高考数学重点难点3函数与方程思想大全
高考数学方程与函数知识点
![高考数学方程与函数知识点](https://img.taocdn.com/s3/m/89c9070c82c4bb4cf7ec4afe04a1b0717fd5b3f6.png)
高考数学方程与函数知识点一、一次函数一次函数是指函数的最高次数为1的函数,通常表达为y=ax+b 的形式,其中a称为斜率,b称为截距。
1. 斜率:斜率可以用来表示函数图像的增减趋势,斜率为正表示函数递增,斜率为负表示函数递减。
2. 截距:截距表示函数图像与y轴之间的交点,可以用来确定函数图像的位置。
二、二次函数二次函数是指函数的最高次数为2的函数,通常表达为y=ax^2+bx+c的形式,其中a、b、c均为常数。
1. 抛物线:二次函数的图像是一条抛物线,其开口方向由a的正负决定。
2. 零点:通过解方程y=0,可以求得二次函数的零点,即方程的根。
3. 非负性:当a>0时,二次函数的值大于等于c,当a<0时,二次函数的值小于等于c。
4. 顶点:二次函数的顶点坐标可以通过求得x=-b/(2a)来确定。
三、指数函数指数函数是指函数关系中包含以常数e为底数的指数函数。
1. 指数规律:指数函数的数学规律为a^x=a^y,当x=y时,指数函数取相同的值。
2. 增长与衰减:指数函数具有快速增长或衰减的特点,指数函数的指数为正时,函数递增;指数为负时,函数递减。
3. 自然指数函数:自然指数函数是指以常数e≈2.71828为底的指数函数,形式为f(x)=e^x。
四、对数函数对数函数是指函数关系中包含以常数e为底数的对数函数。
1. 对数规律:对数函数的数学规律为a^loga(x)=x,当x>0时,对数函数取正值。
2. 增长与衰减:对数函数具有递增但增长速度逐渐减小的特点。
3. 自然对数函数:自然对数函数是指以常数e≈2.71828为底的对数函数,形式为f(x)=ln(x)。
五、三角函数三角函数包括正弦函数、余弦函数和正切函数,常用于解决与角度相关的问题。
1. 正弦函数:正弦函数表示一个角的对边与斜边的比值,通常表示为sin(x)。
2. 余弦函数:余弦函数表示一个角的邻边与斜边的比值,通常表示为cos(x)。
函数和方程的思想方法总结
![函数和方程的思想方法总结](https://img.taocdn.com/s3/m/7ce17cc7bdeb19e8b8f67c1cfad6195f312be828.png)
函数和方程的思想方法总结函数和方程是数学中两个非常重要的概念,它们在不同的数学领域和学科中具有广泛的应用。
在解决实际问题、研究数学定理和推导数学公式时,函数和方程的思想方法非常有用。
下面我将总结函数和方程的思想方法,并举例说明它们的应用。
一、函数的思想方法:1. 函数是一种映射关系,将自变量映射为因变量。
在研究函数时,我们常常关注函数的定义域、值域、图像和性质等特征。
例如,对于一个电商平台的销售额函数,我们可以通过输入商品价格来计算销售额。
我们可以研究函数的增减性、最大值和最小值等,以优化销售策略。
2. 函数具有一些重要的性质,如奇偶性、周期性和可导性等。
这些性质可以帮助我们进一步研究函数的特点和行为。
例如,对于一个正弦函数,它是一个周期函数,周期为2π。
我们可以利用这个性质来分析正弦函数的周期性变化和极值点。
3. 函数的组合和复合是函数思想方法的重要工具。
通过将多个函数进行组合或复合,我们可以得到新的函数,从而解决更加复杂的问题。
例如,对于一个物体在空中自由落体运动的高度函数和速度函数,我们可以通过将这两个函数进行复合,得到物体的位置函数和加速度函数,进一步分析物体的运动规律。
二、方程的思想方法:1. 方程是含有未知数的等式,通过求解方程,我们可以确定未知数的值。
解方程是数学中的一个重要问题,有很多不同的解法和技巧。
例如,对于一个一元一次方程,我们可以通过移项、消元和代入等方法求解。
对于一个一元二次方程,我们可以通过配方法、因式分解和求根公式等方法求解。
2. 方程的应用非常广泛,它可以用来描述和解决各种实际问题。
在解决实际问题时,我们常常将问题抽象成一个方程,然后通过求解方程来得到问题的解。
例如,对于一个汽车行驶的问题,我们可以根据汽车的速度、时间和距离的关系建立一个方程,然后求解这个方程来得到汽车行驶的时间或速度。
3. 方程的解有可能是多个,也有可能是无解。
我们在解方程时,需要考虑方程的解集和解的存在性等问题。
函数与方程思想
![函数与方程思想](https://img.taocdn.com/s3/m/5c5e807449649b6649d7477a.png)
=,求正整数1000【课堂练习】2.已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题: ① 存在实数k ,使得方程恰有2个不同的实根;② 存在实数k ,使得方程恰有4个不同的实根;③ 存在实数k ,使得方程恰有5个不同的实根;④ 存在实数k ,使得方程恰有8个不同的实根.其中真命题的序号是 .1.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根。
其中假命题的个数是 ( )A . 0B . 1C . 2D . 42.如果函数y ax b x =++21的最大值是4,最小值是-1,求实数a 、b 的值。
解:课后作业总结回顾3.已知函数的定义域和值域都是(其图像如下图所示),函数.定义:当且时,称是方程的一个实数根.则方程的所有不同实数根的个数是 .4.已知()()20,f x ax bx c a =++≠且方程()f x x =无实数根,下列命题:① 方程x x f f =)]([也一定没有实数根;② 若0>a ,则不等式x x f f >)]([对一切实数x 都成立;③ 若0<a ,则必存在实数0x ,使00)]([x x f f >;④ 若0=++c b a ,则不等式x x f f <)]([对一切实数x 都成立。
其中正确命题的序号是 .已知,若关于的方程有实根,则的取值范围是 .6.(普陀区一模文理科14) 已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 .)(x f y =]1,1[-],[,sin )(ππ-∈=x x x g ])1,1[(0)(11-∈=x x f ]),[()(212ππ-∈=x x x g 2x 0))((=x g f 0))((=x g f a ∈R x 2104x x a a ++-+=a。
山东高三数学知识点
![山东高三数学知识点](https://img.taocdn.com/s3/m/eec999a3988fcc22bcd126fff705cc1754275f65.png)
山东高三数学知识点一、函数与方程1. 函数的概念与性质1.1 函数的定义1.2 函数的图像与性质1.3 函数的分类与常见函数2. 方程与不等式2.1 一元一次方程与不等式2.2 一元二次方程与不等式2.3 二元一次方程与不等式二、数列与数列极限1. 数列的定义与性质1.1 数列的定义1.2 数列的通项公式1.3 数列的性质与分类2. 数列的求和与极限2.1 数列的部分和与求和公式2.2 数列的极限与收敛性2.3 数列极限的计算与应用三、三角函数1. 基本概念与性质1.1 三角函数的定义与图像1.2 三角函数的性质与关系1.3 三角函数的周期与对称性2. 三角函数的计算与应用2.1 三角函数的基本公式2.2 三角函数的合并与拆分2.3 三角函数在几何和物理中的应用四、立体几何1. 空间直线与平面1.1 空间直线的方程与相关概念 1.2 平面的方程与相关性质1.3 直线与平面的位置关系2. 空间点与多面体2.1 空间点的坐标与平移2.2 多面体的分类与性质2.3 多面体的体积与表面积计算五、解析几何1. 直线与圆的方程1.1 直线的点斜式与一般式1.2 圆的标准方程与一般方程 1.3 直线与圆的位置关系2. 曲线的参数方程与一般方程2.1 曲线的参数方程的定义与应用2.2 曲线的一般方程与性质2.3 曲线与直线的位置关系六、概率与统计1. 概率的基本概念与性质1.1 概率的定义与运算法则1.2 条件概率与独立事件1.3 事件的排列与组合2. 统计的基本概念与应用2.1 样本数据的收集与整理2.2 统计量与频率分布2.3 抽样与统计推断以上是山东高三数学的主要知识点,希望能给同学们提供一个简要的概览。
在学习过程中,建议同学们深入理解每个知识点的定义、性质与应用,进行大量的练习与解题,巩固基础,并在考试前做好知识点的回顾与总结,加深对数学的理解与掌握。
祝同学们在数学学习中取得好成绩!。
高三数学函数与方程知识点
![高三数学函数与方程知识点](https://img.taocdn.com/s3/m/1b54425b6ad97f192279168884868762caaebbcf.png)
高三数学函数与方程知识点函数与方程是高中数学的重要部分,也是高考数学考查的重点内容,掌握好函数与方程的知识对于考试成绩至关重要。
本文将以详细的方式介绍高三数学中的函数与方程的知识点,帮助学生深入理解和掌握这一部分内容。
一、函数的定义与性质函数是一种特殊的关系,它可以将一个自变量的取值映射到唯一的因变量的取值。
函数的定义通常以符号表达,如:y=f(x),其中x为自变量,y为因变量,f为函数的表达式。
函数的性质包括定义域、值域、单调性、奇偶性等。
1.1 定义域与值域函数的定义域是指自变量的取值范围,常用表示为D(f)。
值域是函数的所有可能的因变量取值的范围,常用表示为R(f)。
在求函数的定义域和值域时,需考虑到函数表达式中的分母不能为零等限制条件。
1.2 单调性函数的单调性是指函数在定义域内的取值随自变量的增加或减少而单调增加或单调减少。
函数可以是递增的(单调增加)、递减的(单调减少)或者具有不同的单调区间。
1.3 奇偶性函数的奇偶性是指函数在定义域内的取值与自变量取值的关系。
奇函数具有对称中心为原点,即f(-x)=-f(x);偶函数具有对称轴为y轴,即f(-x)=f(x)。
二、线性函数与一次函数线性函数是一种最基本的函数形式,它的函数表达式为f(x)=kx+b,其中k为斜率,b为截距。
一次函数是线性函数的一种特殊情况,当k=0时,即为一次函数。
线性函数与一次函数的性质包括斜率、截距、图像等。
2.1 斜率线性函数的斜率表示函数图像的倾斜程度,斜率为正表示函数递增,斜率为负表示函数递减。
斜率可以通过两点的坐标计算得出,也可以根据函数表达式的形式直接读取。
2.2 截距线性函数的截距表示函数图像与y轴的交点位置,截距可以通过函数表达式中的常数项b直接读取。
2.3 图像线性函数的图像是一条直线,可以通过斜率和截距的值确定直线的倾斜程度和位置。
当斜率为正时,函数图像从左下方逐渐向右上方倾斜;当斜率为负时,函数图像从左上方逐渐向右下方倾斜。
2024年高三数学高考知识点总结
![2024年高三数学高考知识点总结](https://img.taocdn.com/s3/m/a003225511a6f524ccbff121dd36a32d7275c766.png)
2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。
2024年高考数学知识点总结整理
![2024年高考数学知识点总结整理](https://img.taocdn.com/s3/m/846f9f603069a45177232f60ddccda38376be12d.png)
2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高中数学知识点复习:函数方程思想讲解
![高中数学知识点复习:函数方程思想讲解](https://img.taocdn.com/s3/m/e9b1eba1fe4733687f21aa99.png)
高中数学知识点复习:函数方程思想讲解
高中数学知识点复习:函数方程思想讲解
【】高中数学知识点复习:函数方程思想讲解是查字典数学网为您整理的最新考试资讯,请您详细阅读!
函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值,解(证)不等式,解方程以及
理的问题;
(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;
(6)立体几何中有关线段,角,面积,体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决.
查字典数学网的编辑为大家带来的高中数学知识点复习:函数方程思想讲解,希望能为大家提供帮助。
高考数考点解读命题热点突破专题函数与方程思想数形结合思想文
![高考数考点解读命题热点突破专题函数与方程思想数形结合思想文](https://img.taocdn.com/s3/m/b1c4dc2b5f0e7cd185253614.png)
专题22 函数与方程思想、数形结合思想【考点定位】函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在选择题、填空题中考查.【命题热点突破一】函数与方程思想 1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y =f (x ),当y >0时,就转化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.例1、(1)设m ,n 是正整数,多项式(1-2x)m+(1-5x)n中含x 项的系数为-16,则含x 2项的系数是( ) A .-13 B .6 C .79 D .37(2)已知函数f(x)=(x +m)ln(x +m)在x =1处的切线斜率为1. ①若对∀x>0,恒有f(x)≥-x 2+ax -2,求实数a 的最大值; ②证明:对∀x ∈(0,1]和任意正整数n 都有f(x)>xne x -1.【答案】(1)D(2)解:f′(x)=ln(x +m)+1,则f′(1)=ln(1+m)+1=1,得m =0,即f(x)=xln x.①f(x )≥-x 2+ax +2,即xln x≥-x 2+ax -2,又x>0,所以a≤ln x+x +2x .令h(x)=ln x +x +2x,所以要使原不等式恒成立,则a≤h(x)min .h′(x)=1x +1-2x 2=x 2+x -2x 2=(x +2)(x -1)x2. 当0<x<1时,h′(x)<0,当x>1时,h′(x)>0,h′(1)=0,故x =1时,h(x)取得极小值,即最小值,所以h(x)min =h(1)=3,所以a≤3,所以a 的最大值为3.【特别提醒】方程思想的本质是根据已知得出方程(组),通过解方程(组)解决问题;函数思想的实质是使用函数方法解决数学问题(不一定只是函数问题),构造函数解题是函数思想的一种主要体现.【变式探究】(1)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1).若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3(2)已知函数f(x)=x 2ln x .①求f(x)的单调区间;②证明:当x>1时,x +(x -3)e x2ln x>0.【答案】(1) D【解析】AB →=OB →-OA →=(3,1).因为AB →∥OC →,所以2m 3=m +11,解得m =-3.(2)解:①f(x)=x2ln x的定义域为(0,1)∪(1,+∞),f′(x)=x (2ln x -1)(ln x )2. 由f′(x)>0得f(x)的单调递增区间为(e ,+∞); 由f′(x)<0得f(x)的单调递减区间为(0,1),(1,e). ②证明:由①知,当x>1时,f(x)的最小值为f(e)=e ln e=2e.令g(x)=(-x 2+3x)e x 2,x ∈(1,+∞),则g′(x)=(-12x 2-12x +3)e x 2=-12(x -2)(x +3)e x 2.当x>1时,由g′(x)>0得函数g(x)在区间(1,2)上单调递增;由g′(x) <0得函数g(x)在区间(2,+∞)上单调递减,所以g(x)=(-x 2+3x)e x 2≤g(2)=2e ,所以当x>1时,f(x)=x 2ln x >g(x)=(-x 2+3x)e x 2,整理得x +(x -3)e x 2ln x>0.【命题热点突破二】数形结合思想例2、(1) 设函数f(x)=e x (2x -1)-ax +a ,其中a<1,若存在唯一的整数x 0,使得f(x 0)<0,则a 的取值范围是( )A .[-32e ,1)B .[-32e ,34)C .[32e ,34)D .[32e,1)(2)向量a =(2,0),b =(x ,y),若b 与b -a 的夹角为π6,则|b |的最大值为( )A .4B .2 3C .2 D.4 33【答案】 (1)D (2)A直线y =ax -a 过点(1,0).若a≤0,则f(x)<0的整数解有无穷多个,因此只能a>0.结合函数图像可知,存在唯一的整数x 0,使得f(x 0)<0,即存在唯一的整数x 0,使得点(x 0,ax 0-a)在点(x 0,g(x 0))的上方,则x 0只能是0,故实数a 应满足⎩⎪⎨⎪⎧f (-1)≥0,f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-3e -1+2a≥0,-1+a<0,e≥0,解得32e≤a<1.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32e ,1.【特别提醒】数形结合思想主要是根据函数图像(或者其他几何图形),找到解决问题的思路,帮助建立数的运算或者推理(以形助数)的一种方法.用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解 (或函数零点)的个数.【变式探究】(1)函数y =f(x)为定义在R 上的减函数,函数y =f(x -1)的图像关于点(1,0)对称,x ,y 满足不等式f(x 2-2x)+f(2y -y 2)≤0,M(1,2),N(x ,y),O 为坐标原点,则当1≤x ≤4时,OM →·ON →的取值范围为( )A .[12,+∞)B .[0,3]C .[3,12]D .[0,12](2)已知向量α,β,γ满足|α|=1,|α-β|=|β|,(α-γ)·(β-γ)=0.若对每一确定的β,|γ|的最大值和最小值分别为m ,n ,则对任意β,m -n 的最小值是( )A.12 B .1 C .2 D. 2 【答案】(1)D (2)A(2)平移向量α,β,γ,使它们的起点位于点O 处,终点分别记作A ,B ,C ,如图所示,根据|α-β|=|β|可知点B 在OA 的垂直平分线上.根据(α-γ)·(β-γ)=0知点C 在以AB 为直径的圆上,故m -n 等于圆的直径AB.又OB =AB ,所以要使AB 最小,则只要OB 最小即可,由图易知,当点B 为线段OA 的中点时,m -n 取得最小值12.【高考真题解读】1.[2015·全国卷Ⅱ改编] 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=________. 【答案】42【解析】由a 1=3,得a 1+a 3+a 5=3(1+q 2+q 4)=21,所以1+q 2+q 4=7,即(q 2+3)(q 2-2)=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42.2.[2015·全国卷Ⅱ] 设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 【答案】12【解析】因为λa +b 与a +2b 平行,所以存在唯一实数t ,使得λa +b =t(a +2b ),所以⎩⎪⎨⎪⎧λ=t ,1=2t ,解得λ=t =12.3.[2013·新课标全国卷Ⅰ改编] 设m 为正整数,(x +y)2m展开式的二项式系数的最大值为a ,(x +y)2m+1展开式的二项式系数的最大值为b ,若13a =7b ,则m =________. 【答案】6【解析】(x +y)2m展开式的二项式系数的最大值是C m2m ,即a =C m2m ;(x +y)2m +1展开式的二项式系数的最大值是C m 2m +1,即b =C m 2m +1,因为13a =7b ,所以13C m 2m =7C m2m +1,所以13(2m )!m !·m!=7(2m +1)!(m +1)!·m!,解得m =6.4.[2015·全国卷Ⅱ改编] 设函数f′(x)是奇函数f(x)(x ∈R )的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是________.【答案】(-∞,-1)∪(0,1)5.[2014·辽宁卷改编] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是________.【答案】[-6,-2]【解析】当-2≤x<0时,不等式转化为a≤x 2-4x -3x 3, 令f(x)=x 2-4x -3x3(-2≤x<0), 则f′(x)=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f(x)在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a≤1+4-3-1=-2.当x =0时,不等式恒成立.当0<x≤1时,a≥x 2-4x -3x 3,令g(x)=x 2-4x -3x 3(0<x≤1), 则g′(x)=-x 2+8x +9x 4=-(x -9)(x +1)x 4, 故g(x)在(0,1]上单调递增,此时有a≥1-4-31=-6.综上,-6≤a≤-2.6.[2013·山东卷] 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 【答案】2 2【解析】设弦与圆的交点为A ,B ,最短弦长以(3,1)为中点,由垂径定理得⎝ ⎛⎭⎪⎫|AB|22+(3-2)2+(2-1)2=4,解之得|AB|=2 2.7.[2014·天津卷] 已知函数f(x)=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x>0.若函数y =f(x)-a|x|恰好有4个零点,则实数a 的取值范围为________.【答案】(1,2)。
高三函数与方程知识点
![高三函数与方程知识点](https://img.taocdn.com/s3/m/22b6720cf011f18583d049649b6648d7c1c7081b.png)
高三函数与方程知识点函数与方程是高中数学中的重要内容,也是高三数学的重要知识点之一。
掌握好函数与方程的相关概念和运用方法,对于高三数学的学习和应试都具有重要意义。
本文将以清晰、简洁的方式介绍高三函数与方程的知识点。
一、函数的概念及性质函数是自变量和因变量之间的一种特殊关系。
在数学上,函数可以用公式、图像、表格等方式表示。
函数的性质包括定义域、值域、单调性、奇偶性等。
在高三数学中,函数的性质常常用于解决问题和证明题。
二、基本初等函数常见的基本初等函数包括一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。
这些函数都具有特定的特性和图像,通过对这些函数的研究,可以更好地理解函数的性质和变化规律,同时也为解决各种函数方程提供了基础。
三、函数的图像与性质函数的图像是研究函数性质的重要工具之一。
通过函数图像的形状、变化趋势等特点,可以得出函数的部分性质。
在高三数学中,对于基本函数的图像性质要有清晰的认识,同时也要能够根据函数的图像推断其性质。
四、函数的运算与复合函数函数的运算是指对函数进行加减乘除等操作。
常见的函数运算包括函数的加减、函数的乘除、函数的积分、函数的导数等。
复合函数是两个或多个函数构成的函数,通过复合函数的运算可以得到新的函数。
函数的运算和复合函数的求导是高三数学中的重要内容,需要熟练掌握。
五、函数方程的解法函数方程是包含函数未知量的方程,通常需要求函数的具体形式或特定的性质。
常见的函数方程包括函数的零点求解、函数的最值求解等。
对于不同类型的函数方程,需要采用不同的解法。
在高三数学中,熟练掌握函数方程的解法,可以快速解决各类相关问题。
六、常见的函数类型及应用高三数学中,除了基本初等函数之外,还有许多常见的函数类型如绝对值函数、分段函数、双曲线函数等。
这些函数在实际问题中的应用广泛,需要注意这些函数的特点和应用方法。
七、函数与方程的综合应用函数与方程在实际问题中具有广泛的应用,涉及到各个领域。
高考数学难点突破_难点36__函数方程思想(精编版)
![高考数学难点突破_难点36__函数方程思想(精编版)](https://img.taocdn.com/s3/m/e966d1b8aeaad1f347933f0e.png)
难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●难点磁场1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 .2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值.[例1]已知函数f (x )=log m33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)⇔>+-033x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数.(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数.∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m 即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf m m m m m ∴0<m <432-故当0<m <432-时,满足题意条件的m 存在. [例2]已知函数f (x )=x 2–(m +1)x +m (m ∈R ) (1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角.求证:m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,若函数f (sin α)的最大值是8,求m .命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式. 错解分析:第(1)问中易漏掉Δ≥0和tan(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f (x )+4=0即x 2–(m +1)x +m +4=0.依题意:⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5(2)证明:∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解:∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8. 即1+(m +1)+m =8,∴m =3函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.一、选择题1.(★★★★★)已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A.(0,41] B.(0,41) C.[41,1) D.(41,21) 2.(★★★★★)函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A.[45,+∞) B.(1,45] C.[47,+∞) D.(1,47]二、填空题3.(★★★★)关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a 的取值范围是 .4.(★★★★★)如果y =1–sin 2x –m cos x 的最小值为–4,则m 的值为 . 三、解答题5.(★★★★)设集合A ={x |4x –2x +2+a =0,x ∈R }. (1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围.6.(★★★★)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.7.(★★★★★)已知函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )], …g n (x )=f [g n –1(x )],…(1)求证:如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立;(2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有这些稳定不动点; (3)设区间A =(–∞,0),对于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0, 且n ≥2时,g n (x )<0.试问是否存在区间B (A ∩B ≠∅),对于区间内任意实数x ,只要n ≥2,都有g n (x )<0.8.(★★★★)已知函数f (x )=xa 11- (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围.参 考 答 案●难点磁场1.解析:设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]. 等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值. 答案:(–∞,–1)∪(2,+∞)2.解:(1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3. 故当a =1,b =–2时,f (x )的两个不动点为–1,3.(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根 ∴Δ=b 2–4ab +4a >0(b ∈R )恒成立. 于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1.(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称.∴k =–1.设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根. ∴x ′=y ′=a b x x 2221-=+,又点M 在直线1212++-=a x y 上有 121222++=-a a b a b ,即aa a ab 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a1即a =22∈(0,1)时取等号,故b ≥–221,得b 的最小值–42. ●歼灭难点训练一、1.解析:考查函数y 1=x 和y 2=(2a )x的图象,显然有0<2a <1.由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案.答案:A 2.解析:由题意可得f (–x +1)=–f (x +1).令t =–x +1,则x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x ).当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞). 答案:C3.解析:显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a >31. 答案:31<a <104.解析:原式化为4)2(cos 22m m x y --=.当2m<–1,y min =1+m =–4⇒m =–5. 当–1≤2m≤1,y min =42m -=–4⇒m =±4不符.当2m>1,y min =1–m =–4⇒m =5. 答案:±5二、5.解:(1)令2x =t (t >0),设f (t )=t 2–4t +a .由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4 验证:t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1 ②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立.即g (a )=(x –2)a –(x 2–6x )>0恒成立.只须175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6.解:(1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2. 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab2=1得a =–1,故f (x )=–x 2+2x . (2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1∴n ≤41时,f (x )在[m ,n ]上为增函数. 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0]. 由以上知满足条件的m 、n 存在,m =–2,n =0. 7.(1)证明:当n =1时,g 1(x 0)=x 0显然成立; 设n =k 时,有g k (x 0)=x 0(k ∈N )成立, 则g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0 即n =k +1时,命题成立.∴对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0.(2)解:由(1)知,稳定不动点x 0只需满足f (x 0)=x 0 由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳定不动点为0和65. (3)解:∵f (x )<0,得6x –6x 2<0⇒x <0或x >1.∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1. 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1 由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故对于区间(633,633+-)和(1,+∞)内的任意实数x ,只要n ≥2,n ∈N ,都有g n (x )<0. 8.(1)证明:任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x xx x x x a x a -=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数. (2)解:∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在(0,+∞)上恒成立,令421221121)(=⋅≤+=xx xx x g (当且仅当2x =x1即x =22时取等号),要使a ≥xx 121在(0,+∞)上恒成立,则a ≥42.故a 的取值范 围是[42,+∞). (3)解:由(1)f (x )在定义域上是增函数. ∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a1n +1=0 故方程x 2–a 1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1,故只需要Δ=(a1)2–4>0,由于a >0,则0<a <21.。
数学高三数学函数与方程知识总结与应用
![数学高三数学函数与方程知识总结与应用](https://img.taocdn.com/s3/m/67fa6349f02d2af90242a8956bec0975f465a41d.png)
数学高三数学函数与方程知识总结与应用在高三数学学习过程中,数学函数与方程是非常重要的内容。
掌握了这些知识,不仅可以为学习其他数学课程提供基础,也能在解决实际问题时发挥重要作用。
下面将对高三数学函数与方程的知识进行总结并介绍其应用。
一、函数知识总结1.1 函数的定义与性质函数是一种特殊的关系,通常用f(x)表示。
其中,x是自变量,f(x)是因变量。
要使一个关系为函数,对于任意的x值,都必须有唯一的f(x)值与之对应。
函数也有定义域与值域的概念,分别表示自变量与因变量的可能取值范围。
1.2 基本函数类型高中数学中常见的函数类型有线性函数、二次函数、指数函数、对数函数和三角函数等。
每种函数类型都有其独特的特点和性质。
例如,线性函数的图像为直线,二次函数的图像为抛物线。
1.3 函数图像的性质通过函数的表达式,我们可以得到其图像的一些性质。
例如,对于一次函数y = kx + b,其中k和b为常数,我们知道其图像是一条直线,斜率k决定了直线的倾斜程度。
二、方程知识总结2.1 一元一次方程一元一次方程是形如ax + b = 0的方程,其中a和b是已知常数,x是未知数。
解一元一次方程的一般步骤是将方程化简为ax = b的形式,然后求出x的值。
2.2 一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c是已知常数,x是未知数。
解一元二次方程的一般步骤可以通过配方法、因式分解法或求根公式等方式进行。
2.3 二元一次方程组二元一次方程组是形如{ax + by = c,dx + ey = f}的方程组,其中a、b、c、d、e和f是已知常数,x和y是未知数。
解二元一次方程组的一般步骤是使用消元法或代入法等方法,最终得到x和y的值。
三、函数与方程的应用3.1 函数的图像应用函数的图像不仅可以直观地展示函数的性质,还可以应用于实际问题的解决。
例如,在物理学中,我们可以通过绘制v - t图像,其中t表示时间,v表示速度,从图像中直观地了解物体的运动情况。
高考数学重难点及考点知识介绍
![高考数学重难点及考点知识介绍](https://img.taocdn.com/s3/m/5d7ed9d3aff8941ea76e58fafab069dc502247f3.png)
高考数学重难点及考点知识介绍1.高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
(7)直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
函数与方程高考知识点总结
![函数与方程高考知识点总结](https://img.taocdn.com/s3/m/fbe5967930126edb6f1aff00bed5b9f3f80f7268.png)
函数与方程高考知识点总结一、函数的概念与性质1.函数的定义:函数是一个从一个集合到另一个集合的映射关系。
2.函数的表示方法:函数可以用函数解析式、函数图象、函数表等形式表示。
3.函数的性质:奇偶性、周期性、有界性、单调性、极值、最值等。
二、初等函数1.常数函数:y=c。
2. 一次函数:y=kx+b。
3. 二次函数:y=ax²+bx+c。
4.幂函数:y=xⁿ。
5.指数函数:y=aᵡ。
6. 对数函数:y=logₐx。
7.三角函数:正弦函数、余弦函数、正切函数等。
8.反三角函数:反正弦函数、反余弦函数、反正切函数等。
三、函数的运算1.函数的和、差、积、商的定义与性质。
2.复合函数的定义与性质。
3.反函数的定义与性质。
四、方程的概念与性质1.方程的定义:含有未知数的等式称为方程。
2.方程的根:使方程等式成立的未知数的值称为方程的根。
3.方程的解:满足方程的根的值的集合。
4.方程的性质:等价方程、可解性、唯一性等。
五、一元一次方程1.一元一次方程的定义与解的概念。
2.一元一次方程的解法:解方程的基本步骤、去分母、去项、整理方程等。
3.一元一次方程的应用:问题转化为一元一次方程。
六、一元二次方程1.一元二次方程的定义与解的概念。
2.一元二次方程的解法:配方法、因式分解法、求根公式、三角函数法等。
3.一元二次方程的判别式:判别式与方程根的关系。
七、一元高次方程1.一元高次方程的定义与解的概念。
2.一元高次方程的解法:因式分解法、整理方程法、二次根与系数关系、综合除法等。
3.一元高次方程的应用:问题转化为一元高次方程。
八、二元一次方程组1.二元一次方程组的定义与解的概念。
2.二元一次方程组的解法:方法一、方法二、方法三等。
3.二元一次方程组的应用:问题转化为二元一次方程组。
九、二元二次方程组1.二元二次方程组的定义与解的概念。
2.二元二次方程组的解法:消元法、代入法、加减消元法、变量代换法等。
3.二元二次方程组的应用:问题转化为二元二次方程组。
高中数学各考点解题技巧函数与方程专题(高考复习用)
![高中数学各考点解题技巧函数与方程专题(高考复习用)](https://img.taocdn.com/s3/m/612b8c98aef8941ea76e058b.png)
专题:函数与方程1.函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.方程的思想,就是从问题的数量关系入手分析数学问题中的等量关系,从而建立方程或方程组或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,从而使问题获得解决.方程的思想与函数的思想密切相关,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0,函数与方程这种相互转化的关系十分重要.函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式. 2.函数与方程思想一直是数学最本质的思想之一,是高中数学的一条重要主线,新课标内容中不仅没有淡化这一传统,而且还有加强的趋势,这从考试说明中很容易看出来.3.备考中要熟练掌握一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、三角函数的具体性质与图象特征,解题时要注意挖掘题目中的隐含条件,迅速构造出有关的函数解析式并能恰当使用其性质或图象,顺利解决问题.4.函数与方程思想的应用涉及的知识点较多,应用起来具有一定的创造性,更能体现考生的能力水平,是考查创新实践能力的良好载体和首选载体,另外它对考生的理解能力,应用数学知识的能力,以及数学思维能力等都有较高层次要求,备考过程中要加强训练.经典例题:【例1】(2009·江苏调研)已知命题“在等差数列{}中,若,则=78”为真命题,由于印刷问题,括号内的数模糊不清,可以推得其中的数为。
.分析由=78,可得关于与d的方程,设括号内数为x,可得关于,d的方程,联立可解得x=17. 解析设等差数列{}公差为d,首项为,括号内为x,依题意有:解得.探究拓展用方程的思想建立关于基本量的等式,通过解方程(组),使问题得以解决,是处理数列问题的基本方法与思路.数列中基本量一般指首项、公差d、公比q、项数n、第n 项、前n项和,关联式为,方程思想的应用,使各基本量之间关系表现的形象生动,备考者要细细体会,牢固掌握.变式训练1 若复数z满足条件(1+i)z=1-i,则z= .解析设z=a+bi (a,b∈R), 则(1+i)(a+bi)=1-i,整理有(a-b)+(a+b)i=1-i,【例2】(2009·南京调研)如图所示,半圆的直径AB=2,O为圆心,C是半圆上不同于A,B的任意一点.若P为半径OC上的动点,则(PA+PB)·PC的最小值是..解析设PC长为x (0≤x≤1),则PO长为1-x,依题意,O为AB中点,所以问题转化为求函数的最小值问题.,当时,有最小值。
高三数学必考知识点复习专题函数与方程(有图)
![高三数学必考知识点复习专题函数与方程(有图)](https://img.taocdn.com/s3/m/3166b9f0aeaad1f346933fd1.png)
3.1函数与方程一、目的要求1、 了解函数零点的概念,了解函数零点与方程根的联系。
2、 理解并掌握连续函数在某个区间上存在零点的判定方法。
3、 能利用函数图象和性质判断函数零点的个数。
4、 了解二分法是求方程近似解的常用方法。
5、 能借助信息技术工具用二分法求方程的近似解。
二、学习内容3.3.1方程的根与函数的零点。
从具体的一无二次方程及相应的二次函数分析可知二次方程的根x 就是相应二次函数的图象与x 轴交点的横坐标。
我们把这个x 叫做二次函数的零点。
从而引入一般函数零点的概念:对于函数)(x f y =,把满足0)(=x f 的实数x 叫做函数)(x f y =的零点,也就是函数图象(当0=y 时)与x 轴交点的横坐标。
从而得到方程的根与相应函数零点的关系: 方程0)(=x f 的根就是函数)(x f y =的图象与x 轴交点的横坐标,就是函数)(x f y =的零点。
方程根的个数就是函数零点的个数。
这样,当方程0)(=x f 的根不能用以前的方法(如因式分解、公式法)求出时,可以利用相应函数)(x f y =的图象找出零点,即得到方程的根。
进一步探讨如何确定函数的零点。
具体函数可以看出,如果 )(x f y =在区间],[b a 上的图象是连续的,并且有0)()(<⋅b f a f ,那么)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 就是0)(=x f 的一个根。
要注意的是:1、 图象在],[b a 上要连续,否则就不一定有零点。
(如图1)2、 条件0)()(<⋅b f a f 只能说明在),(b a 内有零点,不能判别零点的个数。
(如图2)3、 反过来,),(b a 内有零点,不一定有0)()(<⋅b f a f ,即0)()(>⋅b f a f 时,在),(b a 内也可以有零点。
(如图3)4、 零点个数就是方程根的个数。
高考数学难点突破_难点36__函数方程思想
![高考数学难点突破_难点36__函数方程思想](https://img.taocdn.com/s3/m/de8a14ca227916888586d722.png)
难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●难点磁场1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 .2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值.●案例探究[例1]已知函数f (x )=log m33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)⇔>+-033x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数.(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数.∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf m m m m m ∴0<m <432-故当0<m <432-时,满足题意条件的m 存在. [例2]已知函数f (x )=x 2–(m +1)x +m (m ∈R ) (1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角.求证:m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,若函数f (sin α)的最大值是8,求m .命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属 ★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式. 错解分析:第(1)问中易漏掉Δ≥0和tan(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f (x )+4=0即x 2–(m +1)x +m +4=0.依题意:⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5 (2)证明:∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0 即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0 ∴m ≥x 但x max =3,∴m ≥x max =3(3)解:∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2,∴当sin α=–1时,f (sin α)有最大值8. 即1+(m +1)+m =8,∴m =3 ●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭难点训练 一、选择题1.(★★★★★)已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A.(0,41] B.(0,41) C.[41,1) D.(41,21) 2.(★★★★★)函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A.[45,+∞) B.(1,45] C.[47,+∞) D.(1,47]二、填空题3.(★★★★)关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a 的取值范围是 .4.(★★★★★)如果y =1–sin 2x –m cos x 的最小值为–4,则m 的值为 . 三、解答题5.(★★★★)设集合A ={x |4x –2x +2+a =0,x ∈R }. (1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围.6.(★★★★)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.7.(★★★★★)已知函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )], …g n (x )=f [g n –1(x )],…(1)求证:如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立; (2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有这些稳定不动点; (3)设区间A =(–∞,0),对于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0, 且n ≥2时,g n (x )<0.试问是否存在区间B (A ∩B ≠∅),对于区间内任意实数x ,只要n ≥2,都有g n (x )<0.8.(★★★★)已知函数f (x )=xa 11- (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围.参 考 答 案●难点磁场1.解析:设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]. 等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值. 答案:(–∞,–1)∪(2,+∞)2.解:(1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3. 故当a =1,b =–2时,f (x )的两个不动点为–1,3.(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根 ∴Δ=b 2–4ab +4a >0(b ∈R )恒成立. 于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1.(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称.∴k =–1.设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根. ∴x ′=y ′=a b x x 2221-=+,又点M 在直线1212++-=a x y 上有 121222++=-a a b a b ,即aa a ab 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a1即a =22∈(0,1)时取等号,故b ≥–221,得b 的最小值–42. ●歼灭难点训练一、1.解析:考查函数y 1=x 和y 2=(2a )x的图象,显然有0<2a <1.由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案. 答案:A 2.解析:由题意可得f (–x +1)=–f (x +1).令t =–x +1,则x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x ).当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞). 答案:C3.解析:显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a >31. 答案:31<a <104.解析:原式化为4)2(cos 22m m x y --=.当2m<–1,y min =1+m =–4⇒m =–5. 当–1≤2m≤1,y min =42m -=–4⇒m =±4不符.当2m>1,y min =1–m =–4⇒m =5. 答案:±5二、5.解:(1)令2x =t (t >0),设f (t )=t 2–4t +a .由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有 ①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4 验证:t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1 ②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立.即g (a )=(x –2)a –(x 2–6x )>0恒成立.只须175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6.解:(1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2. 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab2=1得a =–1,故f (x )=–x 2+2x . (2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1 ∴n ≤41时,f (x )在[m ,n ]上为增函数. 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0]. 由以上知满足条件的m 、n 存在,m =–2,n =0. 7.(1)证明:当n =1时,g 1(x 0)=x 0显然成立;设n =k 时,有g k (x 0)=x 0(k ∈N )成立, 则g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0 即n =k +1时,命题成立.∴对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0.(2)解:由(1)知,稳定不动点x 0只需满足f (x 0)=x 0 由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳定不动点为0和65. (3)解:∵f (x )<0,得6x –6x 2<0⇒x <0或x >1.∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1. 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1 由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故对于区间(633,633+-)和(1,+∞)内的任意实数x ,只要n ≥2,n ∈N ,都有g n (x )<0. 8.(1)证明:任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x xx x x x a x a -=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数. (2)解:∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在(0,+∞)上恒成立,令421221121)(=⋅≤+=xx xx x g (当且仅当2x =x1即x =22时取等号),要使a ≥xx 121+在(0,+∞)上恒成立,则a ≥42.故a 的取值范 围是[42,+∞).(3)解:由(1)f (x )在定义域上是增函数. ∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a1n +1=0 故方程x 2–a 1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1,故只需要Δ=(a1)2–4>0,由于a >0,则0<a <21.Von Neumann 说过:In mathematics you don't understand things .You just get used to them. 掌握了课本,一般的数学题就都可以做了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点难点磁场1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究[例1]已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3设β≥x1>x2≥α,有当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)]∵0<m<1, f(x)为减函数.∴即即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根∴∴0<m<故当0<m<时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角∴<A+B<π∴tan(A+B)<0,即∴∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m=且≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点难点训练一、选择题1.(★★★★★)已知函数f(x)=loga[–(2a)2]对任意x∈[,+∞]都有意义,则实数a 的取值范围是( )A.(0,B.(0, )C.[,1D.( , )2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是( )A.[,+∞B.(1,C.[,+∞D.(1, ]二、填空题3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为.三、解答题5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], …gn(x)=f[gn–1(x)],…(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参考答案●重点难点磁场1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′= ,又点M在直线上有,即∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭重点难点训练一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意得a= ,再结合指数函数图象性质可得答案.答案:A2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C3.解析:显然有x>3,原方程可化为故有(10–a)•x=29,必有10–a>0得a<10又x= >3可得a>.答案:<a<104.解析:原式化为.当<–1,ymin=1+m=–4 m=–5.当–1≤≤1,ymin= =–4 m=±4不符.当>1,ymin=1–m=–4 m=5.答案:±5二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有①f(t)=0有两等根时,Δ=0 16–4a=0 a=4验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1②f(t)=0有一正根和一负根时,f(0)<0 a<0③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须<x≤26.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=–=1得a=–1,故f(x)=–x2+2x. (2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤而抛物线y=–x2+2x的对称轴为x=1∴n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则又m<n≤,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立;设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1由g1(x)>0 6x–6x2>1故对于区间( )和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=∵x1>x2>0,∴x1x2>0,x1–x2>0,∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,∴a≥在(0,+∞)上恒成立,令(当且仅当2x= 即x= 时取等号),要使a≥在(0,+∞)上恒成立,则a≥.故a的取值范围是[,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0故方程x2–x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=( )2–4>0,由于a>0,则0<a<.。