高一数学课件:人教版高一数学上学期第一章第1.1节集合-(1).PPT
合集下载
高一数学必修一全套课件 PPT课件 人教课标版1
思考2:对于一个给定的集合A,那么某元素a与集合A 有哪几种可能关系?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)
(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高一数学:人教版高一数学上学期第一章) PPT课件 图文
其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
高中数学第一章 1.1.1 第一课时 集合的含义优秀课件
3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.
高一数学必修一 第一章综合 教学课件PPT
(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
高一数学集合ppt课件.pptx
第一节 集合
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
1.1.1 集合的含义与表示
• 1.集合与元素的定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,通常用大写拉丁字母A,B,C等表
示集合,用拉丁小写字母a,b,c等表示集合中的元素。如果a是A中的元素,就表示为a∈A,读作a属于A, 反之a∉A,读作a不属于A * 2.集合的三要素: 1、确定性,集合中的元素是确定的,要么在集合中要么不在,二者必居其一;(判断是否能组成集合的 方法) 2、互异性,集合里相同的元素不允许重复出现,比如{a,a,b,b,c,c}是错误的写法,应该写成{a,b,c}.(警示我 们做题后要检查) 3、无序性,集合里的元素的排列不考虑顺序问题,例如{a,b,c}与{a,c,b}表示同一个集合。(方便定义集合 相等)
• 2.交集的符号语言: A∩B={x|x∈A,且x∈B}
并集、交集的性质
• 集合交换律 A∩B=B∩A A∪B=B∪A • 集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) • 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) • A∩ Ø = Ø ,A∪ Ø = Ø
全集与补集
• 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集,通常记作U
• 补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作CuA 符号语言:CuA={x|x∈U,且x ∉A}
例5
• 1.设集合U={1,2,3,4,5,6},M={1,3,5},则CuM=______。 • 2.已知全集U={0,1,2},A={x|x-m=0},如果CuA={0,1},则m=______。
高一数学必修一课件1.1.1集合的含义与表示
教材习题答案
1.(1) ,,,;(2) ; (3) ;(4) ,; 2.(1){-3, 3};(2){2, 3, 5, 7}; (3){(1, 4)};(4){x x < 2}.
注意
例7中的集都不 ( 1 )在不致混淆的情况下,可以省去竖线及 可以用列表法吗? 左边部分. 显然不是,那么何 如:{直角三角形 }、{大于104的实数}. 时用列举法,何时 用描述法更容易一 (2)错误表示法:{实数集}、{全体实数}. 些呢?
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法. 有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
(2)设不超过30的非负偶数为x,且满足
x 2n且0 x 30 用描述法表示为
A = {x x = 2n且0 x 30,n Z}.
(3)设方程 2x +1 = 9 的实数根为x,且满 足条件 2x2 +1 = 9,用描述法表示为
2
A = {x R 2x + 1 = 9}.
课堂练习
1.用符号“∊”或∉Байду номын сангаас填空:
(1)设 A为所有亚洲国家组成的集合,则中国 __ A. ∊ A;英国__ ∊ A;美国__ ∉A;印度__ ∉ (2)若A={方程x² =1的解}则 1__A ∊ ; (3)若B={方程x² +x-6=0的解}则2__B ∊ ; (4)若C={满足1≤x≤10的自然数}则8 __ ∊ C; 9.5 __ ∉ C.
4.{(x, y) | x + y = 6, x N, y N}
用列举法表示为
{(0,6),(1,5),(2,4),(3,3),(6,0),(5,1),(4,2)}
高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt
• 1.表示集合的方法常用___描__述__法_、___列__举__法_、____维__恩__图__法. • 2.把集合中元素的___公__共__属__性_描述出来,写在大括号内表示集合的方法叫描
述法.描述法有两种形式: • (1)一般形式:{x∈A|p(x)}.例如:不大于100的自然数构成的集合可表示为
{0,1,2,3,4,5,6,7,8,9}. • (2)方程x2=x的实数根为0,1,设方程x2=x的所有实数根构成的集合为B,则B
={0,1}. • (3)设由1~20的所有质数构成的集合为C,则C={2,3,5,7,11,13,17,19}.
『规律方法』 对于元素个数较少的集合或元素个数不确定但元素间存在 明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,” 而不是用“、”隔开;②元素不能重复.
• 3.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集 合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个__________.于 是,集合A可以用它的特征性质p(x)描述为{x∈I|p(x)}.它表示特集征合性A质是由集合I 中具有性质p(x)的所有元素构成的.
A.0∈A
B.2∉A
C.-2∈A
D.0∉A
• [解析] ∵A={x|x(x-2)=0}={0,2},∴0∈A,2∈A,-2∉A,故选A.
3.直线 y=2x+1 与 y 轴的交点所组成的集合为@ziyuanku (
A.{0,1}
B.{(0,1)}
C.{-12,0}
D.{(-12,0)}
[解析] 由xy==02x+1 ,得xy= =01 ,故选 B.
(2)解方程组2x-x+y=y=18 ,得xy= =32 .
集合的含义课件-高一数学人教A版(2019)必修第一册
3个
9.问题8说明集合中的元素具有什么性质?
互异性.一个给定集合的元素是互不相同的,即集合中的元素
是不重复出现的,这就是集合的互异性.
10.由实数1、2、3组成的集合记为M,由实数3、1、2组成的集
合记为N,这两个集合中的元素相同吗?这说明集合中的元素具
有什么性质?由此类比实数相等,你发现集合有什么结论?
(5)由既在R中又在N*中的数组成的集合中一定包含数0( × )
(6)不在N中的数不能使方程4x=8成立( √ )
六、归纳小结
知识方面
你收获到
了什么?
获取知识的思想方法方面
体验和感悟
七、布置作业
1. 分层作业;
2.教材P5练习1、2,习题1.1复习巩固第1题。
谢谢您的倾听!
集合M和N相同.这说明集合中的元素具有无序性,即集合中的
元素是没有顺序的.可以发现:如果两个集合中的元素完全相
同,那么这两个集合是相等的.
三、概念形成
1.元素与集合的概念
(1)一般地,把研究对象统称为元素,表示:a,b,c,d,…
(2)把一些元素组成的总体叫做集合,表示:A,B,C,D,…
2.元素与集合的关系
(4)与0接近的全体实数;
×
(5)到线段的两个端点距离相等的所有点。 √
4.常用数集及其记法:
集
非负整数
正整数
合 (自然数集)
集
记
法
N
N*或N+
整数集
有理数
集
实数集
Z
Q
R
常用数集的表示方法:
正整数集:N+或N﹡
自然数集: N
整数集: Z
有理数集: Q
实数集: R
9.问题8说明集合中的元素具有什么性质?
互异性.一个给定集合的元素是互不相同的,即集合中的元素
是不重复出现的,这就是集合的互异性.
10.由实数1、2、3组成的集合记为M,由实数3、1、2组成的集
合记为N,这两个集合中的元素相同吗?这说明集合中的元素具
有什么性质?由此类比实数相等,你发现集合有什么结论?
(5)由既在R中又在N*中的数组成的集合中一定包含数0( × )
(6)不在N中的数不能使方程4x=8成立( √ )
六、归纳小结
知识方面
你收获到
了什么?
获取知识的思想方法方面
体验和感悟
七、布置作业
1. 分层作业;
2.教材P5练习1、2,习题1.1复习巩固第1题。
谢谢您的倾听!
集合M和N相同.这说明集合中的元素具有无序性,即集合中的
元素是没有顺序的.可以发现:如果两个集合中的元素完全相
同,那么这两个集合是相等的.
三、概念形成
1.元素与集合的概念
(1)一般地,把研究对象统称为元素,表示:a,b,c,d,…
(2)把一些元素组成的总体叫做集合,表示:A,B,C,D,…
2.元素与集合的关系
(4)与0接近的全体实数;
×
(5)到线段的两个端点距离相等的所有点。 √
4.常用数集及其记法:
集
非负整数
正整数
合 (自然数集)
集
记
法
N
N*或N+
整数集
有理数
集
实数集
Z
Q
R
常用数集的表示方法:
正整数集:N+或N﹡
自然数集: N
整数集: Z
有理数集: Q
实数集: R
第一章+第1课时+集合的概念 课件 高一数学 (人教A版2019必修第一册)
a,
b a
,1
a2,a b,0
a2023 b2024
∵
a,
b a
,1
a
2
,
a
b,
0,显然a≠0,
∴
b a
=0,∴b=0
∴ a,0,1 a2, a,0
∵a≠1,
∴a2 1 ∴ a2023 =b-12024
反思感悟
(1)判断是否能够构成集合,关注能否满足确定性、互异性、无序性; (2)若两个集合相等,则这两个集合的元素相同,但是要注意其中的元素 不一定按顺序对应相等.
记法 _a_∈__A__
不属于 如果a不是集合A的元素 __a_∉_A__
读法 a属于集合A a不属于集合A
新知讲解
2.常用数集及其记法
非负整数集
名称
正整数集
(或自然数集)
整数集 有理数集 实数集
记法
_N_
_N__*或N+
_Z__
_Q__
R
注意点: (1)元素与集合之间是属于或不属于的关系,注意符号的书写. (2)0属于自然数集.
跟踪训练1 (1)下列对象中不能构成一个集合的是( )
√A.某校比较出名的教师 B.方程的根
C.不小于3的自然数 D.所有锐角三角形
A:比较出名的标准不清,故不能构成集合; B:,方程根确定,可构成集合; C:不小于3的自然数可表示为,可构成集合; D:所有锐角三角形内角和确定且各角范围确定,可构成集合.
第一章 §1.1 集合的概念
第1课时 集合的概念
学习目标
1.了解集合与元素的含义和集合中元素的三个特征的简单应用,能判断元素与集合的关 系.(重点) 2.识记常见数集的表示符号.
高一数学 人教A版必修1 1-1 集合 课件
x≠3,
(2)①根据集合中元素的互异性,可知x≠x2-2x, 即 x2-2x≠3,
x≠0 且 x≠3 且 x≠-1. ②因为 x2-2x=(x-1)2-1≥-1,且-2∈A,所以 x=
-2.当 x=-2 时,x2-2x=8,此时三个元素为 3,-2,8, 满足集合的三个特性.
探究3 集合中元素的特性与集合相等 例 3 已知集合 A 有三个元素:a-3,2a-1,a2+1,集 合 B 也有三个元素 0,1,x. (1)若-3∈A,求 a 的值; (2)若 x2∈B,求实数 x 的值; (3)是否存在实数 a,x,使 A=B.
(2)∵6-6 x∈N,x∈N,∴6x≥-6 0x≥,0, 即6x≥-0x>,0, ∴0≤x<6,∴x=0,1,2,3,4,5. 当 x 分别为 0,3,4,5 时,6-6 x相应的值分别为 1,2,3,6, 也是自然数,故填 0,3,4,5.
拓展提升 1.常用数集之间的关系
集实R数有数 Q 理集整分数数集集Z自负然整数数集集N正 {0}整数集N*
无理数集
2.判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判 断该元素在已知集合中是否出现即可,此时应先明确集合是 由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,只要判断 该元素是否满足集合中元素所具有的特征即可.此时应先明 确已知集合的元素具有什么特征,即该集合中元素要满足哪 些条件.
(3)显然 a2+1≠0.由集合元素的无序性,只可能 a-3 =0,或 2a-1=0.
若 a-3=0,则 a=3,A 中三个元素分别为 0,5,10. 若 2a-1=0,则 a=12,A 中三个元素分别为 0,-52, 54.所以 A≠B. 故不存在这样的实数 a,x.
高一数学课件:1.1 集合的含义与表示(新人教版必修1)
6.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x), 而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合 特征性质 A的 . 7.描述法的表示形式为 {x∈I|p(x)} .
返回
学点一 集合的概念 下列各组对象能否组成集合. (1)小于10的自然数:0,1,2,3,…,9; (2)满足3x-2>x+3的全体实数; (3)所有直角三角形;
所以x∈R且x≠±1且x≠0.
【评析】解决这类问题的主要依据是集合元素的性质特征—
互异性,列出两两元素的关系式求解,通常要用到分类讨论.
返回
集合{3,x,x2-2x}中,x应满足的条件是 【解析】 x≠3且x≠0且x≠-1根据构成集合的元素的 互异性,x应满足
.
x3 2 x 2x 3 x 2 2x x
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成
的集合.
返回
(1)由
2 x 3 y 14 3x 2 y 8
得
x4 y 2
方程组的解集为{(4,-2)}. (2)1 000以内被3除余2的正整数可以表示为x=3k+2,k∈N的 形式. 故所求的集合为{x|x=3k+2,k∈N,且x<1 000}.
③因为N中最小元素为0,故当a∈N,b∈N时,a+b的最小值为0,故 错误.
返回
学点三
集合中元素的性质
已知由1,x,x2三个实数构成一个集合,求x应满足的条件. 【分析】1,x,x2是集合中的三个元素,则它们是互不相等的. 【解析】根据集合中元素的互异性,得
x 1 2 x 1 x x 2
1 1 1 1 a
高一数学课件:人教版高一数学上学期第一章第1.1节集合-(2).ppt(共13张PPT)
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
新版高一数学必修第一册第一章全部课件
1.列举法
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.数字1,2,1,0能否构成一个集合? 答:不能!因为不具备互异性.
B能=力{A正提=升{奇x是数用8}=属的{于正1或约,不数3属},=于5{,符1…,号…2填,}空4,8}
• ①若A={x是8的正约数},则 1_ A、2 _A、 3 _A、4 _A、-1 _A、-2 _A、 -3 _ A;
引入
由确定的一些数、一些点、一些图形、
一些整式、一些物体、一些人组成的,我们 说,每一组对象的全体形成一个集合. 或者说, 某些指定的对象集在一起就成为一个集合, 也简称集. 集合中的每个对象叫做这个集合的 元素.
一般地,某些指定的对象集在一起就成 为一个集合.
重难点讲解
集合的有关概念:
• 1.集合:由一些确定的、互异的对象构成的 一个整体就叫做集合。简称集。
• 2.元素:集合里的各个对象叫做这个集合的 元素。
• 3.元素的三个属性:确定性、互异性、无序 性(任意性也是元素具有的一个性质,但一 般讲以上的三个属性).
重难点讲解
• 4.有限集:含有有限个元素的集合。 • 5.无限集:含有无限个元素的集合。 • 6.空集:不含有任何元素的集合。(即元素个
数为0,是有限集)。 • 7.单元素集:仅含有一个元素的集合。 • 8.点集:集合中的元素全部由点组成。 • 9.数集:集合中的元素全部由数组成。 • 10.解集:由方程或方程组、不等式或不等式
A _8、A _-8、A _-4.
• ②若B={正奇数},则 0 _B、1_B、2 _B、 3 _B、-1 _ B、-2 _ B、-3 _ B;B _5、
B _-5、B _7.
• ③φ为空集,则 0 _ φ、1 _ φ、 -1 _ φ; φ _ 0、φ _ 1、φ _ -1.
知识小结
集合的含义即表示
引入
观察下列对象: (1)2,4,6,8,10,12; (2)所有的直角三角形; (3)与一个角的两边距离相等的点的全体; (4)满足 x-3>2 的全体实数;
(5)本班全体男同学; (6)我国古代四大发明; (7)高一(1)班中个子较高的同学; (8)我们班的任课教师中身体较健元素、 属于、不属于;
2.集合元素的性质:确定性,互异 性,无序性;
3.常用数集的定义及规定字母记法.
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
刚才的发言,如 有不当之处请多指
正。谢谢大家!
12
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
特别规定
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
组的解作为元素构成的集合。
重难点讲解
• 11.集合的字母表示:通常用大写的拉丁字母A、 B、C、D、…表示集合。 如A={-1,1,0,34}、B={斜三角形}。
• 12.元素的字母表示:通常用小写的拉丁字母a、 b、c、d、…表示元素。
• 13.空集的符号表示:φ或{ }。特别注意的是 {φ}不是空集,而是一个单元素集合。
典型例题分析
1.用属于或不属于符号填空.
①1 N,0 N,-3 N,0.5 ②1 Z,0 Z,-3 Z,0.5
③1 Q,0 Q,-3 Q,0.5 ④1 R,0 R,-3 R,0.5
N, √2 N Z, √2 Z Q, √2 Q
R, √2 R
2.所有的秃头人能否构成一个集合? 答:不能!因为不具备确定性.
B能=力{A正提=升{奇x是数用8}=属的{于正1或约,不数3属},=于5{,符1…,号…2填,}空4,8}
• ①若A={x是8的正约数},则 1_ A、2 _A、 3 _A、4 _A、-1 _A、-2 _A、 -3 _ A;
引入
由确定的一些数、一些点、一些图形、
一些整式、一些物体、一些人组成的,我们 说,每一组对象的全体形成一个集合. 或者说, 某些指定的对象集在一起就成为一个集合, 也简称集. 集合中的每个对象叫做这个集合的 元素.
一般地,某些指定的对象集在一起就成 为一个集合.
重难点讲解
集合的有关概念:
• 1.集合:由一些确定的、互异的对象构成的 一个整体就叫做集合。简称集。
• 2.元素:集合里的各个对象叫做这个集合的 元素。
• 3.元素的三个属性:确定性、互异性、无序 性(任意性也是元素具有的一个性质,但一 般讲以上的三个属性).
重难点讲解
• 4.有限集:含有有限个元素的集合。 • 5.无限集:含有无限个元素的集合。 • 6.空集:不含有任何元素的集合。(即元素个
数为0,是有限集)。 • 7.单元素集:仅含有一个元素的集合。 • 8.点集:集合中的元素全部由点组成。 • 9.数集:集合中的元素全部由数组成。 • 10.解集:由方程或方程组、不等式或不等式
A _8、A _-8、A _-4.
• ②若B={正奇数},则 0 _B、1_B、2 _B、 3 _B、-1 _ B、-2 _ B、-3 _ B;B _5、
B _-5、B _7.
• ③φ为空集,则 0 _ φ、1 _ φ、 -1 _ φ; φ _ 0、φ _ 1、φ _ -1.
知识小结
集合的含义即表示
引入
观察下列对象: (1)2,4,6,8,10,12; (2)所有的直角三角形; (3)与一个角的两边距离相等的点的全体; (4)满足 x-3>2 的全体实数;
(5)本班全体男同学; (6)我国古代四大发明; (7)高一(1)班中个子较高的同学; (8)我们班的任课教师中身体较健元素、 属于、不属于;
2.集合元素的性质:确定性,互异 性,无序性;
3.常用数集的定义及规定字母记法.
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
刚才的发言,如 有不当之处请多指
正。谢谢大家!
12
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
特别规定
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
组的解作为元素构成的集合。
重难点讲解
• 11.集合的字母表示:通常用大写的拉丁字母A、 B、C、D、…表示集合。 如A={-1,1,0,34}、B={斜三角形}。
• 12.元素的字母表示:通常用小写的拉丁字母a、 b、c、d、…表示元素。
• 13.空集的符号表示:φ或{ }。特别注意的是 {φ}不是空集,而是一个单元素集合。
典型例题分析
1.用属于或不属于符号填空.
①1 N,0 N,-3 N,0.5 ②1 Z,0 Z,-3 Z,0.5
③1 Q,0 Q,-3 Q,0.5 ④1 R,0 R,-3 R,0.5
N, √2 N Z, √2 Z Q, √2 Q
R, √2 R
2.所有的秃头人能否构成一个集合? 答:不能!因为不具备确定性.