五年级奥数题:图形的计数

合集下载

五年级下册数学奥数试题——几何计数

五年级下册数学奥数试题——几何计数

五年级下册数学奥数试题——几何计数
第9讲几何计数
一、知识点
几何计数,就是数几何图形的个数.常用的方法是枚举法,一般要按照一定的顺序来枚举,注意寻找规律,做到不重复不遗漏.要多观察,思考,分析中总结归纳出解决问题的规律和方法.
二、典型例题
例1 下列图形中各有多少个三角形?
练习1下图中各有多少个三角形?
例2 下图中共有多少个三角形?
练习2 如图中共有多少个三角形?
例3 下列图形中,分别有多少个正方形?
练习3 围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形?
例4 图中(下列各题中,长方形都包括正方形)
(1)一共有多少个长方形?
(2)包含数字“1”的长方形共有多少个?
(3)包含数字“2”的长方形共有多少个?
练习4 如图,一个长为9,宽为4的长方形网格,每一小格都是一个正方形.那么:(1)一共有多少个长方形?
(2)包含“√”的长方形有多少个?
例5 图中共有多少个长方形?(长方形包括正方形)
例6 图中有多少个平行四边形?
1
2
√。

五年级上册数学试题-奥数:图形定稿全国通用

五年级上册数学试题-奥数:图形定稿全国通用

(2)
3
例 6.如图,从甲地到乙地有 2 条路可走,从乙地到丙地有 3 条路可走;从甲地到丁地有 4 条路可走, 从丁地到丙地有 2 条路可去。从甲地到丙地共有多少种不同的走法?
【试一试】 1、如果线段 AB 上共有 8 个点(包括 A、B 两点),那么,共有多少条线段?
2、联结 A、B、C、D 四个城市的道路如图所示: (1)从 A 城经 B 城到 C 城的不同走共有多少种? (2)从 A 城到 C 城的不同走法共有多少种?
厘米?
AE
FB
D H
【试一试】
GC
1、求出阴影部分的周长。
2、如右图,阴影部分是正方形,求出最大的长方形的周长。
5 厘米
A
B
E
H
7 厘米
C
D
E
G
当堂测试
1、下图是一个锯齿状的零件,每一个锯齿的两条线段都长 2 厘米,求这个零件的周长.
2、求图 12、图 13 的周长。
3、图 14 是一座楼房的平面图,这座楼房平面图的周长是多少米?
例 1.一个等腰三角形中,有一个内角的度数是另一个内角的 4 倍,则这个等腰三角形的顶角是 _________度。
【试一试】
1、17 点整,钟面上的分针和时针所组成的角是( )。
A、锐角
B、直角
C、钝角
D、平角
2、在直角、锐角、平角、钝角中,度数最小的角是( )。
A、 直角
B、锐角
C、平角
D、钝角
3、在一个直角三角形中,已知一个锐角是 68°,则另一个锐角是( )。
能力测试(一)…………………………………………………………………25
第六讲
割补 …………………………………………………………28

五年级奥数-数图形.

五年级奥数-数图形.

练习2.数一数,下图中有多少个三角形?
12 3 4
1 234 5
(4+3+2+1)×2=20 个
(5+4+3+2+1)×3=45 个
例4.数一数,下图中有多少个角?
1
11
2
3
4
2
4+3+2+1=10 个
拓展1. 数一数,下图中有几个三角形?
拆除2条红线和蓝绿线后有三角 形 14个 2条红线返回后增加6个三角形
绿线返回后增加10个三角形
蓝线返回后增加14个三角形
还可以这样数: 单个三角形 16个 2个三角形组合16个 4个三角形组合8个
8个三角形组合4个
总共16+16+8+4=44 个
总共14+6+10+14= 44个
拓展2、数出下面图形中分别有多少个三 角形?
红线退出后有3个三角形。 红线返回后有增2个三角形。
20 16 8
20+16+8+4= 48 个
数一数,图中有多少个正方形?
51
5+4+1= 10 个
数一数,图中有多少个长方形?
3 13 3
20 3+3+3+1=

设想大 长方形消失 则有15+10-1=24个
还原大长方形则增4

总共24+4总= 共282个8个
数一数,下图中有多少个三角形?
还可以这样数:
线段总数=端点数×基本线段数÷2
数线段:方法二
31542
共5+4+3+2+1= 15条线段

小学奥数 图形计数 知识点+例题+练习 (分类全面)

小学奥数 图形计数 知识点+例题+练习 (分类全面)

一、图形计数
要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。

首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。

例1、数出下图中有多少条线段?
巩固、数出下图中有几个长方形?
例2、数出图中有几个角?
D A B
C O
D C
B
A
巩固、数出图中有几个角?
例3、数出下图中共有多少个三角形?
巩固、数出图中共有多少个三角形?
例4、数出下图中有多少个长方形?
O C B A
P
C B A K G I H G F E A
D C B A
巩固、数出下图中有多少个正方形?
课后练习:
1、数出下图中有多少条线段?
2、数出图中有几个角?
E
A B C D E D
O
C B A
3、数出图中共有多少个三角形?
4、数出下图中有多少个长方形?
A
B A D
C B A。

小学五年级奥数 第五讲 数数图形

小学五年级奥数  第五讲  数数图形
思路分析: 长边共有线段:6+5+4+3+2+1=21(条) 宽边上有线段:4+3+2+1=10(条) 组成的长方形有:21×10=210(个) 小正方的个数:6x4+5x3+4x2+3x1=50(个)
例题精讲4
从广州到北京的某次快车中途要停靠8个大站,铁路 局要为这次快车准备多少种不同的车票数 第五讲 数数图形
第五周 数数图形
专题简析:
我们在数数的时候,遵循不重复、不 遗漏的原则,不能使数出的结果准确 。但是在数图形的个数的时候,往往 就不容易了。分类数图形的方法能够 帮助我们找到图形的规律,从而有秩 序、有条理并且正确地数出图形的个 数。
例题1 数一数,下面图形中有多少个 长方形?
=40+72+96+112+120+120+112+96+72+40 =880(厘米) 答:所有线段长度的总和是880厘米。
结束语:
• 学习是为有准备的人,在成功的道 路上铺就的基石。
谢谢!
举一反三2
2
1

3 、
2x2+1 =4+1 =5(个)
4×4+3x3+2x2+1x1
=16+9+4+1 =30(个)
5x5+4x4+3x3+2x2+1x1 =25+16+9+4+1 =41+9+4+1 =50+5 =55(个)
例题精讲3
数一数下图中有多少个正方形?
思路导航:小正文形有: 3×2=6(个),四个小正方形 组成的有:2×1=2(个)。所 以有3×2+2×1=8(个)

五年级奥数题:图形的计数

五年级奥数题:图形的计数

6I图形的计数1段. 2. 的边A 1A 12OA 2,OA 3,_____个三角形3. 4. 5. 数一数(1)(2)(2)6. 7. ),如果用线绳围正方形,最多可以围出_____个.8. 一块相邻的横竖两排距离都相等的钉板,上面有4⨯4个钉(如下左图).以每个钉为顶点,你能用9. 如下左图_____个.10. 数一数.二、解答题11. 如下左图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比. 12. 134厘米、8厘米、914.将ABC ∆的每一边4等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?———————————————答 案—————————————————————— 1.30由例1注可知图形中每边有3+2+1=6(条)线段,因此整个图形中共有6⨯5=30条线段. 2. 371A 6A 12分解成以OA6为公共边的两个三角形1A 6中共有5+4+3+2+1=15(个)三角形, OA 6A 12中共6+5+4+3+2+1=21(个)三角形,这样,图中共有15+21+1=37(个)三角形. 3. 15这样的问题应该通过分类计数求解.此题中的三角形可先分成含顶点C 的和不含顶点C 的两大类.含顶点C 的又可分成另外两顶点在线段AB 上的和在线段BD 上的两小类.分类图解如下:,每行都有6⨯3=18(个)梯形. 5. 108,36(1)因为长方形是由长和宽组成的,因此可分别考虑所有长方形的长和宽的可能种数.按照前面所介绍的线段的计数方法可分别求出长和宽的线段条数,将它们相乘就是所有长方形的个数.因为AB 边上有8+7+6+…+2+1=289⨯=36条线段,AD 边上有2+1=3条线段,所以图中一共有36⨯3=108个长方形.(2)三角形一共有6行,每行都有3+2+1=6(个),所以一共有6⨯6=36(个)三角形. 6. 30由例5注可知整个图形中共有12+22+32+42=30个正方形. 7. 50此类问题一般用分类方法计数.对正方形的边长分八类计数如下: 边长为AB 的正方形有16个; 边长为AC 的正方形有9个; 边长为AD 的正方形有4个; 边长为AE 的正方形有1个; 边长为DF 的正方形有9个; 边长为CF 的正方形有8个; 边长为BF 的正方形有2个; 边长为CG 的正方形有1个. 所以,最多可围出50个正方形. 8. 44因为正方形是特殊的长方形,所以可以把正方形看成长方形,这样就不必分别求正方形和长方形的个数,仍用分类计数的方法求解.先考虑有一组对边平行于BC 的长方形有多少个.这一类按其水平边的位置可分为6小类,即位置在BF 、FE 、EC 、FC 、BE 、BC .同样,其竖直边也分为6类.所以这一类有6⨯6=36个长方形.2个长方形..所以,共有9+4+2+4+2=2110. 30将原立体图形从左至右分类计算,共有11+7+5+7=30个.11. 白色小三角形个数=1+2+3+ (6)26)61(⨯+=21, 黑色小三角形个数=1+2+3+…+7=27)71(⨯+=28,所以它们的比=2821=43.12. 解法一本图中三角形的个数为(1+2+3+4)⨯4=40(个).下面求梯形的个数.梯形由两底唯一确定.首先在AB ,CD ,EF ,MN 中,考虑两底所在的线段,共有(4⨯3)÷2=6(种)选法;对上述四条线段中确定的两条线段,共有10(10=4+3+2+1)个梯形.共60个梯形.故所求差为20.解法二在图4个三角形,6个梯形,梯形比三角图形图形多2个.而在题图中,这种恰有10个.故题图中,梯形个数与三角形的个数之差为2⨯10=20(个).13. 边长2厘米的正方形:2⨯2=4(个) ……红色 边长4厘米的正方形(4-1)⨯4=12(个) ……红色 (4-2)⨯(4-2)=4(个) ……白色 边长8厘米的正方形(8-1)⨯4=28(个) ……红色 (8-2)⨯(8-2)=36(个) ……白色 边长9厘米的正方形(9-1)⨯4=32(个) ……红色 (9-2)⨯(9-2)=49(个) ……白色 所以,红色小正方形共有 4+12+28+32=76(个) 白色小正方形共有 4+36+49=89(个)[注]本题的要求是由边长为1厘米的红色和白色两种正方形,分别组成边长是2厘米,4厘米,8厘米,9厘米的大小不同的正方形,可以看作方阵问题来解.四周的小正方形是涂红色的,可看成是空心方阵,因此,涂红色正方形的个数等于4⨯(n-1).其他小正方形是涂白色的,可当作实心方阵,所以,涂白色的正方形的个数等于(n-2)⨯(n-2).比如,由边长为1厘米的正方形组成边长为9厘米的正方形,涂红色的小正方形的个数是:4⨯(9-1)=32(个),涂白色的小正方形的个数是:(9-2)⨯(9-2)=49(个).14. 将平行四边形分为三类:①尖角在上、下方;②尖角在左下、右上方;③尖角在左上、右下方.就第③类而言: 型6个;型3个,与其对称的3个;型1个,与其对称的1个;型1个;共15个.同理,第②、①类也分别含15个,故上述三类平行四边形共45个.[注]这样数平行四边行,很麻烦,又易出错.我们试图找到一种对应关系:先考虑任一边不与BC平行的平行四边形,延长各边必与BC有4个交点,特殊情况下,第二个交点与第三个交点重合;反过来,BC上的任意四点或三点决定一个平行四边形,也就是说,边不与BC平行的平行四边形的个数与BC上的四交点组和三交点组的数目一样多。

五年级高斯奥数之几何计数含答案

五年级高斯奥数之几何计数含答案

第6讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?4.如图104和10-5,数一数,两个图形中分别有多少个三角形?5.如图10-6,在一个4x4的方格表中,共有多少个正方形?6.如图10-7,数一数图中一共有多少条线段?多少个矩形?7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?拓展篇1.如图10-12,数一数,图中有多少个三角形?2.如图10-13,数一数下面的三个图形中分别有多少个三角形.3.如图10-14,数一数,图中有多少个三角形?4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?7.如图10-18,数一数,图中共有多少个长方形?8.如图10-19,数一数,图中共有多少个平行四边形?9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?2.如图10-25,数一数,图中共有多少个三角形?3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?第10讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?解:1,4+3+2+1=10段2,4×1+3×2+2×3+1×4=20厘米2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?解:1,(1+2+3+4)×3=30根2,(1+3+5+7)+(1+2+3+1)+(1+2)+1=27个3,27-2-2-1=22个3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?解:1+4+1=6个4.如图104和10-5,数一数,两个图形中分别有多少个三角形?解:5+4+1+1+1=12个6×2+10×2=28个5.如图10-6,在一个4x4的方格表中,共有多少个正方形?解:42+32+22+12=30个6.如图10-7,数一数图中一共有多少条线段?多少个矩形?解:C53×4+C42×5=70条C52×C42=60个7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?解:C52×C42-C52×4=208.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?解:4×6+2×12=48个9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?解:C123-4×3-4-4=200个10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、F、G为顶点且面积为1的三角形共有多少个?解:3×2+4+2+1=13个拓展篇1.如图10-12,数一数,图中有多少个三角形?解:25+10+6+3+1+3=48个2.如图10-13,数一数下面的三个图形中分别有多少个三角形.解:10+4×5+5=35个35-6=29个35+6×2=47个3.如图10-14,数一数,图中有多少个三角形?解:35×2+3×5=85个4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)解:7+2+2+2+3+1=17个5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?解:4×4+3×3+2×2+1×1=30个6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?解:C102×C52=450个2×3×4×6=144个7.如图10-18,数一数,图中共有多少个长方形?解:15×6+21×3-6×3=135个8.如图10-19,数一数,图中共有多少个平行四边形?解:6×3+15+3×2+3+3=45个9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?解12×2+4×2+6×2+2+8+2=5610.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?解:9+4×2+2×2=21个11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?解:10+10+10+5+1=36个12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?解:6×7+8×2+8+4=70个超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?解:等边有:9+3+1+2=15个等腰有:3+2×6+6+3=24个共39个2.如图10-25,数一数,图中共有多少个三角形?解:C72×2+C31×2×4+1=67个3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?解:2×1×3×5=30个3×4×6+4×2×5×3-3×2×5=162个4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?解:4×4=16个5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?解:12×(4+3+2+1)=120个6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?解:4×8+4×4+2×3+4×2+1=63个7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?解:4×6+8×(3+1+3+1)+4×(3+3+2+5+2)=148个8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?解:(1)4个(2)4×10+2×4=48个(3)6×8+4×4+8+4×4+4=92个。

小学奥数第五讲:图形的计数

小学奥数第五讲:图形的计数

小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。

在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。

例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。

可以采用数数的方法,按顺序数。

也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。

解:方法一:一个一个地数出8个正方体。

方法二:2×4=8(个)答:共有8个小正方体。

例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。

问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。

只有“粘在一起的”面没有涂色。

中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。

解:(1)2面涂成红色的小正方体只有1个。

(2)4面涂成红色的小正方体有4个。

(3)5面涂成红色的小正方体有4个。

例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。

应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。

解:10+10+1=21(个)答:共写21个。

例5:27个小方块堆成一个正方体。

如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。

3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。

五年级奥数第5周数数图形ppt课件

五年级奥数第5周数数图形ppt课件
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
A
B
D
C
长边AB上一共有1+2=3条线段
数一数下图中有多少个长方形?
A
B
D
C
长边AB上一共有1+2=3条线段
数一数下图中有多少个长方形?
A
B
D
C
长边AB上一共有1+2=3条线段
数一数下图中有多少个长方形?
A
B
D
C
长边AB上一共有1+2=3条线段
宽边AD上一共有1+2+3=6条 线段
因此,这个图中共有长方形 3×6=18个
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
数长方形的个数可以用公式:
长边上的线段数×宽边上的线段数=长方形的个 数
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

图形的计数

图形的计数

图形的计数
【知识要点】
数图形常用的方法有按顺序数和分类数两种.但不管用哪一种方法都要把所要计算的对象一一列举出来,以保证数时无一重复、无一遗漏,然后计算其总和.
【典型例题】
例1 数一数下图中线段的总条数.
例2 数一数图中有多少个锐角?
例3 数一数,图中有多少个三角形?
例4 数一数图中长方形的个数以及梯形的个数.
例5 数出图中有多少个三角形?
例6 数一数下图中有()个三角形.
例7 图中共有()个平行四边形.
图形的计数〈精练〉1.数一数下面的图形中有多少条线段.
2.数一数图中共有多少个角?
3.数一数图中有多少个三角形?
4.数一数图中有多少个长方形?
5.下图中有()个正方形?
6.下图是一个6×3的长方形,其中每个小方格都是1×1的正方形.那么,图中共有()个正方形.
图形的计数〈作业〉
姓名成绩
1.数一数图中有多少个梯形或平行四边形?
2.下图中各有多少个三角形?
3.求下图各有多少个正方形?
4.数一数,下图中有()个长方形.
5.数一数下图中有()个三角形.。

奥数专题之图形计数

奥数专题之图形计数

奥数专题之图形计数
关于奥数专题之图形计数
1.数一数,下图中有多少个正方形?
2.数一数,下图中有多少个正方形?
3.数一数,下图中含有两个“※”的长方形(包括正方形)有多少个?
4.用橡皮筋在右图中的钉阵中围正方形,你能围出多少个正方形?
5.有20个钉子如下图摆放,以钉子为顶点的.正方形有多少个?
6.数一数,下图中的大小正方体一共有多少个?
7.数一数,下图中的大小正方体一共有多少个?
8.数一数,下图中的不是正方体的长方体一共有多少个?
9.有一个棱长为3厘米的正方体,在它的表面涂满红色后,切割成棱长为1厘米的小正方体,切开部分为白色,问在切开的小正方体中,3面是红色、2面是红色、1面是红色、全部是白色的小正方体各有多少个?。

五年级奥数讲义 几何计数

五年级奥数讲义  几何计数

几何计数1.下图中一共有多少个矩形?172.下图中一共有多少个平行四边形?453.下图中有多少个三角形?1354.下面两图中分别有多少个三角形?29;475.下图中一共有多少个三角形?396.如下图,在半圆弧及其直径上共有9个点.以这些点为顶点可以画出多少个三角形?可以画出多少个四边形?80;1057.方格纸上放了28枚棋子,以这些棋子为顶点,一共可以连出多少个正方形?318.下图是一个8×4的矩形网格,每一个小格都是正方形.请问:(1) 恰好包含两个“★”的矩形共有多少个?(2) 至少包含一个“★”的矩形有多少个?(3) 恰好包含一个“★”的矩形有多少个?(4) 不包含“★”的矩形有多少个?30;162;132;1989.下面两图都是矩形网格,请求出:(1) 两图中各有多少个矩形.(2) 两图中各有多少个包含“★”的矩形.546,570;184,19210.如下左图所示,有两条平行线,如果每条直线上有3个点,连出3条线段,从图中最多可以数出5个三角形;如下中图所示,如果每条直线上有4个点,连出4条线段,从图中最多可以数出16个三角形.(1) 如果每条直线上有10个点,连出10条线段,从图中最多可以数出多少个三角形?(2) 下右图中一共有多少个三角形?210;1611.下图中一共有多少个三角形?6712.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就称这个图形为曲边形,例如圆、半圆、扇形等都是曲边形.在下图中,一共有多少个不同的曲边形?3613.如下图,用12个点将圆周12等分.以这些点为顶点的梯形共有多少个?12014.下左图是一个等边三角形点阵,下右图是一个正方形点阵.以这些点为顶点,分别可以画出多少个等腰三角形(包括等边三角形)?39;14815.如下图,在3×3的方格表内,每个小正方形的面积均为1.请问:(1) 以格点为顶点一共可以连出多少个面积为4的三角形?(2) 以格点为顶点一共可以连出多少个面积为3的三角形?(3) 以格点为顶点一共可以连出多少个面积为1.5的三角形?4;48;92。

小学五年级奥数课件:数数图形

小学五年级奥数课件:数数图形
小学五年级奥数举一反三版
第5周 数数图形
例1:数一数下图中有多少个长方形?
A
B
D
C
数一数下图中有多少个长方形?
A
B
D
Cபைடு நூலகம்
数一数下图中有多少个长方形?
A
B
D
C
长边AB上一共有1+2=3条线段
数一数下图中有多少个长方形?
A
B
D
C
长边AB上一共有1+2=3条线段
数一数下图中有多少个长方形?
A
B
D
C
1、
2、
3、
2×2+1×1=5 16+9+4+1=30 25+16+9+4+1=55
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
宽边AD上一共有1+2+3=6条 线段
因此,这个图中共有长方形 3×6=18个
数长方形的个数可以用公式:
长边上的线段数×宽边上的线段数=长方形的个 数
举一反三1
数数下面图形中分别有几个长方形?
1、
2、
10×6=60
3、
3×10=30
3+2+2=7
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)
例2 数一数下面图形中有多少个正方形?(每个小方格为 边长为1个长度单位的小正方形)

奥数-05图形计数+答案

奥数-05图形计数+答案
单层长方形的数量=长边上的线段数 4+3+2+1=10(个) 单列长方形的数量=宽边上的线段数 2+1=3(个) 总个数=长边上的线段数×宽边上的线段数 10×3=30(个) 练习六 下图中各有几个长方形?
( )个
( )个
4
( )个
【例 7】
下图中各有多少个三角形?
分层法: 上 层: 下 层: 上下层: 总 数:
下图中,有多少个正方形?
解析:利用开小火车法: 火车头为最小正
5
练习一 下图中,有多少个正方形?
1、
2、
3、
( )个
( )个
( )个
【例 2】
下图形中,长方形有多少个? 解析,先将<格 1>与<格 2>隐去,剩下的
练习一
2
【例 2】 数出右图中共有多少条线段。 解析:(加法原理)从基本图形(只包含
最短线段)的个数出发,按序递增,依次数 出它们的个数,并求出它们的和是多少。最 小线段(基础线段)的数量为火车头,有 3
条,由两条基础线段拼成的线段有 2 条,由三条基础线段拼成的线段有 1 条,共有 3+2+1=6(条)。
练习七 下列图形中各有多少个三角形?
按分类加法原理
4+3+2+1=10(个) 4(个) 4+3+2+1=10(个) 10+4+10=24(个)
【例 8】 下图中有多少个三角形? 解析:假设每一个最小三角形的边长为 1。按边
的长度来分类计算三角形的个数。 边长为 1 的三角形,从上到下一层一层地数,有
一、图形计数方法——分类计数法
它是指先把所要计数的对象按性质、特点进行分类,统计出每一类的个数,再求 各类之和。分类计数的理论基础是“加法原理”。
运用加法原理的关键问题:确定分类的方法。 举例:下图中共有多少个图形? 可以分成圆、正方形、三角形和长方形 4 类,统计出各类的个数,再相加。也可 以按位置分上、中、下分别统计,再求和。

五年级奥数专题 几何计数(学生版)

五年级奥数专题 几何计数(学生版)

学科培优数学“几何计数”学生姓名授课日期教师姓名授课时长知识定位在数学竞赛试题中,经常出现一些几何计数问题,所谓几何计数是指计算满足一定条件的图形的个数.它的内容比较新颖有趣,为了准确计数,必须要有一套计数的方法,否则越数头绪越杂乱,很难得出准确的结果.本讲将较系统地介绍初中数学中所使用的一些计数方法.学习计数方法不仅仅使我们获得一定的数学知识和方法,更重要的是使我们感受到数学中的一些重要思想的运用,如数形结合思想、分类讨论思想和转化的思想,分类讨论思想在这里尤其突出,我们所使用的所有计数方法都离不开分类.知识梳理一、数线段如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条二、数角数角与数线段相似,线段图形中的点类似于角图形中的边。

以OA为一条边的角有: E D∠AOB ∠AOC ∠AOD ∠AOE共4个C同样还有:∠BOC,∠BOD,∠BOE共3个 B∠COD ,∠COE共2个 A ∠DOE共1个合计有4+3+2+1=10(个)三、数三角形可用数线段的方法数如图所示的三角形(对应法)因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形。

四、B M C线段AM与AE对应着长方形AMPE,AM与AG对应着长方形AMQG,AM与AB对应着长方形AMNBAM与EG对应着长方形EPQG,AM与EB对应着长方形EPNB, AM与GB对应着长方形GQNB.就是说AM与AB边的6条线段都分别对应着一个长方形,共6个长方形AD边上共有3条线段,其余两条线段AD和MD也都分别对应着6个长方形,所以共有3×6=18个长方形一般的,类似于这样的长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个五、染色问题在数学竞赛中很多问题要进行分类讨论,对所研究的对象进行“染色”,“染色”实质上是分类的一种形象化的表示,利用“染色”,可以将题中某些隐蔽的条件暴露出来,从而使问题得到简明的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备 欢迎下载
图形的计数
一、填空题
A 12
1.如下左图中一共有( )条线
段.
O
A 11 A 10
A 9
A 8
A 1
A 2
A 3 A 4
A 5
2. 如上右图,O 为三角形 A 1A 6A 12 的边 A 1A 12 上的一点,分别连结
OA 2,OA 3,…OA 11,这样图中共有_____个三角形. 3. 如下左图中有_____个三角形.
A
D
A 7 A 6
B
4. 如上右图中共有_____个梯形.
5. 数一数
(1)一共有( )个长方形. (2)一共有( )个三角形.
C
D C A
6. 如下左图中,所有正方形的个数是______.
B
(1) (2)
A P O N
M
B Q X W
L
C
R Y V
K
D
S T
U
J E
F
G H
I
7. 在一块画有 4 ⨯ 4 方格网木板上钉上了 25 颗铁钉(如上右图),如果用线绳围正方形,最多可 以围出_____个.
8. 一块相邻的横竖两排距离都相等的钉板,上面有 4 ⨯ 4 个钉(如下左图).以每个钉为顶点,你 能用皮筋套出正方形和长方形共_____个.
9. 如下左图,方格纸上放了 20 枚棋子,以棋子为顶点的正方形共有_____个.
10. 数一数, 如上右图是由_____个小立方体堆成的.要注意那些看不见的.
二、解答题
11. 如下左图中共有 7 层小三角形,求白色小三角形的个数与黑色小三角形的个数之比.
O
1
2
A B
4
3
C D
5
6 E F
7
M
N
12. 如上右图中,AB 、CD 、EF 、MN 互相平行,则图中梯形个数与三角形个数的差是多少?
13.现在都是由边长为 1 厘米的红色、白色两种正方形分别组成边长为 2 厘米、4 厘米、8 厘 米、9 厘米的大小不同的正方形、它们的特点都是正方形的四边的小正方形都是涂有红颜色 的小正方形,除此以外,都是涂有白色的小正方形,要组成这样 4 个大小不同的正方形,总 共需要红色正方形多少个?白色正方形多少个?
14.将 ABC 的每一边 4 等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?
———————————————答 案——————————————————————
1. 30
由例 1 注可知图形中每边有 3+2+1=6(条)线段,因此整个图形中共有 6 ⨯ 5=30 条线段. 2. 37
将 A 1A 6A 12 分解成以 OA 6 为公共边的两个三角形. OA 1A 6 中共有 5+4+3+2+1=15(个)三角形,
OA 6A 12 中共有 6+5+4+3+2+1=21(个)三角形,这样,图中共有 15+21+1=37(个)三角形.
3. 15
这样的问题应该通过分类计数求解.此题中的三角形可先分成含顶点 C 的和不含顶点 C 的两大类.含
顶点 C 的又可分成另外两顶点在线段 AB 上的和在线段 BD 上的两小类.分类图解如下:
A A
A
D
B
C
D
B
B C
C
B
D
所以原图有
(3+2+1)+(3+2+1)+3 =15(个)三角形. 4. 18
梯形一共有三行,每行都有 3+2+1=6(个),所以一共有 6 ⨯ 3=18(个)梯形. 5. 108,36
(1)因为长方形是由长和宽组成的,因此可分别考虑所有长方形的长和宽的可能种数.按照前面所介绍
的线段的计数方法可分别求出长和宽的线段条数,将它们相乘就是所有长方形的个数.
因为 AB 边上有 8+7+6+…+2+1= 9 ⨯ 8
2
=36 条线段,AD 边上有 2+1=3 条线段,所以图中一共有 36 ⨯ 3=108
个长方形.
(2)三角形一共有 6 行,每行都有 3+2+1=6(个),所以一共有 6 ⨯ 6=36(个)三角形. 6. 30
由例 5 注可知整个图形中共有 12+22+32+42=30 个正方形. 7. 50
此类问题一般用分类方法计数.对正方形的边长分八类计数如下:
边长为 AB 的正方形有 16 个; 边长为 AC 的正方形有 9 个; 边长为 AD 的正方形有 4 个; 边长为 AE 的正方形有 1 个; 边长为 DF 的正方形有 9 个; 边长为 CF 的正方形有 8 个; 边长为 BF 的正方形有 2 个; 边长为 CG 的正方形有 1 个. 所以,最多可围出 50 个正方形.
B
C
8. 44
因为正方形是特殊的长方形,所以可以把正方形看成长方形,这样就不必分别求正方形和长方形的个
数,仍用分类计数的方法求解.
先考虑有一组对边平行于 BC 的长方形有多少个.这一类按其水平边的位置可分为 6 小类,即位置在
BF 、FE 、EC 、FC 、BE 、BC .同样,其竖直边也分为 6 类.所以这一类有 6 ⨯ 6=36 个长方形.
A
D
F
E
另一类是没有边平行于 BC 的.这一类又分类两小类,分解图如下页图所示,其中分别有 6
个和 2 个长方形.
所以,一共可套出正方形和长方形 36+6+2=44 个. 9. 21
以正方形的面积大小分类计数.
设相邻两点的距离为 1,则正方形面积为 1 的有 9 个; 面积为 2 的有 4 个; 面积为 5 的有 2 个; 面积为 8 的有 4 个; 面积为 13 的有 2 个;
所以,共有 9+4+2+4+2=21 个正方形. 10. 30
将原立体图形从左至右分类计算,共有 11+7+5+7=30 个.
11. 白色小三角形个数=1+2+3+…+6= (1 + 6) ⨯ 6
2
=21,
(1 + 7) ⨯ 7
黑色小三角形个数=1+2+3+…+7= =28,
2
3学习必备欢迎下载
所以它们的比=21
=. 284
12.解法一
本图中三角形的个数为(1+2+3+4)⨯4=40(个).下面求梯形的个数.梯形由两底唯一确定.首先在AB,CD,EF,MN中,考虑两底所在的线段,共有(4⨯3)÷2=6(种)选法;对上述四条线段中确定的两条线段,共有10(10=4+3+2+1)个梯形.共60个梯形.故所求差为20.
解法二
在图中可数出4个三角形,6个梯形,梯形比三角图形图形多2个.而在题图中,这种恰有10个.故题图中,梯形个数与三角形的个数之差为2⨯10=20(个).
13.边长2厘米的正方形:
2⨯2=4(个)……红色
边长4厘米的正方形
(4-1)⨯4=12(个)……红色
(4-2)⨯(4-2)=4(个)……白色
边长8厘米的正方形
(8-1)⨯4=28(个)……红色
(8-2)⨯(8-2)=36(个)……白色
边长9厘米的正方形
(9-1)⨯4=32(个)……红色
(9-2)⨯(9-2)=49(个)……白色
所以,红色小正方形共有
4+12+28+32=76(个)
白色小正方形共有
4+36+49=89(个)
[注]本题的要求是由边长为1厘米的红色和白色两种正方形,分别组成边长是2厘米,4厘米,8厘米,9厘米的大小不同的正方形,可以看作方阵问题来解.四周的小正方形是涂红色的,可看成是空心方阵,因此,涂红色正方形的个数等于4⨯(n-1).其他小正方形是涂白色的,可当作实心方阵,所以,涂白色的正方形的个数等于(n-2)⨯(n-2).比如,由边长为1厘米的正方形组成边长为9厘米的正方形,涂红色的小正方形的个数是:4⨯(9-1)=32(个),涂白色的小正方形的个数是:(9-2)⨯(9-2)=49(个).
14.将平行四边形分为三类:①尖角在上、下方;②尖角在左下、右上方;③尖角在左上、右下方.
就第③类而言:型6个;型3个,与其对称的3个;
型1个,与其对称的1个;型1个;共15个.同理,第②、①类也分别含15个,故上述三类平行四边形共45个.
[注]这样数平行四边行,很麻烦,又易出错.我们试图找到一种对应关系:先考虑任一边不与BC平行的平行四边形,延长各边必与BC有4个交点,特殊情况下,第二个交点与第三个交点重合;反过来,BC上的任意四点或三点决定一个平行四边形,也就是说,边不与BC平行的平行四边形的个数与BC上的四交点组和三交点组的数目一样多。

由于BC上有5个交点,其中可构成5个4点组;10个3点组,即边不平行于BC的平行四边形有15个。

同理分别考虑边不平行AB、CD的平行四边行。

由此可知,共有45个平行四边形。

学习必备欢迎下载。

相关文档
最新文档