一种连续系统辨识方法及其在飞控规律辨识中的应用

一种连续系统辨识方法及其在飞控规律辨识中的应用
一种连续系统辨识方法及其在飞控规律辨识中的应用

一种连续系统辨识方法及其在飞控规律辨识中的应用

摘要: 针对某型飞机控制系统的规律辨识问题, 对文献[ 2, 3]提出的连续系统辨识方法进行了改进, 给出了该方法可以适用的辨识对象的一般模型, 同时通过对误差模型和极小化指标的改进,把原方法推广至时变参数辨识领域。数值仿真结果表明该方法成功的解决了该飞控系统的辨识问题。该方法还很容易推广到一类具有相同特征的线性、非线性、时变或时不变的参数辨识中。

关键词: 飞控系统; 连续系统辨识; 跟踪- 微分器; 扩张状态观测器; 时变参数

在某型飞机的控制系统中, 大量采用了分段线性的非线性环节, 这一类环节参数的变化一般受到动压信号和静压信号的控制, 用以保证飞控系统的控制规律随着飞机的高度和速度的变化而变化。对这种变化规律进行辨识, 一种方法是固定静压和动压信号, 使辨识对象转化为线性时不变系统, 然后再采用常规的辨识方法进行辨识。其缺点是辨识的次数多, 数据采集与处理的工作量大, 准确性差。另一种方法是, 在一次数据采集的过程中, 固定静压信号, 连续调节动压信号, 使之取遍整个取值范围。这时, 进行一次或较少的几次辨识, 就可以得出被辨识参数在当前静压下的变化规律。由于动压连续变化, 被辨识参数也连续变化, 这时的辨识对象实际上是一个时变系统, 需要考虑时变参数的辨识问题。由于被辨识对象的控制规律本身是连续的, 对于连续系统采用离散的辨识方法会存在一些问题[1] , 例如, 如果离散系统的延迟不是采样时间的整数倍, 则获得的离散模型可能具有非最小相位特性等等。而采用连续的辨识方法则可以较好的解决这样的问题。文献[ 2, 3] 提出了一种基于跟踪- 微分器(TD) 和扩张状态观测器( ESO) 的连续系统辨识方法, 用来解决一些非线性时不变系统的辨识问题。在实际应用中, 我们对文献[ 2, 3] 提出的方法进行适当修改, 并适当选择辨识对象的模型和被辨识参数,就可以把这种方法推广至时变参数辨识领域, 从而可以用来解决飞行控制系统的辨识问题。

1 问题描述

已知某飞机的飞行控制系统工作在自主方式下时, 其纵向通道的部分控制规律的结构图如图1 所示。

图1 某型飞机纵向通道的部分结构图

图1 中, y 为纵向通道输出的过载信号, K a 为俯仰角传动比, K b 为滤波时间常数。用于滤除高频干扰信号。K a 和K b 为待辨识参数。K a 和K b 都是动压q cx 的分段线性化函数。K a 和K b 按照图2 所示规律变化。

图2 中, q cx 为动压信号, P 为静压信号。由图可知, K a 和K b 随动压和静压在不同的段内

线性变化。当动压和静压都固定时, 此时的系统相当于一个线性时不变系统。此时的辨识需要进行多次数据采集才能获知整个变化规律。当静压固定, 动压随时间变化时, K a 和K b 也会随时间变化, 此时的系统为一个时变系统。如果能采用时变系统辨识的方法, 那么进行一次辨识就可以得出参数在当前静压下的变化规律。

图2 K a 和K b 的变化规律

2 问题的建模

由于在K a 和K b 变化的每个线性段内, 斜率和截距都保持不一个线性段内可设:

K a= aq+ b

K b= cq+ d

( 3)

设T = ( q ) = ( a, b , c, d ) , 为待辨识参数, 它随q 在不同的变化段内取不

同的固定值。

由式( 2) ~ ( 3) 有

y + 2y= ( aq+ b) [ ( cq+ d) u+ u] = hf ( 4)

其中:

h T = ( a, b, ac, bd, ad+ bc) ( 5)

f T = F( u, y , q ) = ( qu, uqu !, u, qu) ( 6)

h 为待辨识参数的各个分量的函数, 与系统的输入输出u, y 及q 无关。而f 仅与系统的u, y 和q 有关,与无关。等式左边仅与u, y 有关, 与q 和无关。可以看出, 式( 4) 具有文献[ 2, 3] 中所解决问题类似的典型形式, 即可以实现被辨识参数和系统输入、输出u , y 的分离。可以想象, 只要参数a, b, c, d 在辨识过程中分段稳定, 那么由系统的

输入u ( t ) 和输出和y ( t ) 就可以辨识出该段对应的a, b , c, d 值。为此, 对

文献[ 2, 3] 的方法的进行改进。

3 对基于跟踪- 微分器和扩张状态观测器的连续系统辨识方法的改进

3. 1 辨识模型

在文献[ 2, 3] 所提出方法的基础上, 可以归纳出文献[ 2, 3] 所提出的方法的一般模型为g ( Y, U) = h T[ ( q) ] !f ( Y, U) + e( t ) ( 7)

其中, Y 是系统输出y 及其各阶导数组成的向量, U 是系统输入u 及其各阶导数组成的量。Y 和U可以由y 、u 的测量值经跟踪- 微分器[ 4~ 6] 等状态观测器处理后得出, 记为Y和U?。

g( !) 及f ( !) 是已知函数。是待辨识参数组成的向量, q 是外部的控制信号( 如本文前述的动压和静压信号) 。是q 的函数, h( ) 是的函数。e( t ) 为噪声。这种模型的特征是: 在模型的数学表达上, 可以实现被辨识参数和输入输出信号的分离。式( 7) 实际上是一种最小二乘形式。由于其中的函数g( !) 和函数f ( !) 几乎可以为任意形式的非线

性函数, 因此, 任何非线性系统, 只要可以建立符合该式的模型, 都可以考虑采用本文所论述的方法来进行辨识。文献[ 6] 在对非线性参数估计的方法进行论述时, 提出的几个例子符合这种形式, 就可以考虑采用本文所述的方法来进行辨识。

从式( 4) 可以看出, 本文的辨识对象的模型也具有式( 7) 所对应的形式, 同时从式( 3) 可以看出, 被辨识参数随着动压连续变化, 在不同的时间段内为不同的常值。所以在采用最小二乘法求解的过程中, 对文献[ 2,3] 所提出的方法做如下修改。

3. 2优化指标的选择

为了简便起见, 可以把式( 7) 简写为如下形式:

g = h T!f ( 8)

g?= g( Y, U, t )f= f ( Y, U, t )( 9)

式中: WTHX g?、f?分别为函数g ( !) 和f ( !) 的估计。取方程式误差( equation error) [ 2]e= g?- g , 考虑到参数时变, 加入遗忘因子和所限定记忆的时间长度!, 取极小化指标. 4数值仿真结果

若所得的辨识参数为T = ( a, b, c, d) 。由( 14) 式可知, 的真值的变化规律见式( 15) 。

由式( 5) , h 的真值的变化规律见式( 16) 。

4. 1 分段辨识

令入 = 1, ! = t , 此时即可进行分段辨识。参数收敛曲线如图3 所示。

由图3 可知在0~ 20 s 内h( ) 快速收敛至真值( 2, 1, 0, 2, 4) 附近查寻数据, 可得t=15 s 时h=( 2.000, 1.395, 0.001, 1.994 4, 3.999 9) 。其中第二项误差较大, 这是因为跟踪- 微分器的误差而产生的稳态误差。可以通过降低信号的坡度从而降低辨识对象输出信号的变化速度来提高跟踪- 微分器的跟踪精度。如果取q= 0.01t , 其它参数保持不变, 重新进行辨识。在t= 10 s 时有: h= ( 2.000, 1.039 6, 0.001 9, 1.9944, 3.999 8) 。

从图3 中还可以看出在t= 20 s 以后h的收敛曲线都发生了异常的波动, 可以断定在t= 20

附近K a 和K b 进入了另一个线性区。即q= 0. 1t | t= 20= 2 在第一个转折点的附近。

图3对第一个线性段的辨识结果图4对第二个线性段的辨识结果

由第一次辨识所给出的转折点的信息, 取q= 01t+ 2 , u= 2 sin 10t , 其它参数设

置同前。把q 的起始段定在第一次辨识得到的转折点后, 重新开始辨识, 又可得出新的线性段内的参数估计值和下一个转折点的信息, 结果见图4。如此重复, 直到辨识结果中看不到转折点, 这样可得到全部线性区内的参数。以上对转折点的辨识还是粗略的估计, 在已知所有线性段的参数值后, 还可以反过来求各段的交点, 得出转折点的精确值。

这种方法的优点是可以同时辨识所有待辨识的参数, 精度高, 抗干扰能力强, 缺点是仍需分多次辨识。

4. 2带遗忘因子或限定记忆的方法

可以不必分段, 一次就得出辨识结果。图5 为限定记忆时间长度为10 s, 对h 的元素a、b 和ac 的辨识结果。图6 为对元素bd 和ad+ bc 的辨识结果。带遗忘因子的辨识方法可以得到同样的结果, 但要注意选择遗忘因子, 否则会降低辨识精度, 遗忘因子的选择没有精确规律, 需要反复试凑。图5 中, a 在各个线性段内的真值为: 2, 1, 1。当t= 15, 35, 60 s 时, a 的估计值分别为: 2. 000, 0. 913 4,1. 003 7。b 在各个线性段内的真值为: 1, 3, 3。当t= 15, 35, 60 s 时, b 的估计值为: 1.3995, 3.1203, 3.109 3。ac 在各个线性段内的真值为: 0, - 0. 5, 0。当t= 15, 35, 60 s 时, ac 的估计值为: 0. 000 0, - 0. 499 8, 0. 000 0。

图6 中, bc 在各个线性段内的真值为: 2, 9, 3。当t= 15, 35, 60 s 时, 其估计值为: 1. 994 3, 8. 996 9, 2. 9996。ad+ bc 在各个线性段内的真值为: 4, 1. 5, 1。当t= 15, 35, 60 s 时, 其估计值为: 4. 000, 1. 501 6, 1. 000 0。

从图5~ 图6 可以清楚地看出参数随时间的变化规律, 同时可以看出, 辨识结果与真值非常接近。

5 结论

本文是对文献[ 2, 3] 方法的改进, 给出了这种方法可以解决问题的一般模型, 同时通过适当选择极小化指标和误差模型, 把该方法推广至时变参数辨识领域。在此基础上, 把这种方法用于某型飞机的飞行控系统控制规律辨识, 数值仿真结果证明辨识精度高, 结果可靠。这种方法对于其它符合式( 5) 的时变、非时变、线性、非线性模型的辨识问题都有参考价值。

参考文献:

[ 1] UNBEHAUEN H, RAOS G P. Continuous- time approaches to system identification- A survey[ J] . Automatica, 1990, 26( 1) : 23- 35

[ 2] 张文革, 韩京清跟踪- 微分器用于连续系统辨识[ J]控制与决策, 1999, 14( S0) : 557- 560

[ 3] 黄远灿, 韩京清扩张状态观测器用于连续系统辨识[ J]控制与决策, 1998, 13( 4) : 381- 384

[ 4] 韩京清, 王伟非线性跟踪- 微分器[ J]系统科学与数学, 1994, 14( 2) : 177- 183 [ 5] 韩京清一种新型控制器& & & NLPID[ J]控制与决策, 1994, 9( 6) : 401- 407

[ 6] 朱全民非线性系统辨识[ J]控制理论与应用, 1994, 11( 6) : 641- 652

[ 7] 韩曾晋自适应控制[M]北京: 清华大学出版社, 1995

[ 8] 方崇智过程辩识[M]北京: 清华大学出版社, 1988

系统辨识之经典辨识法

系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号

2018 年 11 月 系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时 的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集 数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参 数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是 非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛 适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉 冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ① 当系统的传递函数无零点时,即系统传递函数如下: G(S) = + ?11?1+?+ 1+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取 微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无 因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: () ?1 () (1-2) 面积法原则上可以求出n为任意阶的个系数。以n为3为例。有: 3() 2() () {| →∞ =| →∞ =| →∞ = 0 (1-3) ()| →∞ = 1

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

系统辨识研究的现状_徐小平

系统辨识研究的现状 徐小平1,王 峰2,胡 钢1 (1.西安理工大学自动化与信息工程学院 陕西西安 710048;2.西安交通大学理学院 陕西西安 710049) 摘 要:综述了系统辨识问题的研究进展,介绍了经典的系统辨识方法及其缺点,引出了将集员、多层递阶、神经网络、遗传算法、模糊逻辑、小波网络等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键词:系统辨识;集员;多层递阶;神经网络;遗传算法;模糊逻辑;小波网络 中图分类号:TP27 文献标识码:B 文章编号:1004-373X (2007)15-112-05 A Survey on System Identif ication XU Xiaoping 1,WAN G Feng 2,HU Gang 1 (1.School of Automation and Information Engineering ,Xi ′an University of Technology ,Xi ′an ,710048,China ; 2.School of Science ,Xi ′an Jiaotong University ,Xi ′an ,710049,China ) Abstract :In this paper the advance in the study of system identification is summarized.First ,the traditional system identi 2fication methods and their disadvantages are introduced.Then ,some new methods based on set membership ,multi -level re 2cursive ,neural network ,genetic algorithms ,f uzzy logic and wavelet network are presented.Finally ,f urther research directions of system identification are pointed out. K eywords :system identification ;set membership ;multi -level recursive ;neural network ;genetic algorithms ;f uzzy logic ;wavelet network 收稿日期:2007-04-16 基金项目:教育部博士学科基金(20060700007); 陕西省自然科学基金(2005F15)资助项目 1 引 言 辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。从1967年起,国际自动控制联合会(IFAC )每3年召开一次国际性的系统辨识与参数估计的讨论会。历届国际自动控制联合会的系统辨识会议均吸引了众多的有关学科的科学家和工程师们的积极参加。 系统辨识是建模的一种方法,不同的学科领域,对应 着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。1962年,L.A.Zadeh 给出辨识这样的定义[1]:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh 的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。而从实用性观点出发,对模型的要求并非如此苛刻,为此,对辨识又有一些实用性的定义。比如,1974年,P.E.ykhoff 给出辨识的定义[2]为:“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。”1978年,L. Ljung 给辨识下的定义[3] 更加实用:“辨识有三个要素—数 据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。”总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 本文首先介绍了经典的系统辨识方法,并指出其存在的缺陷,接着对近年来系统辨识的现代方法作以简单的综述,最后指出了系统辨识未来的发展方向。2 经典的系统辨识 经典的系统辨识方法[4-6]的发展已经比较成熟和完 2 11

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

系统辨识经典辨识方法

经典辨识方法报告 1. 面积法 辨识原理 分子多项式为1的系统 1 1 )(11 1++++= --s a s a s a s G n n n n Λ……………………………………………() 由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。大多数自衡的工业过程对象的y(t)可以用下式描述来近似 1)() ()()(a 111=++++--t y dt t dy a dt t y d a dt t y d n n n n K ……………………………() 面积法原则上可以求出n 为任意阶的各系数。以n=3为例,注意到 1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dt t y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得 ?-=++t dt t y t y a dt t dy a dt t y d a 01223 )](1[)() ()(…………………………………() 定义 ?-=t dt t y t F 01)](1[)(……………………………………………………………() 则由式()给出的条件可知,在t →∞ ?∞ -=01)](1[a dt t y ……………………………………………………………() 将式a 1y(t)移到等式右边,定义 )()]()([)() (a 201123 t F dt t y a t F t y a dt t dy t =-=+?…………………………………() 利用初始条件()当t →∞时 )(a 22∞=F …………………………………………………………………… () 同理有a 3=F 3(∞) 以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统

系统辨识

最小二乘法的系统辨识 摘要:在研究一个控制系统过程中,建立系统的模型十分必要。因此,系统辨识在控制系统的研究中起到了至关重要的作用。本文主要介绍了系统辨识的最小二乘方法,最小二乘法的一次完成过程进行了推导,最小二乘法的一次完成的缺陷在于对于有色噪声并没有很好的辨识效果。其中系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用极其广泛的系统辨识方法,阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析最小二乘法应用于直流调速系统的系统辨识。 关键词:系统辨识、最小二乘法 一、系统辨识的定义 系统辨识、状态估计和控制理论是现代控制理论三个相互渗透的环节。1962年,L.A.zadeh给出“辨识”的定义为:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。[1]最先提出了系统辨识的定义。 随着科技的发展,数学建模对科学研究及指导及生产都有非常重要的意义。给一个系统建立数学模型是一个比较复杂的工作,其中关键的一个环节是系统辨识。系统辨识就是研究如何利用系统的输入、输出信号建立系统的数学模型。[7]系统数学模型是系统输入、输出及其相关变量间的数学关系式,它描述系统输入、输出及相关变量之间相互影响、变化的规律性。换句话说,系统辨识就是从系统的运算和实验数据建立系统的模型(模型结构和参数)。系统辨识的三要素:数据、模型类和准则。系统辨识的基本原理:在输入输出的基础上,从一类系统中确定一个与所测系统等价的系统。[2] 二、最小二乘法的引出 最小二乘法是1795年高斯在预测星体运行轨道最先提出的,它奠定了最小二乘估计理论的基础.到了20世纪60年代瑞典学者Austron把这个方法用于动态系统的辨识中,在这种辨识方法中,首先给出模型类型,在该类型下确定系统模型的最优参数。 我们可以将所研究的对象按照对其了解的程度分成白箱、灰箱和黑箱。于其内部结构、机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为“灰箱”;如果我们对于研究对象的内部结构、内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”。研究灰箱和黑箱时,将研究的对象看作是一个系统,通过建立该系统的模型,对模型参数进行辨识来确定该系统的运行规律。对于动态系统辨识的方法有很多,但其中应用最广泛,辨识效果良好的就是最小二乘辨识方法,研究最小二乘法在系统辨识中的应用具有现实的、广泛的意义。[4]

系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告 1、概述 20世纪60年代,自动控制理论发展到了很高的水平。与此同时,工业大生产的发展,也要求将控制技术提高到更高的水平。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。 “系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 自适应系统利用可调系统的输入量、状态向量及输出量来测量某种性能指标,根据测得的性能指标与给定的性能指标的比较,自适应机构修改可调系统的参数或者产生辅助输入量,以保持测得的性能指标接近于给定的性能指标,或者说测得的性能指标处于可接受性能指标的集合内。自适应系统的基本结构如图1所示。图中所示的可调系统可以理解为这样一个系统,它能够用调整它的参数或者输入信号的方法来调整系统特性。 未知扰动已知扰动 图1 自适应系统的基本结构 2、系统辨识的方法

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

系统辨识

系统辨识理论综述 郭金虎 【摘要】全面论述了系统辨识理论的提出背景以及理论成果,总结了系统辨识理论的基本原理、基本方法以及基本内容,并对其应用及发展做了全面的讨论。 【关键词】系统辨识;准则函数 1概述 系统辨识问题的提出是由于随着科学技术的发展,各门学科的研究方法进一步趋向定量化,人们在生产实践和科学实验中,对所研究的复杂对象通常要求通过观测和计算来定量的判明其内在规律,为此必须建立所研究对象的数学模型,从而进行分析、设计、预测、控制的决策。例如,在化工过程中,要求确定其化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换器这样的分布参数的系统及动态参数;在生物系统方面,通常希望获得其较精确的数学模型,一般描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染扩散模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。 2系统辨识的基本原理 2.1系统辨识的定义和基本要素 实验和观测是人类了解客观世界的最根本手段。在科学研究和工程实践中,利用通过实验和观测所得到的信息,或掌握所研究对象的特性,这种方式的含义即为“辨识”。关于系统辨识的定义,1962年,L.A.Zadeh 是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中,确定一个与所测系统等价的模型”。1978年,L.Ljung 也给出了一个定义:“辨识既是按规定准则在一类模型中选择一个与数据拟合得最好的模型”。可用图2-1来说明辨识建模的思想。 0 G g G 等价准则系统原型 系统模型激励信号y g y e J u 图2-1 系统辨识的原理

系统辨识理论及应用(课后题答案第三章3.2、3.3)国防工业出版社

1、系统辨识——连续系统传递函数——脉冲传递函数function h=Continuous_system_transferFcn(N,G,dt) % N——系统阶数 % G——采样数据(个数大于等于2N+1) % G为一维行向量 % dt——采样间隔 if nargin<3 errordlg('not enough input varibles','error hint'); else g_NN=zeros(N,N); for i=1:N g_NN(i,:)=G(i+1:i+1+N-1); end g_N=-G(1:N)'; a=inv(g_NN)*g_N; %% x的求解 syms x for i=1:N X(i)=x^i; end f=X*a+1; x=double(solve(f)); %%极点的求解 p=log(x)/dt; c_NN=zeros(N,N); for i=1:N c_NN(i,:)=x.^(i-1); end c_N=G(1:N)'; %%增益求解 k=inv(c_NN)*c_N; p k z=zeros(1,N); p=p'; k=k'; Continuous_TransferFcn=0; for i=1:N Continuous_TransferFcn=Continuous_TransferFcn+zpk(z(i),p(i),k(i)); end Continuous_TransferFcn end end

例题 3.1(P32) >>G=[0 0.1924 0.2122 0.1762]; >> N=2; >> dt=1; >> Continuous_system_transferFcn(N,G,dt) p = -0.4934 -0.7085 k = 1.6280 -1.6280 Continuous_TransferFcn = 0.35024 s --------------------- (s+0.4934) (s+0.7085) Continuous-time zero/pole/gain model. 习题3.2(P34) >> G=[0 0.196 0.443 0.624 0.748 0.831]; >> N=3; >> dt=0.2; >> Continuous_system_transferFcn(N,G,dt) p = -0.0633 -1.7846 -11.1860 k = 1.1249 -1.3399 0.2150 Continuous_TransferFcn = -0.08507 s (s-253.1) ------------------------------- (s+0.06329) (s+1.785) (s+11.19) Continuous-time zero/pole/gain model.

(完整)系统辨识—最小二乘法汇总,推荐文档

最小二乘法参数辨识 201403027 摘要:系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小 二乘法是一种应用极其广泛的系统辨识方法.阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析说明了最小二乘法应用于系统辨识中的重要意义. 关键词:最小二乘法;系统辨识;动态系统 Abstract: System identification in engineering is widely used, system identification methods there are many ways, least squares method is a very wide range of application of system identification method and the least squares method elaborated establish a dynamic system models in System Identification applications and examples analyzed by the least squares method is applied to illustrate the importance of system identification. Keywords: Least Squares; system identification; dynamic system

引言 随着科学技术的不断发展,人们认识自然、利用自然的能力越来越强,对于未知对象的探索也越来越深入.我们所研究的对象,可以依据对其了解的程度分为三种类型:白箱、灰箱和黑箱.如果我们对于研究对象的内部结构、内部机制了解很深入的话,这样的研究对象通常称之为“白箱”;而有的研究对象,我们对于其内部结构、机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为“灰箱”;如果我们对于研究对象的内部结构、内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”.研究灰箱和黑箱时,将研究的对象看作是一个系统,通过建立该系统的模型,对模型参数进行辨识来确定该系统的运行规律.对于动态系统辨识的方法有很多,但其中应用最广泛,辨识 效果良好的就是最小二乘辨识方法,研究最小二乘法在系统辨识中的应用具有现实的、广泛的意义. 1.1 系统辨识简介 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 1.2系统辨识的目的 在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。通过辨识建立数学模型通常有四个目的。 ①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。 ②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。用于系统分析的仿真模型要求能真实反映系统的特性。用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。 ③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。预测模型辨识的等价准则主要是使预测误差平方和最小。只要预测误差小就是好的预测

系统辨识之经典辨识法

- -- 系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号 2018 年 11 月

系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ①当系统的传递函数无零点时,即系统传递函数如下: G(S) = a a a a+a a?1a a1?1+?+a1a+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: a a a(a)a?1 (a) a a aa aa aa (1-2) 面积法原则上可以求出n为任意阶 的个系数。以n为3为例。有: a3a(a) a2a(a) aa(a) {aa|a→∞ =aa|a→∞ =aa|a→∞ = 0 (1-3) a(a)|a→∞ = 1

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

系统辨识介绍

系统辨识 系统辨识是研究如何用实验研究分析的办法来建立待求系统数学模型的一门学科。Zadeh(1962)指出:“系统辨识是在输入和输出数据的基础上,从一类模型中确定一个与所观测系统等价的模型”。Ljung(1978)也给出如下定义:“系统辨识有三个要素——数据、模型类和准则,即根据某一准则,利用实测数据,在模型类中选取一个拟合得最好的模型”。实际上,系统的数学模型就是对该系统动态本质的一种数学描述,它向人们提示该实际系统运行中的有关动态信息。但系统的数学模型总比真实系统要简单些,因此,它仅是真实系统降低了复杂程度但仍保留其主要特征的一种近似数学描述。 建立数学模型通常有两种方法,即机理分析建模和实验分析建模。机理分析建模就是根据系统内部的物理和化学过程,概括其内部变化规律,导出其反映系统动态行为并表征其输入输出关系的数学方程(即机理模型)。但有些复杂过程,人们对其复杂机理和内部变化规律尚未完全掌握(如高炉和转炉的冶炼过程等)。因此,用实验分析方法获得表征过程动态行为的输入输出数据,以建立统计模型,实际上是系统辨识的主要方面,它可适用于任何结构的复杂过程。 系统辨识的主要步骤和内容有以下几个方面。 1、辨识目的 根据对系统模型应用场合的不同,对建模要求也有所不同。例如,对理论模型参数的检验及故障检测和诊断用的模型则要求建得精确些。而对于过程控制和自适应控制等用的模型的精度则可降低一些,因为这类模型所关心的主要是控制效果的好坏,而不是所估计的模型参数是否收敛到真值。 2、验前知识 验前知识是在进行辨识模型之前对系统机理和操作条件、建模目的等了解的统称。有些场合为了获得足够的验前知识还要对系统进行一些预备性的实验,以便获得一些必要的系统参数,如系统中主要的时间常数和纯滞后时间,是否存在非线性,参数是否随时间变化,允许输入输出幅度和过程中的噪声水平等。 3、实验设计 实验设计的主要内容是选择和决定:输入信号的类型、产生方法、引入点、采样周期、在线或离线辨识、信号的滤波等。由于实际中对实验条件存在种种限制,如对输入和输出的幅度、功率、变化率的限制,最大采样速度的限制,实验进行时间、次数或能够取得的和用于建模的样本总个数的限制等。因此,怎样在这些限制条件下设计实验,以便在尽可能短的时间获得尽可能多的能反映系统本质特性的有用信息,是实验设计的中心任务。 4、模型类别的确定 为确定模型类别,需要在验前知识的基础上做必要的假定,即确定系统数学模型的具体表达形式。一般是根据对象的性质和控制的方法决定用微分方程还是用差分方程,脉冲响应函数还是用状态方程,线性模型还是非线性模型,定常参数模型还是时变参数模型,随机模型还是确定性模型,单一模型还是多层混杂模型等等,这就是所谓模型类别的确定问题。数学模型的具体表达形式确定后,才能进一步确定系统模型的参数。

系统辨识

数字控制理论与设计上机报告 一、背景知识 辨识是通过测量得到的动态系统输入/输出数据确定系统的模型。设计和实现高性能的控制系统需要系统模型。多数实际情况中,我们需要能够直接辨识动态(控制)模型的方法。主要采用的是辨识离散时间参数化动态模型的方法。 二、实验目的。 1、学会使用递归最小二乘法(RLS)与递归增广最小二乘法(RELS)进行系统辨识。 2、理解上述两种方法的异同并验证辨识得到的模型,加深对数字控制理论的理解。 三、实验原理 1、系统辨识 本次实验采用的是Ⅰ型辨识方法——基于白化预测误差的辨识方法。 辨识采样离散时间参数化动态模型的方法是最适合设计和调试数字控制系统的方法。系统辨识是一种确定系统动态模型的实验方法,它包含有四个步骤: ⑴在设定的实验条件下采集输入/输出数据; ⑵选择或估计模型结构(复杂度); ⑶估计模型参数; ⑷验证辨识模型(结构和参数值)。 一个完整的系统辨识算法必须包含以上四个步骤,每个步骤使用的方法取决于期望模型的类型(参数化的还是非参数化的、连续时间的还是离散时间的)以及实验条件(如对噪声的假设、开环或闭环辨识)。模型验证是判断辨识模型是否有效的关键一步。由于获取高质量辨识模型的参数估计算法和实验方法并非唯一,并且获得的模型也不是总能够通过验证测试。在这种情况下需要重新考虑辨识算法、模型复杂度和实验条件,系统辨识应视为一种反复过程。 2、验证模型 主要验证基于白化预测误差的方法辨识得到的模型,验证方法的准则如下:

⑴ 选择的对象+扰动结构是否正确,即能否代表实际系统; ⑵ 选择的多项式()()()1 1 1 A q B q C q ---、、的阶数和d (时延)的值是否正确。 验证方法基于以上准则,由以下几步构成: ⑴ 为辨识模型创建一个I/O 文件(使用和原系统一样的输入序列); ⑵ 为辨识模型创建一个预测误差文件(最少100个采样值); ⑶ 测试预测误差序列(即预测残差序列)的白度(不相关性)。 四、实验内容 1、Session LS1-1 打开T0.mat 文件,将已经测量得到的数据T0.mat 装载入工作空间。 输入plot(u)及plot(y)观察系统输入u 及输出y 的波形,如下图所示: input u

系统辨识方法

第四章 系统辨识中的实际问题 §4 —1 辨识的实验设计 一、系统辨识的实验信号 实验数据是辨识的基础,只有高质量的数据才能得出良好的数学模型,而且实验数据如果不能满足起码的要求,辨识根本得不出解。 系统辨识学科是在数理统计的时间序列分析的基础上发展起来的,两者的区别在于系统辨识的对象存在着人为的激励(控制)作用,而时序分析则没有。因此,前者能通过施加激励信号u(k)达到获得较好辩识结果的目的(即实验信号的设计),而后者不能。 (一) 系统辨识对实验信号的最起码的要求 为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。满足辨识对激励信号最起码的要求的持续激励信号应具备的条件称“持续激励条件”,分以下四种情况讨论: 1. 连续的非参数模型辨识(辩识频率特性) 如果系统通频带的上下限为 ωmin ≤ ω ≤ ωmax ,要求输入信号的功率密度谱在此范围内不等于零。 ) () ()}({)}({)(ωωωj U j Y t u F t y F j G = =

2. 连续的参数模型辨识 被辩识的连续传函为 ,共包含(m+n+1)个参数 对于u(t)的每一个频率成分ωi 的谐波,对应的频率响应有一个实部R(ωi )和一个虚部Im(ωi ),由此对应两个关系式(方程),能解出两个未知参数。因此,为辩识(m+n+1)个参数,持续激励信号至少应包含: j ≥( m+n+1 )/2 个不同的频率成分。 3. 离散的脉冲响应 g(τ)的辨识 g(τ) ;τ = 0,1,..m ,假设过程稳定,当 τ > m 时 g(τ)= 0 。由维纳—何甫方程有: R uy (τ )=∑ g(σ)R uu (τ - σ) 式(4-1-1) 由上式得出(m+1)个方程的方程组: 上式表达成矩阵形式 φuy = φuu G 式(4-1-2) 可解出 G = φuu -1 φuy 式(4-1-3) G s b b s b s a s a s m m n n ()= ++++++0111 R R R m R R R m R R R m R m R m R g g g m uy uy uy uu uu uu uu uu uu uu uu uu ()()()() ()()()()()()()()()()()010******** ????????????=----?????????????????????????

相关文档
最新文档