《中位线》培优训练

合集下载

《中位线》培优训练

《中位线》培优训练

八年级《中位线》培优训练1、如图,△ABC中,CD平分∠ACB,A D⊥CD,垂足为D点,点E为AB的中点. (1)求证:D E∥BC;(2)若AC=8,BC=5,求DE的长。

2、如图,梯形ABCD中,E、F分别为对角线BD、AC的中点,求证:(1)EF∥CD;(2)1()2EF CD AB=-3、如图,A E⊥AB,BF⊥AB,AB的中垂线交AB于N,交EF与M。

求证:1()2MN BF AE=-A BC4、已知,BF 、CE 分别为△ABC 中,∠B ,∠C 平分线,AM ⊥CE 于M,AN ⊥BF 于N , 求证:(1)MN ∥BC ; (2)A B +A C -BC=2MN5、(1)如图1,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,求证:∠BME=∠CNE 。

(2)如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF ,分别交DC 、AB 于点M 、N ,判断△OMN 的形状,并证明你的结论.(3)如图3,在△ABC 中,A C >AB,D 点在AC 上,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC=60°,连接GD ,判断 △ AGD 的形状,并证明你的结论.B CGBC6、已知△ACB 、△CEF 都为等腰直角三角形,点E 、F 分别在AC 、BC 上,∠ACB=90°, 连BE 、AF.点M 、N 分别为AF 、BE 的中点。

(1)如图1,求证:AE =;(2)将△CEF 绕C 点顺时针旋转一个锐角至图2,则(1)中的结论是否成立?试证明 你的结论。

7、如图,△ACB 、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连 CE ,M 、N 分别为BD 、CE 的中点.(1)求证:12MN CE =; (2)如图,将△ADE 绕A 点逆时针旋转一个锐角,则(1)中的结论是否成立?试证明你的结论。

三角形的中位线练习题含答案

三角形的中位线练习题含答案

三角形的中位线练习题三角形中位线定义: _________________________________ 符号语言:在△ ABC 中,D 、E 分别是AB 、AC 的中点, 则:线段DE 是厶ABC 的 _______________ , 三不同点:①三角形中位线的两个端点都是三角形边的中点 ②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点 相同点:都是一条线段,都有三条符号语言表述:v DE >^ABC 的中位线(或 AD=BD,AE=CE)二 DE//、BC练习1 •连结三角形 ___________ 的线段叫做三角形的中位线.2 •三角形的中位线 _______ 于第三边,并且等于3 •一个三角形的中位线有 __________ 条. 4. 如图△ ABC 中, D E 分别是 ABAC 的中点,则线段 CD >^ ABC 的 _______ , 线段。

丘是厶ABC ___________5、 如图,D E 、F 分别是△ ABC 各边的中点(1) ____________________________ 如果 EF = 4cm,那么 BC = cm 如果 AB= 10cm,那么 DF =cm(2) 中线AD 与中位线EF 的关系是 ______6 .如图1所示,EF 是厶ABC 的中位线,若 BC=8cm 贝U EF= ________ cm(1) (2) ⑶ ⑷7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 ________________ cm.8.在Rt △ ABC 中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 _____________ . 9 .若三角形的三条中位线长分别为 2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10•如图2所示,A , B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位AB C8同学帮他想了一个主意:先在地上取一个可以直接到达 的长为10m 则A , B 间的距离为( )A, B 的点C,找到AC, BC 的中点D, E ,并且测出DEA . 15mB . 25mC . 30mD . 20m11.已知△ ABC 的周长为1,连结△ ABC 的三边中点构成第二个三角形, 三个三角形,依此类推,第14.如图所示, 口 ABCD 的对角线 AC, BD 相交于点 O, AE=EB 求证:OE// BC.15.已知矩形 ABCD 中,AB=4cm , AD=10cm ,点P 在边BC 上移动,点 E 、F 、G 、H 分别是 AB 、AP 、DP 、DC 的中点.求证:EF+GH=5cm ;16 .如图所示,在△ ABC 中,点D 在BC 上且CD=CA CF 平分/ ACB AE=EB 求证: EF 」BD.217. 如图所示,已知在 口ABCD 中, E , F 分别是AD, BC 的中点,求证: MN/ BC.1 2008 1 2009 12.如图3所示,已知四边形 ABCD R, P 分别是DC 1 ~20082BC 上的点, 从点B 向点C 移动而点R 不动时, A .线段EF 的长逐渐增大 C .线段EF 的长不变 D 13.如图 4,在厶 ABC 中, E , D, A . 10 B . 20 C E , )1、~20092F 分别是AP, RP 的中点,当点 P 在BC 上 那么下列结论成立的是(B .线段EF 的长逐渐减少 .线段EF 的长不能确定 F 分别是AB, BC CA 的中点,AB=6, AC=4,则四边形 .30D . 40AEDF?勺周长是()2010个三角形的周长是?再连结第二个三角形的三边中点构成第AAtC18. 已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形.19. 如图,点E, F, G, H分别是CD, BC, AB , DA的中点。

3平行四边形-三角形的中位线基础题和培优题

3平行四边形-三角形的中位线基础题和培优题

平行四边形三角形的中位线【基础练习】1.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A、2B、1.5C、1.2D、1 2.如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A、5B、10C、20D、40 3.一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是()A、6B、12C、18D、364.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A、15°B、20°C、25°D、30°5.如图,△ABC 中,AB=AC=6,BC=8,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A 、57+B 、10C 、524+D 、126.如图所示,吴伯伯家一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF=5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需要篱笆的长是( )A 、15米B 、20米C 、25米D 、30米7.如图,在▱ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB=4,则OE 的长是( )A 、2B 、2C 、1D 、21 8.如图,C 、D 分别为EA 、EB 的中点,∠E=30°,∠1=110°,则∠2的度数为( )A 、80°B 、90°C 、100°D 、110°9.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A、平行四边形B、矩形C、菱形D、梯形10.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A、42°B、48°C、52°D、58°11.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A、9.5B、10.5C、11D、15.5 12.如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC边上的点F处.若点D为AB 边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE;③DE是△ABC的中位线,成立的有()A、①②B、①③C、②③D、①②③13.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=14.已知:如图,△ABC三边的中点分别为D、E、F,如果AB=6cm,AC=8cm,BC=10cm,那么△DEF的周长是 cm.15.如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm.17.在四边形ABCD中,AC=4cm,BD=4.5cm,E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长为 cm.18.一天,小青在校园内发现:旁边一棵树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是米.19.如图,要测量A、B两点间距离,在O点设桩,取OA中点C,OB中点D,测得CD=30m,则AB= m.20.由三角形三条中位线所围成的三角形的面积是原三角形面积的21.如图,DE是△ABC的中位线,S△ADE=2,则S△ABC=22.如图所示,A,B两点分别位于一个池塘的两端.小明想用绳子测量A,B间的距离,但绳子不够,一位同学帮他想了一个主意:先在地上取一个可以直接达到A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为15米,则A,B两点间的距离为多少米?23.如图所示,已知DE,EF是△ABC的两条中位线.求证:四边形BFED是平行四边形.24.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.25.如图,在△ABC 中,D 是AB 上一点,且AD=AC ,AE ⊥CD ,垂足是E ,F 是CB 的中点.求证:BD=2EF .26.如图,在△ABC 中,AB=AC ,点D ,E 分别是AB ,AC 的中点,F 是BC 延长线上的一点,且CF= 21BC . (1)求证:DE=CF ;(2)求证:BE=EF .27.如图,△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:EF=DG 且EF ∥DG .28.如图,已知:在四边形ABCD 中,M 、N 、E 、F 分别是边AB 、BC 、CD 、DA 的中点.求证:四边形MNEF 是平行四边形.29.如图,在△ABC 中,AD=BD ,AE=CE .求证:DE ∥BC ,DE=21BC .231.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .32.△ABC 中E 是AB 的中点,CD 平分∠ACB ,AD ⊥CD 与点D ,求证:DE= 21(BC-AC)33.如图,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,已知AB=10,AC=16,求MN 的长.34.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .试说明:(1)DE ∥BC ;(2)DE=21 (BC-AC ).35.已知:平行四边形ABCD 中,对角线AC 、BD 相交于点O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG=EF .【培优练习】36.如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A 、87B 、9C 、10D 、1137.如图所示,在△ABC 中,AB=AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN 、EM ,若AB=5cm ,BC=8cm ,DE=4cm ,则图中阴影部分的面积为( )A 、1B 、1.5C 、2D 、338.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为( )A 、33 cmB 、4 cmC 、32 cm D 、52 cm39.如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A 、8B 、9C 、10D 、1240.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,且BN ⊥AN ,垂足为N ,且AB=6,BC=10,MN=1.5,则△ABC 的周长是( )A 、28B 、32C 、18D 、2541.如图,∠CDA=∠BAD=90°,AB=2CD ,M ,N 分别为AD ,BC 的中点,连MN 交AC 、BD 于点E 、F ,若ME=4,则EF 的长度是( )A 、6B 、4C 、5D 、342.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减少C、线段EF的长不变D、线段EF的长与点P的位置有关43.已知任意三角形△ABC,顺次连接△ABC各边中点得到△A1B1C1再顺次连接△A1B1C1各边中点得△A2B2C2,若△ABC周长为4cm,则△ABC、△A1B1C1、△A2B2C2周长之和为 cm.44.如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△A2B2C2的面积,用同样的方法作出了第3个正△A3B3C3,算出第3个正△A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△A n B n C n的面积是45.如图,四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,顺次连接得到四边形A 2B 2C 2D 2,…,依此类推,这样得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连接EF ,求EF 的长47.如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是两条对角线BD 、AC 的中点,说明:MN ∥BC 且MN= 21(BC-AD ).249.如图△ABC 中,过点A 分别作∠ABC 、∠ACB 的外角的平分线的垂线AD ,AE ,D ,E 为垂足.求证:(1)ED ∥BC ;(2)ED=21 (AB+AC+BC).50.如图所示.D ,E 分别在AB ,AC 上,BD=CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于P ,Q .求证:AP=AQ .51.已知:如图,在四边形ABCD 中,AD=BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN=∠F .52.(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?即:FG= (AB+BC+AC)(直接写出结果即可)(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG 与△ABC三边之间数量关系是53.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【课后作业】1. 已知△ABC周长为16,D、E分别是AB、AC的中点,则△ADE的周长等于 ( )A、1B、 2C、 4D、 82. 在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么△PDE面积是△ABC'面积的 ( )A、12B、13C、14D、183. 如图,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,若∠DAC=200,∠ACB=600,则∠FEG= .4.如图7,△ABC的周长为1,连接△ABC三边的中点构成第二个三角,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为 .5. 已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线长.6. 如图8,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE.7. 如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD=AB ,E 为AB 中点,连接CE 、CD . 求证:CD=2EC .8.如图,AD 是△ABC 的外角平分线,CD ⊥AD 于D ,E 是BC 的中点.求证:(1)DE ∥AB ; (2)()12DE AB AC =+.9.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .10.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .。

中位线专项练习

中位线专项练习

1.在△ABC内取一点O,连接AO、BO、CO,它们的中点是D、E、F.若DE=2,则AB的长为()A.1B.2C.4D.8(1题图)(2题图)(3题图)(4题图)2.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,线段EF的长()A.逐渐增大B.逐渐减小C.不变D.与P点的位置有关3.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12B.24C.36D.484.如图,四边形ABCD中,点E、F、G、H分别是线段AB、CD、AC、BD的中点,则四边形EGFH的周长()A.只与AB、CD的长有关B.只与AD、BC的长有关C.只与AC、BD的长有关D.与四边形ABCD各边的长都有关.二.填空题(共4小题)5.如图,在△ABC中,AB2﹣BC2=AC2,点D是边BC上一点,点E、F分别是AB、AD的中点.若AB=12,AD =10,EF=2,则△CEF的周长是.(5题图)(6题图)(7题图)(8题图)6.如图,点A(0,4),点B(3,0),连接AB,点M、N分别是OA、AB的中点,在射线MN上有一动点P.当AP⊥PB时,点P的坐标是.7.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=2,则AC的长等于.8.如图,已知△ABC中,∠ABC的角平分线BE交AC于点E,DE∥BC,如果点D是边AB的中点,AB=8,那么DE的长是.9.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.10.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.11.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.1.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.2.如图,平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2.(1)求证:D是EC中点;(2)求EF的长.3.如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.4.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.。

中位线练习题

中位线练习题

中位线练习题一、选择题1. 在三角形ABC中,D是BC的中点,E是AC的中点,若AB=5,AC=7,BC=6,则DE的长度是多少?A. 3B. 4C. 5D. 62. 若三角形的一条中位线长为4,且这条中位线平行于三角形的一边,那么这条边的长度是多少?A. 2B. 4C. 8D. 不能确定3. 在三角形中,中位线的性质是什么?A. 与对边平行且等于对边的一半B. 与对边垂直且等于对边的一半C. 与对边平行且等于对边的两倍D. 与对边垂直且等于对边的两倍二、填空题4. 若三角形的一边长为10,其对应的中位线长为5,则该三角形的面积是______。

5. 在三角形ABC中,已知BD是AC的中位线,若AB=6,BC=8,BD的长度为4,那么AC的长度是______。

三、简答题6. 描述三角形中位线的性质,并给出证明。

7. 若三角形ABC中,点D、E分别是AB、AC的中点,如何证明DE是三角形ABC的中位线?四、计算题8. 在三角形ABC中,已知AB=8,AC=6,BC=10,求三角形ABC的中位线长度。

9. 若三角形ABC的一边长为12,其对应的中位线长为6,求三角形ABC的面积。

五、证明题10. 在三角形ABC中,D、E分别是AB、AC的中点,证明DE是三角形ABC的中位线。

11. 若三角形ABC的中位线DE与边BC平行,证明DE等于BC的一半。

六、综合题12. 在三角形ABC中,已知AD是BC的中位线,且AD=5,AB=7,AC=8,求BC的长度。

13. 在三角形ABC中,已知BD是AC的中位线,且BD=4,AB=6,求AC的长度。

七、拓展题14. 若三角形ABC的中位线DE与边BC平行,且DE=4,求三角形ABC的周长。

15. 在三角形ABC中,已知AD是BC的中位线,且AD=3,AB=5,求AC 的长度。

答案提示:- 选择题:1. B 2. C 3. A- 填空题:4. 24 5. 8- 简答题:6. 三角形的中位线平行于对边,并且等于对边的一半。

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。

它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。

二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。

求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。

求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180 ∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题一.选择题(共5小题)1.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若18DE m=,则线段AB的长度是()A.9m B.12m C.8m D.10m2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是()A.16B.12C.8D.43.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度() A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD BC=,∠的度数是()∠=︒,则EFPEPF136A.68︒B.34︒C.22︒D.44︒5.如图,D是ABC⊥,E、F、G、H分别是边AB、BD、CD、AC的中点.若∆内一点,BD CDCD=,则四边形EFGH的周长是()BD=,6AD=,810A.24B.20C.12D.10第3题图第4题图第5题图二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是.7.如图,在Rt ABCABC∠=︒,点D、E、F分别是AB、AC,∆中,90BE=,则DF=.BC边上的中点,连结BE,DF,已知58.如图,在四边形ABCD中,220∠+∠=︒,E、F分别是AC、ADC BCDBD 的中点,P 是AB 边上的中点,则EPF ∠= ︒.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = .10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 .第8题图 第9题图 第10题图三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.13.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于O ,且AC BD =,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H .求证:OG OH =.答案与解析一.选择题(共5小题)1.如图,为了测量池塘边A 、B 两地之间的距离,在线段AB 的同侧取一点C ,连结CA 并延长至点D ,连结CB 并延长至点E ,使得A 、B 分别是CD 、CE 的中点,若18DE m =,则线段AB 的长度是( )A .9mB .12mC .8mD .10m【分析】根据三角形的中位线定理解答即可. 【解答】解:A 、B 分别是CD 、CE 的中点, ∴AB 是△CDE 的中位线,192AB DE m ∴==, 故选:A .2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是( ) A .16 B .12 C .8 D .4【分析】由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可得出其周长等于原三角形周长的一半.【解答】解:三角形的周长是16,∴它的三条中位线围成的三角形的周长是11682⨯=. 故选:C .3.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP ,PQ ,E ,F 分别是AP ,PQ 的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大 【分析】连接AQ ,根据三角形中位线定理解答即可. 【解答】解:如图所示,连接AQ , 点Q 是边BC 上的定点, AQ ∴的大小不变,E ,F 分别是AP ,PQ 的中点, ∴EF 是△APQ 的中位线, 12EF AQ ∴=, ∴线段EF 的长度保持不变,故选:A .4.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒【分析】根据三角形中位线定理得到12PE AD =,12PF BC =,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:P 是BD 的中点,E 是AB 的中点, ∴EP 是△BCD 的中位线, 12PE AD ∴=, 同理,12PF BC =, AD BC =, PE PF ∴=,1(180)222EFP EPF ∴∠=⨯︒-∠=︒,故选:C . 5.如图,D 是ABC ∆内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .10【分析】利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出12EH FG BC ==,12EF GH AD ==,然后代入数据进行计算即可得解. 【解答】解:BD CD ⊥,8BD =,6CD =,22228610BC BD CD ∴=+=+,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,12EH FG BC ∴==,12EF GH AD ==,∴四边形EFGH 的周长EH GH FG EF AD BC =+++=+, 又10AD =,∴四边形EFGH 的周长101020=+=, 故选:B .二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是 13或12 . 【分析】根据勾股定理求出AB ,根据三角形中位线定理计算,得到答案. 【解答】解:分两种情况讨论:①当24是直角边时,由勾股定理得,斜边2222241026AB AC BC =+=+=,M 、N 分别为CA 、CB 的中点, ∴MN 是△ABC 的中位线,1132MN AB ∴==,②当24是斜边时,1122MN AB ==,故答案为:13或12.7.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 、E 、F 分别是AB 、AC ,BC 边上的中点,连结BE ,DF ,已知5BE =,则DF = 5 .【分析】已知BE 是Rt ABC ∆斜边AC 的中线,那么12BE AC =;DF 是ABC ∆的中位线,则12DF AC =,则5DF BE ==. 【解答】解:ABC ∆是直角三角形,BE 是斜边的中线, 12BE AC ∴=, 又DF 是ABC ∆的中位线,12DF AC ∴=, 5DF BE ∴==. 故答案为5.8.如图,在四边形ABCD 中,220ADC BCD ∠+∠=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则EPF ∠= 40 ︒.【分析】依据四边形内角和即可得到140BAD ABC ∠+∠=︒,再根据三角形中位线定理即可得到BPF BAD ∠=∠,APE ABC ∠=∠,进而得出140APE BPF ∠+∠=︒,即可得到EPF ∠的度数. 【解答】解:四边形ABCD 中,220ADC BCD ∠+∠=︒, 360220140BAD ABC ∴∠+∠=︒-︒=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点, PE ∴是ABC ∆的中位线,PF 是ABD ∆的中位线, //PE BC ∴,//PF AD ,BPF BAD ∴∠=∠,APE ABC ∠=∠,140APE BPF BAD ABC ∴∠+∠=∠+∠=︒, 18014040EPF ∴∠=︒-︒=︒,故答案为:40.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = 3 .【分析】连接CF 并延长交AB 于G ,证明FDC FBG ∆≅∆,根据全等三角形的性质得到6BG DC ==,CF FG =,求出AG ,根据三角形中位线定理计算,得到答案. 【解答】解:连接CF 并延长交AB 于G , //AB CD ,FDC FBG ∴∠=∠, 在FDC ∆和FBG ∆中, FDC FBG FD FBDFC BFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FDC FBG ASA ∴∆≅∆ 6BG DC ∴==,CF FG =, 1266AG AB BG ∴=-=-=, CE EA =,CF FG =, ∴EF 是△ACG 的中位线, 132EF AG ∴==, 故答案为:3. 10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 1 .【分析】延长CM 交AB 于H ,证明AMH AMC ∆≅∆,根据全等三角形的性质得到6AH AC ==,CM MH =,根据三角形中位线定理解答. 【解答】解:延长CM 交AB 于H , 在AMH ∆和AMC ∆中, 90MAH MAC AM AMAMH AMC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()AMH AMC ASA ∴∆≅∆6AH AC ∴==,CM MH =, 2BH AB AH ∴=-=, CM MH =,CN BN =, ∴MN 是△BCH 的中位线, 112MN BH ∴==, 故答案为:1. 三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.【分析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.【解答】证明:CD CA =,CF 平分ACB ∠, F ∴是AD 中点, AE EB =, E ∴是AB 中点,EF ∴是ABD ∆的中位线, 12EF BD ∴=. 12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.【分析】根据三角形中位线定理得到12DE BC =,//DE BC ,12FGT BC =,//FG BC ,得到DE FG =,//DE FG ,根据平行四边形的判定定理证明结论. 【解答】解:四边形DEGF 是平行四边形, 理由:D 、E 是ABC ∆边AB ,AC 的中点, ∴DE 是△ABC 的中位线,12DE BC ∴=,//DE BC , F 、G 是OB ,OC 的中点, ∴FG 是△BCO 的中位线,12FG BC ∴=,//FG BC ,DE FG ∴=,//DE FG∴四边形DEGF 是平行四边形.13.已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC BD=,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H.求证:OG OH=.【分析】取BC边的中点M,连接EM,FM,则根据三角形的中位线定理,即可证得EMF∆是等腰三角形,根据等边对等角,即可证得MEF MFE∠=∠,然后根据平行线的性质证得OGH OHG∠=∠,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,M、F分别是BC、CD的中点,∴MF是△BCD的中位线,//MF BD ∴,12MF BD=,同理://ME AC,12ME AC=,AC BD=ME MF∴=MEF MFE∴∠=∠,//MF BD,MFE OGH∴∠=∠,同理,MEF OHG∠=∠,OGH OHG∴∠=∠OG OH∴=.。

中线与中位线(培优)复习过程

中线与中位线(培优)复习过程

中线与中位线(培优)收集于网络,如有侵权请联系管理员删除直角三角形斜边上的中线的应用知识储备:直角三角形斜边上的中线等于斜边的一半.根据这个性质可知,直角三角形被分割成两个顶角互补、底角互余的等腰三角形.灵活运用此性质在解答一些与中点或中线有关的问题时,常能收到事半功倍之效. 例1 如图1,已知△ABC 中,∠ACB =90°,OA =OC ,求证:OB =OC基本结论:①若OA =OB ,则OA =OB =OC , ②若OA =OC ,则OB =OC ,③若OB =OC ,则OA =OC .例2(1)如图1,已知△ABC 和△ABD 中,∠ACB =∠ADB =90°,点O 是AB 的中点,求证:OC =OD(2)在上述条件下,如图2,(1)中结论还成立吗?为什么?基本结论:若OA =OB ,则OA =OB =OC =OD例3 如图,∠DBC =∠BCE =90°,M 为DE 的中点,求证:MB =MCDE例4 如图,在△ABC 中,AB =AC ,∠ABC =90°,点E ,F 分别在AB ,AC 上,且AE =EF ,点M 分别为AF ,CE 的中点,求证:(1)OM =12CE ;(2)OBOM例5 如图,△ABC 中,AB =AC ,∠ABD =∠CBD . DE ⊥BD ,DE 交BC 于E .求证:CD =12BE.例6 如图,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,点M ,N 分别是BC ,DE 的中点,(1)求证:MN ⊥DE ;(2)连ME ,MD ,若∠A =60°,求MNDE的值.图1图2例7 △BCD和△BCE中,∠BD C=∠BEC=90°,O为BC的中点,BD,CE交于A,(1)如图1,若∠BAC=120°,求证:DE=OE.(2)如图2,若∠BAC=135°,求证:DEOE.(3)若∠BAC=α,则∠EOD的度数为 .(用α表示)构造三角形中位线知识储备:三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.这个定理的特点是:同一题设下,有两个结论,一个结论表明位置关系,另一个结论表明数量关系.应用这一定理时,不一定同时用到两个结论,有时用到平行关系,有时用到倍分关系.常用构造三角形中位线的方法处理中点问题. 题型一利用角平分线和垂直构造中位线例1 如图,在△ABC中,AB=BC,∠ABC=90°,F为BC上一点,M为AF的中点,BE平分∠ABC,且EF⊥BE,求证:CF=2ME.题型二倍长构造三角形中位线例2如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M 为AF的中点,求证:ME=12CF题型三取中点构造三角形中位线例3 如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上的一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=MN.EF图1 图2收集于网络,如有侵权请联系管理员删除题型四连接两点构造三角形中位线例4 如图,在△ABC中,∠B=2∠A,CD⊥AB于D,点E,F分别为AB,BC的中点.求证:DE=DFA例5 已知∠ACB=∠BCD=90°,AC=BC,CD=CE.(1)如图1,AE与BD的大小关系为,位置关系为 .(2)如图2,点P,M,N分别为AB,AD,BE的中点,试探究:PM与PN之间的数量关系和位置关系;(3)将图2中的△CDE绕点C旋转至如图3所示的位置,其余条件不变,则MN与PN的数量关系为 .图1 图3图2收集于网络,如有侵权请联系管理员删除例7 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M是BC的中点.求证:AB=2DM.例5 如图,在Rt△ABC中,∠C=90°.AD∥BC,∠ABE=2∠CBE.求证:DE=2AB.(提示:取DE的中点F,连接AF)DB收集于网络,如有侵权请联系管理员删除。

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题一.选择题(共5小题)1.如图,为了测量池塘边A 、B 两地之间的距离,在线段AB 的同侧取一点C ,连结CA 并延长至点D ,连结CB 并延长至点E ,使得A 、B 分别是CD 、CE 的中点,若18DE m =,则线段AB 的长度是( ) A .9mB .12mC .8mD .10m2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是( ) A .16B .12C .8D .43.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP ,PQ ,E ,F 分别是AP ,PQ 的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大4.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒5.如图,D 是ABC ∆内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .10第3题图题图 第4题图题图 第5题图题图二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是 . 7.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 、E 、F 分别是AB 、AC ,BC 边上的中点,连结BE ,DF ,已知5BE =,则DF = . 8.如图,在四边形ABCD 中,220ADC BCD ∠+∠=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则EPF ∠= ︒.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = .10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 .第8题图题图 第9题图题图 第10题图题图三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.13.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于O ,且AC BD =,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H .求证:OG OH =.答案与解析一.选择题(共5小题)1.如图,为了测量池塘边A 、B 两地之间的距离,在线段AB 的同侧取一点C ,连结CA 并延长至点D ,连结CB 并延长至点E ,使得A 、B 分别是CD 、CE 的中点,若18DE m =,则线段AB 的长度是( )A .9mB .12mC .8mD .10m【分析】根据三角形的中位线定理解答即可. 【解答】解:A Q 、B 分别是CD 、CE 的中点, ∴AB 是△CDE 的中位线, 192AB DE m ∴==,故选:A .2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是( )A .16B .12C .8D .4【分析】由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可得出其周长等于原三角形周长的一半.【解答】解:Q 三角形的周长是16,∴它的三条中位线围成的三角形的周长是11682⨯=.故选:C .3.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP ,PQ ,E ,F 分别是AP ,PQ 的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大 【分析】连接AQ ,根据三角形中位线定理解答即可. 【解答】解:如图所示,连接AQ , Q 点Q 是边BC 上的定点, AQ ∴的大小不变,E Q ,F 分别是AP ,PQ 的中点, ∴EF 是△APQ 的中位线, 12EF AQ ∴=,∴线段EF 的长度保持不变,故选:A .4.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒【分析】根据三角形中位线定理得到12PE AD =,12PF BC =,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:P Q 是BD 的中点,E 是AB 的中点, ∴EP 是△BCD 的中位线, 12PE AD ∴=,同理,12PF BC =, AD BC =Q , PE PF ∴=,1(180)222EFP EPF ∴∠=⨯︒-∠=︒,故选:C . 5.如图,D 是ABC ∆内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .10【分析】利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出12EH FG BC ==,12EF GH AD ==,然后代入数据进行计算即可得解. 【解答】解:BD CD ⊥Q ,8BD =,6CD =,22228610BC BD CD ∴=+=+=,E Q 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,12EH FG BC ∴==,12EF GH AD ==,∴四边形EFGH 的周长EH GH FG EF AD BC =+++=+,又10AD =Q ,∴四边形EFGH 的周长101020=+=, 故选:B .二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是 13或12 . 【分析】根据勾股定理求出AB ,根据三角形中位线定理计算,得到答案. 【解答】解:分两种情况讨论:①当24是直角边时,由勾股定理得,斜边2222241026AB AC BC =+=+=,M Q 、N 分别为CA 、CB 的中点,∴MN 是△ABC 的中位线, 1132MN AB∴==, ②当24是斜边时,1122MN AB ==,故答案为:13或12.7.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 、E 、F 分别是AB 、AC ,BC 边上的中点,连结BE ,DF ,已知5BE =,则DF = 5 .【分析】已知BE 是Rt ABC ∆斜边AC 的中线,那么12BE AC =;DF 是ABC ∆的中位线,则12DF AC =,则5DF BE ==.【解答】解:ABC ∆Q 是直角三角形,BE 是斜边的中线, 12BE AC∴=, 又DF Q 是ABC ∆的中位线,12DF AC ∴=,5DF BE ∴==. 故答案为5.8.如图,如图,在四边形在四边形ABCD 中,220ADC BCD ∠+∠=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则EPF ∠= 40 ︒.【分析】依据四边形内角和即可得到140BAD ABC ∠+∠=︒,再根据三角形中位线定理即可得到BPF BAD ∠=∠,APE ABC ∠=∠,进而得出140APE BPF ∠+∠=︒,即可得到EPF ∠的度数. 【解答】解:Q 四边形ABCD 中,220ADC BCD ∠+∠=︒, 360220140BAD ABC ∴∠+∠=︒-︒=︒,E Q 、F 分别是AC 、BD 的中点,P 是AB 边上的中点, PE ∴是ABC ∆的中位线,PF 是ABD ∆的中位线, //PE BC ∴,//PF AD ,BPF BAD ∴∠=∠,APE ABC ∠=∠,140APE BPF BAD ABC ∴∠+∠=∠+∠=︒, 18014040EPF ∴∠=︒-︒=︒,故答案为:40.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = 3 .【分析】连接CF 并延长交AB 于G ,证明FDC FBG ∆≅∆,根据全等三角形的性质得到6BG DC ==,CF FG =,求出AG ,根据三角形中位线定理计算,得到答案. 【解答】解:连接CF 并延长交AB 于G , //AB CD Q ,FDC FBG ∴∠=∠, 在FDC ∆和FBG ∆中, FDC FBG FD FB DFC BFG∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FDC FBG ASA ∴∆≅∆6BG DC ∴==,CF FG =, 1266AG AB BG ∴=-=-=, CE EA =Q ,CF FG =, ∴EF 是△ACG 的中位线, 132EF AG ∴==, 故答案为:3.10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 1 .【分析】延长CM 交AB 于H ,证明AMH AMC ∆≅∆,根据全等三角形的性质得到6AH AC ==,CM MH =,根据三角形中位线定理解答. 【解答】解:延长CM 交AB 于H , 在AMH ∆和AMC ∆中, 90MAH MAC AM AM AMH AMC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()AMH AMC ASA ∴∆≅∆6AH AC ∴==,CM MH =, 2BH AB AH ∴=-=, CM MH =Q ,CN BN =, ∴MN 是△BCH 的中位线, 112MN BH∴==, 故答案为:1.三.解答题(共3小题) 11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =. 【分析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.【解答】证明:CD CA =Q ,CF 平分ACB ∠,F ∴是AD 中点, AE EB =Q , E ∴是AB 中点,EF ∴是ABD ∆的中位线,12EF BD∴=.12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.【分析】根据三角形中位线定理得到12DE BC =,//DE BC ,12FGT BC =,//FG BC ,得到DE FG =,//DE FG ,根据平行四边形的判定定理证明结论. 【解答】解:四边形DEGF 是平行四边形, 理由:D Q 、E 是ABC ∆边AB ,AC 的中点, ∴DE 是△ABC 的中位线, 12DE BC ∴=,//DE BC, F Q 、G 是OB ,OC 的中点, ∴FG 是△BCO 的中位线,12FG BC ∴=,//FG BC, DE FG ∴=,//DE FG∴四边形DEGF 是平行四边形.13.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于O ,且AC BD =,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H .求证:OG OH =.【分析】取BC 边的中点M ,连接EM ,FM ,则根据三角形的中位线定理,即可证得EMF ∆是等腰三角形,根据等边对等角,即可证得MEF MFE ∠=∠,然后根据平行线的性质证得OGH OHG ∠=∠,根据等角对等边即可证得.【解答】解:取BC 边的中点M ,连接EM ,FM ,M Q 、F 分别是BC 、CD 的中点, ∴MF 是△BCD 的中位线,//MF BD ∴,12MF BD=, 同理://ME AC ,12ME AC =,AC BD =Q ME MF ∴=MEF MFE ∴∠=∠, //MF BD Q ,MFE OGH ∴∠=∠,同理,MEF OHG ∠=∠, OGH OHG ∴∠=∠ OG OH ∴=.。

浙教版八年级数学下册 4.5 《中位线》提优训练(含答案)

浙教版八年级数学下册    4.5 《中位线》提优训练(含答案)

八年级数学提优训练——中位线1.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=84°,则∠FEG等于()A.32°B.38°C.64°D.30°2.如图,△ABC的周长为32,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.2 B.3 C.4 D.53.如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG=(∠ACB﹣∠ABC);③EF=(AB﹣AC);④(AB﹣AC)<AE<(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④4.已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为()A.B.C.D.5.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若∠AFC =90°,则BC的长度为()A.10 B.12 C.14 D.166.已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A.1<MN<5 B.1<MN≤5 C.<MN<D.<MN≤7.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.8.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于G,AB=6,则AG=.9.如图,顺次连结△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连结△CEF三边的中点M,G,H得到的三角形面积为S2,顺次连结△CGH三边的中点得到的三角形面积为S3.设△ABC的面积为S,则S1+S2+S3=.10.如图,在R△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.11.如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为.12.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.13.如图所示,在△ABC中,AD是BC边的中线,F是AD的中点,连接BF并延长交AC于E,求证:EC=2AE.14.探索与证明如图,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M、N分别是BO、CO的中点,顺次连接E、M、N、D四点.(1)求证:EMND是平行四边形;(2)探索:BC边上的中线是否过点O?为什么?15.已知△ABC(如图所示).(1)在图中找出重心O;(2)设BC,AC,AB边的中点为M,N,G,度量OM和OA,ON与OB,OG与OC,根据度量的结果,猜想三角形的重心到三角形顶点的距离与到对边中点的距离之间的距离,并给予证明.16.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)17.如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.参考答案1. A.2. C.3. A.4. C.5. B.6. D.7.9 8. 2 9.S.10.或. 11. 1812.(1)证明:如图1中,∵AE⊥BD,∴∠AED=∠AEB=90°,∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,∵∠BAE=∠DAE,∴∠ABE=∠ADE,∴AB=AD,∵AE⊥BD,∴BE=DE,∵BF=FC,∴EF=DC==(AC﹣AB).(2)结论:EF=(AB﹣AC),理由:如图2中,延长AC交BE的延长线于P.∵AE⊥BP,∴∠AEP=∠AEB=90°,∴∠BAE+∠ABE=90°,∠PAE+∠APE=90°,∵∠BAE=∠PAE,∴∠ABE=∠ADE,∴AB=AP,∵AE⊥BD,∴BE=PE,∵BF=FC,∴EF=PC=(AP﹣AC)=(AB﹣AC).13.证明:∵AD是BC边的中线,F是AD的中点,∴点D是BC的中点,DF=AF.如图,过E作DG∥AC交BE于点G.∵DG∥AC,且AD是BC边的中线.∴DG是△BEC的中位线,△DGF∽△AEF,∴DG=EC,==1∴DG=AE,∴AE=EC.即EC=2AE.14.(1)证明:△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO的中点,∴ED∥BC且ED=BC,MN∥BC且MN=BC,∴ED∥MN且ED=MN,∴四边形MNDE是平行四边形.(2)BC边上的中线过点O,理由如下:作BC边上的中线AF,交BD于M,连接DF,∵BD、AF是边AC、BC上的中线,∴DF∥BA,DF=BA.∴△MDF∽△MBA,∴=,即BD=3DM,∵BO=BD,∴O和M重合,即BC边上的中线一定过点O.15.证明:如图所示,取BO,CO的中点K,H,连接KH,HN,NG,KG,∵G,N分别是AB,AC的中点,∴GN平行且等于BC.又∵K,H分别是OB,OC边的中点,∴KH平行且等于BC.∴GN平行且等于KH.∴四边形KHNG是平行四边形.∴GO=OH,NO=KO.而BK=KO,CH=HO,∴BO=2ON,CO=2OG.若取AO的中点R,同理,可证AO=2OM.∴AO=2OM,BO=2ON,CO=2OG.16.解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.17.证明:如图,连接BD,作BD的中点M,连接EM、FM.∵点E是AD的中点,∴在△ABD中,EM∥AB,EM=AB,∴∠MEF=∠P同理可证:FM∥CD,FM=CD.∴∠MFQ=∠CQF,又∵AB=CD,∴EM=FM,∴∠MEF=∠MFE,∴∠P=∠CQF..。

三角形的中位线练习题(含答案)

三角形的中位线练习题(含答案)

三角形的中位线练习题三角形中位线定义: .符号语言:在△ABC 中,D 、E 分别是AB 、AC 的中点, 则:线段DE 是△ABC 的__ __,三不同点:①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点:都是一条线段,都有三条。

三角形中位线定理: .符号语言表述:∵DE 是△ABC 的中位线(或AD=BD,AE=CE) ∴DE //21BC练习1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)假如EF =4cm ,那么BC =__cm 假如AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF 的关系是___6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( )E DBEDAA .4.5cmB .18cmC .9cmD .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个方法:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成其次个三角形,•再连结其次个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长渐渐增大 B .线段EF 的长渐渐削减 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点.求证:EF +GH =5cm ;16.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .BG A E FH D C 图5 17.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .18.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。

中考数学复习三角形的中位线【培优讲练】

中考数学复习三角形的中位线【培优讲练】

9.5 三角形的中位线同步培优讲练综合三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.一、三角形中位线有关的求解问题【例1】如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得10=,则A,B之间的距离是()CD mA.5m B.10mC.20m D.40m【例2】如图,在ABC∆中,点D、E分别是边AB、AC的中点,连接DE,ABC∠的平分线BF交DE于点F,若4AB=,6BC=,则EF的长为.【例3】如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是 .【例4】在ABC 中,120AB AC BAC =∠=︒,,D 为ABC 形内一点,以AD 为腰作等腰DAE ,使DAE BAC ∠=∠,连接BE CD 、,若M N 、分别是DE BC 、的中点,1MN =,则CD 的长为_______.【例5】有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形面积两等分),试设计两种方案,并说明理由.(平分图案画在备用图上,保留作图痕迹)【例6】如图,在ABC ∆中,点D ,E ,F 分别是边AB ,BC ,CA 上的中点,且10AB cm =,16AC cm =,则四边形ADEF 的周长等于 cm .【例7】如图,四边形ABCD 中,1AB =,4CD =,M 、N 分别是AD 、BC 的中点,则线段MN 的取值范围是( )A .35MN <<B .35MN <C .3522MN <<D .3522MN <【例8】如图,Rt ABC △中,90BAC ∠=︒,6AB =,10BC =,AD 、AE 分别是其角平分线和中线,过点B 作BG AD ⊥于G ,交AC 于F ,连接EG ,则线段EG 的长为( )A .12 B .1 C .32 D .2二、三角形中位线相关的面积问题【例1】如图,在ABC ∆中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC ∆的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .20【例2】E 、F 是线段AB 上的两点,且16AB =,2AE =,4BF =,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连接PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【例3】如图,在ABC 中,D ,E ,F 分别是BC AD CE ,,的中点,22cm BCF S =,则ABC S =_____2cm【例4】如图,ABC 三边的中线AD ,BE ,CF 的公共点为G ,且:2:1AG GD =,若12ABC S =△,则图中阴影部分的面积是_____.【例5】如图,在Rt ABC △中,90BAC ∠=︒,,E F 分别是,BC AB 的中点,延长CA 到点D ,使得2AC AD =,连接,,,,DE DF AE EF AF 与DE 交于点O .5,13AB BC ==,求四边形AEFD 的面积.三、与三角形中位线有关的应用和证明【例1】在ABC ∆中,点M 是边BC 的中点,AD 平分BAC ∠,BD AD ⊥,BD 的延长线交AC 于点E ,12AB =,20AC =.(1)求证:BD DE =;(2)求DM 的长.【例2】如图,ABC ∆中,AH BC ⊥于点H ,点D ,E 分别是AB ,AC 的中点,连接DH ,EH ,DE .(1)求证:AD DH =;(2)若四边形ADHE 的周长是30,ADE ∆的周长是21,求BC 的长.【例3】如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,20PEF ∠=︒,求PFE ∠的度数.【例4】在Rt ABC 中,90BAC ∠=︒,E 、F 分别是BC 、AC 的中点,延长BA 到点D ,使2AB AD =,连接DE 、DF 、AE 、EF ,AF 与DE 交于点O .(1)试说明AF 与DE 互相平分;(2)若8AB =,12BC =,求DO 的长.四、梯形中位线【例1】已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是 cm .【例2】如图,已知直角梯形ABCD 的一条对角线把梯形分为一个直角三角形和一个边长为8cm 的等边三角形,则梯形ABCD 的中位线长为( )A. 4cm B .6cmC .8cmD .10cm【例3】如图,梯形ABCD 的两底长为6AD =,10BC =,中位线为EF ,且90B ∠=︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则EFP ∆与梯形ABCD 的面积比为 .五、中点四边形【例1】顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .对角线相等的四边形C .矩形D .对角线互相垂直的四边【例2】若顺次连接四边形ABCD 各边的中点所得到的四边形是矩形,则原四边形必定是( )A .正方形B .对角线相等的四边形C .菱形D .对角线互相垂直的四边形【例3】依次连接下列四边形四条边的中点得到四边形不是菱形的是( )A .矩形B .菱形C .正方形D .等腰梯形【例4】如图,四边形ABCD 中,AC a =,BD b =.且AC BD ⊥,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222,A B C D ⋅⋅⋅,如此进行下去,得到四边形n n n n A B C D .下列结论正确的是( )①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+,④四边形n n n n A B C D 的面积是12n ab+.A .①②③B .②③④C .①②D .②③1、如图,在Rt ABC ∆中,90C ∠=︒,5AC =,12BC =.若D ,E 分别为边AC ,BC 的中点,则DE 的长为( )A .5B .5.5C .6D .6.52、如图是屋架设计图的一部分,其中30A ∠=︒,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,16AB m =,则DE 的长为( )A. 8mB .4mC .2mD .6m3、如图,点D 、E 、F 分别是AC 、BC 、AB 中点,且BD 是ABC ∆的角平分线.求证:BE AF =.4.如图,平行四边形ABCD 中,对角线AC ,BD 相交于O ,2BD AD =,E , F , G 分别是OC , OD ,AB 的中点,下列结论中:①BE AC ⊥;②四边形BEFG 是平行四边形;③EG GF =;④EA 平分GEF ∠,正确的是( )A .①②B .①②④C .①②③D .②③④5.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A ,1B ,1C ,1D ,顺次连接得到四边形1111D C B A ;再取各边中点2A ,2B ,2C ,2D ,顺次连接得到四边形2222A B C D ;依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为____.6.已知一个对角线长分别为12cm 和16cm 的菱形,顺次连接它的四边中点得到的四边形的面积是______.7.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =________.8、如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使13CD BD =.连接DM 、DN 、MN .若6AB =,求DN 的长.9.如图,在四边形ABCD 中,E ,F 分别是AD BC ,的中点.(1)若102430120AB CD ABD BDC ==∠=︒∠=︒,,,,求EF 的长.(2)若90BDC ABD ∠-∠=︒,求证:2224AB CD EF +=.10.已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形(EFGH 即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是______,请证明你的结论;(2)当四边形ABCD 的对角线满足______条件时,四边形EFGH 是菱形;(3)你学过的哪种特殊的平行四边形的中点四边形是菱形?请写出一种.11.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN ______填(“是”或“不是”)“等垂线段”.(2)ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若2DE =,4BC =,请直接写出PM 与PN 的积的最大值.9.5 三角形的中位线同步培优讲练综合三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.一、三角形中位线有关的求解问题【例1】如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点CD m,则A,B之间的距离是()C,D,量得10B.5m B.10mC.20m D.40m【答案】C【解析】解:点C,D分别是OA,OB的中点,220()AB CD m ∴==,故选:C .【例2】如图,在ABC ∆中,点D 、E 分别是边AB 、AC 的中点,连接DE ,ABC ∠的平分线BF 交DE 于点F ,若4AB =,6BC =,则EF 的长为 .【答案】1【解析】解:连接AF 并延长交BC 于H ,点D 、E 分别为边AB 、AC 的中点,//DE BC ∴,132DE BC ==,FH =, 在BFA ∆和BFH ∆中,ABF HBF AFB HFB FA FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFA BFH AAS ∴∆≅∆,4BH AB ∴==,AD DB =,AF FH =,122DF BH ∴==, 1EF DE DF ∴=-=,故答案为:1.【例3】如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是 .【答案】120【解析】 解:点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,12PF BC ∴=,12PE AD =,又AD BC =, PE PF ∴=,30PFE PEF ∴∠=∠=︒,120EPF ∴∠=︒,故答案为:120︒.【例4】在ABC 中,120AB AC BAC =∠=︒,,D 为ABC 形内一点,以AD 为腰作等腰DAE ,使DAE BAC ∠=∠,连接BE CD 、,若M N 、分别是DE BC 、的中点,1MN =,则CD 的长为_______.【答案】2【解析】解:如图,连接BD ,取BD 的中点F ,连接FM FN ,,∵BAC EAD ∠=∠,BAC EAD ∠=∠, ∴BAC BAD EAD BAD ∠-∠=∠-∠,即BAE CAD ∠=∠,在AEB △和ADC △中,AE AD BAE CADAB AC =⎧⎪∠=∠⎨⎪=⎩,∴AEB ADC SAS ≌(),∴BE CD =,∵M 是ED 的中点,F 是BD 的中点,∴FM 是BED 的中位线, ∴12FM BE =,FM BE ∥,∴DFM EBD ∠=∠, 同理得,1 2FN CD =,FN CD ,FM FN FNB DCB ∴=∠=∠,,∵DFN DBC FNB DBC DCB ∠=∠+∠=∠+∠,∴18012060MFN DFM DFN EBD DBC DCB ∠=∠+∠=∠+∠+∠=︒-︒=︒,∴FMN 是等边三角形,∴1MN FN ==,∴2CD =.故答案为:2.【例5】有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形面积两等分),试设计两种方案,并说明理由.(平分图案画在备用图上,保留作图痕迹)【答案】见解析【解析】解:设梯形上、下底分别为a 、b ,高为h .方案一:如图1,连接梯形上、下底的中点E 、F ,则()4ABFE EFCD a b h S S +==四边形四边形;方案二:如图2,连接AC ,取AC 的中点E ,连接BE ED 、,则图中的四边形ABED 的面积=梯形ABCD 的面积的一半,∵AE EC =,∴ABE BEC S S =,AED ECD S S =, ∴ABE AED BEC ECD S S S S +=+,∴四边形ABED 的面积=梯形ABCD 的面积的一半.方案三:如图3,分别量出梯形上、下底a 、b 的长,在下底BC 上截取2a b BE +=,连接AE , ∴()1•24ABE a b h S BE h +==,()()()244ABE AECD ABCD a b h a b h a b h S S S +++=-=-=四边形梯形,则()4ABE AECD a b h S S +==四边形.【例6】如图,在ABC ∆中,点D ,E ,F 分别是边AB ,BC ,CA 上的中点,且10AB cm =,16AC cm =,则四边形ADEF 的周长等于 cm .【答案】26【解析】解:点D ,E ,F 分别是边AB ,BC ,CA 上的中点,DE ∴,EF 都是ABC ∆的中位线,182DE AC cm ∴==,//DE AC ,152EF AB cm ==,//EF AB , ∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长2()21326()DE EF cm =+=⨯=.故答案为:26.【例7】如图,四边形ABCD 中,1AB =,4CD =,M 、N 分别是AD 、BC 的中点,则线段MN 的取值范围是( )A .35MN <<B .35MN <C .3522MN <<D .3522MN < 【答案】D【解析】解:连接AC ,取AC 的中点H ,连接MH 、NH ,M 、H 分别是AD 、AC 的中点,122MH CD ∴==, 同理可得,1122NH AB ==, 在MHN ∆中,MH NH MN MH NH -<<+,即3522MN <<, 当H 在MN 上时,52MN MH NH =+=,∴3522MN <, 故选:D .【例8】如图,Rt ABC △中,90BAC ∠=︒,6AB =,10BC =,AD 、AE 分别是其角平分线和中线,过点B 作BG AD ⊥于G ,交AC 于F ,连接EG ,则线段EG 的长为( )A .12 B .1 C .32 D .2【答案】B【解析】解:Rt ABC △中,6AB =,10BC =,∴8AC ==,∵BG AD ⊥,∴AGB AGF ∠=∠.∵AD 平分BAC ∠,∴BAG FAG ∠=∠, 在AGB 和AGF 中BAG FAG AG AGAGB AGF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AGB AGF ≌∴6,AB AF BG FG ===,∴2CF =,∵AE 是ABC 的中线,∴BE CE =,∴EG 是BCF △的中位线,∴112EG CF ==,故选:B .二、三角形中位线相关的面积问题【例1】如图,在ABC ∆中,D 、E 、F 分别是BC 、AC 、AD 的中点,若ABC ∆的面积是40,则四边形BDEF 的面积是( )A .10B .12.5C .15D .20 【答案】C【解析】解:D 、E 、F 分别是BC 、AC 、AD 的中点,12ADE ADC S S ∆∆∴=,12ADC ABC S S ∆∆=,12DEF ADE S S ∆∆=, 1140588DEF ABC S S ∆∆∴==⨯=, D 、E 、F 分别是BC 、AC 、AD 的中点,11402022ABD ABC S S ∆∆∴==⨯=, 11201022BDF ADB S S ∆∆∴==⨯=, ∴四边形BDEF 的面积15BDF DEF S S ∆∆=+=,故选:C .【例2】E 、F 是线段AB 上的两点,且16AB =,2AE =,4BF =,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连接PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【答案】30【解析】解:分别延长AD 、BC 相交于点H ,连接PH ,EH ,FH ,∵ADG △、GCB △为等腰直角三角形,∴45DGA CGB A B ∠=∠=∠=∠=︒,∴90DGC ∠=︒,∴AH GC ∥,又∵90HCG ∠=︒,∴90HCG DGC ∠=∠=︒,∴DG HB ∥,∴四边形DGCH 为矩形,∵点P 为DC 中点,∴点G 、P 、H 三点共线,且P 为HG 的中点,过P 作MN AB ∥分别交EH 、FH 与M 、N ,∴MN 为HEF 的中位线,且MN 即为点P 的运动轨迹, ∴GP 扫过的图形即为梯形MEFN ,∵16AB =,2AE =,4BF =,∴162410EF =--=, ∴152MN EF ==,过点H 作HO 垂直AB 于O ,∵45A B ∠=∠=︒,∴AH BH =,180454590AHB ∠=︒-︒-︒=︒, ∴182HO AO BO AB ====,∵MN 为HEF 的中位线, ∴118422PO HO ==⨯=,即梯形的高为4, ∴()14105302MEFN S =⨯⨯+=梯形,即线段PG 扫过的图形面积为30.故答案为:30.【例3】如图,在ABC 中,D ,E ,F 分别是BC AD CE ,,的中点,22cm BCF S =,则ABC S =_____2cm【答案】8【解析】解:如图,连接BE ,∵E 是AD 的中点, ∴12ABE ABD S S =△△,12ACE ACD S S =, ∴()11112222ABE ACE ABD ACD ABD ACD ABC S S S S S S S +++===, ∴12CBE ABC S S =,∵F 是CE 的中点, ∴1124FBC EBC ABC S S S ==, 而22cm BCF S =, ∴28cm ABC S =. 故答案为:8.【例4】如图,ABC 三边的中线AD ,BE ,CF 的公共点为G ,且:2:1AG GD =,若12ABC S =△,则图中阴影部分的面积是_____.【答案】4【解析】解:∵ABC 的三条中线AD ,BE ,CF 交于点G ,:2:1AG GD =,∴AE CE =, ∴13CGE AGE ACF S S S ==△△△,13BGF BGD BCF S S S ==,∵1112622ACF BCF ABC S S S ===⨯=△△△,∴231316CGE ACF S S ==⨯=,231316BGF BCF S S ==⨯=, ∴4CGE BGF S S S +==阴影.故答案为:4.【例5】如图,在Rt ABC △中,90BAC ∠=︒,,E F 分别是,BC AB 的中点,延长CA 到点D ,使得2AC AD =,连接,,,,DE DF AE EF AF 与DE 交于点O .5,13AB BC ==,求四边形AEFD 的面积.【答案】15【解析】解:∵,E F 分别是,BC AB 的中点,∴EF 是ABC 的中位线,∴EF AC ∥,2AC EF =,∵2AC AD =,∴AD EF =,又∵AD EF ∥,∴四边形ADFE 是平行四边形,在Rt ABC △中,90BAC ∠=︒,5,13AB BC ==,∴12AC =,162EF AC AD ===, ∴1522AF AB ==, ∴56152ADFE S AD AF ==⨯=⨯平行四边形.与三角形中位线有关的应用和证明【例1】在ABC ∆中,点M 是边BC 的中点,AD 平分BAC ∠,BD AD ⊥,BD 的延长线交AC 于点E ,12AB =,20AC =.(1)求证:BD DE =;(2)求DM 的长.【答案】见解析【解析】(1)证明:AD 平分BAC ∠,BAD DAE ∴∠=∠.AD BD ⊥,90ADB ADE ∴∠=∠=︒.在ADB ∆与ADE ∆中,BAD EAD AD ADADB ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩ADB ADE ∴∆≅∆,BD DE ∴=.(2)ADB ADE ∆≅∆,12AE AB ∴==,8EC AC AE ∴=-=. M 是BC 的中点,BD DE =,142DM EC ∴==. 【例2】如图,ABC ∆中,AH BC ⊥于点H ,点D ,E 分别是AB ,AC 的中点,连接DH ,EH ,DE .(1)求证:AD DH =;(2)若四边形ADHE 的周长是30,ADE ∆的周长是21,求BC 的长.【答案】见解析【解析】解:(1)AH BC ⊥,90AHB ∴∠=︒,点D 是AB 的中点,12AD DH AB ∴==; (2)AH BC ⊥,90AHB AHC ∴∠=∠=︒,点D ,E 分别是AB ,AC 的中点,12AD DH AB ∴==,12AE HE AC ==, 四边形ADHE 的周长是30,130152AD AE ∴+=⨯=, ADE ∆的周长是21,21156DE ∴=-=,点D ,E 分别是AB ,AC 的中点,DE ∴是ABC ∆的中位线,212BC DE ∴==.【例3】如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,20PEF ∠=︒,求PFE ∠的度数.【答案】20【解析】解:P 是BD 的中点,E 是AB 的中点,PE ∴是ABD ∆的中位线,12PE AD ∴=, 同理,12PF BC =, AD BC =,PE PF ∴=,20PFE PEF ∴∠=∠=︒.【例4】在Rt ABC 中,90BAC ∠=︒,E 、F 分别是BC 、AC 的中点,延长BA 到点D ,使2AB AD =,连接DE 、DF 、AE 、EF ,AF 与DE 交于点O .(1)试说明AF 与DE 互相平分;(2)若8AB =,12BC =,求DO 的长.【答案】(1)见解析 【解析】(1)∵E 、F 分别是BC 、AC 的中点,∴EF 是ABC 的中位线,∴EF AB ∥且12EF AB =.又2AB AD =,即12AD AB =, ∴AD EF ,AD EF =,∴四边形AEFD 是平行四边形,∴AF 与DE 互相平分;(2)∵在Rt ABC 中,90BAC ∠=︒,8AB =,12BC =,∴由勾股定理得AC又由(1)知,OA OF =,且AF CF =,∴14OA AC =∴在AOD △中,90DAO ∠=︒,142AD AB ==,OA∴由勾股定理得 DO ==三、梯形中位线【例1】已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是 cm .【答案】4【解析】解:设梯形的另一条底边为xcm ,由题意得:625x +=⨯,解得4x =.即梯形的另一条底边的长为4cm .故答案为:4.【例2】如图,已知直角梯形ABCD 的一条对角线把梯形分为一个直角三角形和一个边长为8cm 的等边三角形,则梯形ABCD 的中位线长为( )B. 4cmB .6cmC .8cmD .10cm【答案】B【解析】解:DBC ∆是等边三角形,8DB DC BC cm ∴===,60DBC ∠=︒,90ABC ∠=︒,30ABD ∴∠=︒,90A ∠=︒,142AD BD cm ∴==,∴梯形ABCD 的中位线是11()(48)622AD BC cm cm cm +=⨯+=, 故选:B .【例3】如图,梯形ABCD 的两底长为6AD =,10BC =,中位线为EF ,且90B ∠=︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则EFP ∆与梯形ABCD 的面积比为 .【答案】1:16【解析】 解:梯形ABCD 的两底长为6AD =,10BC =,11()(610)822EF AD BC ∴=+=⨯+=,()()11610822ABCD S AD BC AB AB AB ∴=+⨯=⨯+⨯=梯形.()()1117682242AFED S AD EF AB AB AB =+⨯=+⨯=梯形,1714222EFP ABCD AFED S S S AB AB AB ∆∴=-=-=梯形梯形,1::81:162EFP ABCD S S ∆∴==梯形.故答案为:1:16.四、中点四边形【例1】顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是() A .平行四边形 B .对角线相等的四边形C .矩形D .对角线互相垂直的四边【答案】B【解析】 解:四边形EFGH 是菱形,1122EH FG EF HG BD AC ∴=====,故AC BD =.故选:B .【例2】若顺次连接四边形ABCD 各边的中点所得到的四边形是矩形,则原四边形必定是()A .正方形B .对角线相等的四边形C .菱形D .对角线互相垂直的四边形【答案】D【解析】 解:如图, 四边形EFGH 是矩形90FEH ∴∠=︒点E 、F 的分别是AD 、AB 的中点EF ∴是ABD ∆的中位线EF BD ∴∥90FEH OMH ∴∠=∠=︒点E 、H 的分别是AD 、CD 的中点EH ∴是ACD ∆的中位线EH AC ∴90OMH COB ∴∠=∠=︒AC BD ∴⊥.故选:D【例3】依次连接下列四边形四条边的中点得到四边形不是菱形的是( )A .矩形B .菱形C .正方形D .等腰梯形【答案】B【解析】解:如图所示,依次连接四边形四条边的中点,∵矩形ABCD ,∴AB CD ,AD BC ∥,AB CD =,AD BC =,且点E ,F ,G ,H 分别为四边的中点,∴AEF BGF CGH DEH △≌△≌△≌△, ∴EF GF GH EH ===,∴EFGH 是菱形;∴A 选项不符合题意;如上图所示,由A 选项结论得菱形EFGH ,点O ,P ,Q ,R 分别为四边的中点,∴EO OF FP PG QG QH HR ER =======,且菱形的对角相等,∴(SAS)EOR GPQ △≌△,(SAS)OFP HQR △≌△,∴OR PQ =,OP QR =,∴四边形OPRQ 是平行四边形,不一定是菱形;∴B 选项符合题意;如下图所示,正方形ABCD ,点E ,F ,G ,H 分别为四边的中点,∴AE AF FB BG GC CH HD DE =======,且90A B C D ∠=∠=∠=∠=︒,∴AEF BGF CGH DEH △≌△≌△≌△, ∴EF GF GH EH ===,∴EFGH 是菱形;∴C 选项不符合题意;如下图所示,等腰梯形ABCD ,点E ,F ,G ,H 分别为四边的中点,∴AE DE =,AF DH =,A D ∠=∠,∴(SAS)AEF DEH △≌△,∴EF EH =,同理可得,FG GH =,连接AC ,在ACD ,ACB △中,点E ,F ,G ,H 分别为四边的中点,根据三角形的中位线的性质可知,FG AC ,12FG AC =,EH AC ,12EH AC =,∴FG EH =,FG EH ∥,∴四边形EFGH 是平行四边形,又∵EF EH =,FG GH =,∴EFGH 是菱形;∴D 选项不符合题意.故选:B .【例4】如图,四边形ABCD 中,AC a =,BD b =.且AC BD ⊥,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222,A B C D ⋅⋅⋅,如此进行下去,得到四边形n n n n A B C D .下列结论正确的是( )①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+,④四边形n n n n A B C D 的面积是12n ab+.A .①②③B .②③④C .①②D .②③【答案】B【解析】解:①连接A 1C 1,B 1D 1.∵在四边形ABCD 中,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,∴A 1D 1∥BD ,B 1C 1∥BD ,C 1D 1∥AC ,A 1B 1∥AC ;∴A 1D 1∥B 1C 1,A 1B 1∥C 1D 1,∴四边形A 1B 1C 1D 1是平行四边形;∵AC ⊥BD ,∴四边形A 1B 1C 1D 1是矩形,∴B 1D 1=A 1C 1(矩形的两条对角线相等);∴A 2D 2=C 2D 2=C 2B 2=B 2A 2(中位线定理),∴四边形A 2B 2C 2D 2是菱形;故①错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故②正确;③根据中位线的性质易知,A 5B 5=12A 3B 3=1122⨯A 1B 1=111222⨯⨯AC , B 5C 5=12B 3C 3=1122⨯B 1C 1=111222⨯⨯BD , ∴四边形A 5B 5C 5D 5的周长是()1284a b a b +⨯+=故③正确;④∵四边形ABCD 中,AC=a ,BD=b ,且AC ⊥BD ,∴S 四边形ABCD=12ab ; 由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn 的面积是12n ab+故④正确;综上所述,②③④正确.故选:B .1、如图,在Rt ABC ∆中,90C ∠=︒,5AC =,12BC =.若D ,E 分别为边AC ,BC 的中点,则DE 的长为( )A .5B .5.5C .6D .6.5【答案】D【解析】解:90C ∠=︒,5AC =,12BC =,13AB ∴=,AD DC =,CE EB =,1 6.52DE AB ∴==, 故选:D .2、如图是屋架设计图的一部分,其中30A ∠=︒,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,16AB m =,则DE 的长为( )B. 8mB .4mC .2mD .6m 【答案】B【解答】解:30A ∠=︒,16AB m =,1116822BC AB m ∴==⨯=, BC 、DE 垂直于横梁AC ,//BC DE ∴,点D 是斜梁AB 的中点,118422DE BC m ∴==⨯=. 故选:B .3、如图,点D 、E 、F 分别是AC 、BC 、AB 中点,且BD 是ABC ∆的角平分线.求证:BE AF =.【答案】见解析【解析】【解答】证明:连接DE ,点D 、E 、F 分别是AC 、BC 、AB 中点.//DE AB ∴,//EF AC ,∴四边形ADEF 是平行四边形,AF DE ∴=, BD 是ABC ∆的角平分线,ABD DBE ∴∠=∠,DBE BDE ∴∠=∠,BE DE ∴=,BE AF ∴=.4.如图,平行四边形ABCD 中,对角线AC ,BD 相交于O ,2BD AD =,E , F , G 分别是OC ,OD ,AB 的中点,下列结论中:①BE AC ⊥;②四边形BEFG 是平行四边形;③EG GF =;④EA 平分GEF ∠,正确的是( )A .①②B .①②④C .①②③D .②③④【答案】B【解析】解:如图,四边形ABCD 是平行四边形BO DO ∴==12BD ,AD BC =,AB CD =,又2BD AD =,OB BC OD DA ∴===,且点E 是OC 中点,BE AC ∴⊥,故①正确,E 、F 分别是OC 、OD 的中点,∴EF CD ∥,EF =12CD ,点G 是Rt ABE △斜边AB 上的中点,GE ∴=12AB AG BG ==EG EF AG BG ∴===,无法证明GE GF =,故③错误,BG EF =,BG EF CD ∥∥∴四边形BEFG 是平行四边形故②正确,EF CD AB ∥∥,BAC ACD AEF ∠∠∠∴==,AG GE =,GAE AEG ∠∠∴=,EF CD ∥AEF ACD ∴∠=∠,AB CD ∥,GAE ACD ∴∠=∠,AEG AEF ∠∠∴=,AE ∴平分GEF ∠,故④正确;故选:B .5.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A ,1B ,1C ,1D ,顺次连接得到四边形1111D C B A ;再取各边中点2A ,2B ,2C ,2D ,顺次连接得到四边形2222A B C D ;依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为____.【答案】162n【解析】∵四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD = ∴11841622=⨯⨯=⨯⨯=ABCD S AC BD∵中点四边形的面积是原四边形面积的一半 ∴11111162==⨯A B C D ABCD S S222221162==⨯A B C D ABCD S S 以此类推,1161622==⨯=n n n n A B C D ABCD n n S S6.已知一个对角线长分别为12cm 和16cm 的菱形,顺次连接它的四边中点得到的四边形的面积是______.【答案】48【解析】解:E 、F 、G 、H 分别为各边中点,EF GH AC ∴∥∥,2EF GH AC ==,12EH FG BD ==,EH FG BD ∥∥,DB AC ⊥, EF EH ∴⊥,∴四边形EFGH 是矩形, 16cm 2EH BD ==,18cm 2EF AC ==,∴矩形EFGH 的面积26848cm EH EF =⨯=⨯=,故答案为:248cm .7.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =________.【答案】1【解析】解:Rt ABC 中,点E 是AB 的中点,1DE =,22AB DE ∴==,点F 、G 分别是AC 、BC 中点, ∴112FG AB ==,故答案为:18、如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使13CD BD =.连接DM 、DN 、MN .若6AB =,求DN 的长.【答案】3【解析】解:连接CM ,90ACB ∠=︒,M 是AB 的中点,132CM AB ∴==, M 、N 分别是AB 、AC 的中点,12MN BC ∴=,//MN BC , 13CD BD =,MN CD ∴=,又//MN BC ,∴四边形NDCM 是平行四边形,3DN CM ∴==.9.如图,在四边形ABCD 中,E ,F 分别是AD BC ,的中点.(1)若102430120AB CD ABD BDC ==∠=︒∠=︒,,,,求EF 的长.(2)若90BDC ABD ∠-∠=︒,求证:2224AB CD EF +=.【答案】(1)13 (2)见解析【解析】(1)如图,取BD 的中点P ,连接EP FP 、,∵E ,F 分别是AD BC 、的中点,1024AB CD ==,,∴PE AB ∥,且152PE AB ==,PF CD ∥,且1122PF CD ==.又∵30120ABD BDC ∠=︒∠=︒,,∴3018060EPD ABD DPF BDC ∠=∠=︒∠=︒-∠=︒,,∴90EPF EPD DPF ∠=∠+∠=︒.在Rt EPF中,13EF ===.(2)证明:如图,取BD 的中点P ,连接EP FP 、.∵E ,F 分别是AD BC 、的中点,∴PE AB ,且12PE AB =,PF CD ∥,且12PF CD =.∴180EPD ABD DPF BDC ∠=∠∠=︒-∠,.∵90BDC ABD ∠-∠=︒,∴90∠=︒+∠BDC ABD ,∴180EPF EPD DPF ABD BDC ∠=∠+∠=∠+︒-∠180(90)90ABD ABD =∠+︒-︒+∠=︒, ∴222221122PE PF AB CD EF ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, ∴2224AB CD EF +=.10.已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形(EFGH 即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是______,请证明你的结论;(2)当四边形ABCD 的对角线满足______条件时,四边形EFGH 是菱形;(3)你学过的哪种特殊的平行四边形的中点四边形是菱形?请写出一种.【答案】(1)平行四边形.证明见解析(2)AC BD =;(3)矩形的中点四边形是菱形.【解析】(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连接BD .E 、H 分别是AB 、AD 中点,EH BD ∴∥,12EH BD =,同理FG BD ∥,12FG BD =,EH FG ∴∥,EH FG =,∴四边形EFGH 是平行四边形;故答案为:平行四边形;(2)当四边形ABCD 的对角线满足AC BD =的条件时,四边形EFGH 是菱形.理由如下: 如图2,连接AC 、BD .E 、F 、G 、H 分别为四边形ABCD 四条边上的中点,EH BD ∴∥,HG AC ∥,1=2EH BD ,12HG AC =,AC BD =,EH HG ∴=, 又四边形EFGH 是平行四边形∴平行四边形EFGH 是菱形;故答案为:AC BD =;(3)矩形的中点四边形是菱形.理由如下:连接AC 、BD .E 、F 、G 、H 分别为四边形ABCD 四条边上的中点,EH BD ∴∥,HG AC ∥,FG BD ∥,EF AC ∥,12FG EH BD ==,12EF HG AC ==,四边形ABCD 是矩形,AC BD ∴=,EH BD HG AC ===,∴四边形EFGH 是菱形.11.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN ______填(“是”或“不是”)“等垂线段”.(2)ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若2DE =,4BC =,请直接写出PM 与PN 的积的最大值.【答案】】(1)是(2)是,答案见解析(3)92【解析】(1)解:线段PM 与PN 是“等垂线段”.理由如下:∴12MP EC =,12PN BD =,∵AB AC =,AD AE =,∴AB AD AC AE -=-,即BD CE =,∴MP PN =.∵点M 、P 、N 分别为DE 、DC 、BC 的中点,∴MP EC ∥,PN BD ∥,∵在Rt ABC △中,90A ∠=,AB AC =,∴45B ACB ∠=∠=︒,∴45ACD DCB ∠=︒-∠,180135BDC B DCB DCB ∠=︒-∠-∠=︒-∠,∵MP EC ∥,PN BD ∥,∴45MPD ACD DCB ∠=∠=︒-∠,()180********DPN BDC DCB DCB ∠=︒-∠=︒-︒-∠=︒+∠, ∴454590MPD DPN DCB DCB ∠+∠=︒-∠+︒+∠=︒,∴MP PN ⊥,即线段PM 与PN 是“等垂线段”,故答案为:是.(2)解:线段PM 与PN 是“等垂线段”,理由如下:∵ADE 绕点A 按逆时针方向旋转到图2所示的位置,∴AD AE =,=90DAE ∠︒,∵90BAC ∠=︒,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △与ACE △中,∵AB AC BAD CAE DA EA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABD ACE △≌△, ∴BD CE =,∴12MP EC =,12PN BD =,∵BD CE =,∴MP PN =.∵点M 、P 、N 分别为DE 、DC 、BC 的中点,∴MP EC ∥,PN BD ∥,∵在Rt ABC △中,90BAC ∠=,AB AC =,∴45ABC ACB ∠=∠=︒,∴45ACD DCB ∠=︒-∠,45DBC ABD ∠=︒-∠,()180********BDC DBC DCB ABD DCB ABD DCB ∠=︒-∠-∠=︒-︒-∠-∠=︒+∠-∠ ∵MP EC ∥,PN BD ∥,∴MPD ECD ECA ACD ∠=∠=∠+∠,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,即MPD ECD ABD ACD ∠=∠=∠+∠()18018045DPN BDC ABD DCB ABD DCB ∠=︒-∠=︒-︒+∠-∠=︒-∠+∠, ∴45454590MPD DPN ABD ACD ABD DCB ∠+∠=∠+∠+︒-∠+∠=︒+︒=︒, ∴MP PN ⊥.∵MP PN =,MP PN ⊥.故线段PM 与PN 是“等垂线段”.(3)解:由(2)可知,MP PN =,MP PN ⊥, 故222MN PM PN PM ⨯==, 当MN 取最大值时,PM 与PN 的积有最大值.∵把ADE 绕点A 在平面内自由旋转,∴当N 、A 、M 三点共线,且点A 在NM 之间时,MN 取最大值.∴此时MN NA AM =+.∵在Rt ABC △中,90BAC ∠=,AB AC =,4BC =,N 为BC 的中点, ∴122NA BC ==, 同理可得,112MA DE ==, ∴MN 的最大值为3,PM 与PN 的积有最大值92.。

平行四边形中位线专题培优训练

平行四边形中位线专题培优训练

四边形--平行四边形专题培优训练一.选择题(共6小题)1.(2011•孝感)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO 的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()A.14cm B.18cm C.24cm D.28cm2.(2011•黔西南州)如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定3.已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是()A.8cm B.10cm C.12cm D.14cm4.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.A C=DE B.A B=AC C.A D=EC D.O A=OE6.如图AB∥FD,GE∥AC,EF∥DG,GF∥BC,点O为DF与GE的交点,图中共有平行四边形()A.3个B.4个C.5个D.6个二.填空题(共6小题)7.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=_________cm.8.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE 的度数是_________度.9.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_________.10.(2011•黔西南州)如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△A2B2C2的面积,用同样的方法作出了第3个正△A3B3C3,算出第3个正△A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△A n B n C n的面积是_________.11.在梯形ABCD中,AB∥CD,M,N分别为上底CD,下底AB的中点,则MN_________(AD+BC).(填“>”“<”“=”)12.(2011•黑龙江)如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为_________.三.解答题(共16小题)13.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.14.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.15.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.16.(2011•厦门)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?17.已知:如图,D,E,F分别是△ABC各边上的点,且DE∥AC,DF∥AB.延长FD至点G,使DG=FD,连接AG.求证:ED和AG互相平分.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由.19.如图,△ABC中,AD为中线,E为边BC上一点,过E作EF∥AB交AC于F,交AD于M,EG∥AC交AB 于G.(1)如图1,若E与D重合,写出图中所有与FG相等的线段,并选取一条给出证明.(2)如图纸,若E与D不重合,在(1)中与FG相等的线段中找出一条仍然与FG相等的线段,并给出证明.(3)如图3,若E在BC的延长线上,其它条件不变,作出图形(不写作法),FG=_________.20.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)21.平行四边形ABCD中,AB=2cm,BC=12cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为ycm2,请用含有t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?22.如图a、b在平行四边形ABCD中,∠BAD,∠ABC的平分线AF,BG分别与线段CD两侧的延长线(或线段CD)相交于点F,G,AF与BG相交于点E.(1)在图a中,求证:AF⊥BG,DF=CG;(2)在图b中,仍有(1)中的AF⊥BG,DF=CG成立.请解答下面问题:①若AB=10,AD=6,BG=4,求FG和AF的长;②是否能给平行四边形ABCD的边和角各添加一个条件,使得点E恰好落在CD边上且△ABE为等腰三角形?若能,请写出所给条件;若不能,请说明理由.23.如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=(AB+BC+AC);(2)①如图(2),BD、CE分别是△ABC的内角平分线;②如图(3),BD为△ABC的内角平分线,CE为△ABC 的外角平分线.则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由.24.小杰遇到这样一个问题:如图1,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于_________.(2)如果AC=a,EF=b,那么AH的长等于_________.25.已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段CD与AF+BE之间所满足等量关系;(2)如图2,若AE=AD,你在(1)中得到的结论是否仍然成立,若成立,对你的结论加以证明,若不成立,请说明理由;(3)如图3,若AE:AD=a:b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你的结论.26.(2011•北京)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.27.(2011•北京)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.28.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?参考答案与试题解析一.选择题(共6小题)1.(2011•孝感)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO 的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()A.14cm B.18cm C.24cm D.28cm考点:平行四边形的判定与性质;三角形的重心;三角形中位线定理.专题:计算题.分析:主要考查平行四边形的判定以及三角形中位线的运用,由中位线定理,可得EF∥AO,FG∥BC,且都等于边长BC的一半.分析到此,此题便可解答.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=4cm,同理GD=EF=AO=3cm,∴四边形EFDG的周长为3+4+3+4=14(cm).故选A.点评:本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.2.(2011•黔西南州)如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:根据平行四边形的性质和判定得出平行四边形GBEP、HPFD,证△ABD≌△CDB,得出△ABD和△CDB 的面积相等;同理得出△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,相减即可求出答案.解答:解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形GBEP、HPFD是平行四边形,∵在△ABD和△CDB中,∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,∴四边形AEPH和四边形CFPG的面积相等,即S1=S2.故选A.点评:本题考查了平行四边形的性质和判定,全等三角形的性质和判定的应用,解此题的关键是求出△ABD和△CDB的面积相等,△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,注意:如果两三角形全等,那么这两个三角形的面积相等3.已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是()A.8cm B.10cm C.12cm D.14cm考点:平行四边形的判定与性质;解一元一次方程.专题:计算题.分析:由AB∥CD,AB=CD得到平行四边形ABCD,根据平行四边形的性质推出AD=BC,设平行四边形ABCD 的两邻边是3x,2x,得到方程2(3x+2x)=40,解方程求出x,即可求出最大边.解答:解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC,设平行四边形ABCD的两邻边是3x,2x,∵平行四边形ABCD的周长是40,∴2(3x+2x)=40,解得:x=4,∴较大边的长度是3×4=12.故选C.点评:本题主要考查了平行四边形的性质,解一元一次方程等知识点,解此题的关键是根据题意列出方程.4.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形考点:平行四边形的判定与性质;平行线的性质.专题:推理填空题.分析:根据平行四边形的性质即可判断A;根据图形和已知不能推出另一组对边也平行,即可判断B;根据平行四边形的判定判断即可;根据平行线性质和已知推出AD∥BC,根据平行四边形的判定判断即可.解答:解:A、根据平行四边形性质得出平行四边形的对角线互相平分,故本选项错误;B、∠A+∠D=180°,同时∠B+∠C=180°,只能推出AB∥CD,不一定是平行四边形,故本选项正确;C、AC于BD交于O,OA=OC,OB=OD,∴四边形ABCD是平行四边形,故本选项错误;D、∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故本选项错误;故选B.点评:本题考查了对平行线的性质和平行四边形的性质和判定的应用,能理解性质并应用性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.5.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.A C=DE B.A B=AC C.A D=EC D.O A=OE考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:由已知可得四边形BDEC是平行四边形,则BD=CE,∠B=∠E,又因为∠ABC=∠BAC,D是AB的中点可证△AOD≌△EOC,还可证明BC=AC,OA=OD,OE=OC,∴AC=DE,AD=EC,OA=OE.解答:解:∵EC∥AB,DE∥BC,∴四边形BDEC是平行四边形,∴BD=CE,∠B=∠E,又∵∠ABC=∠BAC,∴∠CEO=∠DAO,又D是AB的中点,∴AD=BD,∴AD=CE,∴△AOD≌△EOC,∴AD=CE,OA=OE,∵BC=DE,BC=AC,∴AC=DE.而AB=AC无法证得.故选B.点评:此题综合性比较强,考查了平行四边形的性质和判定,还综合利用了全等三角形的判定,等角对等边.6.如图AB∥FD,GE∥AC,EF∥DG,GF∥BC,点O为DF与GE的交点,图中共有平行四边形()A.3个B.4个C.5个D.6个考点:平行四边形的判定.分析:此题意在考查平行四边形的判定,根据题中给出的条件,依据两条对边分别平行的四边形为平行四边形,则不难求解.解答:解:因为AB∥FD,GE∥AC,EF∥DG,GF∥BC,所以GFBD,GFEC,EFDG,AGOF均为平行四边形,所以,共有四个平行四边形.故选B.点评:本题主要考查了平行四边形的判定,熟练掌握平行四边形的性质及判定定理是解题的关键.二.填空题(共6小题)7.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=cm.考点:平行四边形的判定与性质;含30度角的直角三角形;勾股定理.分析:过D作DM⊥AB于M,得出平行四边形AEFD,求出AD=EF=1cm,求出∠ADM,求出AM,DM,求出AB,求出BM,根据勾股定理求出BD即可.解答:解:过D作DM⊥AB于M,则∠DMA=90°,∵∠A=60°,∴∠ADM=30°,∴AD=2AM,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵F为DC中点,E为AB中点,∴DF=AE,DF∥AE,∴四边形AEFD是平行四边形,∴AD=EF=1cm,∴AM=cm,∵AB=2AD,∴AB=2cm,BM=2cm﹣cm=cm,在Rt△ADM中,由勾股定理得:DM=cm,在Rt△BDM中,由勾股定理得:BD==(cm),故答案为:.点评:本题考查了平行四边形的性质和判定,勾股定理,含30度角的直角三角形等知识点,关键是构造直角三角形,题目比较好,但是有一定的难度.8.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE 的度数是18度.考点:三角形中位线定理.分析:根据中位线定理和已知,易证明△EPF是等腰三角形.解答:解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=18°,∴∠PEF=∠PFE=18°.故答案为18.点评:本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.9.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.考点:翻折变换(折叠问题).分析:由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.解答:解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.点评:本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.10.(2011•黔西南州)如图,小红作出了边长为1的第1个正三角形△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△A2B2C2的面积,用同样的方法作出了第3个正△A3B3C3,算出第3个正△A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△A n B n C n的面积是.考点:三角形中位线定理;等边三角形的性质;相似三角形的判定与性质.专题:计算题;规律型.分析:过A1作A1D⊥B1C1于D,求出高A1D,求出△A1B1C1的面积,根据三角形的中位线求出B2C2=B1C1,A2B2=A1B1,A2C2=A1C1,推出△A2B2C2∽△A1B1C1,得出=同理△A3B3C3∽△A2B2C2,推出=得出规律=,代入求出即可.解答:解:过A1作A1D⊥B1C1于D,∵等边三角形A1B1C1,∴B1D=,由勾股定理得:A1D=,∴△A1B1C1的面积是×1×=,∵C2、B2、A2分别是A1B1、A1C1、B1C1的中点,∴B2C2=B1C1,A2B2=A1B1,A2C2=A1C1,即===,∴△A2B2C2∽△A1B1C1,且面积比是1:4,=同理△A3B3C3∽△A2B2C2,且面积比是1:4,=…∴==×=故答案为:.点评:本题考查了相似三角形的判定和性质,等边三角形,三角形的中位线的应用,解此题的关键是根据求出结果得出规律=,题目比较典型,但有一定的难度.11.在梯形ABCD中,AB∥CD,M,N分别为上底CD,下底AB的中点,则MN<(AD+BC).(填“>”“<”“=”)考点:三角形中位线定理;三角形三边关系;梯形.分析:由中点,联想到构建中位线,利用三角形的两边之和大于第三边即可得出结论.解答:解:如图,连接BD,作BD的中点,连接ME、NE,则可以知道ME、NE分别为中位线,∴ME=BC、NE=AD,∴ME+NE=(AD+BC),∵MN<ME+NE,∴MN<(AD+BC).故答案为:<.点评:本题考查了梯形的性质.比较线段的长度可以通过构造三角形,利用三角形的性质求解.12.(2011•黑龙江)如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为(或或,只要答案正确即可).考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质.专题:规律型.分析:根据三角形的面积公式,可以求得四边形ABCD的面积是16;根据三角形的中位线定理,得A1B1∥AC,A1B1=AC,则△BA1B1∽△BAC,得△BA1B1和△BAC的面积比是相似比的平方,即,因此四边形A1B1C1D1的面积是四边形ABCD的面积的,即a2;推而广之,则AC=8,BD=4,四边形A n B n C n D n的面积=.解答:解:∵四边形A1B1C1D1的四个顶点A1、B1、C1、D1分别为AB、BC、CD、DA的中点,∴A1B1∥AC,A1B1=AC.∴△BA1B1∽△BAC.∴△BA1B1和△BAC的面积比是相似比的平方,即.又四边形ABCD的对角线AC=8,BD=4,AC⊥BD,∴四边形ABCD的面积是16.推而广之,则AC=8,BD=4,四边形A n B n C n D n的面积=.故答案为(或或,只要答案正确即可).点评:此题综合运用了三角形的中位线定理、相似三角形的判定及性质.注意:对角线互相垂直的四边形的面积等于对角线乘积的一半.三.解答题(共16小题)13.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.考点:三角形中位线定理.专题:证明题.分析:根据中位线定理证明MH=NH,进而证明∠HMN=∠HNM,∠HMN=∠PQA,所以△APQ为等腰三角形,即AP=AQ.解答:证明:找到BC的中点H,连接MH,NH.如图:∵M,H为BE,BC的中点,∴MH∥EC,且MH=EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=BD.∵BD=CE,∴MH=NH.∴∠HMN=∠HNM;∵MH∥EC,∴∠HMN=∠PQA,同理∠HNM=∠QPA.∴△APQ为等腰三角形,∴AP=AQ.点评:考查中位线定理在三角形中的应用,考查平行线对角相等,考查等腰三角形的判定.14.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.考点:三角形中位线定理;直角三角形斜边上的中线.分析:(1)根据中位线的性质得到四边形MNED是梯形.又因为AD⊥BC,所以MN=BC即ME=DN,那么推出四边形EMND为等腰梯形.(2)利用四边形MECN为平行四边形,可以得到EC=MN=6,利用勾股定理可以求得DC=5,即可得到ED=6﹣5=1,然后利用梯形的面积计算梯形的面积即可.解答:解:(1)证明:∵M、E、N分别是AB、BC、AC的中点∴根据直角三角形斜边上中线等于斜边的一半,得ND=AC,根据三角形中位线定理,得NM=BC.MN∥BC,EM∥AC,∴四边形MECN为平行四边形,∴EM=NC.又∵DE<EC,∴ED<MN.∴四边形MEDN是梯形.(3分)又∵AD⊥BC,∴DG=AC.∴EM=DN.(2)∵AD=12,AC=13,∴CD=5,∵四边形MECN为平行四边形,∴EC=MN=6,∴ED=6﹣5=1,∴四边形DEMN的面积==21.点评:此题主要考查了学生对等腰梯形的判定及中位线的性质的掌握情况.15.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.考点:三角形中位线定理;平移的性质.专题:常规题型.分析:根据中位线定理证明MF∥BC,且MF=BC,根据AD=BC证明EM=MF,∠MEF=∠MFE,根据平行线同位角相等,证明∠MEF=∠AHF,∠MFE=∠BGF.可以求证∠AHF=∠BGF.解答:证明:连接AC,作EM∥AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM∥AD,∴EM=AD,M是AC的中点,又因为F是AB的中点∴MF∥BC,且MF=BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM∥AH,∴∠MEF=∠AHF∵FM∥BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.点评:考查平行线对角相等,同位角相等,中位线平行且等于对应边,等腰三角形底角相等.16.(2011•厦门)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?考点:平行四边形的判定与性质;全等三角形的判定与性质;等腰三角形的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据全等三角形判定证△ABC≌△CDA即可;(2)求出AC,当P在BC上时,①BP=EB=2,②BP=PE,作PM⊥AB于M,根据cosB求出BP,③BE=PE=2cm,作EN⊥BC于N,根据cosB求出BN;当P在CD上不能得出等腰三角形;当P在AD上时,过P作PN⊥BA于N,证△QAP∽△ABC,推出PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPN中,由勾股定理得出方程(3x+1)2+(4x)2=22,求出方程的解即可.解答:(1)证明:∵在△ABC和△CDA中∴△ABC≌△CDA,∴AD=BC,AB=CD,∴四边形ABCD是平行四边形.(2)解:∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC===,∴BP=cm,t=时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB==,∴=,BN=cm,∴BP=,∴t=时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵平行四边形ABCD,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.点评:本题主要考查对平行四边形的性质和判定,相似三角形的性质和判定.全等三角形的性质和判定,勾股定理,等腰三角形的性质,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.17.已知:如图,D,E,F分别是△ABC各边上的点,且DE∥AC,DF∥AB.延长FD至点G,使DG=FD,连接AG.求证:ED和AG互相平分.考点:平行四边形的判定与性质;平行线的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形的判定得出平行四边形AEDF,推出AE=DF=DG,根据平行线的性质推出∠G=∠EAO,∠AEO=∠GDO,根据ASA证△AEO≌△GDO即可.解答:证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF,∵DG=FD,∴AE=DG,∵DF∥AB,∴∠G=∠EAG,∠GDE=∠AED,在△AEO和△GDO中,∴△AEO≌△GDO,∴OE=0D,OA=OG,即ED和AG互相平分.点评:本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点的运用,关键是求出OA=OG,OE=OD,题目较好,难度不大,证明方法不止一个:也可证四边形AEGD是平行四边形.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由.考点:平行四边形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)推出平行四边形PEAF,推出PF=AE,∠EPB=∠C,根据等腰三角形的判定和性质推出PE=BE即可;(2)推出平行四边形PEAF,推出PE=AF,∠FPB=∠FCP,根据等腰三角形的判定和性质推出PF=FC即可,解答:(1)结论是PE+PF=AB,理由是:∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PF=AE,∠EPB=∠C,∵AC=AB,∴∠B=∠C,∴∠EPB=∠B,∴PE=BE,∵BE+AE=AB,∴PE+PF=AB.(2)结论是PE﹣PF=AB,理由是:∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PE=AF,∠FPC=∠ACB=∠FCP,∴PF=FC,PE﹣PF=AC=AB,即PE﹣PF=AB.点评:本题考查了平行四边形的性质和判定和等腰三角形的性质和判定,证此题的关键是证PE=BE和PF=FC,两小题证明过程类似,题型较好,难度适中.19.如图,△ABC中,AD为中线,E为边BC上一点,过E作EF∥AB交AC于F,交AD于M,EG∥AC交AB 于G.(1)如图1,若E与D重合,写出图中所有与FG相等的线段,并选取一条给出证明.(2)如图纸,若E与D不重合,在(1)中与FG相等的线段中找出一条仍然与FG相等的线段,并给出证明.(3)如图3,若E在BC的延长线上,其它条件不变,作出图形(不写作法),FG=BM.考点:平行四边形的判定与性质;全等三角形的判定与性质;平行线分线段成比例.专题:证明题.分析:(1)BD=DC=FG,根据平行线分线段成比例定理推出AF=CF,BG=AG,根据三角形的中位线求出即可;(2)延长AD至A′,使DA′=AD,连接CA′,推出平行四边形GEFA,得出FM∥A′C,得出、比例式,求出BG=FM,BG∥FM,得出平行四边形BGFM即可;(3)延长AD至A′,使DA′=AD,连接CA′,推出平行四边形GEFA,得出FM∥A′C,得出、比例式,求出BG=FM,BG∥FM,得出平行四边形BGFM即可.解答:解:(1)BD=DC=FG,证明:∵EF∥AB,BD=DC,∴AF=CF,同理BG=AG,∴FG=BC=BD=DC,即BD=FG.(2)BM=FG,理由是:延长AD至A′,使DA′=AD,连接CA′,则△ABD≌△A′CD,∴A′C=AB,A′C∥AB,∵FM∥AB,GE∥AC,∴四边形GEFA为平行四边形,∴FM∥A′C,∴===,∴FM=BG,∵FM∥BG,∴BMFG是平行四边形,∴BM=FG.(3)BM=FG,理由是:延长AD至A′,使DA′=AD,连接CA′,△ABD≌△A′CD,∴A′C=AB,A′C∥AB,∵FM∥AB,GE∥AC,∴四边形GEFA为平行四边形,∴FM∥A′C,GE=AF,∴===,∴FM=BG,∵FM∥BG,∴BMFG是平行四边形,∴BM=FG.故答案为:BM.点评:本题综合考查了全等三角形的性质和判定,平行四边形的性质和判定,平行线分线段成比例定理等知识点,此题难度较大,对学生有较高要求,但出现了类比推理的思想.20.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)考点:平行四边形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)证平行四边形PEAF,推出PE=AF,PF=AE,根据等腰三角形性质推出∠B=∠C=∠EPB,推出PE=BE 即可;(2)过点P作MN∥BC分别交AB、AC于M、N两点,推出PE+PF=AM,再推出MB=PD即可;(3)过点P作MN∥BC分别交AB、AC于M、N两点,推出PE+PF=AM,再推出MB=PD即可.解答:解:(1)结论是PD+PE+PF=AB,证明:∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PF=AE,∵AB=AC,∴∠B=∠C,∵PE∥AC,∴∠EPB=∠C,∴∠B=∠EPB,∴PE=BE,∵AE+BE=AB,∴PE+PF=AB,∵PD=0,∴PD+PE+PF=AB.(2)结论是PD+PE+PF=AB,证明:过点P作MN∥BC分别交AB、AC于M、N两点,由(1)得:PE+PF=AM,∵四边形BDPM是平行四边形,∵MB=PD,∴PD+PE+PF=AM+MB=AB.(3)结论是PE+PF﹣PD=AB.点评:本题综合考查了平行四边形的性质和判定和等腰三角形的性质等知识点,关键是熟练地运用性质进行推理和证明,题目含有一定的规律性,难度不大,但题型较好.21.平行四边形ABCD中,AB=2cm,BC=12cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为ycm2,请用含有t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?考点:平行四边形的性质.专题:动点型.分析:(1)因为在平行四边形ABCD中,AQ∥BP,只要再证明AQ=BP即可,即点P所走的路程等于Q点在边AD上未走的路程.(2)因为四边形ABPQ是梯形,梯形的面积公式(上底+下底)×高÷2,AQ和BP都能用含有t的字母表。

华师大版九年级上册教案:23.4中位线练习题(含答案)

华师大版九年级上册教案:23.4中位线练习题(含答案)

华师大版九年级上册23.4中位线练习题一、选择题1、如果等边三角形的边长为3,那么连结各边中点所成的三角形周长为( )A.9B.6C.3D. 4.52、在四边形ABCD 中,对角线AC =BD ,那么顺次连结四边形ABCD 各边的中点所得的四边形一定是( )A.平行四边形B.矩形C.正方形D.菱形3、如图,△ABC 中,如果AB =30cm ,BC =24cm ,AC =27cm ,AE =EF =FB ,EG ∥DF ∥BC ,FM ∥EN ∥AC ,则图中阴影部分的三个三角形周长之和为( )A.70cmB.75cmC.80cmD.81mc4、若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( )A .4.5cmB .18cmC .9cmD .36cm5、如图所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定O A DC B E6、如图, ABCD 中,对角线AC 、BD 交于点O ,E 是CD 中点,连接OE,若OE=3cm,则 AD 的长为( )A.3cmB. 6cmC. 9cmD. 12cm二、填空题1、.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC 和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是.第1题第3题第5题2、四边形的两条对角线分别是12cm和10cm,顺次连结各边中点所得四边形的周长是;3、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC= cm,如果AB=10cm,那么DF= cm(2)中线AD与中位线EF的位置关系是;4、一个三角形的周长是45cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm.5、如图,在△ABC中,E,D,F分别是AB,BC,CA的中点, AB=6,AC=4,则四边形AEDF的周长是;三、解答题1、如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点,(1)求证:四边形DECF是平行四边形。

三角形的中位线培优练习精品

三角形的中位线培优练习精品

精品∙三角形的中位线培优练习知识点:1、三角形的中位线定义:连结三角形两边中点的线段.2、三角形中位线定理: ①三角形的中位线 于第三边(位置关系)②三角形的中位线等于 (数量关系)3、三角形中位线特点:①三角形中位线所截的小三角形的周长等于原三角形周长的1/2,面积等于原三角形的1/4②线过三角形一边的中点的直线如平行第三边,则它必经过另一边的中点一、基础练习1. 如图,DE 是△ABC 的中位线,则△ABC 与△ADE 的周长的比是 ( )A .1:2B .2:1C .1:3D .3:12. 如图,在Rt △ABC 中,∠A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A .1B .2C.D .1+3. 如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是( )A .EF=CFB .EF=DEC .CF <BD D .EF >DE4. 一个三角形的周长是36 cm ,则以这个三角形各边中点为顶点的三角形的周长是 ( )A .6 cmB .12 cmC .18 cmD .36 cm5. 如图,在△ABC 中,∠ABC=90°,AB=8,BC=6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( ) A .7B .8C .9D .106. 如图,在△ABC 中,∠ACB=90°,AC=8,于点E ,则DE 的长为( ) A .6B .5C .4D .37. 如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,AF ⊥BC ,垂足为点F ,∠ADE=30°,DF=4,则BF 的长为( )A .4B .8C .2D .48. 在△ABC 中,AB=3,BC=4,AC=2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .119. 如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .(9) (10) (11) (12) (13) (14)10. 如图,小明为了测量学校里一池塘的宽度AB ,选取可以直达A 、B 两点的点O处,再分别取OA 、OB 的中点M 、N ,量得MN=20m ,则池塘的宽度AB 为 m11. 如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF= cm .12. 如图,在△ABC 中,∠ACB=90°,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,FMECB APFEDCBFNMECBANMDCBA使CD=BD,连接DM、DN、MN.若AB=6,则DN= .13. 如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB =6,BC=10,MN=1.5,则△ABC的周长是.14. 如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.二、提高练习【利用角平分线+垂直、必有等腰三角形】例题1:如图,△ABC中,CD平分∠ACB,AD⊥CD,垂足为D点,点E为AB 的中点.(1)求证:DE∥BC;(2)求证:DM=(BC-AC)/2练习:如图,△ABC中,点M为△ABC的边BC的中点,AD为∠BAC的外角平分线,且DB⊥AD,连接DM.(1)求证:MD∥AC;(2)求证:DM=(AB+AC)/2练习:如图,在∆ABC中,AB=BC,∠ABC=90°,F为BC上一点,M为AF的中点,BE平分∠ABC,且EF⊥BE,求证:CF=2ME。

三角形中位线培优试卷

三角形中位线培优试卷

2017年4月25日三角形中位线培优试卷一、选择题(共2小题;共10分)1. 如图,在中,点,分别是,的中点,,,则的度数为 ( )A. B. C. D.2. 如图,在中,,是的中点.动点从点出发,沿方向匀速运动到终点,动点从点出发,沿方向匀速运动到终点.已知,两点同时出发,并同时到达终点,连接,,.在整个运动过程中,的面积大小变化情况是 ( )A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减少二、填空题(共7小题;共35分)3. 如图所示,在中,已知,,平分,于点,为的中点,则.4. 如图,在中,是高,是中线,,点,关于点对称,过点作,交边于点,连接.若,,则的周长为.5. 如图,在平行四边形中,对角线,相交于点,是边中点,交于点,则的值为.6. 如图,在中,,,,分别为的中线和角平分线,过点作于点,并延长交于点,连接,则线段的长为.7. 如图,在中,,是斜边的中点,,垂足为 .若,,则的长为.8. 如图,的中位线,把沿折叠,使点落在边上的点处,且,则,的面积为.9. 如图,四边形中,,,,点分别为线段上的动点(含端点,但点不与点重合),点分别为,的中点,则长度的最大值为.三、解答题(共14小题;共182分)10. 如图,在中,,,为等腰直角三角形,,为的中点.求证:.11. 在中,,,分别为边,的中点,点在边的延长线上,,求证:四边形是平行四边形.12. 课堂上,小明与同学们讨论下面五边形中的问题:如图 1,在五边形中,,,,小明发现图中;小亮在图1 中连接后,得到图,发现.请在选择下面的两题中任选一题解答.Ⅰ为证明,小明延长,分别交直线与点,点,如图2.请利用小明所引的辅助线证明Ⅱ请你借助图 3 证明13. 某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:Ⅰ操作发现:在等腰中,分别以和为斜边,向的外侧作等腰直角三角形,如图1 所示,其中于点,于点,是的中点,连接和,则下列结论正确的是(填序号即可).(i);(ii);(iii)整个图形是轴对称图形;(iv).Ⅱ数学思考:在任意中,分别以和为斜边,向的外侧作等腰直角三角形,如图 2 所示,是的中点,连接和,则与具有怎样的数量和位置关系?请给出证明过程;Ⅲ类比探究:在任意中,仍分别以和为斜边,向的内侧作等腰直角三角形,如图3 所示,是的中点,连接和,试判断的形状.答:.14. 在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:是线段所在平面内任意一点,分别以,为边,在同侧作等边和,连接,交于点.Ⅰ如图 1,当点在线段上移动时,线段与的数量关系:.Ⅱ如图2,当点在直线外,且,上面的结论是否还成立?若成立请证明,不成立说明理由.此时是否随着的大小发生变化,若变化写出变化规律,若不变,请求出的度数.Ⅲ如图3,在(2)的条件下,以为边在另一侧作等边三角形,连接,和交于点,求证:.15. 把一个含角的直角三角板和一个正方形摆放在一起,使三角板的直角顶点和正方形的顶点重合,联结,点,分别为,的中点,联结,.Ⅰ如图1,点,分别在正方形的边,上,请判断,的数量关系和位置关系,直接写出结论;Ⅱ如图2,点,分别在正方形的边,的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.16. (1)如图①,在四边形中,,分别是,的中点,连接并延长,分别与,的延长线交于点,,且,求证:;Ⅱ如图②,在中,是边的中点,是边上一点,是的中点,直线交的延长线于点,若,,求的长.17. 已知两个等腰,有公共顶点,,连接,是的中点,连接,.Ⅰ如图 1,当与在同一直线上时,求证:;Ⅱ如图 1,在第(1)问的基础上,若,,求,的长;Ⅲ如图 2,当时,求证:.18. 如图,在中,,分别为,上的点,且,,分别是,的中点.过的直线交于点,交于点.线段,相等吗?为什么?19. (1)如图1,在四边形中,,,分别是,的中点,连接并延长,分别与,的延长线交于点,.求证:;Ⅱ如图2,在四边形中,与相交于点,,,分别是,的中点,连接,分别交,于点,,判断的形状,请直接写出结论;Ⅲ如图3,在中,,点在上,,,分别是,的中点,连接并延长,与的延长线交于点,连接,若,判断的形状并证明.20. 如图,是中边的中点,和都是等边三角形,,分别是,的中点.Ⅰ求证:是等边三角形;Ⅱ连接,是中点,于点.求证:.同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路做为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.21. 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,,是的中线,于点,像这样的三角形均为“中垂三角形”.设,,.Ⅰ【特例探究】如图,当,时,,;如图,当,时,,;Ⅱ【归纳证明】请你观察(1)中的计算结果,猜想、、三者之间的关系,用等式表示出来,并利用图证明你的结论.Ⅲ【拓展证明】如图4,平行四边形中,、分别是、的三等分点,且,,连接、、,且于,与相交点,,,求的长.22. 问题解决:如图1,将两个完全相同的三角形纸片和重合放置,其中,.Ⅰ如图2,固定,将绕点旋转,当点恰好落在边上时,设的面积为,的面积为,那么与的数量关系是;Ⅱ当绕点旋转到图3 所示的位置时,小明猜想(1)中与的数量关系仍然成立,并尝试分别作出了和中,边上的高,请你证明小明的猜想.Ⅲ如图4,,点在其角平分线上,,交于点,若点在射线上,并且,请直接写出相应的的长.23. 已知中,为的中点,直线绕点旋转,过,,分别作于点,于点,于点.(1)当直线经过点时,如图 1,易证;(不需证明)(2)当直线不经过点,旋转到如图 2 、图 3 的位置时,线段,,之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.答案第一部分1. C 【解析】由题意是的中位线,故,,根据三角形的内角和等于,.2. C 【解析】当点,分别位于,两点时,,当点,分别运动到,的中点时,此时,当点,继续运动到点,时,,故在整个运动变化中,的面积是先减小后增大.第二部分3.4.【解析】是的中点,是的中点,即.,分别是,的中点,..5.6.【解析】平分,,.为边的中点,.,,,.7.【解析】,,.为的中点,.,.,,.8. ,【解析】连接.是的中位线,,;由折叠的性质可得:,,.9.【解析】,,.最大时,最大.当与重合时最大,此时,的最大值为.第三部分10. 如图,延长至,使,连接,.易得.,,垂直平分...为等腰直角三角形,,.,,即.又,.在和中,...11. 因为在中,,,分别为边,的中点,所以,,所以,因为,所以,所以,所以四边形是平行四边形.12. (1)延长,分别交直线于点,点.因为,,,所以.同理,.在与中,所以,所以,,所以,所以,即.(2)如图,延长,交于点.因为,,,所以,所以,所以是等边三角形,所以.因为,所以,所以是的中位线,所以.13. (1)(i)(ii)(iii)(iv)(2),.的证明如下:如图所示,分别取,的中点,,连接,,,.是的中点,,.又是等腰斜边上的中线,且.,,同理可得,.又,,同理可得,,即.又,,()..的证明如下:证法一:,,即.又,,,其中,,即.证法二:如图所示,与交于点,,,又,即.,,,,即.(3)等腰直角三角形14. (1)(2)成立,不随着的大小发生变化,始终是.和是等边三角形,,,,,即.,.,设与交于点.,,,即.(3)由(2)同理可得.在上截取,连接,为等边三角形.,,.,,.,..15. (1)且.【解析】连接.四边形是正方形,是等腰直角三角形,,,.为的中点,为中点,,,,.,,,.(2)(1)中的结论仍然成立.连接,四边形是正方形,,.在中,是的中点,..是的中点,是的中位线.,.为等腰直角三角形,,.点,分别在正方形的边,的延长线上,,即..,,,.,,,.,.16. (1)如图①,连接,取的中点,连接,.又,分别是,的中点,,,,,,.又,,,.(2)如图②,连接,取的中点,连接,,则,,,.又,,.,,,是等边三角形,.又,.17. (1)证法一:如答图 1a,延长交于点,则易知与均为等腰直角三角形,,点为线段的中点,又点为线段的中点,为的中位线,.【解析】证法二:如答图 1b,延长交于点,,,,,,是的中点,,在和中,,,,,,,是等腰直角三角形,,在等腰直角三角形中,,,.(2)解法一:如答图 2a 所示,延长交于点,则易知与为等腰直角三角形,,,点为中点,又点为中点,.分别延长与交于点,则易知和均为等腰直角三角形,,,点为中点,又点为中点,,,,,.【解析】解法二:如答图 2b 所示,,,,,,,又是等腰直角三角形,是等腰直角三角形,.(3)证法一:如答图 3a,延长交于点,连接,则易知与均为等腰直角三角形,,,点为中点,又点为中点,.延长与交于点,连接,则易知与均为等腰直角三角形,,,点为中点,又点为中点,.在与中,,,.【解析】证法二:如答图 3b,延长交于点,连接,,,,,,,是的中点,,在和中,,,,,在和中,,,,,是等腰直角三角形,又,,故.18. .取中点,连接,.,分别是,的中点,为中点.,.,..,,,...19. (1)连接并取的中点,连接,.为中点,为中点,.,.为中点,为中点,,..,...(2)是等腰三角形.【解析】取中点,连接,.,分别是,的中点,,,,.,.,.,即.是等腰三角形.(3)连接.取中点,连,.,分别是,的中点,,,,.,.,..是等边三角形..是等边三角形.,..,即是直角三角形.20. (1)取的中点,连接,.,,为等边三角形,,.,.,..,..是等边三角形.(2)连接,..中,,.,,.,.....21. (1),;,.【解析】如图1中,,,,,,,,,.,.如图2中,连接.,,,,,,,在中,,,,,,,.(2)结论.如图3中,连接.、是中线,,,,,设,,则,,,,,.(3)如图4中,在和中,,,取中点,连接并且延长交的延长线于点.同理可证,,,即,,四边形是平行四边形,,,,即,是中垂三角形,由(2)可知,,,,.22. (1)相等【解析】由,,可得,根据旋转的性质可知.由,可得为等边三角形,,在等边三角形中,、边上的高相等,所以.(2),分别是和中,边上的高,.,,,,,.,()..,,且,.(3)或.【解析】如图,易得,.23. (2)图 2 的结论为.图 3 的结论为.图 2 的结论证明如下:连接并延长交的延长线于点,,,,,,,,,.由(1)知,.图 3 的结论证明如下:连接并延长交于点,,,,,,,,,,由(1)知,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级《中位线》培优训练
1、如图,△ABC中,CD平分∠ACB,A D⊥CD,垂足为D点,点E为AB的中点。

(1)求证:D E∥BC;
(2)若AC=8,BC=5,求DE的长。

2、如图,梯形ABCD中,E、F分别为对角线BD、AC的中点,
求证:(1)EF∥CD;(2)
1
()
2
EF CD AB
=-
3、如图,A E⊥AB,BF⊥AB,AB的中垂线交AB于N,交EF与M。

求证:
1
()
2
MN BF AE
=-
A B
C
4、已知,BF 、CE 分别为△ABC 中,∠B ,∠C 平分线,AM ⊥CE 于M ,AN ⊥BF 于N , 求证:(1)MN ∥BC ; (2)A B +A C -BC=2MN
5、(1)如图1,在四边形ABCD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,
分别与BA 、CD 的延长线交于点M 、N ,求证:∠BME=∠CNE 。

(2)如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB=CD ,E 、F 分别是BC 、AD 的中
点,连接EF ,分别交DC 、AB 于点M 、N ,判断△OMN 的形状,并证明你的结论。

(3)如图3,在△ABC 中,A C >AB ,D 点在AC 上,AB=CD ,E 、F 分别是BC 、AD 的中
点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC=60°,连接GD ,判断 △ AGD 的形状,并证明你的结论。

B C
G
B
C
6、已知△ACB 、△CEF 都为等腰直角三角形,点E 、F 分别在AC 、BC 上,∠ACB=90°, 连BE 、AF 。

点M 、N 分别为AF 、BE 的中点。

(1)如图1
,求证:AE =;
(2)将△CEF 绕C 点顺时针旋转一个锐角至图2,则(1)中的结论是否成立?试证明 你的结论。

7、如图,△ACB 、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连 CE ,M 、N 分别为BD 、CE 的中点。

(1)求证:12
MN CE =; (2)如图,将△ADE 绕A 点逆时针旋转一个锐角,则(1)中的结论是否成立?试证明你的结论。

(3)求证:M N ⊥CE 。

F A
F A
A E
8、如图,△ACB 为等腰直角三角形,∠ACB=90°,点E 在AC 上,EF ⊥AC 交AB 于F , 连BE 、CF 。

M 、N 分别为CF 、BE 的中点。

(1)如图1,则
MN
CE
,并说明理由; (2)如图2,将△AEF 绕点A 顺时针旋转45°,则(1)中的结论是否仍成立?试证明。

(3)如图3,将△AEF 绕点A 顺时针旋转一个锐角,则(1)中的结论是否仍成立? 并说明理由。

9、如图1,△ABC 、△BEF 都为等腰直角三角形,∠ABC=∠BEF=90°,点F 在BC 上, 点M 为AF 的中点。

连EM 。

(1)在图1中画出△BEF 关于直线BE 成轴对称的三角形,并证明CF=2ME ; (2)将图1中的△BEF 绕点B 逆时针旋转至图2的位置,其它条件不变,(1)中的结
论是否仍然成立?请证明你的结论。

(3)如图3,过B 作B S ⊥ME 于S ,若ES=2,BS=4,CF=10,则四边形CFEB 的面积 为 。

(直接写出结果)
A
A
A
A
F。

相关文档
最新文档