位(单位:cm)。

2)测量方式可通过硬件开关预置。

3)测量范围:30cm~200cm,4)误差<0.5cm。

5)其它。

2)设计要求1)掌握传感器的工作原理及相应的辅助电路设计方法。

2)独立设计原理图及相应的硬件电路。

3)设计说明书格式规范,层次合理,重点突出。

并附上详细的原理图。

(三)传感器工作原理超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。

由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。

在使用时,如果温度变化不大,则可认为声速是基本不变的。

如果测距精度要求很高,则应通过温度补偿的方法加以校正。

声速确定后,只要测得超声波往返的时间,即可求得距离。

这就是超声波测距仪的机理。

(四)系统框图图1 超声波测距系统框图(五)单元电路设计原理1、AT89C2051的功能特点AT89C2051是一个2k字节可编程EPROM的高性能微控制器。

它与工业标准MCS-51的指令和引脚兼容,因而是一种功能强大的微控制器,它对很多嵌入式控制应用提供了一个高度灵活有效的解决方案。

AT89C2051有以下特点:2k字节EPROM、128字节RAM、15根I/O线、2 个16位定时/计数器、5个向量二级中断结构、1个全双向的串行口、并且内含精密模拟比较器和片内振荡器,具有4.25V至5.5V的电压工作范围和12MHz/24MHz工作频率,同时还具有加密阵列的二级程序存储器加锁、掉电和时钟电路等。

此外,AT89C2051还支持二种软件可选的电源节电方式。

空闲时,CPU停止,而让RAM、定时/计数器、串行口和中断系统继续工作。

可掉电保存RAM的内容,但可使振荡器停振以禁止芯片所有的其它功能直到下一次硬件复位。

AT89C2051有2个16位计时/计数器寄存器Timer0t Timer1。

作为一个定时器,每个机器周期寄存器增加1,这样寄存器即可计数机器周期。

因为一个机器周期有12个振荡器周期,所以计数率是振荡器频率的1/12。

作为一个计数器,该寄存器在相应的外部输入脚P3.4/T0和P3.5/T1上出现从1至0的变化时增1。

由于需要二个机器周期来辨认一次1到0的变化,所以最大的计数率是振荡器频率的1/24,可以对外部的输入端P3.2/INT0和P3.3/INT1编程,便于测量脉冲宽度的门。

图2 ATC2051示意图2、LCD的工作原理在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,具有偶极矩的液晶棒状分子在外加电场的作用下其排列状态发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。

液晶显示器件中的每个显示像素都可以单独被电场控制,不同的显示像素按照控制信号的“指挥”便可以在显示屏上组成不同的字符、数字及图形。

因此建立显示所需的电场以及控制显示像素的组合就成为液晶显示驱动器和液晶显示控制器的功能。

LCD器件是由背光源发射的光通过偏振片和液晶盒时,控制投射强度识别图像的器件。

也就是LCD的亮度取决于通过液晶盒(LCD屏的透过率)和彩膜CF光量(CF的透过率)及背光源的亮度。

如图3所示,普通液晶显示器使用导光板的侧灯式光源,假设导光板光效率为100%,其在导光板中损失40%,通过下偏光片损失36%,通过液晶盒损失18%以及表面反射损失1%,由此,LCD显示从导光板到最终利用率不到5%。

由此可见,如何将光效率提高,如何让液晶显示呈现一个明亮鲜艳的图像是液晶显示产业的一个大问题。

且普通型液晶显示器采用三基色彩色滤光片来处理图像的合成,因此在色彩饱和度欠佳。

图3 普通型液晶显示器原理图3、系统硬件电路设计AT89C2051通过外部引脚P1.6输出脉冲宽度为250μs,载波为40kHz 的10个脉冲的脉冲群,以推挽形式加到变压器的初级,经升压变换推动超声波换能器发射出去。

在发射的同时,P1.7输出一个高电平启动,给电容C4充电。

发射结束时高电平翻转为低电平,C4开始对R2、R3组成的分压器放电并输出到比较器的负端。

超声波接收换能器将接收到的障碍物反射的超声波送到放大器进行放大,这是一个高增益、低噪声放大器,在对放大后的信号进行检波后将检测回波送到比较器的正输入端。

发射时P1.7输出的电平可以抑制比较器的翻转,这样就可以抑制发射器发射的超声波直接辐射到接收器而导致错误检测。

图4 电声转化电路测出回波和发射脉冲之间的时间间隔,利用S=Ct/2就可以算出距离,再在LCD上显示出来。

限制系统的最大可测距离存在四个因素:超声波的幅度,反射而的质地,反射而和入射声波之间的夹角以及接收换能器的灵敏度。

接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。

图5 电声转化电路4、系统软件设计AT89C2051单片机和其开发应用系统具有语言简洁、可移植性好、表达能力强、表达方式灵活、可进行结构化设计、可以直接控制计算机硬件、生成代码质量高、使用方便等诸多优点。

超声波测距仪就是用AT89C2051单片机开发设计的。

它采用模块化设计,由主程序、发射子程序、接收子程序、定时子程序、显示子程序等模块组成。

图6和图7分别为系统主程序和测量子程序的框图。

该系统的主程序处于循环工作方式,主程序开始调用发射子程序、查询接收子程序、定时子程序,并把测量结果用显示子程序在液晶屏上显示出来。

5、程序流程图开始系统初始化检查按键调用测量子程序调用显示子程序更新显示图6 主程序流程图测量子程序开始调用发射超声波子程序监视接收输入,并进行时间测量接收脉冲到来,本次测量结束返回图7 测量子程序6、程序清单# pragma DB OE CD OT(5,SPEED) ROM(LARGE)IV#include<reg52.h>#include<absacc.h>#include<stdio.h>typedef unsingned char byte;typedef unsigned int word#define uchar unsigned char#define unint unsigned int#define ulong unsigned long#define TRUE 1#define FALSE 0#define C=340sbit bflag=ACC7;sbit VOLCK=P1^5;sbit MING=P3^5;sbit QUIET=P1^3;sbit BACK=P1^2;uchar idata ON[16]={’,’L’,’E’,’N’,’G’,’T’,’H’,’=’,’8’,’.’,’8’8’,’m’,’’,’’,’’};woid main-delay(void){register i;TRO=1;for(i=0;i<15;i++){TH0=0;TL0=0;Do{}while(!TF0);TF0=0;}TR0=0;}void delay(void){unint i;for(i=0;i<200;i++){;}}void key-delay(void){unint i;for(i=0;i<200;i++){;}}void start_main(){tegister i;uchar a[16]={’’,’L’,’E’,’N’,’G’,’T’,’H’,’=,’8’,’.’,’8’,’8’,’m’,’’,’’,’’};for(i=0;<16;i++){ON[i]=a[i];}nitlcd();display(ON);}void main(){register s,keycode;long idata t;start-main();main-delay();if(keycoed= =true){keycode=key-scan-wait();t=measure();S=0.5*t*C;Decode-bcd(s.0x09);init-lcd();display(ON);}}(六)完整的电路图(七)参考文献[1] 《传感器及检测技术》高等教育出版社[2] 《自动检测技术》机械工业出版社[3] 《传感器电子学》宇航出版社[4] 《传感器实际应用电路设计》电子科技大学出版社[5] 超声波传感器相关资料(八)设计中的问题及解决方法此次设计时,遇到许多问题:首先,在电路图的连接中,因为对于电路原理不很掌握,所以在连接时有时会连接错误。

其次,对芯片某些引脚的功能了解的不够透彻,导致在设计电路时出现了接线错误。

除此之外在对电阻电容的挑选上,有时会因阻值、容值的选择不当,而出现错误,从而使整个设计不够完美。

最后的程序编写过程中也出现了问题,对一些指令的使用出现错误。

但这些问题都即时的得以解决。

(九)总结通过两周的课程设计,使我更进一步的了解了传感器原理的相关知识,加深了对各芯片的了解,初步达到了设计目的和要求。

提升了自己的实际实践能力。

明白了设计一个关于传感器测距方面的课题应从哪几方面入手。

例如程序实现,芯片的选择和连接,芯片在电路中起到什么作用,以及如何起到这样的作用。

此外也加强了我搜集资料和整理资料的能力,提高了自己动手分析问题、解决问题的能力。

这些都对我以后的工作进行了即时的训练。

并且在设计中遇到了许多问题,在对这些问题的解决上,也是对我个人能力的煅炼。

而且这些问题的出现很有价值,是值得重视的,需要在我以后的学习中不断的加以完善和提高。

但总的来说,通过这次的设计实验,进一步地增强了我的实际动手能力使我的理论与实践能力相结合,从而在整体上提高了自身的学习能力和理论素养。

机电一体化课程设计题目基于PLC的电梯控制系统红外遥控密码锁的设计单片机遥控控制酒店客房灯光系统基于单片机的水闸通用控制系统的研究基于单片机的电子钟的论文基于FPGA、DDS的函数信号发生器电子万年历基于FPGA音乐硬件演奏电路设计汽车转弯信号灯控制系统数子温度计智能温控风扇数显式脉搏计的设计心率监测仪直流电动机调速控制器设计全自动洗衣机的系统设计家居环境智能监控报警系统调频调幅信号发生器论文数字电压表智力抢答器的设计多点温度测量系统的设计与实现交通灯控制器的设计数控直流稳压电源的设计基于FPGA的网络通信流量模糊控制器的设计数字竞赛抢答器基于MATLAB环境的数字滤波器的设计与仿真分支线耦合器的设计与仿真-定稿出租车计费系统的设计时间管理器六人抢答器设计音频功率放大课程设计基于单片机控制的数字IC故障测试系统设计基于MATLAB仿真技术的图像拼接技术的研究食堂非接触IC卡读卡器系统水温控制系统论文图像控制系统中点阵列显示的设计与实现远程点歌系统专门用途英语的需求分析论修辞格中的不可译性及其补偿策略论英汉思维模式差异与英语教学从《西风颂》看雪莱的自由主义超级商场进销存管理系统电子化航意险的设计Al掺杂ZnO粉体的制备及光催化IPv6隧道NA T穿越应用表面活性剂调控制备水滑石长沙市特殊体育教育学校体育超声波法提取香瓜多糖的工艺对民事诉讼中“新的证据”的思考对我国田径赛事市场现状及对策的研究分支线耦合器的设计与仿真高校毕业生就业的思考关于物权行为独立性法律思考湖南人文科技学院学生体育健身活动基于JSP的计算机配件网站简析国家对条约继承的法律问题论就业歧视的法律规制浅谈如何建立适合人类健身娱乐业的发展空间酸催化降解冷轧废乳化液中有机物网络虚拟财产交易的方式及内容体系探讨微波电容间隙滤波器的设计无线城域网(WMAN)技术象棋游戏中的智能技术研究新课标下娄星区中学武术教学中虚假广告治理与法律问题的研究益阳市高校教师体育锻炼现状的调查与研究英语词汇教学中的多义词与语境攸县三中体育高考生课余训练。

相关文档
最新文档