排列与组合综合问题

合集下载

排列组合综合(1-3)

排列组合综合(1-3)

排列、组合综合题(1)常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略; (7)定序问题除法处理的策略;(8)分排问题直排处理的策略; (9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.1、若436m m C A =,则=m ( )A 、9B 、8C 、7D 、62、把6名同学排成前后两排,每排3人,则不同排法的种类( )A 、36B 、120C 、720D 、14403、某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分; 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( ) A 、3种 B 、4种 C 、5种 D 、6种4、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个5、如图1所示,为某市的四个小镇,现欲修建三条 公路,将这四个镇连接起来,则不同的修路方案种 数为( )(图1)A 、6B 、12C 、16D 、246、某电视台连续播放6个广告,三个不同的商业广告,两个不同的奥运宣传广告,一个公益广告,要求最后播放的不能是商业广告,且奥运宣传广告与公益广告不能连续播放,两个奥运宣传广告也不能连续播放,则不同的播放方式有( ) A .48种 B .98种 C .108种 D .120种7、 将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其所在盒子的标号不.一致的放入方法种数为( ) A .120B .240C .360D .7208.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?解 可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有2423A C 种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有34A 种方案.由分类计数原理可知共有342423A A C +=60种方案.9.二次函数y =ax 2+bx +c 的系数a 、b 、c ,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?解 由图形特征分析,a >0,开口向上,坐标原点在内部⇔f (0)=c <0;a <0,开口向下,原点在内部⇔f (0)=c >0,所以,对于抛物线y =ax 2+bx +c 来讲,原点在其内部⇔af (0)=ac <0,则确定抛物线时,可先定一正一负的a 和c ,再确定b ,故满足题设的抛物线共有16221413A A C C =144(条).10、个人坐在一排个座位上,问 (1)空位不相邻的坐法有多少种?(2) 个空位只有个相邻的坐法有多少种?(3) 个空位至多有个相邻的坐法有多少种?11. 4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球. (1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?解 (1)依题意可知,取出的4个球中至少有2个红球,可分为三类: ①全取出红球,有44C 种不同的取法;②取出的4个球中有3个红球1个白球,有34C ×16C 种取法;③取出的4个球中有2个红球2个白球,有24C ×26C 种不同的取法. 由分类计数原理知,共有44C +34C ×16C +24C ×26C =115种不同的取法. (2)依题意知,取出的4个球中至少要有1个红球,从红白10个球中取出4个球,有410C 种不同的取法,而全是白球的取法有46C 种,从而满足题意的取法有:410C -46C =195(种).6104342排列、组合综合题(2)1、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A 、4448412C C C 种 B 、34448412C C C 种 C 、3348412A C C 种 D 、334448412AC C C 种2、从某班学生中,选出四个组长的不同选法有m 种,选出正、副组长各一名的不同选法有n 种,若m:n=13:2,则该班的学生人数是( )A 、10B 、15C 、20D 、223、从1,2,3,4,5,6,7,8,9中每次取出两个不重复的数字分别作为对数式中的底和真数,共可得到不同的对数值( )A 、53个B 、55个C 、57个D 、59个4、若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按 分层抽样法从中选10人组成联络小组,则不同的选法有( )种.A .B .C .D .5. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 366.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 (A )6种 (B )12种 (C )24种 (D )30种7、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( )A 、24种B 、18种C 、12种D 、6种8. 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .B .C .D .9.用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有( )种。

排列、组合的综合问题

排列、组合的综合问题
答案:1 560
从 1,3,5,7,9 中任取三个数,从 2,4,6,8 中任取两 个数,则可以组成没有重复数字的五位数的个数为________. 解析:“先取元素后排列”,分三步完成:第一步,从 1,3, 5,7,9 中任取三个数,有 C35种取法;第二步,从 2,4,6,8 中任取两个数,有 C24种取法;第三步,将取出的五个数全排列, 有 A55种排法.共有符合条件的五位数 C35C24A55=7 200(个). 答案:7 200
• 处理有附加条件的排列、组合应用题的策略: • (1)以元素为主考虑,即先满足特殊元素的要求,
再考虑其他元素; • (2)以位置为主考虑,即先满足特殊位置的要求,
再考虑其他位置; • (3)先不考虑附加条件,计算出排列数或组合数,
再减去不合要求的排列数或组合数.
【基础检测】
1.从黄瓜、白菜、油菜、扁豆 4 种蔬菜中选
个,再加上 3 开头的排列数才共有 180 个,如果加
上 4 开头的,则共有 240 个,所以第 200 项应该是
4 开头的数.
而形如 4 1
数,有 A24=12 个.
故 200 项在形如 4 2
中.
又 421
, 423
各有 3 个数,故此数应在形如 4 2 5 中 的 第 二 个数、即符合 180+12+3+3+2=200. 故所求第 200 项为:4253.
A.24
B.48
C.120
D.72
D
【解析】解法一:特殊位置法:第一步:从除
A 外的 4 人中选 2 人参加理、化竞赛,有 A24种选法; 第二步:从剩余 3 人中选 2 人参加数、英竞赛,有 A23种选法,共 A24·A23=72 种.
解法二:特殊元素法:分选 A 及不选 A 两种, 共 C34·C12A33+A44=72 种.

【排列组合(10)】排列与组合综合应用(二)

  【排列组合(10)】排列与组合综合应用(二)

排列与组合综合应用(二)一、选择题1.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是()A. 16B. 24C. 8D. 122.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A. 50B. 80C. 120D. 1403.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排,若小明的父母至少有一人与他相邻,则不同坐法的总数为()A. 60B. 72C. 84D. 964.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为()A. 72B. 96C. 120D. 1565.由0,1,2,3,5组成的无重复数字的五位偶数共有()A. 36个B. 42个C. 48个D. 120个6.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有()种.A. 27B. 30C. 33D. 367.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()A. 60种B. 90种C. 150种D. 240种8.某人连续投篮6次,其中3次命中,3次未命中.则他第1次、第2次两次均未命中的概率是()A. 12B. 310C. 14D. 15二、填空题(本大题共4小题,共20.0分)9.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有______种.10.用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2、5相邻,则这样的五位数的个数是______(用数字作答).11.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有______种.12.某高中高三某班上午安排五门学科(语文,数学,英语,化学,生物)上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.三、解答题(本大题共8小题,共96.0分)13.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.14.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲、乙必须相邻;(2)甲、乙不相邻;(3)甲、乙之间恰有两人;(4)甲不站在左端,乙不站在右端.15.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(写出计算过程,并用数字作答)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.16.4男3女站成一排,求满足下列条件的排法共有多少种?(1)任何两名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?17.6本不同的书,按如下方法分配,各有多少种分法:(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本,乙得2本,丙得3本;(3)分给甲、乙、丙3人,其中一人得1本,其中一人得2本,其中一人得3本.18.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?19.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(Ⅰ)选其中5人排成一排;(Ⅱ)排成前后两排,前排3人,后排4人;(Ⅲ)全体排成一排,女生必须站在一起;(Ⅳ)全体排成一排,男生互不相邻;(Ⅴ)全体排成一排,甲不站在排头,也不站在排尾。

【排列组合(9)】排列与组合综合(一)

  【排列组合(9)】排列与组合综合(一)

排列与组合综合(1)一、选择题1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360种D. 420种2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有()种(用数字作答).A. 720B. 480C. 144D. 3603.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A为“取出的两个球颜色不同”,事件B为“取出一个红球,一个白球”,则P(B|A)等于()A. 16B. 313C. 59D. 234.已知某旅店有A,B,C三个房间,房间A可住3人,房间B可住2人,房间C可住1人,现有3个成人和2个儿童需要入住,为确保安全,儿童需由成人陪同方可入住,则他们入住的方式共有()A. 120种B. 81种C. 72种D. 27种5.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A. 192种B. 216种C. 240种D. 288种6.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A. 36种B. 30种C. 24种D. 20种7.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A. 1080B. 480C. 1560D. 3008.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A. 140种B. 80种C. 70种D. 35种9.若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是()A. 120B. 150C. 240D. 30010.将6本不同的数学用书放在同一层书架上,则不同的放法有()A. 6B. 24C. 120D. 720二、填空题(本大题共4小题,共20.0分)11.某校选定甲、乙、丙、丁、戊共5名教师去3个边远学校支教,每学校至少1人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有______ 种.12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色.则不同取法的种数为______.13.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有______种不同的涂色方法.14.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为______ (用数字回答)三、解答题15.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?16.按下列要求分配6本不同的书,各有多少种不同的分配方式⋅(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.17.三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?18.晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:(1)3个舞蹈节目排在一起;(2)3个舞蹈节目彼此分开;(3)3个舞蹈节目先后顺序一定;(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.19.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种?(3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?20.用数字0、2、3、4、6按下列要求组数、计算:(1)能组成多少个没有重复数字的三位数?(2)可以组成多少个可以被3整除的没有重复数字的三位数?(3)求2×3×4×6即144的所有正约数的和.(注:每小题结果都写成数据形式)排列与组合综合(1)一、选择题21.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360种D. 420种【答案】D【解析】【分析】本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.【解答】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案.故选D.22.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有()种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】【分析】本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.【解答】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23,∴不同的排法种数共有23×720=480种.故选B.23. 篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A 为“取出的两个球颜色不同”,事件B 为“取出一个红球,一个白球”,则P(B|A)等于( )A. 16B. 313C. 59D. 23【答案】B【解析】【分析】本题考查组合数公式、古典概型和条件概率计算公式等知识,属于中档题.利用组合数公式与古典概型公式,分别算出事件A 发生的概率P(A)和事件A 、B 同时发生的概率P(AB),再利用条件概率公式加以计算,即可得到P(B|A)的值. 【解答】解:事件A 为“取出的两个球颜色不同”,事件B 为“取出一个红球,一个白球”, ∵篮子里装有2个红球,3个白球和4个黑球, ∴取出的两个球颜色不同的概率为P(A)=C 21C 31+C 21C 41+C 31C 41C 92=1318.又∵取出两个球的颜色不同,且一个红球、一个白球的概率为P(AB)=C 21C 31C 92=16,∴P(B|A)=P(AB)P(A)=161318=313.故选B .24. 已知某旅店有A ,B ,C 三个房间,房间A 可住3人,房间B 可住2人,房间C 可住1人,现有3个成人和2个儿童需要入住,为确保安全,儿童需由成人陪同方可入住,则他们入住的方式共有( ) A. 120种 B. 81种 C. 72种 D. 27种 【答案】D【解析】【分析】本题考查的是排列问题,并且元素的要求很多,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.安排住宿时要分四种情况,第一,三个大人一人一间,小孩在A 、B 两个房间排列,第二,三个大人一人一间,两个孩子在A 住,第三空出C 房间,两个大人住A ,一个大人住B ,两个大人住B ,列出算式,得到结果. 【解答】解:由题意知:三个大人一人一间,小孩在A 、B 两个房间排列有A 33A 22=12种住法, 三个大人一人一间,两个孩子在A 住有A 33=6种住法,空出C 房间,两个大人住A ,一个大人住B 有C 32A 22=6种住法,两个大人住B ,空出C 房间,有C 32种住法, 综上所述共有12+6+6+3=27种住法. 故选D .25. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A. 192种 B. 216种 C. 240种 D. 288种 【答案】B【解析】【分析】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有A55=120种,最左端排乙,最右端不能排甲,有C41A44=96种,根据加法原理可得,共有120+96=216种.故选B.26.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A. 36种B. 30种C. 24种D. 20种【答案】C【解析】【分析】本题考查排列、组合的综合运用,属于中档题.根据题意中甲要求不到A馆,分析可得对甲有2种不同的分配方法,进而对剩余的三人分情况讨论,①其中有一个人与甲在同一个展馆,②没有人与甲在同一个展馆,易得其情况数目,最后由分步计数原理计算可得答案.【解答】解:根据题意,首先分配甲,有2种方法,再分配其余的三人:分两种情况,①其中有一个人与甲在同一个展馆,有A33=6种情况,②没有人与甲在同一个展馆,则有C32·A22=6种情况;则若甲要求不到A馆,则不同的分配方案有2×(6+6)=24种.故选C.27.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A. 1080B. 480C. 1560D. 300【答案】C【解析】【分析】本题考查两种计数原理与排列组合知识的运用,属于中档题.先把6名技术人员分成4组,每组至少一人,再把这4个组的人分给4个分厂,利用乘法原理,即可得出结论.【解答】解:先把6名技术人员分成4组,每组至少一人,若4个组的人数按3、1、1、1分配,则不同的分配方案有C63=20种不同的方法,若4个组的人数为2、2、1、1分配,则不同的分配方案有C62C422!·C212!=45种不同的方法,故所有的分组方法共有20+45=65种,再把4个组的人分给4个分厂,不同的方法有65×A44=1560种.故选C.28.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A. 140种B. 80种C. 70种D. 35种【答案】C【解析】【分析】本题考查组合及组合数公式,考查两个计数原理的综合应用,是基础题.任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数. 【解答】解:甲型电视机2台和乙型电视机1台,取法有C 42C 51=30种;甲型电视机1台和乙型电视机2台,取法有C 41C 52=40种; 共有30+40=70种. 故选C .29. 若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是( )A. 120B. 150C. 240D. 300 【答案】B【解析】【分析】本题考查排列、组合的综合应用,属于中档题.根据题意,分2步进行分析:①:5本不同的书分成3组,②:将分好的三组全排列,对应3人,由排列数公式可得其情况数目,进而由分步计数原理计算可得答案 【解答】解:根据题意,分2步进行分析: ①:将5本不同的书分成3组, 若分成1、1、3的三组,有C 51C 41C 33A 22=10种分组方法; 若分成1、2、2的三组,有C 51C 42C 22A 22=15种分组方法;则有15+10=25种分组方法;②,将分好的三组全排列,对应三人,有A 336种情况, 则有25×6=150种不同的分法. 故选:B .30. 将6本不同的数学用书放在同一层书架上,则不同的放法有( )A. 6B. 24C. 120D. 720 【答案】D【解析】解:6本不同的数学用书,全排列,故有A 66=720种, 故选:D .本题属于排列问题,全排即可.本题考查了简单的排列问题,分清是排列和组合是关键,属于基础题.二、填空题(本大题共4小题,共20.0分)31. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远学校支教,每学校至少1人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有______ 种. 【答案】30【解析】【分析】本题考查了分类加法和分步乘法计数原理,关键是分类,属于中档题.甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案,再根据计数原理计算结果. 【解答】解:因为甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案, ①2,2,1方案:甲、乙为一组,从余下3人选出2人组成一组,然后排列,共有:C 32A 33=18种;②3,1,1方案:在丁、戊中选出1人,与甲乙组成一组,然后排列,共有:C21A33=12种;所以,选派方案共有18+12=30种.故答案为30.32.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色.则不同取法的种数为______.【答案】544【解析】【分析】本题考查了组合知识,考查排除法求解计数问题,属于中档题.利用间接法,先选取没有条件限制的,再排除有条件限制的,问题得以解决.【解答】解:由题意,不考虑特殊情况,共有C163种取法,其中每一种卡片各取三张,有4C43种取法,故所求的取法共有C163−4C43=560−16=544种.故答案为544.33.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有______种不同的涂色方法.【答案】732【解析】【分析】本题考查排列组合中的涂色问题,考查分类思想的运用,尽可能多的分类能减少每一类的复杂程度,属于中档题.分三类讨论:A、C、E用同一颜色、A、C、E用2种颜色、A、C、E用3种颜色,利用分步计数原理,可得结论.【解答】解:考虑A、C、E用同一颜色,此时共有4×3×3×3=108种方法.考虑A、C、E用2种颜色,此时共有C42×6×3×2×2=432种方法.考虑A、C、E用3种颜色,此时共有A43×2×2×2=192种方法.故共有108+432+192=732种不同的涂色方法.故答案为732.34.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为______ (用数字回答)【答案】72【解析】【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题. 【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有A 44=24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个. 故答案为72.三、解答题35. 有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法? 【答案】解:(1)本题要求把小球全部放入盒子, ∵1号小球可放入任意一个盒子内,有4种放法. 同理,2、3、4号小球也各有4种放法, ∴共有44=256种放法.(2)∵恰有一个空盒,则这4个盒子中只有3个盒子内有小球, 且小球数只能是1、1、2.先从4个小球中任选2个放在一起,有C 42种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 43种放法.∴由分步计数原理知共有C 42·A 43=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 41种分法, 再放到2个盒子内,有A 42种放法,共有C 41·A 42种方法;②2个盒子内各放2个小球.先把4个小球平均分成2组,每组2个,有C 42A 22种分法,再放入2个盒子内,有A 42种放法,共有C 42A 22·A 42.∴由分类计数原理知共有C 41·A 42+C 42A 22·A 42=84种不同的放法.【解析】本题考查计数问题,考查排列组合的实际应用,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.(1)本题要求把小球全部放入盒子,1号小球可放入任意一个盒子内,有4种放法,余下的2、3、4号小球也各有4种放法,根据分步计数原理得到结果.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1、1、2.先从4个小球中任选2个放在一起,与其他两个球看成三个元素,在三个位置排列. (3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法:一个盒子内放1个球,另一个盒子内放3个球;2个盒子内各放2个小球.写出组合数,根据分类加法得到结果.36. 按下列要求分配6本不同的书,各有多少种不同的分配方式⋅(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本.【答案】解:(1)无序不均匀分组问题. 先选1本有C 61种选法;再从余下的5本中选2本有C 52种选法; 最后余下3本全选有C 33种选法.故共有C 61C 52C 33=60(种)不同的分配方式; (2)有序不均匀分组问题.由于甲、乙、丙是不同三人,在第(1)题的基础上,还应考虑再分配,故共有C 61C 52C 33A 33=360(种)不同的分配方式; (3)无序均匀分组问题.先分三步,则应是C 62C 42C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了A ,B ,第二步取了C ,D ,第三步取了E ,F ,记该种分法为(AB,CD ,EF),则C 62C 42C 22种分法中还有(AB 、EF 、CD),(CD,AB ,EF),(CD,EF ,AB),(EF,CD ,AB),(EF,AB ,CD),共有A 33种情况, 而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法, 故分配方式有C 62C 42C 22A 33=15(种);(4)有序均匀分组问题.在第(3)题的基础上再分配给3个人, 共有分配方式C 62C 42C 22A 33·A 33=C 62C 42C 22=90(种);(5)无序部分均匀分组问题. 共有分配方式C 64C 21C 11A 22=15(种);(6)有序部分均匀分组问题.在第(5)题的基础上再分配给3个人,共有分配方式C 64C 21C 11A 22·A 33=90(种);(7)直接分配问题.甲选1本有C 61种方法,乙从余下5本中选1本有C 51种方法,余下4本留给丙有C 44种方法.共有分配方式C 61C 51C 44=30(种).【解析】本题考查排列、组合及简单计数问题,考查计算能力,理解能力.正确区分无序不均匀分组问题、有序不均匀分组问题、无序均匀分组问题,是解好组合问题的一部分.37. 三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?【答案】解:(1)女须全排在一起,把3个女生捆绑在一起看做一个复合元素,再和5个男生全排,故有A 33A 66=4320种;(2)女生必须全分开,先排男生形成了6个空中,插入3名女生,故有A 55A 63=14400种;(3)两端都不能排女生,从男生中选2人排在两端,其余的全排,故有A 52A 66=14400种;(4)男生按固定顺序,从8个位置中,任意排3个女生,其余的5个位置男生按照固定顺序排列,故有A 83=336种,(5)三个女生站在前排,五个男生站在后排,A 33A 55=720种【解析】本题考查排列的应用,相邻问题一般看作一个整体处理,不相邻,用插空法,属于中档题.根据特殊元素优先安排,相邻问题用捆绑,不相邻用插空法,即可求解.38. 晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:(1)3个舞蹈节目排在一起;(2)3个舞蹈节目彼此分开;(3)3个舞蹈节目先后顺序一定;(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.【答案】解:(1)根据题意,3个舞蹈节目要排在一起,可以把三个舞蹈节目看做一个元素,三个舞蹈节目本身有A 33种顺序,再和另外5个元素进行全排列,则有A 66A 33=4320不同的节目单.(2)3个舞蹈节目彼此要隔开,可以用插空法来解,先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列,有A 55A 63=14400不同的节目单.(3)8个节目全排列有A 88=40320种方法,其中三个舞蹈节目本身有A 33种顺序,若3个舞蹈节目先后顺序一定,则有A 88A 33=6720种不同排法. (4)∵8个节目全排列有A 88=40320种方法,若前4个节目中“既要有歌唱节目,又要有舞蹈节目”的否定是前四个节目全是唱歌有A 54A 44,∴前4个节目中要有舞蹈有A 88−A 54A 44=37440不同的节目单.【解析】(1)要把3个舞蹈节目要排在一起,则可以采用捆绑法,把三个舞蹈节目看做一个元素和另外5个元素进行全排列,不要忽略三个舞蹈节目本身也有一个排列.(2)3个舞蹈节目彼此要隔开,可以用插空法来解,即先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列.(3)使用倍分法分析:先求出8个节目全排列的排法数目,分析三个舞蹈节目本身的顺序,由倍分法计算可得答案,(4)先不考虑限制条件,8个节目全排列有A88种方法,前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44,用所有的排列减去不符合条件的排列,得到结果.本题考查排列、组合的应用,要掌握常见问题的处理方法,如相邻问题用捆绑法.39.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种?(3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?3=161700种不同的抽【答案】解:(1)100件产品,从中任意抽出3件检查,共有C100法,(2)事件分两步完成,第一步从2件次品中抽取1件次品,第二步从98件正品中抽取2件正品,根据乘法原理得恰好有一件是次品的抽法有C21C982=9506种不同的抽法.3种不同的抽法,全是正品的抽法有(3)利用间接法,从中任意抽出3件检查,共有C100C983,则至少有一件是次品的抽法有C1003−C983=9604种不同的抽法.(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有9506×6=57036种不同的排法.3种不同的抽法;【解析】(1)100件产品,从中任意抽出3件检查,共有C100(2)事件分两步完成,第一步从2件次品中抽取1件次品,第二步从98件正品中抽取2件正品,根据乘法原理计算求得;(3)利用间接法,从中任意抽出3件种数,排除全是正品的种数,得到至少有一件是次品的抽法种数;(4)在(2)的基础上,再进行全排,即可得出结论.本题考查计数原理及应用,考查排列组合的实际应用,解题时要认真审题.40.用数字0、2、3、4、6按下列要求组数、计算:(1)能组成多少个没有重复数字的三位数?(2)可以组成多少个可以被3整除的没有重复数字的三位数?(3)求2×3×4×6即144的所有正约数的和.(注:每小题结果都写成数据形式)【答案】【解答】解:(1)根据题意,分2步进行分析:①、对于百位,百位数字只能是2、3、4、6中之一,有C41种选法,②、百位数字确定后,在剩下的4个数字中选取2个,排在十位和个位,则十位和个位数字的组成共有A42种方法,故可以组成没有重复数字的三位数共有N1=C41A42=48个;(2)由题意,能被3整除的且没有重复数字的三位数只能是由2、4、0或2、4、3或2、4、6或0、3、6组成.分4种情况讨论:①、三位数由2、4、0组成,首位数字有2、4两种情况,在剩下的3个数字中选取2个,排在十位和个位,此时共有C21A22种选法;②、三位数由2、4、3组成,将3个数字全排列,排在百位、十位和个位,此时有A33种选法;③、三位数由2、4、6组成,将3个数字全排列,排在百位、十位和个位,此时有A33种选法;④、三位数由0、3、6组成,首位数字有3、6两种情况,在剩下的3个数字中选取2个,排在十位和个位,此时共有C21A22种选法;共有N2=C21A22+2A33+C21A22=20个被3整除的没有重复数字的三位数,(3)根据题意,144=24×32,则144的所有正约数的和为N3=(1+2+22+23+24)(1+3+32)=403.【解析】【分析】本题考查排列、组合的应用,涉及分步计数原理、分类计数原理的应用,以及正确运用约数和公式.(1)根据题意,分2步进行分析:①、对于百位,百位数字只能是2、3、4、6中之一,②、百位数字确定后,在剩下的4个数字中选取2个,排在十位和个位,计算出每一步的情况数目,由分步计数原理计算可得答案;(2)由题意,能被3整除的且没有重复数字的三位数只能是由2、4、0或2、4、3或2、4、6或0、3、6组成,据此分4种情况讨论,求出每一步的选法数目,由分类计数原理计算可得答案;(3)根据题意,分析可得144=24×32,进而由约数和公式计算可得答案.。

排列与组合综合算式的排列组合计算

排列与组合综合算式的排列组合计算

排列与组合综合算式的排列组合计算排列与组合是概率与组合数学中常见的计算方式,用于解决排列和组合问题。

在计算排列与组合时,我们可以利用排列组合公式或者数学原理来进行计算,下面将具体介绍排列与组合综合算式的排列组合计算方法。

一、排列与组合的概念1. 排列:从n个元素中选取m个元素并按特定顺序排列,称为排列。

排列的计算公式为:P(n,m) = n! / (n-m)!2. 组合:从n个元素中选取m个元素,并不考虑其顺序,称为组合。

组合的计算公式为:C(n,m) = n! / (m! * (n-m)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1。

二、排列与组合综合算式的计算方法对于排列与组合综合算式的计算,可以通过一系列具体的例子来说明。

例1:从A、B、C、D、E中取出3个字母,有多少种排列方式?解:根据排列的定义和计算公式,可以得到排列的计算方法为P(5,3) = 5! / (5-3)! = 5! / 2! = 60。

因此,从A、B、C、D、E中取出3个字母的排列方式有60种。

例2:从1、2、3、4、5中取出3个数字,有多少种组合方式?解:根据组合的定义和计算公式,可以得到组合的计算方法为C(5,3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 10。

因此,从1、2、3、4、5中取出3个数字的组合方式有10种。

通过以上两个例子,我们可以看到排列与组合的计算方法可以很方便地解决排列与组合问题。

在实际应用中,排列与组合常常用于解决概率、统计和组合优化等问题,具有广泛的应用领域。

三、排列与组合的应用1. 概率计算:排列与组合可以用于计算事件发生的概率。

例如,从1、2、3、4、5中取出3个数字,其中至少包含一个偶数的概率是多少?通过计算组合的方式,可以得到解答。

2. 组合优化:排列与组合可以用于解决组合优化问题,例如制定车辆调度、货物装箱等问题。

排列与组合的计算综合练习题

排列与组合的计算综合练习题

排列与组合的计算综合练习题排列与组合是数学中常用的计算方法,用于解决不同对象的排列和组合问题。

通过这些计算方法,我们可以求出不同对象排列的方式以及从一组对象中选取特定数量的组合方式。

本文将为您提供一些排列与组合的综合练习题,以帮助您更好地理解和运用这些计算方法。

练习题1:桌上有7本不同的书,你需要选取其中3本放入书包中。

请问有多少种不同的选择方式?解答1:这是一个组合问题,我们需要从7本书中选取3本放入书包中。

根据组合的计算公式,可以得到选择方式的总数为C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = 7 * 6 * 5 / (3 * 2 * 1) = 35种。

练习题2:某班级有10个学生,其中3个学生参加了运动会,请问他们站成一排的方式有多少种?解答2:这是一个排列问题,我们需要计算3个学生排成一排的方式数。

根据排列的计算公式,可以得到他们排成一排的总数为P(3, 3) = 3! = 3 * 2 * 1 = 6种。

练习题3:小明准备选择自己的生日庆祝礼物,他在一家商场看中了8本图书和5款电子产品,但他最多只能选购3样商品。

请问他有多少种不同的购买方式?解答3:这是一个排列与组合相结合的问题,我们需要计算从8本图书和5款电子产品中选择3样商品的方式数。

首先,我们可以从8本图书中选取任意数量的商品,然后再从5款电子产品中选取剩余的数量。

根据排列与组合相乘的原则,可以得到购买方式的总数为C(8, 0) * C(5, 3) + C(8, 1) * C(5, 2) + C(8, 2) * C(5, 1) + C(8, 3) * C(5, 0) = 1 * 10 +8 * 10 + 28 * 5 + 56 * 1 = 10 + 80 + 140 + 56 = 286种。

练习题4:有6个人参加某项比赛,其中3个人获得了奖品,请问他们获得奖品的方式有多少种?解答4:这是一个组合问题,我们需要计算从6个人中选取3个获得奖品的方式数。

排列组合练习题及答案

排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有个 个 个 个222132258m nm A A +-= 选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为答案:1.242448A A = 2 选B 3253251440A A A = 三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个名男生和4名女生站成一排,若要求男女相间,则不同的排法数有4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是种 种 种 种答案:1.43451440A A = 23434144A A = 3选B 444421152A A = 43424A = 54245480A A =6333424A C = 73334144A A = 8选A 6828C = 四、定序问题:1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法答案:1.7733840AA= 2.9966504AA=五、分组分配问题:1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种4. 6人住ABC三个房间,每间至少住1人,有多少种不同住宿方案5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法6. 把标有a,b,c,d,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;答案:1.222364233390C C C A A = 212336533360C C C A = 33122285422221680C C C C A A = 41142223123336546423653332323540C C C C C C A C C C A A A A ++= 5211134214322144C C C C A A = 6331122632122222240C C C C A A A A ⋅= 六、相同元素问题:1. 不定方程 的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 种 种 种 种3.将7个相同的小球全部放入4个不同盒子中, (1)每盒至少1球的方法有多少种 (2)(3)恰有一个空盒的方法共有多少种4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 种 种 种 种5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种答案:1.3361020 , 120C C == 2.选A 6984C = 3.13620C = 2124660C C = 4选C,2615C =5611462C = 七、直接与间接问题:1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不 同选法12347x x x x +++=人排成一列1甲乙必须站两端,有多少种不同排法2甲必须站两端,乙站最中间,有多少种不同排法3 甲不站排头乙不站排尾, 有多少种不同排法3.由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 种 种 种 种6. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法7.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种答案:1、1221346464100C C C C C ++= 或 33106100C C -= 2.12525240A A = 21525240A A = 3115655563720A A A A +=或76576523720A A A -+= 3、1455600A A =或5465600A A -= 4、643643576A A A -=或32221224234223576A A A A A A A += 5、选C.132231545454120C C C C C C ++=或 444954120C C C --= 6、123222323233223272A A A A A A A A ++=或52452472A A A -= 7、44106463141C C ---=八、分类与分步问题: 1.求下列集合的元素个数. 1{(,)|,,6}M x y x y N x y *=∈+≤;2. 2.一个文艺团队有10名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;4.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 A. 种 B. 种 C. 种 D. 种5. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有A. 种B. 种C. 种D. 种6. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 A. 种 B. 种 C. 种 D. 种7. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是8. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 A. 249.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种10.用0,1,2,3,4,5这六个数字,{(,)|,,14,15}H x y x y N x y *=∈≤≤≤≤372017C A 820A 171817C A 1818A 24108C A 1599C A 1589C A 1598C A 1545A A 245345A A A 145445A A A 245245A A A1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不重复的三位数的奇数4可以组成多少个数字不重复的三位数的偶数5可以组成多少个数字不重复的小于1000的自然数6可以组成多少个大于3000,小于5421的数字不重复的四位数11.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是12. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有种种种种13.从编号为1,2,…,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是种种种种14.从6双不同颜色的手套中任取4只,试求各有多少种情况出现如下结果1 4只手套没有成双;2 4只手套恰好成双;3 4只手套有2只成双,另2只不成双15.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;3.32223153535390C C C C C C ++=4.选C 171817C C 5.选C 1589C A 6.选D 452452A A A 7.选C3321112111(5) 325325551231C C C +⨯+⨯= 13、选B 1432565656236C C C C C ++= 14、14111162222240C C C C C =22615C =312116522240C C C C =15.211434215322180C C C C A A = 16.所有不同的三角形可分为三类: 第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个. 九、元素与位置问题:1.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果2. 25200有多少个正约数有多少个奇约数答案:1.1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.2. 25200的约数就是能整除25200的整数,所以本题就是分别求能整除25200的整数和奇约数的个数. 由于 25200=24×32×52×71 25200的每个约数都可以写成lk j l 7532⋅⋅⋅的形式,其中40≤≤i ,02j ≤≤,20≤≤k ,10≤≤l于是,要确定25200的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有3种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×3×3×2=90个.2奇约数中步不含有2的因数,因此25200的每个奇约数都可以写成lk j 753⋅⋅的形式,同上奇约数的个数为3×3×2=18个. 十、染色问题:1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢2. 某班宣传小组一期国庆专刊,现有红、 黄、白、绿、蓝五种颜色的粉笔供选用, 要求在黑板中A 、B 、C 、D 如图每一图一图二图三部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有种用具体数字作答;答案:1.选A 5433180⨯⨯⨯= 5×4×4×4=320 2.⨯⨯⨯=5434240⨯⨯⨯=5433180。

排列与组合综合题

排列与组合综合题

排列与组合(二)四、解定序问题——采用除法对于某几个元素顺序一定的排列问题,可先把这几个元素与其它元素一同进行排列,然后用总排列数除以这几个元素的全排列数,这其实就是局部有序问题,利用除法来“消序”.例1:由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数小于十位数字的共有( )A .210个B .300个 C. 464个 D .600个简析:若不考虑附加条件,组成的六位数共有个,而其中个位数字与十位数字的 种排法中只有一种符合条件,故符合条件的六位数共=300个,故选B .例2:有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?分析:先在7个位置上任取4个位置排男生,有种排法,剩余的3个位置排女生,因要求“从矮到高”,只有一种排法,故共有=840种. 在处理分堆问题时,有时几堆中元素个数相等,这时也要用除法, (平均分组问题除法策略)例1. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22236423/C C C A 种分法。

例2:将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544213842/C C C A ) 例3:信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是 ________.分析:5面旗全排列有 种挂法,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故共有不同的信号种数是=10(种).说明:此题也可以用组合来解,只需5个位置中确定3个,即=10. 五、解排列组台混合问题——先选后排对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略. 例1:3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护土,不同的分配方法共有 ( ).A .90种B .180种C .270种D .540种分析:(二)第一步:先将6名护士分配到3所不同学校,每所学校2名,则有(种)分法. 第二步:再将3名医生分配到3所不同的学校,每所学校1人,有种分法. 故共有 =540(种)故选(D). 例2:4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有_________种.简析:这是一个排列与组合的混合问题.因恰有一个空盒,所以必有一个盒子要放2个球,故可分两步进行:第一步选,从4个球中任选2个球,有种选法。

1.2.3排列组合的综合问题

1.2.3排列组合的综合问题
(5)平均分堆要除以堆数的全排列数,不平均分堆则不除, 故共有C16·AC5122·C44=15(种).
(6)本题即为 6 本书放在 6 个位置上,共有 A66=720(种).
金品质•高追求 我们让你更放心!
返回
◆数学•选修2-3•(配人教A版)◆
跟踪练习
2.有4个不同的球,4个不同的盒子,把球全部放入盒子 内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?
解析:(1)44=256(种). (2)先从 4 个小球中取 2 个放在一起,有 C24种不同的取法, 再把取出的两个小球与另外 2 个小球看作三堆,并分别放入 4 个盒子中的 3 个盒子里,有 A34种不同的放法.根据分步乘法 计数原理,不同的放法共有 C24A34=144(种).
14 400(个).
(3)上述七位数中,3 个偶数排在一起,4 个奇数也排在一
起的有 C34·C54·A33·A44·A22=5 760(个).
(4)上述七位数中,偶数都不相邻,可先把 4 个奇数排好,
再把
3
个偶数分别插入
5
个空当,共有C3 4Fra bibliotek·C4 5
·A
4 4
·A
3 5

28 800(个).
金品质•高追求 我们让你更放心!
①取三个元素:有C12·C12· C12=8(种)②取四个元素: 先从±1,±2,±3三组中选取一组C13,再从剩下的两组中选 两个元素C12·C12,故共有C13·C12·C12=12(种);③取五个元素: C56=6(种);④取六个元素:1种.
由分类计数原理,共有8+12+6+1=27(种).

《排列与组合》的常见题型与解题方法(推荐文档)

《排列与组合》的常见题型与解题方法(推荐文档)

《排列与组合》的常见题型与解题方法一、特殊优先: 对有特殊元素(即被限制的元素)或特殊位置(被限制的位置)的排列,通常是先排特殊元素或特殊位置,再考虑其它的元素或其它的位置。

例1.(1)由0、1、2、3、4可以组成 个无重复数字的三位数。

(2) 由1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 个。

(3) 5个人排成一排,其中甲不排在两端也不和乙相邻排列的排列共有 种。

二、捆绑法:有要求元素相邻(即连排)的排列问题,可以先将相邻的元素看作一个“整体”与其它元素排列,然后“整体”内部再进行排列。

例2.(1) 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有 种。

(2) 有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有 种。

三、插空法:有要求元素不相邻(即间隔排)的排列问题,可以制造空档插空。

例3.(1)五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。

(2)6名男生6名女生排成一排,要求男女相间的排法有 种。

四、间接法(即逆向思考):先算暂时不考虑限制条件的排列或组合种数,然后再从中减去所有不符合条件的排列或组合数。

例4.(1)以正方体的顶点为顶点的四面体共有 个。

(2) 由0、1、2、3、4、可以组成 个无重复数字的三位数。

(3)集合A 有8个元素,集合B 有7个元素,B A 有4个元素,集合C 有3个元素且满足下列条件:Φ≠Φ≠⊂B C A C B A C ,,的集合C 有几个。

(4)从6名短跑运动员中选4人参加4⨯100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有多少种参赛方案?五、先组后排:排列、组合综合题,通常都是先考虑组合后考虑排列。

例5(1)用1、2、3、⋯9这九个数字,能组成由3个奇数数字、2个偶数数字的不重复的五位数有个。

(2)有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。

如何克服排列、组合问题中的“重”与“漏”

如何克服排列、组合问题中的“重”与“漏”

如何克服排列、组合问题中的“重”与“漏”摘要:认真分析排列组合问题中的易错问题,可帮助学生深刻理解这类问题的实质,避免出错。

关键词:排列;组合;问题实质;不重不漏对于典型的排列组合问题,一般可分为以下几类:①相邻问题——捆绑法;②不相邻问题——选空插入法;③复杂问题——总体排除法;④特殊元素——优先考虑法;⑤多元问题——分类讨论法;⑥混合问题——先选后排法;⑦相同元素分配——档板分隔法。

以上问题,学生都掌握得非常熟练了。

但有些问题,不能归为这七类中的任何一类,在解决这些计数问题时,学生做出来的结果往往是正确答案的二倍,究其原因,往往是选法数重复了,这使学生非常困惑。

在教学中,我曾经提出这样一个问题:从5双不同的靴子中选出4只靴子,其中恰有2只配成一双,共有多少种不同的选法?不少学生都是这样的思路:第一步,从5双靴子中选出一双,有c15种不同的选法;第二步,从剩余的8只靴子中选一只,有c18种不同的选法;第三步,从剩余的6只靴子中选一只,有c16种不同的选法,故符合条件的选法种数为c15c18c16=240种,殊不知,正确答案是120种。

当我给出正确答案时,学生们顿时就炸开了锅,立即展开了热烈的讨论。

后来,学生们领悟到,出错在第二步和第三步,如果用a1,a2;b1,b2;c1,c2;d1,d2来表示剩余的4双靴子,那么先选到a1,再选到c2,与先选到c2,再选到a1是同一种选法,所以其选法就重复了。

那么,怎样才能让学生在解决这类问题时,能做到不重不漏呢?一、排列组合综合问题的一般解题规律1.处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

2.排列与组合定义相近,它们的区别在于是否与顺序有关。

3.复杂的排列问题常常通过试验、画“树图”“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此,常常需要用不同的方法求解来获得检验。

微专题:排列组合问题的综合应用经典题型(含解析)

微专题:排列组合问题的综合应用经典题型(含解析)

【学生版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。

【典例】题型1、特殊元素(位置)问题例1、大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【提示】;【答案】;【解析】;【说明】题型2、相邻、相间问题例2、(1)某大厦一层有A,B,C,D四部电梯,现有3人在同一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有()A.12种B.24种C.18种D.36种【答案】【解析】;(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【答案】【解析】;题型3、分组、分配问题例3、(1)现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,不同分法的种数为()A.36 B.9 C.18 D.15(2)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有种不同的分法.题型4、涂色问题例4、(1)如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给该地区的地图着色,要求相邻区域不得使用同一种颜色.现在有4种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【说明】解决涂色问题,关键还是阅读理解与用好两个计数原理;【归纳】排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素;第二步:排,把选出的元素按照要求进行排列;第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果;均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数;【即时练习】1、有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种2、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C210P48B.C19P59C.C18P59D.C18P583、北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有种A.12种B.24种C.48种D.96种4、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有种5、在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?6、现有7名师范大学应届毕业的免费师范生将被分配到育才中学、星云中学和明月湾中学任教.(1)若4人被分到育才中学,2人被分到星云中学,1人被分到明月湾中学,则有多少种不同的分配方案?(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?【教师版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。

1.2.3排列组合综合题型

1.2.3排列组合综合题型

例14.已知方程x y z 5,求 ⑴有多少组正整数解? ⑵有多少组非负整数解?
4
2 ( 4
4 3 3 C - (2)甲、乙二人有且仅有1人参加,有 2 ( )种; A A 4 3 4
(3)甲、乙二人均参加,有 C
A
4 - 2 4
A +A
3 3
2 2 )种
共有252种.
例6.从6名短跑运动员中选4人参加4×100米接力,如 果其中甲不跑第一棒,乙不跑第四棒,问共有多少种参 赛方法? 解法二:六人中取四人参加的种数为

1 4 共有 A4 A4 种;

解法二:对特殊位置 :第一节和第六节进行分类解决. 例7 某天课表共六节课,要排政治、语文、数学、 物理、化学、体育共六门课程,如果第一节不排体育, 最后一节不排数学,共有多少种不同的排课方法? 2 第一类 第一节和第六节均不排数学、体育,有 A4 种 4 共有 A42 A44 种; 其他有 A4 种, 第二类 第一节排数学、第六节排体育有 一 种,
甲乙 丙丁
捆绑法来解决问题.即将需要相邻的元素合并 5 2 2 由分步计数原理可得共有 A5 A2 A2 =480 为一个元素 ,再与其它元素一起作排列,同时 种不同的排法 要注意合并元素内部也必须排列.
相邻元素的排列,可以采用“整体到局部”的排法,即 将相邻的元素当成“一个”元素进行排列,然后再局部排 列.
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法? (2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解: (1) C C C C 3150 2 2 C C C (2) 6 4 C 18900

常见排列组合综合问题的多种方法小结

常见排列组合综合问题的多种方法小结

排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 443由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列与组合的综合应用题

排列与组合的综合应用题
【解析】两点确定一条直线,共 C26=15 条; 不在同一平面内的四个点确定一个三棱锥,由排除 法得 C46-3=12 个三棱锥;每个三棱锥可确定三对 异面直线,故有 12×3=36 对异面直线.
5.有五张卡片,它们的正、反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与 9,将其中任意三张并排放在一 起组成三位数,共可组成 432 个不同的三位数.
2.局局部步,整体分类以后,对每一类进行局局部 步,分步要做到步骤连续,以保证分步的不遗漏,同 时步骤要独立,以保证分步的不重复,计算结果时用 分步计数原理.
3.辩证地看待“元素〞与“位置〞.排列、组合问 题中的元素与位置,没有严格的界定标准,哪些 事物看成元素或位置,要视具体情况而定.有时“ 元素选位置〞,问题解决得简捷;有时“位置选元 素〞,效果会更好.
【点评】本小题考查排列组合、计数原理等根底知
识以及分类讨论的数学思想.
排列组合问题的常见解法主要有以下几种: (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难那么反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略;
【点评】有关由假设干个数字组成满足某条件的数的
问题通常应用“特殊元素先排法〞或“减去法〞,思考
这类问题时应注意数字“0〞是否参与、组成的数是多
少位数、数字使用时是否可以重复这三个根本方面.
四、几何型排列组合问题 例 4(1)将一个四棱锥的每个顶点染上 1 种颜 色,并使同一条棱上的两端点异色,现共有 5 种颜 色可供使用,问共有多少种不同染色方法?
【点评】几何型排列组合问题需充分利用题设情 境相应的几何性质,利用分类整合的方法求解.

高二数学排列组合综合应用试题答案及解析

高二数学排列组合综合应用试题答案及解析

高二数学排列组合综合应用试题答案及解析1.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48B.36C.28D.12【答案】C【解析】解:根据题意,在0,1,2,3,4中有3个偶数,2个奇数,可以分3种情况讨论:①、0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况;故0被奇数夹在中间时,有2×6=12种情况;②、2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况,其中0在首位的有2种情况,则有6-2=4种排法;故2被奇数夹在中间时,有2×4=8种情况;③、4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,则这样的五位数共有12+8+8=28种.【考点】排列、组合的应用.2.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?【答案】108【解析】(1)排列与元素的顺序有关,而组合与顺序无关,如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同,才是不同的组合;(2)排列、组合的综合问题关键是看准是排列还是组合,复杂的问题往往是先选后排,有时是排中带选,选中带排;(3)对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序)试题解析:用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.【考点】排列组合的综合应用.3.个人排成一行,其中甲、乙两人不相邻的不同排法共有A.B.C.D.【答案】C【解析】本题可用插空法,先排除甲、乙两人外的其余四人应为,剩余两人插在5个空中应为,甲、乙两人不相邻的不同排法共有.【考点】排列组合的有关内容.4.现有4个男生和3个女生作为7个不同学科的科代表人选,若要求体育科代表是男生且英语科代表是女生,则不同的安排方法的种数为_________(用数字作答).【答案】1440.【解析】由题意知,可分三步完成本件事情,第一步,选1男生为体育课代表,第二步,选1女生为英语课代表,剩下的5人进行全排列,最后根据分步计数原理得不同的安排方法的种数为.【考点】计数原理的应用.5.在所有两位数中,个位数字大于十位数字的两位数共有_________ 个.【答案】36【解析】当十位数字为1时有8个,当十位数字为2时有7个,…,当十位数字为8时有1个,当十位数字为9时有0个,所以共个数为8+7+…+2+1+0=36,答案为36.【考点】分步加法计数原理6.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个C.18个D.36个【答案】C【解析】完成这件事分为两步,第一步先排好1,2,3有种不同方法;第二步将第四个数(可以为1,2,3中的任一个)插到排好的3个数的4个间隔中,又同一数字不能相邻出现,所以每个数字只能放两个位置,有不同方法,这样每一个四位数都出现了两次,从而这样的四位数共有个,答案选C.【考点】记数原理与排列组合7.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种【答案】C【解析】分三步:把甲、乙捆绑为一个元素A,有种方法;然后A与戊形成三个“空”,有种方法;再将丙、丁插入空中有种方法.可知共有种不同的着舰方法.故选C【考点】简单排列组合问题;捆绑法和插空法的应用.8. 7颗颜色不同的珠子,可穿成种不同的珠子圈.【答案】360.【解析】由于环状排列没有首尾之分,将n个元素围城的环状排列剪开看成n个元素排成一排,即共有种排法.由于n个元素共有n种不同的剪法,则环状排列共有种排法,而珠子圈没有反正,故7颗颜色不同的珠子,可穿成种不同的珠子圈.故应填入:360.【考点】计数原理.9.已知100件产品中有97件正品和3件次品,现从中任意抽出3件产品进行检查,则恰好抽出2件次品的抽法种数是()A.B.C.D.【答案】C【解析】恰好抽出2件次品则有种,1件是正品种,所以任意抽3件恰好2件次品的抽法种数是。

排列与组合典型问题及方法(含答案)

排列与组合典型问题及方法(含答案)

排列与组合典型问题及方法(含答案)排列与组合——四类典型问题一、摸球问题1、袋中装有6只黑球,4只白球,现从中任取4只球(1)正好2只黑球,2只白球的不同取法共多少种?90(2)至少有3只黑球的不同取法共有多少种?95(3)至多有1只黑球的不同取法共有多少种?252、从0,1,2,…,9这十个数字中任取五个不同数字(1)正好两个奇数,三个偶数的不同取法有多少种?100(2)至多有两个奇数的取法有多少种?126(3)取出的数中含5但不含3的取法有多少种?70二、排队问题1、某排共有七个座位,安排甲乙丙三人就坐(1)共有多少种不同就坐方法?210(2)三人相邻(即三个座位相连)的就坐方法有多少种?30(3)三人不相邻(任意两人中间都有空位)的就坐方法共多少种?602、袋中装有5只白球,6只黑球,依次取4只(1)每次取1只(取后不放回)则共有多少种不同取法?7920(2)每次取1只(取后放回)则共有多少种不同取法?14641(3)每次取1只(取后不放回)则第二次取到白球的取法共有多少种?3600(4)每次取1只(取后放回)则第二次取到白球的取法共有多少种?66553、由0,1,2,3,4,5,(1)可组成多少个无重复数字的不同三位偶数?52(2)可组成多少个不同的三位偶数(允许有重复数字)?90(3)可组成多少个能被5整除的三位数(允许有重复数字)?60三、分房问题(n个人生日问题、投信问题)1、10个人进入8个房间,共有多少种不同的进入方法?8102、从4名候选人中,评选出1名三好学生,1名优秀干部,1名先进团员,若允许1人同时得几个称号,则不同的评选方案共有多少种?43四、分组问题1、分配9个人去完成甲、乙、丙三项任务(1)甲任务需2人,乙任务需3人,丙任务需4人,则不同的选派方法共有多少种?C C C (2)甲任务需2人,乙任务需2人,丙任务需5人,则不同的选派方法共有多少种?225975(3)甲、乙、丙三项任务各需3人,则不同的选派方法共有多少种?2、将9个人以下列三种方式分为三个小组,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259752!C C C (3)将9个人以3,3,3分为三组.3、将将9个人以下列三种方式分为三个小组,去完成三项不同的任务,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259753!2!C C C ? (3)将9个人以3,3,3分为三组.解题方法一、正难则反,等价转化在解决某些排列组合问题,当从正面入手情况复杂、分类较多时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理,即先求总的排列组合数,再减去不符合要求的排列组合数,从而使问题获得解决办法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时 排列与组合的综合问题
自主学习
课标导学
利用排列组合的基本概念解决排列组合的综合问题.
教材导读
1.排列、组合的应用题,是高考常见题型,重点考查有附 加条件的应用问题.主要有以下三个方面:
(1)以元素为主,___特__殊__元__素_____优先考虑; (2)以位置为主,____特__殊__位___置_______优先考虑;
[解析] 如果用 2 种颜色,则有 C26种颜色可以选择,涂 上有 C12种方法.
如果用 3 种颜色有 C36种颜色可以选择,涂上有 3×2×(1 +2)=18(种)方法.
∴不同涂色种数为 C26·C12+C36·18=390(种).
[答案] 390
练 1 如图,一环形花坛分成 A,B,C,D 四块,现有
本的分法亦为 C16C25C33=60(种). (3)由(1)知,分成三堆的方法有 C16C25C33种,但每一种分
组方法又有 A33种不同的分配方案,故一人得一本,一人得 两本,一人得三本的分法有 C16C25C33A33=360(种).
(4)把 6 本不同的书分成三堆,每堆二本与把六本不同的 书分给甲、乙、丙三人,每人二本的区别在于,后者相当于 把六本不同的书,平均分成三堆后,再把每次分得的三堆书 分给甲、乙、丙三个人,因此,设把六本不同的书,平均分 成三堆的方法有 x 种,那么把 6 本不同的书分给甲、乙、丙 三人每人 2 本的分法就应有 x·A33种.
[解] (1)在 7 条纵线中任选 2 条,在 5 条横线中任选 2 条,这样的 4 条线可组成 1 个矩形,故可组成矩形有 C27·C25= 210 个;
(2)每条东西向街道分成 6 段,每条南北向街道被分成 4 段,从 A 到 B 最短路线的走法无论怎样走,一定包括 10 段, 其中 6 段方向向东,另 4 段方向向北,每种走法,即是从 10 段中选出 6 段,这 6 段是走东西方向的(剩下 4 段即是走 南北方向的),共有 C610=C410=210 种走法.(同样可以从 10 段选 4 段走南北方向,每个选法是 1 种走法).
[评析] 要在实际问题中建立组合模型,就需要抓住特 例进行分析,如在本题(1)中,注意一个矩形可由图中的两条 横线和两条纵线所围成,因而只要从 5 条横线中选 2 条,再 从 7 条纵线中选 2 条即可,从而建立组合模型;而在(2)中, 观察分析每条最短路线均由 10 段组成,其中 6 段为由西向 东的方向,而另 4 段由南向北的方向所组成.
3. 解 决 排 列 与 组 合 应 用 问 题 常 用 的 方 法 有 : ___直__接_______法、_____间__接______法、两个原理法、特殊元
素法、特殊位置法、____捆__绑_________法、___插__空_________ 法等.
解决排列、组合综合问题要遵循哪两个原则?
(2)处理排列组合应用题常用的方法有 ①相邻元素归并法(又称捆绑法); ②相离元素插空法; ③定位元素优先安排法; ④有序分配依次分组法; ⑤多元素不相容情况分类法; ⑥交叉问题集合法; ⑦混合问题先分组后排序法; ⑧“至少”,“至多”问题间接排除法.
思维激活
涂色问题
例 1 如图,用 6 种不同的颜色给图中的 4 个格子涂色, 每个格子涂一种颜色,要求最多使用 3 种颜色且相邻的两个格 子颜色不同,则不同的涂色方法共有________种.(用数字作 答)
答案:96ຫໍສະໝຸດ 4.马路上有编号为 1,2,3,…,9 的 9 只路灯,为节约 用电,现要求把其中的 3 只灯关掉,但不能同时关掉相邻的 2 只或 3 只,也不能关掉两端的路灯,则满足条件的关灯方 法共有________种.
解析:关掉第一只灯的方法有 7 种,关掉第二只、第三 只灯时要分类讨论,情况较为复杂,换一个角度,从反面入 手考虑,由于每一种关灯的方法唯一对应着一种满足题设条 件的亮灯与暗灯的排列,于是问题转化为在 6 只亮灯中插入 3 只暗灯,暗灯不在两端且任何 2 只暗灯不相邻,也就是在 6 只亮灯所形成的 5 个空隙中选 3 个插入 3 只暗灯,其方法 有 C35=10(种),故满足条件的关灯的方法共有 10 种.
[答案] B
分组与分配问题 例 3 6 本不同的书,按照以下要求处理,各有几种分 法? (1)一堆一本,一堆两本,一堆三本; (2)甲得一本,乙得两本,丙得三本; (3)一人得一本,一人得二本,一人得三本; (4)平均分成三堆; (5)平均分给甲、乙、丙三人.
[分析] (1)是分组问题,常分三步进行,这三步完成之 后,事件便宣告完成;(2)与(1)类似,甲得一本,乙得二本, 丙得三本,事实上就是(1)的分组问题;(3)是在(1)的基础上 再进行分配;(4)是平均分组问题,它与次序无关;(5)是在(4) 的基础上再进行分配.
而 6 本书分给甲、乙、丙三人每人 2 本的分法可以理解 为:
三个人一个一个地来取书,甲从 6 本不同的书本中任取 出 2 本的方法有 C26种,甲不论用哪一种方法取得 2 本书后, 乙再从余下的 4 本书中取书有 C24种方法,而甲、乙不论用 哪一种方法各取 2 本书后,丙从余下的两本中取两本书,有 C22种方法,所以一共有 C26C24C22=90(种)方法.所以 xA33=C26C24 C22=90,x=15.
答案:C
3.某地奥运火炬接力传递路线共分 6 段,传递活动分 别由 6 名火炬手完成.如果第一棒火炬手只能从甲、乙、丙 三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则 不同的传递方案共有________种(用数字作答).
解析:因为第一棒与最后一棒甲、乙均能传递,而丙不 能传递最后一棒,分两类讨论:(1)丙传第一棒,此时传递 方案有 C12·A44=48(种);(2)甲、乙传第一棒,传递方案有 A22 A44=48(种).因此共有 48+48=96 种传递方案.
故应选 B.
相同元素的排列问题
例 2 某市有 7 条南北向街道,5 条东西向街道(如图所示). (1)图中共有多少个矩形? (2)从 A 点走到 B 点最短路线的走法有多少种?
[分析] (1)任意一个矩形可由两条横线和两条纵线组成; (2)从 A 点走到 B 点最短路线的走法,无论怎样走,一 定包括 10 段,其中 6 段方向相同,另 4 段方向相同.
(1)由分步乘法计数原理可知,共有 44=256 种放法; (2)先从 4 个小球中取 2 个放在一起,有 C24种不同的取法, 再把取出的两个小球与另外 2 个小球看做三堆,并分别放入 4 个盒子中的 3 个盒子里,有 A34种不同的放法.根据分步乘法 计数原理,共有 C24A34=144 种不同的放法; (3)恰有 2 个盒子不放球,也就是把 4 个不同的小球只放
4 种不同的花供选种,要求在每块里种 1 种花,且相邻的 2
块种不同的花,则不同的种法总数为( )
A.96
B.84
C.60
D.48
[解析] 如题图,当花坛中的花各不相同时,共有 A44种 不同的种法;若在花坛中种植 3 种花,此时一种方法是 A
与 C 种的花相同有 C14种,B,D 各不相同有 A23种,另一种 方法是 B,D 相同,A,C 各不相同,共有 C14A23种,因此种 植 3 种花时有 2C14A23种;若在花坛中种植两种花,则只能是 A,C 相同,B,D 相同,共有 C14C13种.所以共有 A44+2C14A23 +C14C13=24+48+12=84(种)不同种法.
[解] (1)先在 6 本书中任取一本,作为一堆,有 C16种取 法,再从余下的五本书中任取两本,作为一堆,有 C25种取 法,再从余下三本中取三本作为一堆,有 C33种取法,故共 有分法 C16C25C33=60(种).
(2)由(1)知,分成三堆的方法有 C16C25C33种,而每种分组 方法仅对应一种分配方法,故甲得一本,乙得二本,丙得三
(3)暂不考虑附加条件,计算出排列或组合数,再减去
_不__符__合__条__件__的__种__数___.前两者是直接法,后者是间接法.
2.求解排列与组合问题的一般步骤是: (1)把具体问题化归为排列或组合问题; (2)通过分析确定运用两个计数原理; (3)分析题目条件,避免重复或遗漏; (4)列出式子,准确计算.
(5)由 4 知平均分给甲、乙、丙三人有 90 种方法.
[评析] 6 本书分给甲、乙、丙三人各两本和分成三堆, 每堆两本是有区别的,前者虽然也属于平均分组问题,但需
甲、乙、丙三个人一个人一个人的去拿,而后者又是分组问 题,它与次序无关,所以要除以 A33.一般地,n 个元素中有 n1(n1≤n)个元素,平均分成 m 组要除以 Amm.
练 3 有 4 个不同的球,4 个不同的盒子,把球全部放 入盒内:
(1)共有几种放法? (2)恰有 1 个空盒,有几种放法? (3)恰有 2 个盒子不放球,有几种放法?
[解] 此题关键是第(2)问,恰有 1 个空盒相当于一定有 2 个小球放在同一个盒子中,因此,先从 4 个不同的小球中 取出 2 个放在一起(作为一个整体),是组合问题.又因为 4 个盒子中只有 1 个是空的,所以另外 3 个盒子中分别放入 2 个,1 个,1 个小球,是排列问题.
答案:10
5.已知全集 U={1,2,3,4,5,6,7,8},集合 A={1,2,3,4,5,6}, B={1,2,3,4,7,8},从 A∩B 和(∁UA)∪(∁UB)中各取 2 个数 字.问:
(1)能组成多少个比 6100 大的四位数? (2)能组成多少个被 5 除余 2 的四位数?
解:(1)A∩B={1,2,3,4},(∁UA)∪(∁UB)={5,6,7,8},(∁UA) ∪(∁UB)中取 6,7,8 中的一个作千位数,有 C13种;余下的三个 数中任取一个有 C13种;在 A∩B 中任取两个有 C24种,把后 面的 3 个数作为百位、十位、个位有 A33种,所以所求四位 数有 C13·C13·C24·A33=324(个).
相关文档
最新文档