高二数学5月月考试题理(1)
高二数学(理)月考试题
高二下学期数学第一次月考试卷(理)(总分:150分 时间:120分钟)一、选择题:(本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知}{R x x y y M ∈-==,42,}{42≤≤=x x P 则M P 与的关系是( ) A .P M = B .P M ∈ C .φ=P M D .P M ⊇2、等比数列{}n a 中,已知3231891===q a a n ,,,则n 为 A .3 B .4 C .5 D .63、“3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4、在△ABC 中,a =,b =B =45°,则A 等于( ).A . 30°B . 60°C . 30°或150°D .60°或120°5、函数)62sin(π+-=x y 的单调递减区间是( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B .Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ C .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡++,65,6ππππ 6、不等式1213≥--xx 的解集是 ( ) A .{x|243≤≤x } B .{x|243<≤x } C .{x|x >2或43≤x } D .{x|x <2} 7、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,8、“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 9、已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53B .43 CD 10、已知圆22670x y x +--=与抛物线22(0)y p x p =>的准线相切,则p 为 ( )A .1B .2C .3D .4二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在横线上)11、某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个。
高二月考数学(理科)试题
高二月考理科数学试题 2012.6选择题(每题5分,共60分)1. 已知2log (x 1)1+=,则x 等于( )A.0B.1C.2D.32. 命题“x R,sin x 1∀∈≤”的否定形式为( )A.x R,sin x 1∃∈≥B.x R,sin x 1∀∈≥C.x R,sin x 1∃∈>D.x R,sin x 1∀∈>3. 下列命题是真命题的是( )A.2x R,(x 1)0∀∈+>B.x {3,5,7},3x 1∀∈+为偶数C.2x Q,x 3∃∈=D. 2x R,x x 10∃∈-+= 4. “a 1>”是 “a log 20>”的( )条件A.充分不必要B.必要不充分C.充分必要D.即不充分也不必要5. 函数x y a b 1=+-的图象经过第二、三、四象限,则一定有( )A.0a 1<<且b 0>B.a 1>且b 0>C.0a 1<<且b 0<D.a 1>且b 0<6. 若253a ()5=、352b ()5=、252c ()5=,则a 、b 、c 的大小关系是( )A.a c b >>B.a b c >>C.c a b >>D.b c a >>7. 函数()lg sin f x x x =-的零点个数是( )A.1B.2C.3D.48. 下列函数中,值域为(,0)-∞的函数是( )A.2=-y xB.31=-y xC. =yD. 2=-x y9. 在同一坐标系下,函数xy e -=与函数ln y x =-的图象大致是( )10. 设函数()f x 定义域为R ,且(2)()f x f x -=,当1≥x 时,()ln =f x x ,则 ( )A.11()(2)()32<<f f fB.11()(2)()23<<f f fC.11()()(2)23<<f f fD.11(2)()()23<<f f f11. 已知()f x 是定义在R 上的偶函数,且(2)()f x f x +=,若()f x 在[1,0]-上是减函数,那么()f x 在[1,3]上是( ) A.增函数B.先增后减的函数C.减函数D.先减后增的函数12. 若()f x 为偶函数,当[0,)∈+∞x 时,()1=-f x x ,则不等式2(1)0-<f x 的解集为( )A.(1,0)-B.(UC.(0,2)D.(1,2)填空题(每题5分,共30分)13. 函数2y x mx 1=++为偶函数,则m 的值为 。
高二数学理科月考考试题
郑州一中高二数学(理)联考试题共150分,考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分)1.已知ab >0,ac <0,则直线ax+by+c=0一定不经过A.第一象限B.第二象限C.第三象限D.第四象限 2.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的A .ab ac >B .c b a ()-<0C .cb ab 22<D .0)(<-c a ac3.不等式221x x +>+的解集是A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞4.若直线L 上两点A (—4,1),B (X,—3) 且直线L 的倾斜角是135°则X 的值为A, 0 B, —8 C ,8 D ,—45.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+②)11(log )1(log aa a a +>+ ③a a a a 111++<④aaaa111++> 其中成立的是A .①与③B .①与④C .②与③D .②与④6.设μμ则且,10)(4,4,0,022++-⋅==+≥≥y x y x y x y x 的最值情况是A .有最大值2,最小值2)22(2-B .有最大值2,最小值0C .有最大值10,最小值2)22(2-D .最值不存在7.已知0<a<b<1,则a b 、log b a 、b a1log 的大小1log a关系是A .a a b b b alog log 1<<B .b b aa ab <<log log 1C .log b a<b aa b <1logD .a b <a b b alog log 1<8.直线2x-y+3=0,的倾斜角所在的区间是A .(00, 450)B .(450, 900)C .(900,1350)D .(1350,1800)9.与直线3x+4y+5=0 的方向向量共线的一个单位向量是 A .(3、4) B .(4、-3) C .(0.6、0.8) D .(0.8、-0.6)10.过点P (-1、2)且方向向量为a=(-1、2)的直线方程是A .2x+y=0B .x-2y+5=0C .x-2y=0D .x+2y-5=011.若函数()f x =R ,则实数a 的取值范围是A .(0,4)B .[0,4]C .[4,)+∞D .(0,4]12.下列命题中,(1)x x 1+的最小值是2,(2)1222++x x 的最小值是2,(3)4522++x x 的最小值是2,(4)xx 432--的最小值2,正确的有A .1个B .2个C .3个D .4个 二、填空题(本大题共5小题,每小题4分,共20分)13、不等式(0x -≥的解集为{|12}X X X ≥=-或.14.已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式2)(≤+x x xf 的解集是{|1}X X ≤{|1}X X ≤.15.直线L 经过M(2、1),其倾斜角为直线x-y+4=0的倾斜角的二倍,则直线L 的方程是20X -=。
灌南高级中学2013-2014学年高二下学期5月月考数学理试题
灌南高级中学高二数学月考试卷(理科)制卷人:董永永 校对人:赵学华 2014.5.24测试时间:120分钟 总分160分一、填空题 (14*5=70)1、 若i z +=1,则1--⋅z z z = .2、有5种不同的蔬菜,从中选出4种,分别种植在不同土质的4块土地上进行实验,则不同的种植方法共 种.3、已知二阶矩阵M 满足:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1221,0110M M ,则1-M = .4、10)31(xx -的展开式中含x 的正整数指数幂的项数共有 项. 5、已知(2,3,1)AB =,(4,5,3)AC =,则平面ABC 的单位法向量为 . 6、从7,6,5,4,3,2,1中任取2个不同的数,记事件=A “取到的2个数之和为偶数”,事件=B “取到的两个数均为偶数”,则=)(A B P .7、复数i m m m m z )23()232(22+-+--=,其中m 为实数,且z 在复平面下对应点的坐标位于第一象限,则m 的取值范围为 .8、在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的最小值为 . 9、在以O 为极点的极坐标系中,直线l 与曲线C的极坐标方程分别是cos()4πρθ+=和2sin 8cos ρθθ=,已知直线l 与曲线C 交于点A 、B ,则线段AB 的长为 . 10、今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)11、已知随机变量X ~)31,20(B ,若使)(k X P =的值最大,则=k . 12、已知曲线22:1C x y +=,对它先作矩阵A =⎣⎢⎡⎦⎥⎤1 00 2对应的变换,再作矩阵B=⎣⎢⎡⎦⎥⎤0 b 1 0对应的变换,得到曲线22:14x C y +=.则实数b = .13、一个口袋中装有大小和质地都相同的白球和红球共16个,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球,记取球的次数为随机变量X ,若25.0)2(==X P ,则口袋中的白球个数为 . 14、36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(,类比上述求解方法,可求得10000的所有正约数之和为 . 二、解答题(14+14+14+16+16+16=90)15、圆1O ,圆2O 的极坐标方程分别为θρθρsin 4cos 4-==,, (1)把圆,1O 圆2O 的极坐标方程化为直角坐标方程; (2)求经过圆,1O 圆2O 交点的直线的极坐标方程.16、设矩阵)0(101A ≠⎥⎦⎤⎢⎣⎡=a a . (1) 求32,A A ,并猜想)(n *∈N n A ;(2) 利用(1)所猜想的结论,求证:nA 的特征值是与n 无关的常数,并求出此常数.ABCD PA 1B 1D 1C 117、如图,在底面边长为1,侧棱长为2的正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上的一点,CP m =.(1)试确定m ,使直线AP 与平面BDD 1B 1所成角为60º; (2)在线段11A C 上是否存在一个定点Q ,使得对任意的m ,1D Q ⊥AP ,并证明你的结论.18、(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花. ① 求恰有两个区域用红色鲜花的概率;② 记花圃中红色鲜花区域的块数为S ,求它的分布列及其数学期望E(S).图一 图二19、将正整数2,3,4,5,6,7,…,n ,…作如下分类:(2),(3,4),(5,6,7),(8,9,10,11),…, 分别计算各组包含的正整数的和,记为1S ,2S ,3S ,4S ,…,记135n T S S S =+++21n S -+.(1)分别求1T ,2T ,3T 的值;(2)请猜测n T 的结果,并用数学归纳法证明. 20、已知n n x x f )1()(+=,(1)若20112011012011()f x a a x a x =+++,求2011200931a a a a ++++ 的值;(2)若)(3)(2)()(876x f x f x f x g ++=,求)(x g 中含6x 项的系数;(3)证明:1121(1)1232mmmm m m m m m n m n m n n m C C C C C ++++-+++⎡⎤++++=⎢⎥+⎣⎦.一、解答:15、 πθ43)2(;4)2(:,4)2(:222221==++=+-y x c y x c 16、(1)232311,0101a a A A ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦101n n a A ⎡⎤=⎢⎥⎣⎦ (2)设λ的特征值为nA1100()0,1,0,001000nn a x a y f y x x y λλλλ⎧-+=⎡⎤==∴=∴∴=⎨⎢⎥-+=⎣⎦⎩为任意实数,所以对应的特征向量为无关与的特征值为所以所以又因为n a A n n n n ,1A A ,===λλλ17、(1)建立如图所示的空间直角坐标系,则 A (1,0,0), B (1,1,0), P (0,1,m ),C (0,1,0), D (0,0,0), B 1(1,1,1), D 1(0,0,2).所以1(1,1,0),(0,0,2),BD BB =--=(1,1,),(1,1,0).AP m AC =-=-又由110,0AC BD AC BB AC D D ⋅=⋅=1知为平面BB 设AP 与11BDD B 面 所成的角为θ,则()||πsin cos 2||||2AP AC AP AC θθ⋅=-==⋅=,解得m =故当m =时,直线AP 与平面11BDD B 所成角为60º.(2)若在11A C 上存在这样的点Q ,设此点的横坐标为x , 则1(,1,2),(,1,0)Q x x D Q x x -=-.依题意,对任意的m 要使D 1Q 在平面APD 1上的射影垂直于AP . 等价于1110(1)02D Q AP AP D Q x x x ⊥⇔⋅=⇔+-=⇔=即Q 为11A C 的中点时,满足题设的要求.18、(1)根据分步计数原理,摆放鲜花的不同方案有:432248⨯⨯⨯=种. (2)① 设M 表示事件“恰有两个区域用红色鲜花”, 如图二,当区域A 、D 同色时,共有54313180⨯⨯⨯⨯=种; 当区域A 、D 不同色时,共有54322240⨯⨯⨯⨯=种; 因此,所有基本事件总数为:180+240=420种.(由于只有A 、D ,B 、E 可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为3455552420A A A ++=种)它们是等可能的。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案
高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
湖北省武汉中学2022-2023学年高二5月月考数学试题
武汉中学2023—2024学年度五月月考高二数学试卷考试时间:2023年5月29日14:30——16:30 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分。
在每小题列出的选项中,选出符合题目的一项)1.将甲、乙、丙、丁四名同学随机分配到三个会议中心担任志愿者,每个会议中心至少有一名同学,且每名同学只去一个会议中心,则甲和乙没有被分配到同一会议中心的概率为()A.16B.13C.56D.11122. 设110,022a b<<<<,随机变量ξ的分布3. 已知变量xx,yy=cc·ee kkkk拟合,设zz=ll ll yy,其变换后得到一组数据如下:xx16171819zz50344131由上表可得线性回归方程zz�=−4xx+aa�,则cc=( )A. −4B. ee−4C. 109D. ee1094. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方.若某医生从“三药三方”中随机选出两种,事件AA表示选出的两种中至少有一药,事件BB表示选出的两种中有一方,则(|)()P B A=1 53103534式中任取2项,则取到的项都是有理项的概率为()6. 数列{}n a 的前n 项和为n S ,对一切正整数n ,点(),n n S 在函数2()2f x x x =+的图象上,n b n ∗=∈N且)1n ≥,则数列{}n b的前n 项和n T =( )A−B1− CD7. 现有3道四选一的单选题,学生李明对其中的2道题有思路,1道题完全没有思路.有思路的题答对的概率为0.8,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25,若每题答对得5分,不答或答错得0分,则李明这3道题得分的期望为( )A. 9310B. 374C. 394D.211208. 若1aa=ππ1ππππ=√31√3cc=ee (其中e 为自然对数的底数),则aa ,bb ,cc 的大小关系是( ) <bb <aaB. bb <cc <aaC. cc <aa <bbD. aa <cc <bb二、多选题(本大题共4小题,每小题5分,共20分。
福建省莆田市第二十五中学2024_2025学年高二数学下学期第一次月考试题理
莆田其次十五中学2024-2025学年下学期月考一试卷高二理科数学考试时间:120分钟;留意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.已知命题,. 则为()A., B., C., D.,2.椭圆的离心率为()A. B. C. D.3.若函数,则()A. B. C.1 D.04.一质点沿直线运动,假如由始点起经过秒后的位移与时间的关系是,那么速度为零的时刻是A.0秒 B.1秒末 C.4秒末 D.1秒末和4秒末5.椭圆的两个焦点分别为、,且椭圆上一点到两个焦点的距离之和是20,则椭圆的方程为A. B.C. D.6.已知函数,则()A.0 B.-1 C.1 D.-27.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点,且法向量为的直线(点法式)方程为:,化简得.类比以上方法,在空间直角坐标系中,经过点,且法向量为的平面的方程为()A. B.C. D.8.若方程表示焦点在轴上的椭圆,则实数的取值范围是A .B .C .D .9.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在△ABC 中,若,sin sin A B A B >>则”的逆命题为假命题;D .对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,则210x x ++≥10.直线是曲线的一条切线,则实数的值为( )A .2B .C .D .11.如图,已知正方体中,异面直线与所成的角的大小是A .B .C .D .12.已知点,,则,两点的距离的最小值为A .B .C .D .第II 卷(非选择题)二、填空题13.命题“若,则”的逆否命题是______.14.焦点为()0,2的抛物线标准方程是__________.15.已知长轴长为2a ,短轴长为2b 椭圆的面积为ab π,则dx x ⎰--332912=___________。
四川省成都外国语2018 2019高二数学5月月考试题理含解析
(含解析)5月月考试题理四川省成都外国语2018-2019学年高二数学在每小题给出的四个选项中,只有一项是符.5分,满分60分一.选择题(共12小题,每小题.) 合题目要求的,请把正确答案集中填写在答题卷上?????)B(CA,0,2,3B?1?1?xx?A?1( ),已知集合1.,则U??????0,20,1,2,3?1D.A. C.B.??1,0,1,2,3?????A 【答案】【解析】【分析】AC A. 先化简集合,再和集合,求出求交集,即可得出结果B U0x?x?1xx?1?2??A或x【详解】因为,??2?x0?CA?x,所以U????0,2)B?1,0,2,3?(CB?A.又,所以U A故选. 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型i?1?z2i??z( ) 2.设,则i1?D. 5C. 4A. 2B. 3B 【答案】【解析】【分析】z z.,进而可得到利用复数的除法运算求出????ii1??12ii1?i???3z?3i?z B. ,故【详解】,选,则????2?1ii?11?i【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题。
- 1 -m?b)?(a?b2)a?(5,m)b?(2,?( ) 3.已知向量,若,,则?1?2 D. B. 1C. 2A.B 【答案】【解析】【分析】b?(a?b)2)??(2,a?(5,m)b. ,再由由,即可得出结果,,表示出b?a2)??(5,m)b?(2,a2)a?b?(3,m?,所以【详解】因为,,b(a?b)?0?b)?b?(a又,所以,02)?2(m?3?2?1m?. ,解得即B故选. 【点睛】本题主要向量数量积的坐标运算,熟记运算法则即可,属于基础题型 ??n4Sa?a??72aS( ) 项和为设等差数列4.,若,,则的前4n910n D. 28C. 24B. 23A. 20D 【答案】【解析】【分析】a,ada,d.将已知条件转化为的值的形式,列方程组,解方程组求得的值,进而求得1011a?a?3d?4?14a??8,d?4?,得,于由数列是等差数列故故,解详【解】1S?9a?36d?72?91a?a?9d??8?36?28故选D..110nd,a项和【点睛】本小题主要考查利用基本元的思想求等差数列的基本量通项公式和前.、1nnS,,,a,da5,利用等差数列的通项公式或前基本元的思想是在等差数列中有个基本量nn1a,d,进而求得数列其它项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1的一些量的值.- 2 -5.为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A. 是否倾向选择生育二胎与户籍有关B. 是否倾向选择生育二胎与性别有关C. 倾向选择生育二胎的人群中,男性人数与女性人数相同D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数【答案】C【解析】【分析】由题意,通过阅读理解、识图,将数据进行比对,通过计算可得出C选项错误.【详解】由比例图可知,是否倾向选择生育二胎与户籍、性别有关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,0.8?120?960.6?80?48人,男倾向选择生育二胎的人员中,男性人数为人,女性人数为性人数与女性人数不相同,故C错误,故选:C.【点睛】本题主要考查了条形图的实际应用,其中解答中认真审题,正确理解条形图所表达的含义是解答的关键,着重考查了阅读理解能力、识图能力,属于基础题.22xy y1?m1??轴上的双曲线”的”是“方程表示焦点在6.“( )m?1m?5A. 充分不必要条件 B. 必要不充分条件D. 充要条件既不充分也不必要条件 C.B 【答案】【解析】【分析】- 3 -22xy y1??轴上的双曲线的m的范围即可解答表示焦点在解得方程.5?m?1m0?m?1?22xy y1???解得【详解】,1<m<5, 表示焦点在轴上的双曲线?0?m?55m?m?1?B.故选:2x.前是加号【点睛】本题考查双曲线的方程,是基础题,易错点是不注意5?m 1π?????cos2?cos?( )已知,则7.??52??232377?? A.B. C.D. 25252525C 【答案】【解析】【分析】αsin由已知根据三角函数诱导公式,求得,再由余弦二倍角,即可求解.1π2311??2??αcos??2?1?2sin1α?αsinα?cos2?,又由,得【详解】由.??的5225255??.C故选:【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.11c a b0.7c?log( ) ,的大小关系是已知,则,,,8.????ln3a?ln2?b332c?a?b b?c?a B. A. c??ba ac??b D. C.B 【答案】【解析】【分析】 0,1结合进行的大小比较,即可。
2022-2023学年河南省郑州市高二下学期5月月考数学试题【含答案】
2022-2023学年河南省郑州市高二下学期5月月考数学试题一、单选题1.在某项测试中,测量结果服从正态分布,若,则ξ()()21,0N σσ>()120.3P ξ<<=( )()0P ξ<=A .0.1B .0.2C .0.3D .0.4【答案】B【分析】根据正态分布的性质,利用其概率公式,可得答案.【详解】由题意可知,变量所作的正态曲线关于直线对称,ξ1x =则,,()()1201P P ξξ<<=<<()()02P P ξξ<=>故.()()121200.22P P ξξ-<<<==故选:B.2.已知等差数列的前n 项和为,,,则使取得最大值时n 的值为{}n a n S 1593a a a ++=1111S =-n S ( )A .5B .6C .7D .8【答案】A【分析】利用下标和性质和前n 项和公式可判断的符号,然后可得.56,a a 【详解】设等差数列的公差为d ,{}n a 因为,所以159533a a a a ++==510a =>又,所以11111611()11112a a S a +===-610a =-<所以等差数列的前5项为正数,从第6项开始为负数,{}n a 所以当时,取得最大值.5n =n S 故选:A3.已知的展开式中各项的二项式系数之和为256,则展开式中的常数项为( )()*1N nx n x ⎛⎫+∈ ⎪⎝⎭A .B .C .40D .7070-40-【分析】先由求得n ,再利用的展开式的通项求解常数项.2256n=81x x ⎛⎫+ ⎪⎝⎭【详解】因为的展开式中各项的二项式系数之和为256,()*1N nx n x ⎛⎫+∈ ⎪⎝⎭所以,解得,822562n ==8n =则的展开式的通项为,81x x ⎛⎫+ ⎪⎝⎭()()8821881C C rr r r rr T x x x --+⎛⎫== ⎪⎝⎭令,解得,820r -=4r =所以展开式中的常数项为,48C 70=故选:D.4.函数的单调递增区间是( )()ln f x x x =-A .B .C .D .(,e)-∞-1,e ⎛⎫-∞ ⎪⎝⎭10,e ⎛⎫⎪⎝⎭(0,e)【答案】C【分析】求出函数的定义域与导函数,再解关于导函数的不等式,即可求出函数的单调递增区间.【详解】函数的定义域为,()ln f x x x =-()0,∞+又,令,即,即,所以,()ln 1f x x '=--()0f x '>ln 10x -->ln 1x <-10e x <<所以的单调递增区间为.()f x 10,e ⎛⎫ ⎪⎝⎭故选:C5.某同学参加篮球测试,老师规定每个同学罚篮次,每罚进一球记分,不进记分,已知该1051-同学的罚球命中率为,并且各次罚球互不影响,则该同学得分的数学期望为( )60%A .B .C .D .30362026【答案】D【分析】根据二项分布数学期望公式可求得该同学罚球命中次数的数学期望,结合罚球得分的规则可计算得到结果.【详解】记该同学罚球命中的次数为,则,,X ()10,0.6X B ()100.66E X ∴=⨯=该同学得分的数学期望为.∴()()65106130426⨯+-⨯-=-=6.在数列中,已知且,则其前项和的值为( ){}n a 11a =12n n a a n ++=2929S A .B .C .D .56365421666【答案】C 【分析】将展开,根据题中递推公式进行分组求和,再利用等差数列前n 项和公式计算求解即29S 可.【详解】291234272829S a a a a a a a =++++⋅⋅⋅+++()()()()1234526272829a a a a a a a a a =+++++⋅⋅⋅++++12224226228=+⨯+⨯+⋅⋅⋅+⨯+⨯.()122462628421=+++⋅⋅⋅++=故选:C7.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列是一个“2023积数列”,且,则当其前n 项的乘积取最小值时n 的值为{}n a 101a <<( )A .1011B .1012C .2022D .2023【答案】A【分析】根据“m 积数列”判断出的单调性,再根据具体数据找出满足的最后一项,即可{}n a 1n a <得到选项.【详解】根据“2023积数列”性质可知,1234202220232023a a a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯⨯=即,123420221a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯=根据等比中项性质可知:,120222202132020101110121a a a a a a a a ===⋅⋅⋅==因为,且,101a <<0q >所以前1011项都是小于1的,从第1012项开始往后的都是大于1的,即为递增的等比数列,且,{}n a 101110121,1a a <>则当其前n 项的乘积取最小值时n 的值为1011.故选:A.8.设,,,则( )141e 5a =14b =5ln 4c =A .B .a b c >>a c b >>C .D .b a c >>c a b>>【答案】A【分析】利用作商法,结合对数函数的单调性,可得答案.【详解】由题意可得:,,441e e 5625a ==44114256b ==由,则;44256256e 2.7 1.11625625a b =≈⨯≈>a b >,令,,141ln e ln e 4b ==14e x =54y =由,则,即;44256e 1.11625x y =≈>y x >b c >综上可得:.a b c >>故选:A.二、多选题9.已知是两个随机事件,,下列命题正确的是( ),A B 0()1P A <<A .若相互独立,B .若事件,则,A B ()()P B A P B =A B ⊆()1P B A =C .若是对立事件,则D .若是互斥事件,则,A B ()1P B A =,A B ()0P B A =【答案】ABD【分析】利用条件概率、相互独立事件判断A ;利用条件概率的定义判断B ;利用条件概率及对立、互斥事件的意义判断C ,D 作答.【详解】对于A ,随机事件相互独立,则,,A 正,A B ()()()P AB P A P B =()(|)()()P AB P B A P B P A ==确;对于B ,事件,,,B 正确;A B ⊆()()P AB P A =()(|)1()P AB P B A P A ==对于C ,因是对立事件,则,,C 不正确;,A B ()0P AB =()(|)0()P AB P B A P A ==对于D ,因是互斥事件,则,,D 正确.,A B ()0P AB =()(|)0()P AB P B A P A ==故选:ABD10.对任意实数,有.则下列结论成立x ()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-的是( )A .B .01a =-2112a =-C .D .01281a a a a +++⋅⋅⋅+=8012383a a a a a -+-+⋅⋅⋅+=【答案】CD 【分析】求得的值判断选项A ;求得的值判断选项B ;求得的值判断选项0a 2a 0128a a a a +++⋅⋅⋅+C ;求得的值判断选项D.01238a a a a a -+-+⋅⋅⋅+【详解】由,()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-可得,()()8823121x x -=-+-⎡⎤⎣⎦当时,,则,A 选项错误;1x =()823a -=01a =由二项式定理可得,,B 选项错误;()822228C 12112a -=-=当时,,2x =()8012843a a a a -=+++⋅⋅⋅+即,C 选项正确;01281a a a a +++⋅⋅⋅+=当时,,0x =()8012383a a a a a -=-+-+⋅⋅⋅+即,D 选项正确.8012383a a a a a -+-+⋅⋅⋅+=故选:CD11.现将把椅子排成一排,位同学随机就座,则下列说法中正确的是( )84A .个空位全都相邻的坐法有种4120B .个空位中只有个相邻的坐法有种43240C .个空位均不相邻的坐法有种4120D .4个空位中至多有个相邻的坐法有种2840【答案】AC【分析】对于A ,利用捆绑法结合排列数;对于B ,利用插空法结合排列数;对于C ,利用插空法结合排列组合;对于D ,根据分类加法原理结合插空法,可得答案.【详解】对于A ,将四个空位当成一个整体,全部的坐法:种,故A 对;55A 120=对于B ,先排4个学生,然后将三个相邻的空位当成一个整体,和另一个空位插入由4个学生44A 形成的5个空档中有种方法,所以一共有种,故B 错;25A 4245480A A =对于C ,先排4个学生,4个空位是一样的,然后将4个空位插入由4个学生形成的个空档中44A 5有种,所以一共有种,故C 对;45C 4445A C 120=对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有,空位只有两个相邻的有,4245A C 240=412454A C C 720=所以一共有种,故D 错;1202407201080++=故选:AC.12.甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,下列说法正确的是( )A .2次传球后球在丙手上的概率是14B .3次传球后球在乙手上的概率是13C .3次传球后球在甲手上的概率是14D .n 次传球后球在甲手上的概率是111132n -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】ACD【分析】列举出经2次、3次传球后的所有可能,再利用古典概率公式计算作答可判断ABC ,n 次传球后球在甲手上的事件即为,则有,利用全概率公式可得,nA 111n n n n n A A A A A +++=+11(1)2n n p p +=-再构造等比数列求解即可判断D.【详解】第一次甲将球传出后,2次传球后的所有结果为:甲乙甲,甲乙丙,甲丙甲,甲丙乙,共4个结果,它们等可能,2次传球后球在丙手中的事件有:甲乙丙, 1个结果,所以概率是,故14A 正确;第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,3次传球后球在乙手中的事件有:甲乙甲乙,甲乙丙乙,甲丙甲乙,3个结果,所以概率为,故B 错误;383次传球后球在甲手上的事件为:甲乙丙甲,甲丙乙甲,2个结果,所以概率为,故C 正确;2184=n 次传球后球在甲手上的事件记为,则有,nA 111n n n n n A A A A A +++=+令,则于是得()n n p P A =111(|)0,(|),2n n n n P A A P A A ++==,1111()()(|)()(|0(1)2n n n n n n n n n P A P A P A A P A P A A p p +++=+=⋅+-故,则,而第一次由甲传球后,球不可能在甲手中,即,11(1)2n n p p +=-1111()323n n p p +-=--10p =则有,数列是以为首项,为公比的等比数列,所以11133p -=-1{}3n p -13-12-即,故D 正确.1111(),332n n p --=--1111(32n n p -⎡⎤=--⎢⎥⎣⎦故选:ACD三、填空题13.在等比数列中,,是函数的极值点,则=__________.{}n a 3a 7a ()3214413f x x x x =++-5a 【答案】2-【分析】根据极值点的必要条件,可得,是函数的零点,结合零点的定义以3a 7a ()284f x x x '=++及二次方程根的性质,利用等比数列中等比中项的性质,可得答案.【详解】由函数,则其导数,()3214413f x x x x =++-()284f x x x '=++由,是函数的极值点,3a 7a ()3214413f x x x x =++-则,是函数的零点,3a 7a ()284f x x x '=++即,是方程的两个解,故,3a 7a 2840x x ++=374a a =378a a +=-在等比数列中,,且同号,即,故.{}n a 25374a a a ==357,,a a a 50a <52a =-故答案为:.2-14.接种流感疫苗能有效降低流行感冒的感染率,某学校的学生接种了流感疫苗,已知在流感高25发时期,未接种疫苗的感染率为,而接种了疫苗的感染率为.现有一名学生确诊了流感,则该14110名学生未接种疫苗的概率为___________【答案】1519【分析】根据条件概率公式求解即可.【详解】设事件“感染流行感冒”,事件“未接种疫苗”,A =B =则,,()31211954510100P A =⨯+⨯=()3135420P AB =⨯=故.()()()15|19P AB P B A P A ==故答案为:.151915.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,……,6,用表示小球落入格子的号码,则下面结论中正确的序号是___________.X① ;()()11664P X P X ====② ;()()52532P X P X ====③ ;()()53416P X P X ====④.()52E X =【答案】② ③【分析】根据题意可知小球每次碰到小木钉后落下都是独立重复实验,根据独立重复实验概率计算规则计算即可.【详解】由题意可知,的所有取值为,X 1,2,3,4,5,6则,由对称性可知,()5111232P X ⎛⎫=== ⎪⎝⎭()()16132P X P X ====,()()41511525C 2232P X P X ⎛⎫====⨯⨯=⎪⎝⎭,()()322511534C 2216P X P X ⎛⎫⎛⎫====⨯⨯=⎪ ⎪⎝⎭⎝⎭所以.1557()(16)(25)(34)3232162E X =+⨯++⨯++⨯=故答案为:② ③16.已知e 是自然对数的底数.若,成立,则实数m 的最小值是()0,x ∀∈+∞eln mxm x ≥________.【答案】/1e 1e-【分析】根据给定的不等式,两边同乘x ,利用同构的思想构造函数,借助函数单调性求得恒成立的不等式,再分离参数构造函数,求出函数最大值作答.【详解】由得,即,eln mxm x ≥e ln mx mx x x ≥ln e e ln mx x mx x ≥⋅令,求导得,则在上单调递增,()e ,0xf x x x =>()(1)0x f x x e '=+>()f x ()0,∞+显然,当时,恒有,即恒成立,0m >01x <≤ln e e ln 00,mxx mx x >⋅≤ln e e ln mx x mx x ≥⋅于是当时,,有,1x >ln 0x >()()ln f mx f x ≥从而对恒成立,即对恒成立,ln mx x ≥()1,x ∀∈+∞ln xm x ≥()1,x ∀∈+∞令,求导得,则当时,;当时,,()ln x g x x =()21ln xg x x -'=()1,e x ∈()0g x '>()e,x ∈+∞()0g x '<因此函数在上单调递增,在上单调递减,,则,()g x (1,e)(e,)+∞max 1()e g x =1e m ≥所以实数m 的最小值是.1e 故答案为:1e【点睛】思路点睛:涉及函数不等式恒成立问题,将不等式等价转化,利用同构思想,构造新函数,借助函数的单调性分析求解.四、解答题17.彭老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的7篇,求:(1)抽到他能背诵的课文的数量的分布列;X(2)他能及格的概率.【答案】(1)分布列见解析(2)4960【分析】(1)根据已知条件求出随机变量的取值,求出对应的概率,即可得出随机变量的分布列;(2)根据已知条件及随机变量的分布列的性质即可求解.【详解】(1)由题意可知,的可能取值为,则X 0,1,2,3,()3037310C C 10C 120P X ===,()2137310C C 71C 40P X ===()1237310C C 212C 40P X ===.()0337310C C 353C 120P X ===所以的分布列为X X123P1120740214035120(2)该同学能及格,表示他能背诵篇或篇,23由(1)知,该同学能及格的概率为.()()()2135492234012060P X P X P X ≥==+==+=18.已知数列是公差为2的等差数列,且满足,,成等比数列.{}n a 1a 2a 5a (1)求数列的通项公式;{}n a (2)求数列的前n 项和.11n n a a+⎧⎫⎨⎬⎩⎭n T 【答案】(1)21n a n =-(2)=21n nT n +【分析】(1)由成等比数列得首项,从而得到通项公式;125,,a a a (2)利用裂项相消求和可得答案.【详解】(1)设数列的公差为,{}n a d ∵成等比数列,∴,125,,a a a 1225a a a =即,2111()(4)a d a a d +=+∴,由题意222111124a a d d a a d ++=+2d =故,得,221111448a a a a ++=+11a =12121n a n n ∴=+-=-()即.21n a n =-(2),111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭∴1111111...23352121⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦n T n n .11122121n n n ⎛⎫=-= ⎪++⎝⎭19.已知函数.()()ln 1R f x x ax a =-+∈(1)讨论函数的单调性;()f x (2)若对任意的,恒成立,求实数的取值范围;0x >()0f x ≤a 【答案】(1)答案见解析(2)1a ≥【分析】(1)求导可得,分和进行讨论即可得解;()()10f x a x x '=->0a ≤0a >(2)根据题意参变分离可得恒成立,令,求出的最大值即可得解.ln 1x a x +≥()ln 1x g x x +=()g x 【详解】(1)依题意,,()()10f x a x x '=->当时,显然,所以在上单调递增;0a ≤()0f x ¢>()f x ()0,∞+当时,令,得;令,;0a >()0f x ¢>10x a <<()0f x '<1x a >即在上单调递增,在上单调递减.()f x 10a ⎛⎫⎪⎝⎭,1,a⎛⎫+∞ ⎪⎝⎭(2)由题意得恒成立,等价于恒成立,()()ln 100f x x ax x =-+≤>()ln 10x a x x +≥>令,即时成立.()()ln 10x g x x x +=>()maxa g x ≥则,当时,,当时,,()2ln xg x x '=-()0,1x ∈()0g x '>()1,+∈∞x ()0g x '<那么在上单调递增,在上单调递增减,所以,()g x ()0,1()1,+∞()()max =11g x g =所以.1a ≥20.已知等差数列的前项和为,,.正项等比数列中,,{}n a n n S 12a =4=26S {}n b 12b =.2312b b +=(1)求与的通项公式;{}n a {}n b (2)求数列的前项和.{}n n a b n nT【答案】(1),31n a n =-2nn b =(2)()13428n n T n +=-+【分析】(1)根据等差数列和等比数列的通项公式即可求的通项公式.(2)利用错位相减法整理化简即可求得前项和.n n T 【详解】(1)等差数列的前项和为,,,设公差为{}n a n n S 12a =4=26S d 所以,解得4342262d ⨯⨯+=3d =所以()()1123131n a a n d n n =+-=+-=-正项等比数列中,,,设公比为{}n b 12b =2312b b +=q 所以,所以()2212q q +=260q q +-=解得,或(舍去)2q ==3q -所以2nn b =(2)由(1)知:()312nn n a b n =-所以()122252312nn T n =⨯+⨯++- ()()23122252342312n n n T n n +=⨯+⨯+-+- 两式相减得:()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--()()()211113212=22312=432812n n n n n -++⨯⨯-⨯+-----()13428n n T n +=-+21.第届亚运会将于年月日至月日在我国杭州举行,这是我国继北京后第二次举222023923108办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市社区举办了一场A 选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表社区参加市亚运A 知识竞赛.已知社区甲、乙、丙位选手都参加了初赛且通过初赛的概率依次为、、,通A 3121213过初赛后再通过决赛的概率均为,假设他们之间通过与否互不影响.13(1)求这人中至多有人通过初赛的概率;32(2)求这人中至少有人参加市知识竞赛的概率;31(3)某品牌商赞助了社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:A 方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖次,每次中奖的概率均为,且每次抽奖112互不影响,中奖一次奖励元;600方案二:只参加了初赛的选手奖励元,参加了决赛的选手奖励元.200500若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.【答案】(1)1112(2)3181(3)方案二更好,理由见解析【分析】(1)计算出人全通过初赛的概率,再利用对立事件的概率公式可求得所求事件的概率;3(2)计算出人各自参加市知识竞赛的概率,再利用独立事件和对立事件的概率公式可求得所求3事件的概率;(3)利用二项分布及期望的性质求出方案一奖金总额的期望,对方案二,列出奖金总额为随机变量的所有可能取值,并求出对应的概率,求出其期望,比较大小作答.【详解】(1)解:人全通过初赛的概率为,321112312⎛⎫⨯=⎪⎝⎭所以,这人中至多有人通过初赛的概率为.3211111212-=(2)解:甲参加市知识竞赛的概率为,乙参加市知识竞赛的概率为,111236⨯=111236⨯=丙参加市知识竞赛的概率为,131139⨯=所以,这人中至少有人参加市知识竞赛的概率为.31211311116981⎛⎫⎛⎫--⨯-=⎪ ⎪⎝⎭⎝⎭(3)解:方案一:设三人中奖人数为,所获奖金总额为元,则,且,X Y 600Y X =13,2X B ⎛⎫ ⎪⎝⎭ 所以元,()()160060039002E Y E X ==⨯⨯=方案二:记甲、乙、丙三人获得奖金之和为元,则的所有可能取值为、Z Z 600、、,90012001500则,()211160011236P Z ⎛⎫⎛⎫==-⨯-=⎪ ⎪⎝⎭⎝⎭,()212111115900C 1112233212P Z ⎛⎫⎛⎫⎛⎫==⋅--+-=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111112001C 1232233P Z ⎛⎫⎛⎫⎛⎫==⨯-+⋅-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()211115002312P Z ⎛⎫==⋅=⎪⎝⎭所以,.()1511600900120015001000612312E Z =⨯+⨯+⨯+⨯=所以,,()()E Y E Z <所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.22.已知函数.2()ln 3f x x ax x =+-(1)若函数的图象在点处的切线方程为,求函数的极小值;()f x ()()1,1f =2y -()f x (2)若,对于任意,当时,不等式恒成立,求实数1a =[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->的取值范围.m 【答案】(1)2-(2)(],6∞--【分析】(1)利用求得,然后结合的单调性求得的极小值.()'10f =a ()f x ()f x (2)将不等式转化为,通过构造函数法,结合导()()()211212m x x f x f x x x -->1212()()m mf x f x x x ->-数来求得的取值范围.m 【详解】(1)因为的定义域为,2()ln 3f x x ax x =+-()0,∞+所以.()'123f x ax x =+-由函数f (x )的图象在点(1,f (1))处的切线方程为y =-2,得,解得a =1.()'11230f a =+-=此时.()'1(21)(1)23x x f x x x x --=+-=当和时,;10,2x ⎛⎫∈ ⎪⎝⎭()1,+∞()'0f x >当时,.1,12x ⎛⎫∈ ⎪⎝⎭()'0f x <所以函数f (x )在和上单调递增,在上单调递减,10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫ ⎪⎝⎭所以当x =1时,函数f (x )取得极小值.()1ln1132f =+-=-(2)由a =1得.()2ln 3f x x x x=+-因为对于任意,当时,恒成立,[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->所以对于任意,当时,恒成立,[]12,1,2x x ∈12x x <1212()()m m f x f x x x ->-所以函数在上单调递减.()my f x x =-[]1,2令,,2()()ln 3m m h x f x x x x x x =-=+--[]1,2x ∈所以在[1,2]上恒成立,()'21230m h x x x x =+-+≤则在[1,2]上恒成立.3223m x x x ≤-+-设,()()322312F x x x x x =-+-≤≤则.()2'211661622F x x x x ⎛⎫=-+-=--+⎪⎝⎭当时,,所以函数F (x )在上单调递减,[]1,2x ∈()'0F x <[]1,2所以,()()26F x F ≥=-所以,故实数m 的取值范围为.6m ≤-(],6∞--【点睛】求解不等式恒成立问题,可考虑采用分离常数法,分离常数后,通过构造函数法,结合导数来求得参数的取值范围.。
人教版数学高二-山西省太原五中高二5月月考数学(理)试题
太原五中2015-2016学年度第二学期阶段性检测高 二 数 学(理)出题人、校对人:雷英俊 廉海栋(2016.5)一、选择题(每小题4分,共40分,每小题只有一个正确答案)1.已知随机变量X 服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.12.已知离散型随机变量X 等可能取值1,2,3,…,n ,若P(1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .153.已知随机变量ξ服从正态分布N(2,σ2).且P(ξ<4)=0.8,则P(0<ξ<2)等于( )A .0.6B .0.4C .0.3D .0.24. 53()y x 展开式的第三项为10,则y 关于x 的函数图象大致为( )5.10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则E(ξ)等于( )A.35B.815C.1415D .1 6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为A .144B .120C .72D .247.在所有的两位数中,个位数字大于十位数字的两位数共有( )个A .50B .45C .36D .358.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为( )A .180B .240C .360D .4209.将三颗骰子各掷一次,记事件A =“三个点数都不同”, B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( )A.6091,12 B.12,6091C.518,6091D.91216,12 10.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题(每小题分,共12分)11. 如果将甲、乙、丙3名志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在乙、丙的前面,则不同的安排方法共有 种 12. 三元一次方程x+y+z=13的非负整数解的个数有_____ 13. n ∈N *,0n C +31n C +…+(2n+1)nn C =_______14.设一次试验成功的概率为p ,进行100次独立重复试验,当p=______时成功的次数 的标准差最大为_______. 三、解答题(共48分) 15.(8分)已知()14142210721x a x a x a a x x ++++=+- .求(1)14210a a a a ++++ .(2)13531a a a a ++++16. (10分)(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有一个名额,问:名额分配的方法共有多少种?17.(10分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.18.(10分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0, 3∶1, 3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为 3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列及数学期望. 19.(10分)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸 出一个红球的概率是25,求p 的值.17.【答案】(Ⅰ)乙投球的命中率为4. (Ⅱ)甲投球2次至少命中1次的概率为34.(Ⅲ)甲、乙两人各投两次,共命中2次的概率为1132. 18.解析: (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立, 故P (A 1)=⎝⎛⎭⎫233=827,P (A 2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎫232⎝⎛⎭⎫1-232×12=427. 所以甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意知,各局比赛结果相互独立,所以P (A 4)=C 24⎝⎛⎭⎫1-232⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327,故X 的分布列为X 0 1 2 3 P1627427427327所以E (X )=0×1627+1×427+2×427+3×327=79.19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B中摸出一个红球的概率为(1)随机变量的分布列为 0123P其数学期望为(2)解析试题分析:解:(1)①恰好摸5次停止的概率为(2)②随机变量的可能取值为0,1,2,3.;;;所以,随机变量的分布列为0 1 2 3P故随机变量的数学期望为(10)(2)设袋子A中有m个球,则袋子B中有2m个球,由题意得,解得(14)。
安徽省铜陵市第五中学2013-2014学年高二下学期5月月考 数学理试题 Word版含答案
铜陵市第五中学高二月考数学试卷(理)( 时间:120分钟 满分:150分 )一、选择题(每题5分,共50分)1.已知命题p :∀x ∈R ,sin x≤1,则( ).A .¬p:∃x ∈R ,sin x≥1B .¬p:∀x ∈R ,sin x≥1C .¬p:∃x ∈R ,sin x>1D .¬p:∀x ∈R ,sin x>12.已知命题p:∃ ,ln 20x R x x ∈+-=,命题q:∀2,2x x R x ∈≥,则下列命题中为真命题的是()A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q3.已知数列{}n a ,则“11n n a a +>-”是“数列{}n a 为递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.已知命题p :“∀x ∈R ,∃m ∈R ,使4x +2x·m +1=0”.若命题p 为真命题,则实数m 的取值范围是A. (-∞,-2]B. [2,+∞)C. (-∞,-2)D. (2,+∞) 5.若m 是2和8的等比中项,则圆锥曲线的离心率是( )A. B. C.或 D.6.已知椭圆的焦点为F 1、F 2,P 是椭圆上一个动点,延长F 1P 到点Q ,使|PQ|=|PF 2|,则动点Q 的轨迹为( )A.圆B.椭圆C.双曲线一支D.抛物线7.已知双曲线()222210,0x y a b a b-=>>的离心率为2,一个焦点与抛物线216y x =的焦点相同,则双曲线的渐近线方程为( )A.y =B.2y x =±C.3y x =± D.32y x =±8已知O 为坐标原点,F 为抛物线x y C 24:2=的焦点,P 为C 上一点,若24=PF ,则△POF 的面积为( )A.2B.22C.32D.49. 已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .55 B .553 C .555D .51110. 如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F 且EF ,则下列结论中错误的是 ( ).A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A-BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值二、填空题(每题5分,共25分)11.若命题“∃x ∈R, 2x 2-3ax+9<0”为假命题,则实数a 的取值范围是_______.12.设a>0且a≠1,则“函数f(x)=a x 在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的__________条件. 13. 13.P 为双曲线右支上一点,M 、N 分别是圆和上的点,则的最大值为________.14. 如图,过抛物线y 2=2px(p>0)的焦点F 的直线l 交抛物线于点A 、B ,交 其准线于点C. 若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________. 15.下列命题中,真命题的有________.(只填写真命题的序号)①若,,a b c R ∈则“22ac bc >”是“b a >”成立的充分不必要条件;②若椭圆2211625x y +=的两个焦点为12,F F ,且弦AB 过点1F ,则2ABF ∆的周长为16; ③若命题“p ⌝”与命题“p 或q ”都是真命题,则命题q 一定是真命题;④若命题p :R x ∈∃,012<++x x ,则p ⌝:2,10x R x x ∀∈++≥.三、解答题(16-20每题12分,21题15分)16.已知命题p :方程210x mx ++=有两个不相等的负实根,命题q :,R x ∈∀01)2(442>+-+x m x 恒成立;若p 或q 为真,p 且q 为假,求实数m 的取值范围.17. 已知直线l 经过抛物线24x y =的焦点,且与抛物线交于B A ,两点,点O 为坐标原点.(Ⅰ)证明:AOB ∠为钝角.(Ⅱ)若AOB ∆的面积为4,求直线l 的方程;18.已知双曲线C 与椭圆14822=+y x(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线2:+=kx y l 与双曲线C 有两个不同的交点A 和B ,且2OA OB ⋅> (其中O 为原点),求k 的取值范围.19.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为)(03,F -,且过点)(02,D .(1)求该椭圆的标准方程;(2)设点),(211A ,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.20.如图,四棱锥P ABCD -的底面ABCD 为菱形,PA ⊥平面ABCD ,2PA AB ==,E F 、分别为CD PB 、的中点,AE (Ⅰ)求证:平面AEF ⊥平面PAB .(Ⅱ)求平面PAB 与平面PCD 所成的锐二面角的余弦值.21.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P引圆O 的两条切线,切点分别为A,B .(1)(ⅰ)若圆O 过椭圆的两个焦点,求椭圆的离心率e 的值;(ⅱ)若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围; (2)设直线AB 与x 轴、y 轴分别交于点M ,N ,问当点P 在椭圆上运动时,2222a b ONOM+是否为定值?请证明你的结论.铜陵市第五中学高二月考数学试卷(理)答案二、填空题(每题5分,共25分)12. 充分不必要13. 5 14. y 2=3x 15. ①③④三、解答题(16-20每题12分,21题15分)16.当p 真时,可得240m m ⎧∆=->⎨>⎩,解之得2m >当q 真时,得到:2[4(2)]160m ∆=--<,解之得13m <<∵p 或q 为真,p 且q 为假 ∴p 真q 假或p 假q 真 若p 真q 假时,由2313m m m m >⎧⇒≤⎨≤≥⎩或若p 假q 真时,由21213m m m ≤⎧⇒<≤⎨<<⎩所以m 的取值范围为{|312}m m m ≥<≤或.17. (I)依题意设直线l 的方程为:1y kx =+(k 必存在)2214404y kx x kx x y=+⎧⇒--=⎨=⎩,216160k ∆=+>∴设直线l 与抛物线的交点坐标为1122(,),(,)A x y B x y ,则有221212124,1,44x x x x y y =-==121230x x y y ∴+=-<,依向量的数量积定义,cos 0AOB ∠<即证AOB ∠为钝角(Ⅱ) 由(I )可知:2124(1)AB x k =-=+ ,d =,∴142AOB S AB d ∆===,k ∴=直线方程为1,1y y =+=+ 18. (Ⅰ)设双曲线的方程为)0,0(12222>>=-b a b y a x ,2,3==c a ,1=∴b ,故双曲线方程为1322=-y x . (Ⅱ)将2+=kx y 代入1322=-y x 得0926)31(22=---kx x k 由⎩⎨⎧>∆≠-00312k 得,312≠k 且12<k设),(),,(2211y x B y x A ,则由2>⋅得)2)(2(21212121+++=+kx kx x x y y x x =2)(2)1(21212++++x x k x x k2231262319)1(222>+-+--+=k k k k k ,得.3312<<k 又21k <,2113k ∴<<,即)1,33()33,1( --∈k 19. (1)由已知得椭圆的半长轴2=a ,半焦距3=c ,则半短轴1=b .又椭圆的焦点在x 轴上, ∴椭圆的标准方程为1422=+y x . (2)设线段PA 的中点为)(y ,x M ,点P 的坐标是)(00y ,x , 由⎪⎪⎩⎪⎪⎨⎧+=+=2212100y y x x ,得⎪⎩⎪⎨⎧-=-=2121200y y x x ,由点P 在椭圆上,得121241222=-+-)()(y x , ∴线段PA 中点M 的轨迹方程是14142122=-+-)()(y x .20.(Ⅰ)∵四边形ABCD 是菱形,∴2AD CD AB ===.在ADE ∆中,AE =1DE =,∴222AD DE AE =+.∴90AED ∠=︒,即AE CD ⊥.又AB CD //, ∴AE AB ⊥. ∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE .又∵PAAB A =,∴AE ⊥平面PAB 又∵AE ⊂平面AEF ,平面AEF ⊥平面PAB . (Ⅱ)解法一:由(1)知AE ⊥平面PAB ,而AE ⊂平面PAE , ∴平面PAE ⊥平面PAB∵PA ⊥平面ABCD ,∴PA CD ⊥. 由(Ⅰ)知AE CD ⊥,又PAAE A =∴CD ⊥平面PAE ,又CD ⊂平面PCD , ∴平面PCD ⊥平面PAE .∴平面PAE 是平面PAB 与平面PCD 的公垂面.所以,APE ∠就是平面PAB 与平面PCD 所成的锐二面角的平面角.在Rt PAE ∆中,222347PE AE PA =+=+=,即PE =又2PA =,∴cos APE∠=.所以,平面PAB与平面PCD所成的锐二面角的余弦值为.(Ⅱ)解法二:以A为原点,AB、AE分别为x轴、y轴的正方向,建立空间直角坐标系A xyz-,如图所示.因为2PA AB==,AE=(0,0,0)A、(0,0,2)P、E、(1C,则2)PE=-,(1,0,0)CE=-,AE =.由(Ⅰ)知AE⊥平面PAB,故平面PAB的一个法向量为1(0,1,0)n =.设平面PCD的一个法向量为2(,,)n x y z=,则22n PEn CE⎧=⎪⎨=⎪⎩,即20zx-=-=⎪⎩,令2y=,则2n =.∴121212cos,7nnn nn n===所以,平面PAB与平面PCD所成的锐二面角的余弦值为.21.(1)(ⅰ)∵圆O过椭圆的焦点,圆O:222x y b+=,∴b c=,∴2222b ac c=-=,222a c=,∴2e=.(ⅱ)由90APB∠=及圆的性质,可得OP=,∴2222,OP b a=≤∴222a c≤∴212e≥,12e≤<.(2)设()()()001122,,,,,P x y A x y B x y,则011011y y xx x y-=--, 整理得220011x x y y x y+=+22211x y b+=∴PA方程为:211x x y y b+=,PB方程为:222x x y y b+=.从而直线AB的方程为:200x x y y b+=.令0x=,得2bON yy==,令0y=,得2bOM xx==,∴2222222220022442a yb xa b a b ab b b ON OM++===,∴2222a bON OM+为定值,定值是22ab.。
吉林省吉林一中2013-2014学年高二下学期5月月考 数学理试题
绝密★启用前吉林省吉林一中2013-2014学年高二下学期5月月考 数学理试题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请修改第I 卷的文字说明一、单项选择1. 已知命题p ?x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,则非p 是( ) A .?x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0 B .?x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0 C .?x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0 D .?x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<02. 命题“若00,022===+b a b a 且则”的逆否命题是( ) A .若00,022≠≠≠+b a b a 且则 B .若00,022≠≠≠+b a b a 或则 C .若则0,0022≠+==b a b a 则且 D .若0,0022≠+≠≠b a b a 则或3. 在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝5. 若双曲线()222103x y a a -=>的离心率为2,则a 等于()A .2BC .32D .16. 已知F 1、F 2是椭圆162x +92y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( )A .2B .10C .9D .167. 巳知中心在坐标原点的双曲线C 与拋物线x 2=2py(p >0)有相同的焦点F,点A 是两 曲线的交点,且AF 丄y 轴,则双曲线的离心率为( )A 215+B 12+C 13+D 2122+8. 已知函数()⎪⎩⎪⎨⎧>+≤+=1122x xax x axx x f ,则” 2-≤a ”是” ()x f 在R 上单调递减”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 抛物线24y x =的焦点为F ,点,A B 在抛物线上,且2π3AFB ∠=,弦AB 中点M 在准线l 上的射影为M ',则||||MM AB '的最大值为( )AB C D10. $selection$11. 已知点A(2,0),抛物线Cx 2=4y 的焦点为F,射线FA 与抛物线C 相交于点M,与其准线相交于点N,则|FM||MN|= ( )A .2B .12C .1D .1312. 双曲线122=-y x 的顶点到其渐近线的距离等于( )A .21B .22C .1D .2第II 卷(非选择题)请修改第II卷的文字说明 二、填空题13. 若命题“∃x ∈R, x 2+ax +1<0”是真命题,则实数a 的取值范围为.14. 椭圆)0(12222>>=+b a by a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|c15. 已知抛物线y 2=2px(p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为________. 16. $selection$三、解答题17. 设命题p 函数()2116a f x g ax x ⎛⎫=-+⎪⎝⎭的定义域为R;命题:39x xq a -<对一切的实数x 恒成立,如果命题“p 且q”为假命题,求实数a 的取值范围. (1)18. 设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p在某定直线上。
江苏省洛社高中2013-2014学年高二数学5月月考试题 理 苏教版
洛社高中高二数学(理)5月月考试卷试卷总分:160分;考试时间:120分钟一、填空题(共14小题,每小题5分,共计70分)1.若255C C x =,则=x . 2.已知复数2)2(i z -=,则复数z 的实部等于 .3.62)2(x x +的展开式中,常数项的值等于 . 4.现有内科医生4名,外科医生5名,要派3名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有 种选法(用数字作答).5.若函数xe x y 2⋅=,则此函数的导数='y .6.已知矩阵⎥⎦⎤⎢⎣⎡=121x M 的一个特征值为1-,则其另一个特征值为 . 7.观察下列式子:211=,23432=++,2576543=++++, ,2710987654=++++++, 可以得出的一般结论是 .8.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率为 .9.若)()21(2014201422102014R x x a x a x a a x ∈++++=- ,则20142014221222a a a +++ 的值等于 .10.已知二阶矩阵M 满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡22110101M M ,,则=⎥⎦⎤⎢⎣⎡-112M . 11.记定义在R 上的函数)(x f y =的导函数为)(x f '.如果存在],[0b a x ∈,使得))(()()(0a b x f a f b f -'=-成立,则称0x 为函数)(x f y =的“中值点”.那么函数232)(x x x f +=在区间]2,2[-上的“中值点”为 .12.随机变量X 的概率分布列为)1()(+==n n an X P ,(1,2,3,4n =) 其中a 为常数,则)2521(<<X P 的值为 .2014.5.25班级:高二( ) 姓名: ;学号: . ---------------------------密封线----------------------------------------------------------------------------------------------------------密封线-----------------------------13.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 .14.已知函数x x x f 3)(3-=,若过点),1(m A 作函数)(x f y =的切线有且仅有一条,则实数m 的取值范围是 .二、解答题(共6题,共计90分)15.(本题满分14分)关于x 的方程)(09)6(2R a ai x i x ∈=+++-有实根b x =. (1)求实数b a ,的值.(2)若复数i z +=121,复数z 满足1z bi a z =--,求复数z 的模z 的最小值.16. (本题满分14分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000元(π为圆周率).(1)将V 表示成r 的函数)(r V ,并求该函数的定义域;(2)讨论函数)(r V 的单调性,并确定r 和h 为何值时该蓄水池的体积最大.17. (本题满分15分)已知)(1154*N n n a n n ∈-+=. (1)计算321a a a ,,;猜想是否存在最大的正整数m ,使得n a 能被m 整除;(2)运用数学归纳法证明(1)中猜想的结论.18. (本题满分15分)已知矩阵)0(10≠⎥⎦⎤⎢⎣⎡=k k a A 的一个特征向量为⎥⎦⎤⎢⎣⎡-=1k ,矩阵A 的逆矩阵1-A 对应的变换将点)13(,变为点)11(,. (1)求实数k a ,的值;(2)求直线012=++y x 在矩阵A 的对应变换下得到的图形方程.19. (本题满分16分)学校举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投班级:高二( ) 姓名: ;学号: .---------------------------密封线----------------------------------------------------------------------------------------------------------密封线-----------------------------中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是31;小强每次投篮投中的概率都是)10(<<p p . (1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列和期望;(3)小强投篮4次,投中的次数为X ,若期望1)(=X E ,求p 和X 的方差)(X V .20.(本题满分16分)已知函数()2a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e为自然对数的底数)都有)()(21x g x f ≥成立,求实数a 的取值范围.洛社高中高二数学(理)5月月考试卷参考答案一、填空题(共14小题,每小题5分,共计70分)1.若255C C x =,则=x 2或3 .2.已知复数2)2(i z -=,则复数z 的实部等于 3 .3.62)2(x x +的展开式中,常数项的值等于 240 . 4.现有内科医生4名,外科医生5名,要派3名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有 70 种选法(用数字作答).5.若函数xe x y 2⋅=,则此函数的导数='y (2x+1)e2x .6.已知矩阵⎥⎦⎤⎢⎣⎡=121x M 的一个特征值为1-,则其另一个特征值为 3 . 7.观察下列式子:211=,23432=++,2576543=++++, ,2710987654=++++++, 可以得出的一般结论是 n+(n+1)+(n+2)……+(3n-2)=(2n-1)2 .8.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率为 54.9.若)()21(2014201422102014R x x a x a x a a x ∈++++=- ,则20142014221222a a a +++ 的值等于 -1 .10.已知二阶矩阵M 满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡22110101M M ,,则=⎥⎦⎤⎢⎣⎡-112M ⎥⎦⎤⎢⎣⎡--42 .11.记定义在R 上的函数)(x f y =的导函数为)(x f '.如果存在],[0b a x ∈,使得))(()()(0a b x f a f b f -'=-成立,则称0x 为函数)(x f y =的“中值点”.那么函数232)(x x x f +=在区间]2,2[-上的“中值点”为 232-或 .12.随机变量X 的概率分布列为)1()(+==n n an X P ,(1,2,3,4n =) 其中a 为常数,则2014.5.25)2521(<<X P 的值为 65 .13.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 108 .14.已知函数x x x f 3)(3-=,若过点),1(m A 作曲线)(x f y =的切线有且仅有一条,则实数m 的取值范围是 m<-3或m>-2 .二、解答题(共6题,共计90分)15.(本题满分14分)关于x 的方程)(09)6(2R a ai x i x ∈=+++-有实根b x =. (1)求实数b a ,的值.(2)若复数i z +=121,复数z 满足1z bi a z =--,求复数z 的模z 的最小值.解析:(1)将b x =带入方程,得到0)()96(2=-++-i b a b b ……………………2分 所以有⎩⎨⎧==⇒⎩⎨⎧=-=+-3300962a b b a b b …………………6分 (2)设复数),(R y x yi x z ∈+=,2121=+=i z ………………8分则:2)3()3(2)3()3(22221=-+-⇒=-+-⇒=--y x y x z bi a z …10分所以复数z 对应的点在以)3,3(为圆心,2为半径的圆上 ………12分z表示圆上的点到原点的距离,所以22223min =-=zz∴的最小值为22. ………14分16. (本题满分14分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000元(π为圆周率).(1)将V 表示成r 的函数)(r V ,并求该函数的定义域;(2)讨论函数)(r V 的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解析:(1)因为蓄水池侧面的总成本为rh rh ππ2002100=⋅元,底面的总成本为2160r π元,所以蓄水池的总成本为)160200(2r rh ππ+ 元. …2分 又据题意πππ120001602002=+r rh , ………………………3分 所以r r h 543002-=,从而)4300(5)(32r r h r r V -==ππ. ………5分因为0>r ,由0543002>-=r r h 可得35<r ,故函数)(r V 的定义域为)35,0(. (6)分(2)因为)12300(5)()4300(5)(23r x V r r r V -='⇒-=ππ…………………8分令550)(21-==⇒='r r x V ,(因为-5不在定义域内,所以舍去) ……………10分当)5,0(∈r 时,0)(>'r V ,所以)(r V 在)5,0(上为单调增函数当)35,5(∈r 时,0)(<'r V ,所以)(r V 在)35,5(上为单调减函数.……………12分由此可知,)(r V 在5=r 处取得最大值,此时825100300543002=-=-=r r h .所以当85==h r ,时,该蓄水池的体积最大. …………………14分17. (本题满分15分)已知)(1154*N n n a n n∈-+=.(1)计算321a a a ,,;猜想是否存在最大的正整数m ,使得n a 能被m 整除;(2)运用数学归纳法证明(1)中猜想的结论. 解析:(1)计算12910859452918321⨯==⨯==⨯==a a a ,,; ………3分因为3个数的最大公约数为9,猜想存在最大的正整数9=m ,能使得)(1154*N n n a n n ∈-+=能被m 整除. ……6分 (2)数学归纳法证明:1、当1=n 时,29181⨯==a ,能被9整除,结论成立; ……7分2、假设)(*N k k n ∈=时结论成立,即1154-+k k能被9整除 ……9分则当1+=k n 时,1)1(15411-++=++k a k k 变形1845)1154(41415441+--+=++⋅=+k k k a kk k)52(9)1154(41k k a k k -+-+=∴+ ……11分因为由假设结论可知1154-+k k能被9整除,又因为)52(9k -也能被9整除 (12)分所以1)1(15411-++=++k a k k 也能被9整除所以则当1+=k n 时,结论成立 ……………………………14分 由(1)(2)可知,对任意*N n ∈,都有n a 能被9整除成立. ……………………15分18. (本题满分15分)已知矩阵)0(10≠⎥⎦⎤⎢⎣⎡=k k a A 的一个特征向量为⎥⎦⎤⎢⎣⎡-=1k α,矩阵A 的逆矩阵1-A 对应的变换将点)13(,变为点)11(,. (1)求实数k a ,的值;(2)求直线012=++y x 在矩阵A 的对应变换下得到的图形方程.解析:(1)设特征向量为α=⎣⎢⎡⎦⎥⎤k -1对应的特征值为λ,则⎣⎢⎡⎦⎥⎤a k 0 1 ⎣⎢⎡⎦⎥⎤ k -1=λ⎣⎢⎡⎦⎥⎤k -1,即⎩⎨⎧ak -k =λk , λ=1.因为k ≠0,所以a =2. …………4分因为A -1⎣⎡⎦⎤31=⎣⎡⎦⎤11,所以A ⎣⎡⎦⎤11=⎣⎡⎦⎤31,即 ⎣⎢⎡⎦⎥⎤2 k 0 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤31,所以2+k =3,解得 k =1.综上,a =2,k =1. ………………8分 (2)直线012=++y x 任取一点),(00y x P ,在A 的对应变换下得到的点),(11y x Q则有:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡110000021012y x yy x y x ………………10分 所以⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=101100100122y y y x x y y y x x ………………12分 因为02301220121111100=++⇒=++-⇒=++y x y y x y x ……………14分所以得到的图形方程为023=++y x . ………………15分 19. (本题满分16分)学校举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是31;小强每次投篮投中的概率都是)10(<<p p . (1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列和期望;(3)小强投篮4次,投中的次数为X ,若期望1)(=X E ,求p 和X 的方差)(X V . 解析:(1)设“小明在投篮过程中直到第三次才投中”为事件A ………1分 事件A 说明小明前两次未投中,第三次投中所以27431)311()(2=⋅-=A P ………3分 答:小明在投篮过程中直到第三次才投中的概率为274………4分(2)小明在4次投篮后总得分ξ的可能取值为0,2,4,6,8. ………5分;;813231)311()2(8116)311()0(3144=⋅-===-==C P P ξξ ;;818)31()311()6(2788124)31()311()4(3342224=⋅-====⋅-==C P C P ξξ;811)31()8(4===ξP ………10分 所以总得分ξ的分布列为:ξ0 2 4 6 8P81168132278 818 811所以38812168118818627848132281160)(==⋅+⋅+⋅+⋅+⋅=ξE ………12分 (3)因为随机变量X ~),4(p B ,所以4114)(=⇒==p p X E ; ………14分所以随机变量X 的方差43)411(414)1()(=-⋅⋅=-=p np X V . ………16分20.(本题满分16分)已知函数()2a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e为自然对数的底数)都有)()(21x g x f ≥成立,求实数a 的取值范围.解析:(1)解:∵()22ln a h x x x x =++,其定义域为()0 +∞,,∴()2212a h x x x '=-+. ……………………2分 ∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=. ………………4分∵0a >,∴a = ……………5分经检验当a =1x =是函数()h x 的极值点,∴a = ……………6分 (2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦. ……………7分当x ∈[1,e ]时,()110g x x '=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦. ……………9分∵()()()2221x a x a a f x x x +-'=-=,且[]1,x e ∈,0a >.①当01a <<且x ∈[1,e ]时,()()()2x a x a f x x +-'=>,∴函数()2a f x x x =+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a ≥又01a <<,∴a 不合题意. ……………11分11 ②当1≤a ≤e 时,若1≤x <a ,则()()()20x a x a f x x +-'=<,若a <x ≤e ,则()()()20x a x a f x x +-'=>.∴函数()2a f x x x =+在[)1,a 上是减函数,在(]a e ,上是增函数. ∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +,又因为1≤a ≤e ,∴12e +≤a ≤e . ……………13分 ③当a e >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<,∴函数()2a f x x x =+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e +≥1e +,得a又a e >,∴a e >. ……………15分综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭. ……………16分。
2021-2022年高二上学期第一次月考 数学试题 含答案(I)
2021年高二上学期第一次月考数学试题含答案(I)佟玉臣张伟萍一、选择题(每个题答案唯一,每题4分,共48分)1.已知:p:x>1;q:x>2;则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若p是真命题,q是假命题则()A.pq是真命题B.pq是假命题C.p是真命题D.q是真命题3.从N个编号中要抽取n个号码,若采用系统抽样方法抽取,则分段间隔应为(表示的整数部分)()A. B.n C. D.+14.某工厂生产甲,乙,丙三种型号的产量,产品数量之比3:5:7,现用分层抽样的方法抽取容量为n的样本,其中甲种产品有18件,则样本容量n等于()A.54B.90C.45D.1265.已知x,y取值如下表从所得的散点图分析,y 与x 线性相关且, 则a 等于( )6.如果执行如图的程序框图,那么输出的i 为( )A.4B.5C.6D.77.如图,是某篮球运动员在一个赛季的30的茎叶图,则得分的中位数与众数分别为( )A.3与3B.23与3C.3与23D.23与23 0 8 91 1234 6 7 8 9 2 0 1 1 3 3 35 7 8 8 3 0 1 2 2 3 4 8 94 0 18.同时掷两颗骰子,得到的点数和为6的概率是( ) A. B. C. D. 是9.将[ 0,1]内的均匀随机数转化为[-6,6]内的均匀随机数,需实施的变换为()A. B. C. D.10.已知某厂的产品合格率为90%。
抽出10件产品检查,则下列说法正确的是()A.合格产品少于9件 B.合格产品多于9件C.合格产品正好是9件 D.合格产品可能是9件11.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是() A.至多有一次中靶 B.两次都中C.两次都不中 D.只有一次中靶12.对实数a和 b定义运算“”:ab=设函数f(x)=()xR,则函数y=f(x)-c的图像与x轴恰有两个公共点的充要条件是c满足()A.(- ]B. (- ]C.(-1,)D. (- )二、填空题(每题4分,共16分)13.命题“若m>0则方程”的逆否命题是.14.P:“ +1 ”的否定是 .15.已知p:,q:,若p是q的充分不必要条件则实数m的取值范围16.下列命题:在是“B=”充分不必要条件②a,b,c成立的必要不充分条件③在中“A<B”是cos2A>cos2B的充要条件④设f(x)=asin2x+bcos2x,其中a,b,ab,若f(x)对一切x恒成立,则则真命题的序号三、解答题(共56分,要求有必要的解答步骤)18.(10分)设有关于x的一元二次方程(1)若a是从0,1,2,3四个数中任取的一个数,若b从0,1,2三个数中任取的一个数,求上述方程有实根的概率(2)若a是从区间[0,3]任取的一个数,b是从[0,2]任取的一个数,求上述方程有实根的概率19.(10分)某中学团委组织了“我对祖国知多少”的知识竞赛,从参加竞赛的学生中抽出60名学生将其成绩(均为整数)分成6组[40,50),[50,60),[60,70),…[90,100)其部分频率分布直方图如图所示,回答:(1)求成绩在[70,80)的频率,并补全这个频率分布直方图(2)估计这次考试的及格率(60分以上为及格)和平均分20. (8分)p:“”q:“”若pq为真命题,pq为假命题,求m的取值范围22. (10)已知直线l:y=kx+1与圆c:(1)求弦AB的中点M的轨迹方程(2)若o为坐标原点,s(k)表示f(k)=k,求f(k)的最大值高二数学答案15.③④16. 217.(1) (2) (3)18. (1) (2)19. (1)0.3 图略(2)75% 71 (3)p=20. p: q:m>1或m<-1综上: 或m<或m>21. 【解】(Ⅰ) 连接.在平行四边形中,因为为的中点,所以为的中点,又为的中点,所以,因为,,所以.(Ⅱ) 因为,且,所以.即.又,,所以,NOMD CAP因为,所以.(Ⅲ) 取的中点,连接,所以,.由,得,所以是直线与平面所成的角.在中,,,所以.从而.在中,tan54MNMANAN∠===直线与平面所成角的正切值为.22.(1)直线l与y轴的交点为N(0,1)圆心C(2,3)设M(x,y)因为MN与MC所在直线垂直所以且当x=0时不符合题意,当x=2时符合所以)477477(,034222+<<-=+--+xyxyx(2)设A()B()S= S- S且所以S=将y=kx+1与+联立。
陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案
陕西省西安市西咸新区2022-2023学年高二下学期5月月考理科数学试题(时间:100分钟满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共12小题,每题3分,共36分)1.设X 是一个离散型随机变量,其分布列为则q 等于()A .1B .12C.12-D.12.已知363434C C xx -=,则x =()A .3或10B .3C .17D .3或173.如图,一条电路从A 处到B 处接通时,可构成线路的条数为()A .8条B .6条C .5条D .3条4.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A .12B .36C .24D .725.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有()A .C 32197·C 23B .C 33C 2197+C 23C 3197C .C 5200-C 5197D .C 5200-C 13C 4197X1-01P1212q-2q6.6211(1)x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为()A .25B .20C .14D .287.在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -8.把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法()A .10种B .24种C .36种D .60种9.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为()A .720种B .420种C .120种D .15种10.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为()A .96B .160C .180D .6011.已知()727012752x a a x a x a x -=++++ ,则0127a a a a ++++= ()A .128B .2187C .78125D .82354312.下列等式不正确的是()A .111m mn n m C C n ++=+B .12111m m m n n n A A n A +-+--=C .11m m n n A nA --=D .()11k k kn n nnC k C kC +=++二、填空题(共4小题,每题4分,共16分)13.二项式841⎫⎝的展开式中含x 项的系数为__________.14.从一批含有13件正品、2件次品的产品中,不放回地任取3件,设取得的次品数为X ,则(1)P X <=________.15.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为______16.由海军、空军、陆军各3名士兵组成一个有不同编号的33⨯的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法。
山西省太原市第五十六中学2020-2021学年高二数学下学期5月月考试题 理
山西省太原市第五十六中学2020-2021学年高二数学下学期5月月考试题 理考试时间 90分钟 分值 100分一、选择题:(共12小题,每小题3分,总分36分)1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )A .13种B .16种C .24种D .48种 2.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有( )A .6种B .12种C .30种D .36种 3.下列各式中与排列数相等的是( D ) A . B .n (n -1)(n -2)…(n -m )C .4.2017年的3月25日,中国国家队在2018俄罗斯世界杯亚洲区预选赛12强战小组赛中,在长沙以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( ) A . 34种B . 48种C . 96种D . 144种5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A . 3×3!B . 3×(3!)3C . (3!)4D . 9!6.12233101010101010190C 90C 90C 90C -+-++除以88的余数是( )A .2B .1C .86D .877.若)10210012102x a a x a x a x =+++,则()20210a a a +++-()2139a a a +++=( )A .1B .1-C .2D .2-8.在()()10311x x -+的展开式中5x 的系数是( ) A .297-B .252-C .297D .2079.函数21)(--=x x x f 的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2) D .[1,+∞)10.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( )A. 1 B .2 C. 3 D.411.下列说法错误的是( )A.42y x x =+是偶函数 B. 偶函数的图象关于y 轴成轴对称 C. 32y x x =+是奇函数 D. 奇函数的图象关于原点成中心对称12.函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 ( )A .1+-xB .1--xC .1+xD . 1-x二、填空题(共4小题,每小题3分,总分12分)13.从6台原装计算机和5台组装计算机中任意选5台,其中至少有原装与组装计算机各两台,则不同的取法有___350___种.14.有8本不相同的书,其中数学书3本,外文书2本,其它书3本,若将这些书排列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_1440_______种(用数字作答).15.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为___-2/3_____.16.已知集合A ={x |x <},B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是______三解答题(共5小题总分52分)17(10分)已知集合A={x|a ≤x ≤a+3},B={x|x<-1或x>5}.(1) 若A∩B=Φ,求a 的取值范围; (2) 若A∪B=B ,求a 的取值范围.17.(10分)(1)解不等式:32213A 2A 6A x x x +≤+;(2)解方程:4321A 140A x x +=. 20.(12分)已知(31)nx -的展开式中第2项与第5项的二项式系数相等,求212nx x ⎛⎫- ⎪⎝⎭的展开式中:(1)所有二项式系数之和; (2)二项式系数最大的项; (3)系数的绝对值最大的项.18.(10分)在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.(1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?21(10分)定义在R 上的函数)(x f ,对任意的R y x ∈,,有)()(2)()(y f x f y x f y x f =-++,且0)0(≠f 。
高二五月月考理科数学试题(含答案)
2014年春黄冈市普通高中二年级5月月考数 学 试 题 (理科)(时间 分钟,满分150分)一、选择题(共10小题,每小题5分,共50分)1.设连续函数0)(>x f ,则当b a <时,定积分⎰ba dxx f )(的符号 ( )A 、一定是正的B 、一定是负的C 、当b a <<0时是正的,当0<<b a 时是负的D 、以上结论都不对 2. ()f x 与()g x 是定义在R 上的两个可导函数,若()f x 与()g x 满足()()f x g x ''=,则()f x 与()g x 满足( ) A.()()f x g x =B.()()f x g x - 为常数函数C.()()0f x g x == D.()()f x g x +为常数函数3. 一质点做直线运动,由始点起经过t s 后的距离为s =41t 4- 4t 3 + 16t 2,则速度为零的时刻是 ( )A. 4s 末B. 8s 末C. 0s 与8s 末D. 0s ,4s ,8s 末 4.若20(23)0k x x dx -=⎰,则k=( )A. 1B.0C.0或1D.以上都不对 5.设y=x-lnx ,则此函数在区间(0,1)内为( )A .单调递增 B. 有增有减 C.单调递减 D.不确定6. 已知f(x)=3x ·sinx ,则'(1)f =( )A.31+cos1B. 31sin1+cos1C. 31sin1-cos1 D.sin1+cos17. 若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是( )A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D.1(,]3-∞8. 如果10N 的力能使弹簧压缩10cm ,在弹性限度内将弹簧拉长6cm ,则力所做 的功为( )A .0.28JB .0.12JC .0.26JD .0.18J9. 给出以下命题:⑴若()0b af x dx >⎰,则f (x )>0; ⑵20sin 4xdx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则()()a a T Tf x dx f x dx+=⎰⎰;其中正确命题的个数为…( )A . 1 B. 2 C.3 D.010.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为( )A . 1n B .11n + C .1n n + D .1二、填空题(共5小题,每小题5分,共25分) 11. 若f(x)=ax 3+x +1有极值的充要条件是______ 12.已知)(x f 为一次函数,且1()2()f x x f t dt=+⎰,则)(x f =13. 设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为14. 若xe xf 1)(-=,则0(12)(1)limt f t f t →--=___.15. 设函数3()35f x x x =-+,若关于x 的方程()f x a =至少有两个不同实根, 则a 的取值范围是三、解答题(共6小题,75分,解答写出文字说明、证明过程或演算步骤)16.(本小题满分12分)设函数()e e x xf x -=-.(1)证明:()f x 的导数()2f x '≥;(2)若对所有0x ≥都有 f(x 2-1)<f(1),求x 的取值范围.17.(本小题满分12分)已知曲线f (x ) = a x 2 +2在x=1处的切线与2x-y+1=0平行 (1)求f (x )的解析式 (2)求由曲线y=f (x ) 与3y x =,0x =,2x =所围成的平面图形的面积。
广东省广州市执信中学2022-2023学年高二下学期5月月考数学试题
广东省广州市执信中学2022-2023学年高二下学期5月月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.某质量指标的测量结果服从正态分布()2
80,
N s,则在一次测量中()A.该质量指标大于80的概率为0.5
B.s越大,该质量指标落在()
70,90的概率越大
C.该质量指标小于60与大于100的概率相等
因为BNË平面PAD,ADÌ平面PAD,
所以//
BN平面PAD,
因为M,N分别为,
PC CD的中点,
所以//
MN PD,
因为MNË平面PAD,PDÌ平面PAD,
所以//
MN平面PAD,
又因为,
Ç=,
BN MNÌ平面BMN,BN MN N
所以平面PAD//平面BMN,
因为BMÌ平面BMN,
所以//
BM平面PAD
(2)取AD中点O,作//
OQ AB交BC于Q,连接PO,
因为PA PD
=,所以OP OA
^,
因为CD^平面PAD,,
OP OAÌ平面PAD,
所以,
⊥⊥,
CD OP CD OA
因为////
OQ AB CD,
所以,
⊥⊥,
OQ OA OQ OP
以O为坐标原点,{}
-,
,,
OA OQ OP为正交基底建立如下图所示的空间直角坐标系O xyz。
广东省广州市从化中学2013-2014学年高二数学下学期5月月考试题 理 新人教A版
从化中学2013--2014学年度第二学期5月考试高二级理科数学试卷本试卷分选择题和非选择题两部分,共4页,答卷共4页,总共8页. 满分150分,考试用时120分钟.第一部分 选择题(40分)一、选择题(每小题5分,共40分)1.复数iiz -+=23的虚部为( ) A . i B .1- C .1 D . i -2. 已知随机变量X 服从正态分布(, 4)N a ,且(1)0.5P X >=,则实数a 的值为3.412x x-()的展开式中常数项为 A .12 B .12-C .32D .32-4.若数列{}n a 的前n 项由流程图(如图)的输出依次 给出,则数列的通项公式n a =( )A 、1(1)2n n -B 、1(1)2n n +C 、1n -D 、n5.已知()f x =,若1230x x x <<<,则312123()()()f x f x f x x x x 、、的大小关系是( ) A 、312123()()()f x f x f x x x x <<B 、312132()()()f x f x f x x x x << C 、321321()()()f x f x f x x x x <<D 、321231()()()f x f x f x x x x <<6. 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 A.120个 B.80个 C.40个 D. 20个7.椭圆C :22221(0)x y a b a b+=>>,12,F F 分别是其左右焦点,点P 在椭圆上,若122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭ C .10,3⎛⎫ ⎪⎝⎭ D .10,3⎛⎤ ⎥⎝⎦8. 设函数2(0)()2(0)x bx c x f x x ⎧++≤=⎨ >⎩,若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =的解的个数为 ( )A .1B .2C .3D .4第二部分 非选择题(110分)二、填空题(每小题5分,共30分)9. 函数xe x xf )3()(-=的单调递增区间为 . 10.曲线0,x =x y sin =与直线,04x y π==所围成的封闭图形的面积为____________.11. 如图是一个几何体的三视图,则该几何体的 体积为 .12.21==,与的夹角为3π, 那么a b a b +⋅-=13. 设函数1(), 0()2(), 0xx f x g x x ⎧<⎪=⎨⎪>⎩ ,若()f x 是奇函数,则(2)g 的值是 .14. 设面积为S 的平面四边形的第i 条边的边长记为(1,2,3,4)i ai =,P 是该四边形内任意一俯视图正视图左视图(第10题图)点, P 点到第i 条边的距离记为i h ,若31241234a a a a k ====,则412()i i Sih k ==∑.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为i H ,相应的正确命题是 ;三、解答题(共80分,要求写出详细解答过程或证明过程)15.(本小题满分12分)某网络营销部门为了统计某市网友2013年11月11日在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图5(1)):不超过2千元的顾客定 义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.(1)试确定x ,y ,p ,q 的值,并补全频率分布直方图(如图5(2)).(2)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设ξ为选取的3人中“网购达人”的人数,求ξ的分布列和数学期望.16. (本小题满分12分)已知函数23()cos 3sin 2f x x x x =-+. (Ⅰ) 求函数)(x f 的最小正周期(Ⅱ)已知A B C ∆中,角C B A ,,所对的边长分别为c b a ,,,若)(=A f ,2,3==b a ,求ABC ∆的面积S .图5 (2)17.(本小题满分14分)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且13AD DB =,点C 为圆O上一点,且BC =. 点P 在圆O 所在平面上的正投影为点D ,PD DB =. (1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.18.已知数列{}n a 中,13a =,25a =,其前n 项和n S 满足()121223n n n n S S S n ---+=+≥,令11n n n b a a +=⋅.(1)求数列{}n a 的通项公式;(2)若()12x f x -=,求证:()()()121126n n T b f b f b f n =+++<(1n ≥)19.(本题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;第17题图20.(本题满分14分) 已知函数(1)()ln 1a x f x x a R x -=-∈+,.(Ⅰ)若2x =是函数()f x 的极值点,求曲线()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围;(Ⅲ)设,m n 为正实数,且m n >,求证:2ln ln nm n m n m +<--.2013-2014学年高二下学期5月考试 数学(理)试题 (参考答案)一、选择题: 1C 2 A 3 C 4B 5C 6 C 7 B 8C 二、填空题:9. ),2(+∞10.12-11.73π13.4-14. 若31241234S S S S K ====,则413()i i V iH K ==∑ 三、解答题:15解:(1)根据题意,有39151860,182.39153x y yx +++++=⎧⎪⎨=⎪+++⎩+ 解得9,6.x y =⎧⎨=⎩…………………2分0.15p ∴=,0.10q =.补全频率分布直方图如图所示. ………4分 (2)用分层抽样的方法,从中选取10人,则其中“网购达人”有210=45⨯人,“非网购达人”有310=65⨯人. …………………6分故ξ的可能取值为0,1,2,3;)03463101(0)6C C P C ξ=== , 12463101(1)2C C P C ξ===,21463103(2)10C C P C ξ===,30463101(3)30C C P C ξ===.…………………………10分所以ξ的分布列为:01236210305E ξ∴=⨯+⨯+⨯+⨯=. ……………………12分 16. 解:(Ⅰ)=)(x f 32cos 22x x +)3x π=+…4分则所以f(x )的最小正周期为π, ……………6分. (Ⅱ) 因为0)(=A f )03A π+=,解得3π=A 或π65=A ,又b a <,故3π=A ………………8分 由B b A a sin sin =,得1sin =B ,则2π=B ,6π=C , …………10分 所以23sin 21==C ab S . …………………………………12分17.(本小题满分14分)解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点,又∵AB 为圆O 的直径,∴AC CB ⊥, BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥. -----------------6分 (注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.)法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD D B =BC =得,3DB =,4AB =,BC =∴2BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,-----------------5分 由PD AO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴P A ⊥. -----------------6分 法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆BC =得,30ABC ∠=,设1AD =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即C⊥. -----------------3分∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD⊥,----------5分 由PD AO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴P A ⊥. -----------------6分(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE . -----------------7分由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB ,∴CD PB ⊥,又DE CD D =, ∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,-----------------9分∴DEC ∠为二面角C PB A --的平面角. -----------------10分由(Ⅰ)可知CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分.)∴PB =2PD DB DE PB ⋅===, ∴在Rt CDE ∆中,tan 2CD DEC DE ∠===,∴cos 5DEC ∠=C PB A --的余弦值为5.------14分法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别 为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系. ----------------8分(注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =BC =得,3PD DB ==,CD =, ∴(0,0,0)D,C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(CD =, 由CD ⊥平面PAB,知平面PAB的一个法向量为(CD =. -----------------10分设平面PBC 的一个法向量为(,,)x y z =n ,则PC PB ⎧⋅=⎪⎨⋅=⎪⎩nn ,即30330y y z -=-=⎪⎩,令1y=,则x =1z =, ∴,1)=n ,-----------------12分 设二面角C PB A --的平面角的大小为θ,则cos 5||5CD CD θ⋅===-⋅n |n |-----------------13∴二面角C PB A --的余弦值为5.-----------------14分18. 解:(1)由题意知()111223n n n n n S S S S n -----=-+≥即()1123n n n a a n --=+≥-------2分∴()()()112322n n n n n a a a a a a a a ---=-+-++-+-------3分()1221222225222212213n n n n n n ----=++++=++++++=+≥----5分检验知1n =、2时,结论也成立,故21n n a =+. -------7分(2)由于()()()()()()()11111212111111222212121212121n nn n n n n n n n b f n +-++++-+⎛⎫=⋅=⋅=- ⎪++++++⎝⎭ -------10分 故()()()1222311111111122121212122121n n n n T b f b f b f n +⎡⎤⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦---------12分1111111212212126n +⎛⎫=-<⋅= ⎪+++⎝⎭. ---------14分19.(本题满分14分)(1)解:依题意可得(1,0)A -,(1,0)B .………………1分设双曲线C 的方程为2221y x b-=()0b >,=,即2b =.所以双曲线C 的方程为2214y x -=. …………………………………6分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+, ………………………………………7分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩……………………………………………8分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+. ……………………………10分 同理可得,21244k x k +=-. …………………………………………………12分所以121x x ⋅=. ……………………………………………………………14分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+. ……………………………………………7分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++. ……………8分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-. …………………………………10分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++. …………………………12分 所以121x x ⋅=. ……………………………………………………14分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++, ……………6分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩……………………………………8分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++. ……………………………………10分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=. ……………………………………………14分20.(本题满分14分) 解: (Ⅰ)21(1)(1)()(1)a x a x f x x x +--'=-+2222(1)2(22)1.(1)(1)x ax x a x x x x x +-+-+==++由题意知'(2)0f =,代入得94a =,经检验,符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省平遥县和诚高考补习学校2017-2018学年高二数学5月月考试
题 理
一、选择题(本大题共12小题,每小题5分,共60分)
1.我国第一艘航母“辽宁舰”在某次舰载机起降 飞行训练中,有5架舰载机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有( )
A .12种
B .18种
C .24种
D .48种
2. (x 2+x +y )5的展开式中,x 5y 2的系数为( )
A .10
B .20
C .30
D .60
3.设f (x )=(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)3-10(2x +1)2+5(2x +1)-1,则f (x )等于( )
A .(2x +2)5
B .2x 5
C .(2x -1)5
D .(2x )5
4.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )
A .12种
B .18种
C .24种
D .36种
5.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选的不同选法有16种,则小组中的女生数为( )
A .2人
B .3人
C .4人
D .5人
6.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=
1)=1645
,且该产品的次品率不超过40%,则这10件产品的次品率为( )
A .10%
B .20%
C .30%
D .40%
7.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A .0.648
B .0.432
C .0.36
D .0.312
8. 在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率的取值范围是( )
A .[0.4,1)
B .(0,0.6]
C .(0,0.4]
D .[0.6,1)
9.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的件数,则D(X)等于
( )
A. B. C. D.
10.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A .0.8
B .0.75
C .0.6
D .0.45
11.签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为 ( )
A .5
B .5.25
C .5.8
D .4.6
12.考查正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )
A.175
B.275
C.375
D.475
二、填空题(本大题共4小题,每小题5分,共20分)
13.某处有供水龙头5个,调查表示每个水龙头被打开的可能性均为110
,3个水龙头同时被打开的概率为________.
14.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.
15.9192被100除所得的余数为________. 16.设a ≠0,n 是大于1的自然数,⎝ ⎛⎭
⎪⎫1+x a n
的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.。