历年高考数学真题-高考文科数学(湖北卷)试题及答案资料
湖北高考文科数学试题含答案Word版
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i-=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据得到的回归方程为ˆybx a =+,则A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2), (2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}-D. {21,3}--10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB = .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b = B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时. 17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b =; (Ⅱ)λ= .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.第20题图绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B 二、填空题:11.1800 12. 13.π3或2π314.1067 15.1(0)6, 16.(Ⅰ)1900;(Ⅱ)100 17.(Ⅰ)12-;(Ⅱ)12三、解答题:18.(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin 33=-110()102=-=.故实验室上午8时的温度为10 ℃.(Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤. 当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+, 化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.20.证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥. 又1ACCC C =,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥. 因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PNMN N =,所以直线1AC ⊥平面PQMN .21.(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()xf x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln3eln π<,πlne πln3<,即e e ln3ln π<,ππln e ln3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得第20题解答图QBEM NACD 1C F 1D1A1BPe e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln3<,所以π33π>; 由ln3ln e3e<,得e 3ln3lne <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.22.(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+||1x +,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点. 当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点. 综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.。
高考卷05高考文科数学(湖北卷)试题及答案
高考卷05高考文科数学(湖北卷)试题及答案2005年高考文科数学湖北卷试题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分考试时间120分钟第I部分(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P、Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是()A.9B.8C.7D.62.对任意实数a,b,c,给出下列命题:①“”是“”充要条件;②“是无理数”是“a是无理数”的充要条件③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.43.已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是()A.[-4,6]B.[-6,4]C.[-6,2]D.[-2,6]4.函数的图象大致是()5.木星的体积约是地球体积的倍,则它的表面积约是地球表面积的()A.60倍B.60倍C.120倍D.120倍6.双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn 的值为()A.B.C.D.7.在这四个函数中,当时,使恒成立的函数的个数是()A.0B.1C.2D.38.已知a、b、c是直线,是平面,给出下列命题:①若;②若;③若;④若a与b异面,且相交;①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样第Ⅱ卷(非选择题共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置上13.函数的定义域是14.的展开式中整理后的常数项等于15.函数的最小正周期与最大值的和为16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量在区间(-1,1)上是增函数,求t的取值范围18.(本小题满分12分)在△ABC中,已知,求△ABC的面积19.(本小题满分12分)设数列的前n项和为Sn=2n2,为等比数列,且(Ⅰ)求数列和的通项公式;(Ⅱ)设,求数列的前n项和Tn20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)22.(本小题满分14分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由2005年高考文科数学湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B2.B3.C4.D5.C6.A7.B8.A9.D10.C11.D12.D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.14.3815.16.500三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义开口向上的抛物线,故要使在区间(-1,1)上恒成立解法2:依定义的图象是开口向下的抛物线,18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB、BC、CA的长分别为c、a、b,.故所求面积解法3:同解法1可得c=8.又由余弦定理可得故所求面积19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当故{an}的通项公式为的等差数列.设{bn}的通项公式为故(II)两式相减得20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力解法1:(Ⅰ)过E作EH//BC交CC1于H,则CH=BE=1,EH//AD,且EH=AD.又∵AF∥EC1,∴∠FAD=∠C1EH.∴Rt△ADF≌Rt△EHC1.∴DF=C1H=2.(Ⅱ)延长C1E与CB交于G,连AG,则平面AEC1F与平面ABCD相交于AG.过C作CM⊥AG,垂足为M,连C1M,由三垂线定理可知AG⊥C1M.由于AG⊥面C1MC,且AG面AEC1F,所以平面AEC1F⊥面C1MC.在Rt△C1CM中,作CQ⊥MC1,垂足为Q,则CQ的长即为C到平面AEC1F的距离解法2:(I)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0),C (0,4,0),E(2,4,1),C1(0,4,3).设F(0,0,z).∵AEC1F为平行四边形,(II)设为平面AEC1F的法向量,的夹角为a,则∴C到平面AEC1F的距离为21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.所以寿命为1~2年的概率应为p1-p2. 其分布列为:寿命0~11~22~p1-P1P1-p2P2(I)在第一次更换灯泡工作中,不需要换灯泡的概率为需要更换2只灯泡的概率为(II)在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p1-p2。
普通高等学校招生全国统一考试数学文试题(湖北卷,解析版)
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2014·湖北卷] 已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}1.C [解析] 由A ={1,3,5,6},U ={1,2,3,4,5,6,7},得∁U A ={2,4,7}.故选C.2.[2014·湖北卷] i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( ) A .1 B .-1 C .i D .-i2.B [解析] ⎝ ⎛⎭⎪⎫1-i 1+i 2=(1-i )2(1+i )2=-2i 2i=-1.故选B. 3.[2014·湖北卷] 命题“∀x ∈R ,x 2≠x ”的否定是( )A .∀x ∈/R ,x 2≠xB .∀x ∈R ,x 2=xC .∃x 0∈/R ,x 20≠x 0D .∃x 0∈R ,x 20=x 03.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x ∈R ,x2≠x ”的否定是“∃x 0∈R ,x 20=x 0”. 故选D.4.[2014·湖北卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .84.C [解析] 作出约束条件⎪⎨⎪⎧x +y ≤4,x -y ≤2,表示的可行域如下图阴影部分所示.设z =2x +y ,平移直线2x x -y =2的交点A (3,1)处,z =2x +y 取得最大值7. 故选C.5.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 25.C [解析]则p 1=1036,p 2=2636,p 3=36.故p 1<p 3<p 2.故选C.6得到的回归方程为y =bx +a ,则( ) A .a >0,b <0 B .a >0,b >0 C .a <0,b <0 D .a <0,b >0 6.A [解析]由图像不难得出,回归直线y =bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A.7.[2014·湖北卷] 在如图11所示的空间直角坐标系O xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四A .①和②B .③和①C .④和③D .④和②7.D [解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( )A .0B .1C .2D .38.A [解析] 由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A. 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D.10.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511310.B [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr .由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3.类比推理,若V ≈275L 2h 时,π≈258.故选B.11.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800 [解析] 设乙设备生产的产品总数为n ,则80-50n =804800,解得n =1800.12.、[2014·湖北卷] 若向量OA →=(1,-3), |OA →|=|OB →|,OA →·OB →=0,则|AB →|=________.12.2 5 [解析] 由题意知,OB →=(3,1)或OB =(-3,-1),所以AB =OB -OA =(2,4)或AB =(-4,2),所以|AB |=22+42=2 5.13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sinπ6=3sin B ,解得sin B =32.又因为b >a ,所以B =π3或2π3.14.[2014·湖北卷] 阅读如图13所示的程序框图,运行相应的程序,若输入n 的值为 9,则输出S 的值为________.14.1067 [解析] 第一次运行时,S =0+21+1,k =1+1;第二次运行时,S =(21+1)+(22+2),k =2+1; ……所以框图运算的是S =(21+1)+(22+2)+…+(29+9)=1067.15.[2014·湖北卷] 如图14所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.⎝ ⎛⎭⎪⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为 ⎛⎭⎪⎫0,16.16.[2014·湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900 (2)100 [解析] (1)依题意知,l >0,v >0,所以当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002 v ·121v+18=1900,当且仅当v =11时,取等号. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤2000, 当且仅当v =10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎪⎨⎪⎧b =-12,λ=12.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10.故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.、[2014·湖北卷] 如图15,在正方体ABCD A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ; (2)直线AC 1⊥平面PQMN .20.证明:(1)连接AD 1,由ABCD A 1B 1C 1D 1是正方体, 知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1,则由CC 1⊥平面ABCD ,BD ⊂平面ABCD , 可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .21.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln x x,所以f ′(x )=1-ln xx2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增可得,3e <πe <π3,e 3<e π<3π.故这6个数中的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e), 即ln ππ<ln 33<ln e e .由ln ππ<ln 33, 得ln π3<ln3π,所以3π>π3.由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e.22.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1,化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. 当k ≠0时,方程①的判别式Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-112或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎢⎡⎭⎪⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点.(iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与C 1有一个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上所述,当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点; 当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与轨迹C 恰好有三个公共点.。
高考数学(湖北文科)(word版)含答案
2008 年一般高等学校招生全国一致考试(湖北卷)数学(文史类)本试卷共 4 页,满分150 分,考试时间120 分钟.★祝考试顺利★注间事项:1.答卷前,考生务势必自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上指定地点2. 选择题每题选出答案后,用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,答在试题卷上无效.3.填空题和解答题用0.5 毫米的黑色墨水署名笔答在答题卡上每题对应的答题地区内,答在试题卷上无效 .4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10 小题,每题 5 分,共 50 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.设a (1, 2), b ( 3,4), c (3,2), 则 (a 2b)gcA. ( 15,12)B.0C.-3D.-112. (2 x3 1 ) 的睁开式中常数项是2x2105 1A.210 D.-105B. C.2 43.若会合P {1,2,3,4}, Q { x 0 x 5, x R}, 则A. “ x R ”是“x Q ”的充足条件但不是必需条件B. “ x R ”是“x Q ”的必需条件但不是充足条件C. “x R ”是“x Q ”的充要条件D. “x R ”既不是“x Q”的充足条件也不是“x Q ”的必需条件4.用与球必距离为 1 的平面去截面面积为,则球的体积为A. 32 8C. 8 28 2 3B. D.335.在平面直角坐标系xOy 中,知足不等式组x y ,x p 1的点 (x, y) 的会适用暗影表示为以下图中的6.已知f (x)在 R 上是奇函数,且 f (x 4) f (x),当 x (0, 2)时, f (x) 2x2 , 则f (7)A.-2B.2C.-98D.987.将函数y sin( x ) 的图象F向右平移个单位长度获得图象 F′,若 F′的一条对称3轴是直线 x , 则的一个可能取值是5 15 11 11C.A. B.12 D.121 12 128. 函数f ( x) 1n( x2 3x 2) x2 3x 4 的定义域为xA. ( , 4][2, )B. ( 4,0) (0,1)C. [ 4,0)(0,1]D. [ 4,0) (0,1]9.从 5 名男生和 5 名女生中选 3 人组队参加某集体项目的竞赛,此中起码有一名女生当选的组队方案数为A.100B.110C.120D.18010.以下图,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球邻近一点P 变轨进入以月球球心 F 为一个焦点的椭圆轨道I 绕月飞翔,以后卫星在P 点第二次变轨进入仍以 F 为一个焦点的椭圆轨道Ⅱ绕月飞翔,最后卫星在P 点第三次变轨进入以 F 为圆形轨道Ⅲ绕月飞翔,若用2c1和 2c2分别表示椭圆轨道I 和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子:① a1 c1 a2 c2; ② a1 c1 a2 c2 ; ③ c1a2 a1c2 ; ④c1 c2 . 此中正确式子的序号是a1 a2A. ①③B. ②③C.①④D. ②④二、填空题:本大题共 5 小题,每题 5 分,共25 分,把答案填在答题卡相应地点上.11. 一个企业共有 1 000 名职工, 下设一些部门, 要采纳分层抽样方法从全体职工中抽取一个 容量为 50 的样本,已知某部门有 200 名职工,那么从该部门抽取的工人数是 . 12. 在△ ABC 中, a , b , c 分别是角 A ,B , C 所对的边,已知 a3, b 3, c 30 , 则A =.13.方程 2 x x 23的实数解的个数为.14. 明日上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己, 假定甲闹钟准时响的概率是 0.80,乙闹钟准时响的概率是 0.90,则两个闹钟起码有一准时响 的概率是.x 3 4cos ,,和圆 C 对于直线15.圆 C2 4sin ( 为参数 ) 的圆心坐标为 yx y 0 对称的圆 C ′的一般方程是.三、解答题:本大题共6 分小题,共 75 分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满 12 分)已知函数 f ( x) sin xcosxcos 2x2.2 2 2(Ⅰ)将函数 f (x) 化简成 Asin( x) B(A 0,0,[0,2 )) 的形式,并指出f ( x) 的周期;(Ⅱ)求函数f ( x)在[ ,17] 上的最大值和最小值1217.(本小题满分 12 分)已知函数 f ( x)x 3 mx 2 m 2 x 1 ( m 为常数,且 m>0)有极大值 9.(Ⅰ)求 m 的值;(Ⅱ)若斜率为 -5 的直线是曲线 yf (x) 的切线,求此直线方程.18.(本小题满分 12 分)如图,在直三棱柱ABCA 1B 1C 1 中,平面 A 1 BC侧面 A 1 ABB 1.(Ⅰ)求证:ABBC ;(Ⅱ)若AA 1AC a,直线AC与平面A 1BC所成的角为,二面角A 1BCA 的大小为, 求证:2.19.(本不题满分 12 分)如图,要设计一张矩形广告,该广告含有大小相等的左右两 个矩形栏目(即图中暗影部分) ,这两栏的面积之和为 18000cm 2,周围空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,如何确立广告的高与宽的尺寸(单位: cm),能使矩形广告面积最小?20(本小题满分13 分)已知双同线x2 y 2的两个焦点为 F : ( 2,0), F : (2,0), 点 P(3, 7) C :a2 b21(a0, b 0)的曲线 C 上.(Ⅰ)求双曲线 C 的方程;(Ⅱ)记 O 为坐标原点,过点Q (0,2)的直线 l 与双曲线 C 订交于不一样的两点E、F,若△OEF 的面积为22, 求直线l的方程21.(本小题满分14 分)已知数列{ a n} 和{ b n }知足: a1 , an 1 2a xn 4n , b n ( 1)n (a n 3n 21) ,其3中为实数, n 为正整数.(Ⅰ)证明:当18时,数列 { b n } 是等比数列;(Ⅱ)设 S n为数列 { b n } 的前n项和,能否存在实数,使得对随意正整数n,都有S n12? 若存在,求的取值范围;若不存在,说明原因.2008 年一般高等学校招生全国一致考试(湖北卷)数学(文史类)试题参照答案一、选择题:此题考察基础知识和基本运算 .第小题 5 分,满分 50 分 .1.C2.B3.A4.D5.C6.A7.A8.D 9.B10.B二、填空题:此题考察基础知识和基本运算,第小题 5 分,满分 25 分.11.1012.30°(或) 13.2615.( 3,- 2),( x + 2) 2+( y - 3) 2= 16(或 x 2+ y 2+4x - 6y - 3= 0)三、解答题:此题共 6 小题,共 75 分.16.本小题主要考察三角函数的恒等变换、周期性、单一性和最值等基本知识和运算能力.(满分 12 分)1 1 cos x 13 2 sin( x 3 解: (Ⅰ )f(x)= sinx+22(sin x cos x)22 4).222故 f(x)的周期为 2k π{ k ∈Z 且 k ≠0} .(Ⅱ )由 π≤x ≤17π ,得5x45 .因为 f(x)=2sin( x) 3 在 [ , 5]124324 2 4上是减函数,在 [5, 17]上是增函数 .412故当 x=5时, f(x)有最小值-32;而 f(π )=- 2, f(17π)=-6 6<-2,42124因此当 x=π 时, f(x)有最大值- 2.17.本小题主要考察应用导数研究函数性质的方法和基本运算能力解: (Ⅰ ) f ’(x) = 3x 2+2mx -m 2=(x+m)(3 x - m)=0, 则 x=- m 或x= 13.(满分 12 分)m,当 x 变化时, f ’(x)与 f(x) 的变化状况以下表:x( -∞ ,- m)- m(- m, 1m )1 m( 1m ,+∞ )333f ’(x) +0 -0 +f (x)极大值极小值进而可知,当 x=- m 时,函数 f(x)获得极大值 9,即 f(-m)=- m 3+m 3+m 3+1=9, ∴ m =2. (Ⅱ )由 (Ⅰ )知, f(x)= x 3+2x 2- 4x+1,依题意知 f ’(x) =3x 2+ 4x - 4=- 5,∴ x =- 1 或 x =- 1. 3又 f(-1)= 6, f(- 1 )=68,327因此切线方程为 y - 6=- 5(x + 1),或 y - 68=- 5(x + 1),273即 5x + y - 1= 0,或 135x +27y - 23=0.18.本小题主要考察线面关系、 直线与平面所成角、 二面角等相关知识, 考察空间想象能力和推理论证能力.(满分 12 分)(Ⅰ )证明:如右图,过点 A 在平面 A 1ABB 1 内作 AD ⊥ A 1B 于 D ,则由平面 A 1BC ⊥侧面 A 1ABB 1,且平面 A 1BC ∩侧面 A 1ABB 1=A 1B ,得 AD ⊥平面A 1 BC.又 BC 平面 A 1BC 因此 AD ⊥ BC.因为三棱柱 ABC - A 1B 1C 1 是直三棱柱 , 则 AA 1⊥底面 ABC,因此 AA 1⊥ BC.又 AA 1∩ AD =A,进而 BC ⊥侧面 A 1ABB 1,又 AB 侧面 A 1ABB 1, 故 AB ⊥BC.(Ⅱ )证法 1:连结 CD,则由 (Ⅰ )知∠ ACD 就是直线 AC 与平面 A 1BC 所成的角,∠ ABA 1 就是二面角 A 1 -BC - A 的颊角,即∠ ACD = θ,∠ ABA 1 = .于是在 RtADC 中, sin θ=ADAD,在 Rt ADA 1 中, sin ∠AA 1D =AD AD,ACaAA 1 aθ1θ1θ1∴ sin =sin ∠ AA D ,因为 与∠ AA D 都是锐角,因此 =∠ AA D. 又由 Rt A 1 AB 知,∠ AA 1 D + =∠ AA 1B + = ,故 θ+ = .22x 轴、 y证法 2:由 (Ⅰ )知,以点 B 为坐标原点,以 BC 、 BA 、 BB所在的直线分别为1轴、 z 轴,成立以下图的空间直角坐标系.设 AB =c (c < a =,则 B(0,0,0) , A(0,c,0), C( a 2 c 2 ,0,0 ),A 1(0,c,a) ,于是 BC( a 2 c 2 ,0,0) , BA 1 =( 0, c,a ) ,AC ( a 2 c 2 , c,0) AA 1c,a 设平面 A 1BC 的一个法向量为n=(x,y,z),n ? BA 10, cy az0,则由得c 2 xn ? BC0,a 20.可取 n =( 0,- a , c ),于是n · AC =ac > 0, AC 与 n 的夹角 为锐角 ,则 与 互为余角sin =cos =n ? AC(0,a,c) ? ( a 2c 2 , c,0)c ,a2c2 ?(a2c 2 ) c 2a 2| n | ? | AC |c 2BA 1 ? BA( 0, a,c) ? (0,0, a)c,cos =a 2c 2 ? aa 2c 2|BA 1 |?| BA|因此 sin =cos =sin(2),又0<,<,因此 += .2219.本小题主要考察依据实质问题成立数学模型,以及运用函数、不等式等知识解决实质问题的能力 .(满分 12 分)解法 1:设矩形栏目的高为a cm ,宽为b cm ,则 ab=9000. ①广告的高为 a+20 ,宽为 2b+25 ,此中 a >0, b > 0.广告的面积S= ( a+20)(2 b+25)=2ab+40b+25a+500= 18500+25a+40b≥ 18500+2 25a ? 40b =18500+ 1000 ab 24500.当且仅当 25a= 40b 时等号成立,此时b= 5a ,代入①式得 a=120,进而 b=75. 8即当 a=120,b=75 时 ,S获得最小值 24500.故广告的高为 140 cm, 宽为 175 cm 时,可使广告的面积最小 .解法 2:设广告的高为宽分别为x cm, y cm,则每栏的高和宽分别为x- 20,y 25,此中2x> 20, y> 25两栏面积之和为 2(x- 20) y25 18000 ,由此得y= 18000 25,2 x 20广告的面积 S=xy=x( 1800025 )=18000 25 x,整理得S= 360000 x 20 x 20 25(x 20) 18500.x 20因为 x- 20> 0,因此 S≥2 36000025( x 20) 18500 24500 . x 20当且仅当 360000 25( x 20) 时等号成立,x 20此时有 (x- 20)2= 14400( x>20),解得 x=140,代入 y= 18000+25,得 y= 175,x 20即当 x=140, y= 175 时, S 获得最小值24500,故当广告的高为 140 cm,宽为 175 cm 时,可使广告的面积最小 .20.本小题主要考察双曲线的定义、标准方程、直线和双曲线地点关系等平面分析几何的基础知识,考察待写系数法、不等式的解法以及综合运用数学知识进行推理运算的能力. (满分 13 分)(Ⅰ )解法 1:依题意,由x2 y 21 (0<a2<4=,a2+b2=4,得双曲线方程为4 a 2a 2将点( 3,7)代入上式,得9 71 .解得 a2=18 (舍去)或 a2= 2,a 2 4 a 2故所求双曲线方程为x2 y 21.2 2解法 2:依题意得,双曲线的半焦距c=2.2a=|PF 1|- |PF 2|= (3 2)2 ( 7 ) 2 (3 2)2 ( 7)2 2 2 , ∴ a2 =2, b2=c2- a2=2.∴双曲线 C 的方程为x2 y 2 1.2 2(Ⅱ )解法 1:依题意,可设直线l 的方程为 y=kx+2,代入双曲线 C 的方程并整理,得 (1- k2)x2- 4kx- 6=0.∵直线 I 与双曲线 C 订交于不一样的两点E、 F,1 k2 0, k 1,∴2 2>,< k<3,( 4k ) 4 6(1 k ) 0 3∴k∈ (-3, 1 )∪ (1, 3 ).设 E(x1 ,y1),F(x2,y2) ,则由①式得 x1 +x 2= 4k 2 , x1x216 2 ,于是1 k k |EF|= ( x1 x2 ) 2 ( y1 y2 ) 2 (1 k 2 )( x1 x2 ) 2= 1 k 2( x1 x2 ) 2 4x1 x2 1 k 22 23 k 2? ?| 1 k 2 |而原点 O 到直线 l 的距离 d=2 ,1 k 2∴ S OEF = 1d?| EF | 1?2 ? 1 k 2 ? 2 23 k 2 2 2 3 k 2 .2 2 1 k 2 |1 k 2 | |1 k 2 |若S OEF=2 2,即22 3 k 2 2 2 k 4 k 2 2 0, 解得k=± 2 , | 1 k2 |知足② .故知足条件的直线l 有两条,其方程分别为y= 2x 2 和 y 2x 2. 解法 2:依题意,可设直线l 的方程为 y=kx+2, 代入双曲线 C 的方程并整理,得 (1- k 2)x 2- 4kx - 6= 0.①∵直线 l 与比曲线 C 订交于不一样的两点 E 、 F ,1 k 20,k1,∴22< k <( 4k ) 4 6(1 k > ,3.) 03 ∴ k ∈ (- 3, 1 )∪ (1, 3 ).②设 E(x 1,y 1),F(x 2,y 2) ,则由①式得|x 1- x 2|= ( x 1 x 2 ) 24x 1 x 22 23 k 2|1 k 2 ||1 k 2 .③|当 E 、 F 在同一支上时(如图 1 所示),S OEF = |S OQF -S OQE |=1| x 2 ||1x 2 | ;| OQ | ?|| x 1 | | OQ | ?| x 122当 E 、 F 在不一样支上时(如图 2 所示),S OEF = S OQF +S OQE =1| x 2 |)1x 2 | .| OQ | ?(| x 1 || OQ | ?| x122综上得 S OEF = 1| OQ | ? | x 1x 2 |,于是2由|OQ|=2 及③式,得 S OEF =2 23 k 2 .|1 k 2 |若S OEF =2 2,即22 3 k 22 2k 4 k 22 0 ,解得 k=±2 ,知足② .| 1 k 2 |故知足条件的直线 l 有两条,基方程分别为y= 2x 2 和 y= 2 2.21.本小题主要考察等比数列的定义、数列示和、不等式等基础知识和基本的运算技术,考 查剖析问题能力和推理能力.(满分 14 分)(Ⅰ )证明:假定存在一个实数n2a 1 a 2 ,即,使{ a }是等比数列,则有a 2(23)2= 4 4 4 2 4 9 4 2 4 9 0,矛盾.93 9 9因此{ a n}不是等比数列 .(Ⅱ)证明:∵ b n 1 ( 1)n 1[ a a 1 3{ n 1} 21] ( 1)n 1( 2 a n 2n 14)2 (2b n.3 1),( a n 3n 21)3 3又18, b1 ( 18) 0. 由上式知 b n 0, b n 1 2(n N n ),b n 3故当18,时,数列{b n}是以(+18)为首项,2为公比的等比数列 .2 3(Ⅲ)当18时,由(Ⅱ)得b n ( 18)g( )n 1 , 于是3 (2) n ],3S n 18)g[1 (5 3当18 时, b n 0 ,进而 S n 0. 上式仍成立 .要使对随意正整数n , 都有 S n 12.即 3 g ( 2 n ] 12 20 18.18) [125 3 1 ( ) n3令 f ( n) 1 (2)n ,则3 5: 当n为正偶数时, 5当 n 为正奇数时,1 f (n) f (n) 1,53 9f (n)的最大值为 f (1).33于是可得20 18 6.5综上所述,存在实数,使得对随意正整数n ,都有 S n12;的取值范围为(, 6).高考数学(湖北文科)(word版)含答案11 / 11。
湖北高考试题文数,word解析版
2019 年湖北高考试题(文数,word 剖析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思虑,多理解!数学〔文科〕本试题卷共 4 页,共 22 题。
总分值150 分。
考试用时120 分钟。
★祝考试顺利★本卷须知1、答卷前,考生务必然自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地址。
用一致供应的2B 铅笔将答题卡上试卷种类框涂黑。
A 后的方2、选择题的作答:每题选出答案后,用一致供应的 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
答在试题卷、底稿纸上无效。
3、填空题和解答题的作答:用一致供应的签字笔将答案直接答在答题卡上对应的答题地区内。
答在试题卷、底稿纸上无效。
4、考生必定保持答题卡的齐整。
考试结束后,请将本试题卷和答题卡一并上交。
【一】选择题:本大题共10 小题,每题 5 分,共 50 分 . 在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .1、会合A{ x | x23x 20, x R},B { x | 0x5, x N},那么知足条件AC B的会合C的个数为A、 1B、 2C、 3D、42、容量为20 的样本数据,分组后的频数以下表:分组[10, 20)[20,30)[30,40)[40,50)[50, 60)[60,70)频数234542那么样本数据落在区间[10, 40)的频次为A、 0.35 B 、 0.45C 、 0.55D、 0.653、函数f ( x) x cos2 x 在区间[0,2π] 上的零点的个数为A、 2B、 3C、 4D、 5A、随意一个有理数,它的平方是有理数B、随意一个无理数,它的平方不是有理数C、存在一个有理数,它的平方是有理数D、存在一个无理数,它的平方不是有理数5、过点 P(1,1) 的直线,将圆形地区 {( x, y) | x y4} 分为两部分,使得这两部分的面积之22差最大,那么该直线的方程为A、x y 2 0B、y 10C、x y0D、x 3 y 4 0y6、定义在区间 [0, 2] 上的函数1yf (x) 的图象以以下列图,那么 y f (2 x) 的图象为O 1 2x 17、定义在 (,0) (0,第 6题图{ a n } ,{ f (a n )} 仍) 上的函数 f (x) ,若是对于随意给定的等比数列是等比数列, 那么称 f (x) 为“保等比数列函数” . 现有定义在 ( ,0) (0, ) 上的以下函数:① f ( x)x 2;②f ( x) 2x;③f ( x)| x | ;④ f ( x) ln | x |.那么其中是“保等比数列函数”的 f ( x)的序号为A 、①②B 、③④C 、①③D 、②④8、设△ ABC 的内角 A , B , C 所对的边分别为a ,b ,c . 假定三边的长为连续的三个正整数,且A B C ,3b 20a cosA ,那么sin A:sin B:sin C为A 、4:3: 2B 、5:6:7C 、5: 4:3D 、6:5: 49、设a,b, cR ,那么“ abc 1”是“1 1 1 ”的aba b ccA 、充足条件但不是必要条件B 、必要条件但不是充足条件C 、充足必要条件D 、既不充足也不用要的条件10、如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆 . 在扇形 OAB 内随机取一点,那么此点取自阴影部分的概率是A 、 1 1B 、 12 ππC 、2 D 、 21 ππ第10题图【二】填空题:本大题共7 小题,每题 5 分,共 35 分 . 请将答案填在答题卡对应题号的位 置上 . 答错地址,书写不清,模棱两可均不得分. 11、一支田径运动队有男运动员 56 人,女运动员 42 人 . 现用分层抽样的方法抽取假定干人,假定抽取的男运动员有 8 人,那么抽取的女运动员有人、12、假定 3bi〔 a , b 为实数, i 为虚数单位〕,那么 ab.1 a bii13、向量 a(1, 0) , b (1, 1),那么〔Ⅰ〕与2a b 同向的单位向量的坐标表示为;〔Ⅱ〕向量 b 3a 与向量 a 夹角的余弦值为 .14、假定变量 x, y 知足拘束条件x y1, 那么目标函数 z 2x3 y 的最小值是 .x y 1,3x y 3,15、某几何体的三视图以以下列图,那么该几何体的体积为 .16、阅读以以下列图的程序框图,运行相应的程序,输出的结果s .17、传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数 . 他们研究过以以下列图的三角形数:将三角形数 1,3, 6, 10, 记为数列 { a } ,将可被5 整除的三角形数按从小到大的 n次序组成一个新数列{ b n } . 能够推断:···〔Ⅰ〕 b是数列 { a } 中的第 ________项;2012n361〔Ⅱ〕 b1表示〕________. 〔用 k2 k 1第 16题图【三】解答题:本大题共 5 小题,共 65 分 . 解答应写出文字说明、证明过程或演算步骤.18、〔本小题总分值 12 分〕设函数 的图象对于直线x对f ( x) sin x 2 3sin x cos( x R )x cos x称,其中 , 为常数,且 1., 1)(2〔Ⅰ〕求函数f (x) 的最小正周期;〔Ⅱ〕假定 y f (x)的图象经过点( π,求函数 f ( x) 的值域 .,0)419、〔本小题总分值 12 分〕某个实心零部件的形状是以以下列图的几何体, 其下部是底面均是正方形, 侧面是全等的等腰梯形的四棱台 A 1 B 1C 1 D 1 ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCDA 2B 2C 2D 2 .D 2C 2A 2B 2〔Ⅰ〕证明:直线B 1D 1平面ACC 2 A 2 ;〔Ⅱ〕现需要对该零部件表面进行防腐办理.AB 10,AB 20,AA 30 , AA 13 〔单位:厘米〕 ,每平方1 121厘米的加工办理费为0.20 元,需加工办理费多少元?D C20、〔本小题总分值 13 分〕A B3,前三项的积为 8 .等差数列 { a }前三项的和为D 1 C 1n〔Ⅰ〕求等差数列{ a n } 的通项公式;A 1B 1〔Ⅱ〕假定 a 2 , a , a 成等比数列,求数列{| a |} 的前 n 项和 .第 19题图31n21、〔本小题总分值14 分〕设 A 是单位圆 x 2y 21 上的随意一点, l 是过点 A 与 x 轴垂直的直线, D 是直线 l 与 x轴的交点, 点 M 在直线 l 上,且知足 | DM | m | DA | ( m 0, 且m 1) . 当点 A 在圆上运动时,记点 M 的轨迹为曲线 C 、〔Ⅰ〕求曲线 C 的方程,判断曲线 C 为何种圆锥曲线,并求其焦点坐标;〔Ⅱ〕过原点斜率为k 的直线交曲线 C 于 P , Q 两点,其中 P 在第一象限,且它在 y 轴上的射影为点N ,直线 QN 交曲线 C 于另一点 H . 可否存在 m ,使得对随意的 k 0,都有PQ PH ?假定存在,求 m 的值;假定不存在,请说明原因. 22、〔本小题总分值 14 分〕b ( x 0) , n 为正整数, a , b 为常数 . 曲线 y f (x) 在 (1, f (1))设函数f ( x) ax n (1 x)处的切线方程为 x y 1 .〔Ⅰ〕求 , 的值;a b〔Ⅱ〕求函数f ( x)的最大值;〔Ⅲ〕证明:1 .f ( x)ne2018 年一般高等学校招生全国一致考试〔湖北卷〕数学〔文史类〕试题参照答案【一】选择题:A 卷: 1、D2、B3、 D4、B5、 A6、 B7、 C8、 D9、 A10、C【二】填空题:11、 612、 313、〔Ⅰ〕3 10 10 ;〔Ⅱ〕 2 5(,)5 101014、 215、 12π16、 917、〔Ⅰ〕 5030;〔Ⅱ〕 5k 5k 12【三】解答题:sinx cosx 2 3 sinx cos x18、解:〔Ⅰ〕因为 f ( x)22cos2x3 sin 2 x2sin(2 xπ.)6由直线 xπ是y f ( x)图象的一条对称轴,可得sin(2 所以,即k 1 、 2 π πk π π(k Z )( k Z )6 22 3又1 , k Z ,所以 k1,故5 .(, 1)626π.所以 f ( x) 的最小正周期是5〔Ⅱ〕由 yf (x) 的图象过点 π,得π ,( ,0)f ()442.即5 π π 2sinπ ,即2sin(2 )4266故2sin(5 π,函数 f ( x) 的值域为 [ 2 f (x)x)23 6π,π )162,22].19、解:〔Ⅰ〕因为四棱柱 ABCDA 2B 2C 2D 2 的侧面是全等的矩形,所以AA 2AB, AA 2AD .又因为ABAD A,所以AA 2平面 ABCD .连结 BD ,因为 BD 平面 ABCD ,所以 AA 2BD.因为底面 ABCD 是正方形,所以 AC BD .依照棱台的定义可知, BD 与 B 1D 1 共面 .又平面 ∥平面 ,且平面BB 1D 1D平面ABCD BD ,ABCD A 1B 1C 1D 1平面 BBDD 平面 A B C 1 D1B D ,所以 B 1D 1∥ BD . 于是1 11 111由AABD ,ACBD , B 1D 1∥ BD ,可得 AA B D,ACB D .22 1 111又因为AA 2ACA ,所以B 1 D 1平面ACC 2 A 2.〔Ⅱ〕因为四棱柱ABCDA 2B 2C 2D 2 的底面是正方形,侧面是全等的矩形,所以S 1 S 四棱柱上底面 S 四棱柱侧面 (A 2B 2)24 AB AA 2 1024 10 30 1300 (cm 2) .又因为四棱台 ABCD ABCD 的上、下底面均是正方形, 侧面是全等的等腰1 1 1 1梯形,所以S 2S 四棱台下底面S 四棱台侧面 ( A 1B 1)241( ABA 1B 1 )h 等腰梯形的高2.1(10[1(20202420) 13210)]21120 (cm 2)22于是该实心零部件的表面积为 SS S1300 11202420 (cm 2) ,12故所需加工办理费为 0.2S 0.2 2420 484〔元〕.20、解:〔Ⅰ〕设等差数列 { a } 的公差为 d ,那么 a 2 ad ,aa2d ,n131由题意得3a 1 3d 3, 解得a 1 2, 或a 14,a 1 (a 1 d )( a 1 2d )8.d3,d3.所以由等差数列通项公式可得a 2 3(n 1) 3n 5,或a n 4 3(n1) 3n7.n故 a3n5 ,或an3n 7 .n〔Ⅱ〕当 a n 3n 5 时,a 2 , a 3 ,a 1 分别为 1,4 , 2 ,不可以等比数列;当 a n 3n 7 时, a 2 , a 3 , a 1 分别为 1, 2,4 ,成等比数列,知足条件 .故 3n 7, n 1,2,| a n | | 3n 7 |3n 7, n 3.记数列 {| a n |} 的前 n 项和为 S n .当 n 1 时, S 1 | a 1 | 4 ;当 n 2时, S 2| a 1 | | a 2 | 5;当 n3 时,S n S 2 | a 3 | | a 4 || a n | 5(3 3 7) (3 47)(3n 7)5(n2)[2 (3n 7)] 3n 21110. 当 n 2 时,知足此式 .222 n综上,4,n1,S n3 n 2 11n 10, n 1.2 221、解:〔Ⅰ〕如图1,设M (x, y) , A( x 0 , y 0 ) ,那么由 | DM |m | DA | (m0, 且 m 1),可得 x x 0,| y | m | y 0 |,所以 x 0 x ,| y 0 |1. ①| y |m因为 A 点在单位圆上运动,所以 x 0 2 y 0 21 . ②.将①式代入②式即得所求曲线C 的方程为2x 2y 2 1 ( m 0, 且 m 1)因为 m) ,所以m(0, 1) (1,当 0 m1时,曲线 C 是焦点在 x 轴上的椭圆,两焦点坐标分别为 ( 1 m 2 , 0) , ( 1 m 2 , 0) ;当 m 1时,曲线C 是焦点在 y 轴上的椭圆,两焦点坐标分别为(0,m21) , (0,m21).〔Ⅱ〕 解法 1:如图 2、 3, k,设P( x , kx ) ,H (x, y ) ,那么 Q(x ,kx ),112211N(0, kx ),1直线 QN 的方程为 y 2kx kx 1 ,将其代入椭圆 C 的方程并整理可得 (m24k 2 ) x24k 2 x x k 2 x 2 m20 .11依题意可知此方程的两根为x 1 ,x 2 ,于是由韦达定理可得2 ,即 2. x 1 x 24k x 1x 2m x 1m 2 4k 2m 2 4k 2因为点 H 在直线 QN 上,所以2 .y 2 kx 1 2kx 22km x 124k 2m.于是 PQ ( 2 x 1 ,2kx 1 ),PH(x 2x 1, y 2kx 1) (4k 2x 12 ,2km 2x 1m 2 4km 24k2 )而PQPH 等价于PQ4(2 m 2 )k 2 x 1 2,PH24k 2即2 m0 ,又m 0,得mm2,2故存在 m2 ,使得在其对应的椭圆2y 2上,对随意的 k 0,x21PH.都有 PQ yyy HA解法 2:如图 2、3,x 1 (0, 1) ,设, y 1 ) ,H ( x 2 , y 2 ) ,那么Q(P x 1 , y 1 ) ,H P( x1NMNPO , xOxODxN (0, y 1 )QQ因为 P , H 两点在椭圆 C 上,所以m 2 x 12y 1 2m 2 , 两式相减可得图 1图 2(0 m 2 x 22y 22m 2 ,图 3(m1)m 1) m ( x 1 x 2 2 ) ( y 1y 2 )0 第 21 题解答图 2222. ③依题意,由点 P 在第一象限可知,点 H 也在第一象限,且 P , H 不重合,故 ( x 1x 2 )( x 1x 2 )0 . 于是由③式可得( y 1y 2 )( y 1y 2 ) m 2 . ④( x 1 x 2 )(x 1 x 2 )又Q , N , H三点共线,所以k QNkQH,即2y 1y 1 y 2 .x 1x 1 x 2于是由④式可得yyy2 1 ( yy 2)( yy )m 2 .k PQ k PH11112x 1 x 1 x 2 2 ( x 1x 2 )( x 1x 2 )2而 PQPH等价于k PQk PH1 ,即 m 2,又 m 0,得m2,21故存在 m 2,使得在其对应的椭圆2y 2上,对随意的 k 0 ,都有x2 1PQPH.22、解:〔Ⅰ〕因为 f (1) b,由点(1, b) 在xy1 上,可得 1 b1,即b 0.因为 f ( x) anxn1a(n1)x n ,所以 f(1)a.又因为切线 x y 1 的斜率为 1 ,所以 a 1,即a 1. 故a 1,b 0 .〔Ⅱ〕由〔Ⅰ〕知, n (1 x) x n n 1 ,n 1 n .f ( x) x x f (x) ( n 1) x ( x)n 1 . 令 f ( x) 0 ,解得 n ,即 f (x) 在(0, ) 上有唯一零点x 0 nx n 1n 1在 (0, n 上, f (x) 0 ,故 f ( x)单一递加;)n 1 0 , f ( x) 单一递减 .而在 ( n , ) 上, f (x)n 1 ) 上的最大值为. 故f (x) 在 (0,nf ( n ) ( n )n (1n ) nn 1 n 1n 1( n 1)n 1〔Ⅲ〕令1,那么11t1.(t ) ln t 1+ (t0) 0)t(t)2 =2( tt tt在(0, 1) 上,(t ) 0 ,故 (t ) 单一递减;而在 (1, ) 上 (t ) 0 ,(t ) 单一递加 .故 (t) 在(0, ) 上的最小值为 (1) 0.所以 (t) 0 (t1),即 ln t 1 1 (t 1) .t令 t 1 1 ,得 ln n 1 1 ,即n 1 n 1 ,n n n 1ln( ) ln e1 . n所以 n 1 n 1 ,即 n n()e(n 1)n 1 nen由〔Ⅱ〕知,f ( x)n n1 ,故所证不等式建立 .( n1)n 1ne。
2019年全国高考文科数学试题及答案-湖北精品文档9页
2019年普通高等学校招生全国统一考试(湖北卷)数学试题(文史类)本试题卷共4页,三大题21小题。
全卷满分150分,考试用时120分钟。
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色黑水签字笔直接在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则()U AB ⋃=ðA .{}6,8 B .{}5,7C .{}4,6,7D .{}1,3,5,6,82.若向量()()1,2,1,1a b ==-,则2a +b 与a b -的夹角等于A .4π-B .6πC .4πD .34π 3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- 4.将两个顶点在抛物线22(0)y p x p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则 A .0n = B .1n = C .2n = D .3n ≥5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为A .18B .36C .54D .726.已知函数()3s i n c o s,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D .5|,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭7.设球的体积为V ,它的内接正方体的体积为V ,下列说法中最合适的是A .V 比V 大约多一半B .V 比V 大约多两倍半C .V 比V大约多一倍 D .V 比V大约多一倍半8.直线2100x y +-=与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有A .0个B .1个C .2个D .无数个 9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为A .1升B .6766升 C .4744升 D .3733升 10.若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记22(,),a b a b a b ϕ=+--那么(,)0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分。
高考真题试卷(湖北卷)数学(文科)参考答案
2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角.依题意π6CBH ∠=,所以 在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin62a CH a ==,sin 2θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a aC A a B aD V a θ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 002222a aABVD a a a a θ⎛⎫=-=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··nn .得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===n n ···,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)ABDC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥. 同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··nn ,得0tan 022ax az θ=⎨-+=⎪⎩,.可取(tan 01)nθ=,,,又0BC ⎛⎫=- ⎪ ⎪⎝⎭,,,于是tan π2sin 62a BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. A故交π4θ=时, 即直线BC 与平面VAB 所成角为π6. 18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力. 解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+, 又由已知条件,2242k =·,于是有6k =,所以32()61264329072[030]f x x x x x =-+-+∈,,. (Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力. 解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0ag g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a aa a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,. (II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()(32(32(17h a h <<-=-=-1121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,由(I)知03a <<-,1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力.解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*. (II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111n n q a a --=,222211nn q a a-=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q qq a q qq --⎛⎫⎛⎫=+++++++++⎪ ⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦. 故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a qq ---+=+=, 34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,.2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122AMNBCN ACN S S S p x x =+=-△△△·.12p x x =-=2p==,∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H , 则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵, 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =从而112222ABN S dAB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
全国高考文科数学试题及答案湖北卷
2021年一般高校招生统一考试〔湖北卷〕数学〔文史类〕考前须知:1. 答题前,考试务必将自己姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡指定位置。
2. 选择题每题选出答案后,用2B 铅笔将答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔在答题卡上每题对应答题区域内,答在试题卷上无效。
4. 考试完毕,请将本试题和答题卡一并上交。
一、选择题:本大题共10小题,每题5分,共50分,在每题给出四个选项中,只有一项为哪一项符合要求。
1. 假设向量a=〔1,1〕,b=〔-1,1〕,c=〔4,2〕,那么c=A. 3a+bB. 3a-bC.-a+3bD. a+3b 【答案】B 2. 函数)21,(2121-≠∈+-=x R x x x y 且反函数是 A.)21,(2121≠∈-+=x R x x x y 且 B.)21,(2121-≠∈+-=x R x x x y 且 C.)1,()1(21≠∈-+=x R x x xy 且 D.)1,()1(21-≠∈+-=x R x x x y 且 【答案】D 3.“sin α=21〞是“212cos =α〞 【答案】A4. 从5名志愿者中选派4人在星期五、星期六、星期日参与公益活动,每人一天,要求星期五有一人参与,星期六有两人参与,星期日有一人参与,那么不同选派方法共有 【答案】C【解析】5人中选4人那么有45C 种,周五一人有14C 种,周六两人那么有23C ,周日那么有11C 种,故共有45C ×14C ×23C =60种,应选C5. 双曲线22122x y -=准线经过椭圆22214x y b+=〔b >0〕焦点,那么b= A.3 B.5 C.3 D.2 【答案】C【解析】可得双曲线准线为21a x c=±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3.故C.6. 如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900,∠ACC 1=600,∠BCC 1=450,侧棱CC 1长为1,那么该三棱柱高等于 A.21 B.22 C.23 D.33【答案】A7. 函数2)62cos(-+=πx y 图像F 按向量a 平移到F /,F /解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于 A.(,2)6π- B.(,2)6π C.(,2)6π-- D.(,2)6π- 【答案】D8. 在“家电下乡〞活动中,某厂要将100台洗衣机运往邻近乡镇,现有4辆甲型货车和8辆乙型货车可供运用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,假设每辆车至多只运一次,那么该厂所花最少运输费用为 【答案】B【解析】设甲型货车运用x 辆,已型货车y 04082010100x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩,求Z=400x +300y 最小值.可求出最优解为〔4,2〕故min 2200Z =应选B.9. 设,R x ∈记不超过x 最大整数为[x ],令{x }=x -[x ],那么{215+},[215+],215+ 【答案】B【解析】可分别求得515122⎧⎫+-⎪⎪=⎨⎬⎪⎪⎩⎭,51[]12+=.那么等比数列性质易得三者构成等比数列10. 古希腊人常用小石子在沙滩上摆成各种性状来探讨数,例如:他们探讨过图1中1,3,6,10,…,由于这些数可以表示成三角形,将其称为三角形数;类似地,称图2中1,4,9,16,…这样数成为正方形数。
招生全国统一考试数学文试题湖北卷,含答案
绝密★启用前普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U=,集合{1,2}A=,{2,3,4}B=,则UB A=A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}2.已知π4θ<<,则双曲线1C:22221sin cosx yθθ-=与2C:22221cos siny xθθ-=的A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()p⌝∨()q⌝B.p∨()q⌝C.()p⌝∧()q⌝D.p∨q4.四名同学根据各自的样本数据研究变量,x y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且 2.347 6.423y x=-;②y与x负相关且 3.476 5.648y x=-+;③y与x正相关且 5.4378.493y x=+;④y与x正相关且 4.326 4.578y x=--.其中一定不正确...的结论的序号是A.①②B.②③C.③④D.①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数3sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A 32B 315C .32D .3158.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 A .31200元B .36000元C .36800元D .38400元10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞距学校的距离距学校的距离距学校的距离ABD时间时间时间时间OOO O距学校的距离二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).否A A m =⨯ 1i i =+输入m1, 1, 0A B i ===开始 结束是 ?A B <输出i第13题图B B i =⨯ 第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积53S =,5b =,求sin sin B C 的值. 19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.第20题图21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , ()b f a ,()bf a是否成等比数列,并证明()()b b f f a a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.O x yB A 第22题图CDMN普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B 二、填空题:11.23i -+ 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79 三、解答题: 18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去).因为0πA <<,所以π3A =. (Ⅱ)由1133sin 53,22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故21a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19.(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即 23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20.(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减. (Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,(0b f ab a =.故22(1)()[()]2b a b ab bf f ab f a a b a +=⋅==+, 即2(1)()[()]b bf f f a a=. ①所以(1),(),()b bf f f a a成等比数列. 因2a b ab +≥,即(1)()bf f a ≥. 由①得()()b b f f a a≤. (ii )由(i )知()bf H a =,()b f G a =.故由()H f x G ≤≤,得()()()b bf f x f a a ≤≤. ②当a b =时,()()()b bf f x f a a a===.这时,x 的取值范围为(0,)+∞; 当a b >时,01ba<<,从而b b a a <()f x 在(0,)+∞上单调递增与②式, 得b bx a a ≤≤x 的取值范围为,b b aa ⎡⎢⎣; 当ab <时,1ba>,从而b b a a >()f x 在(0,)+∞上单调递减与②式, b bx a a ≤≤,即x 的取值范围为,b b a a ⎤⎥⎦.依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得21λ. 故当直线l 与y 轴重合时,若12S S λ=,则21λ=. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得21λ. 故当直线l 与y 轴重合时,若12S S λ=,则21λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则 因为12211d k k =++22211d k k =++,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是Ox yBA第22题解答图1CDMN Ox yB A第22题解答图2CDMN||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得 222A x a k m=+222B x a k n=+根据对称性可知C B x x =-,D A x x =-,于是222222221||2||||21||A D A BB C k x x x AD m a k n BC x n a k m k x x +-+===++-② 从而由①和②式可得2222221(1)a k n a k m λλλ++=+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得12λ>当112λ<≤l ,使得12S S λ=; 当12λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则 因为12211d kk=++22211d kk=++,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==. 因为221||||||1||B D A B A BA B k x x x x BD AB x x k x x λ+-+===-+-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a mλ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A Bx x λ<<.百度文库- 让每个人平等地提升自我11 从而111λλλ+<<-,解得12λ>当112λ<≤l,使得12S Sλ=;当12λ>l使得12S Sλ=.。
高考试题——数学文(湖北卷)解析
2010年高考试题——数学文(湖北卷)解析版1.【答案】C【解析】因为N={x|x 是2的倍数}={…,0,2,4,6,8,…},故{}2,4,8M N =所以C 正确. 2.【答案】D 【解析】由T=|212π|=4π,故D 正确. 3.【答案】B【解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==,所以B 正确.1b =+,当直线过(0,3)时,解得b=3,故13,b -≤所以D 正确.10.【答案】B【解析】若△ABC 为等边三角形时,即a=b=c ,则m a x ,,1m i n ,,a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭则l =1;若△ABC 为等腰三角形,如a=2,b=2,c=3时,则32max ,,,min ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时l =1仍成立但△ABC 不为等边三角形,所以B 正确.11.【答案】45【解析】210(1)x -展开式即是10个(1-x 2)相乘,要得到x 4,则取2个1-x 2中的(-x 2)相乘,其余选1,则系数为222410()45C x x ⨯-=,故系数为45.12.【答案】5【解析】同理科 13.【答案】0.9744【解析】分情况讨论:若共有3人被治愈,则3314(0.9)(10.9)0.2916P C =⨯-=;若共有4人被治愈,则42(0.9)0.6561P ==,故至少有3人被治愈概率120.9744P P P =+=.14.【答案】4【解析】设球半径为r ,则由3V V V +=球水柱可得33224863r r r r πππ⨯+⨯=⨯,解得r=4.15.【答案】[2,,0【解析】依题意知,点P 在椭圆内部.画出图形,由数形结合可得,当P 在原点处时12max (||||) 2 PF PF +=,当P 在椭圆顶点处时,取到12max (||||)PF PF +为1)+,故范围为[.因为00(,)x y 在椭圆2212x y +=的内部,则直线0012x x y y ⋅+⋅=上的点(x, y )均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个.。
年高考试题——数学文(湖北卷
一、选择题:本大题共 有一项是符合题目要求的. 1.10小题,每小题5分,共50 分. 在每小题给出的四个选项中,只A. tan 690。
的值为(3C. 3D. - 3A. 如果U =〈x| x 是小于9的正整数/ ,A ={1,2,3,4},B =「3,4,5,6},另E 么痧AD u B =「1,2?B. 「3,4}C. :5,6;3.如果的展开式中含有非零常数项,则正整数 n 的最小值为(A. 10B. 6x匸(x ::: 0)的反函数是(2 -1 1y =log 2(x T) 11c. y =log (x ::-1)4.函数 A.5.在棱长为点,G 为棱 距离为(A. .3C. 5D. 3B. D.1的正方体 ABCD 1AB1GD 1X +1y = log ? (x 1)x —1x —1 y =log 2 (x1)x+1中,E , F 分别为棱AA , AB !上的一点,且AG = ■ (0 < - < 1).则点G 到平面 B. 2 C. 22007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷卷和答题卡上,并将准考证号 条形码粘贴在答题卡上指定位置•2 •选择题每小题选出答案后,用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号•答在试卷卷上无效.3•将填空题和解答题用0.5毫M 的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内•答在试卷卷上无效. 4•考试结束,请将本试卷卷和答题卡一并上交.9•设 a = (4,3), a 在b 上的投影为 b 在x 轴上的投影为2,且 | b|w 14,则 b 为() A . (2,14)D . (2,8)10.已知p 是r 的充分条件而不是必要条件, s 的必要条件,现有下列命题: ① s 是q 的充要条件;② p 是q 的充分条件而不是必要条件; ③ r 是q 的必要条件而不是充分条件; ④ 一p 是—s 的必要条件而不是充分条件; ⑤ r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤B .①②④q 是r 的充分条件, s 是r 的必要条件,q 是C .②③⑤D .②④⑤、填空题:本大题共5小题,每小题 5分,共25分•把答案填在答题卡相应位置上.6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示•根据此图,估计该校 2000名高中男生中体重大于70.5公斤的人数为()54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5D._5~5A . 3007.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是()15152448 A—B. C. D.64128125125 &由直线y =x 1上的一点向圆(X -3)22y =1引切线,则切线长的最小值为() A. 1B. 22C. D . 3x - y 3》0,11.设变量x,y满足约束条件x • y》0, 则目标函数2x - y的最小值为.-2 < x < 3,2 212.过双曲线- y 1左焦点F1的直线交曲线的左支于M, N两点,F2为其右焦点,4 3则|MF2+ NF2— MN 的值为_______ .113 .已知函数y = f (x)的图象在点M(1, f (1))处的切线方程是y x 2,贝U2f(1) f (1> _________114•某篮球运动员在三分线投球的命中率是一,他投球10次,恰好投进3个球的概率为2.(用数值作答)15•为了预防流感,某学校对教室用药熏消毒法进行消毒•已知药物释放过程中,室内每立方M空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y与t的函数关系式(a为常数),如图所示,根据图中提供的信息,回答下列问题:—1 1t (小时) (I)从药物释放开始,每立方M空气中的含药量y (毫克)与O 0.1 时间t (小时)之间的函数关系式为.(II)据测定,当空气中每立方M的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数f(x)=2sin2I n x 3cos2x , n,卫.14丿M 2」(I)求f (x)的最大值和最小值;(Il )若不等式f(x)-m c2在]上,」丨上恒成立,求实数m的取值范围.'4 2」17.(本小题满分12分)如图,在三棱锥V 一ABC中,VC丄底面ABC , AC丄BC , D是AB的中点,且(nAC = BC 二a, Z VDC - V 0 ::-.I 2丿(I)求证:平面VAB丄平面VCD ;(II )试确定角-的值,使得直线BC与平面VAB所成的角为n.618.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0 < x < 30 )的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I)将一个星期的商品销售利润表示成X的函数;(II )如何定价才能使一个星期的商品销售利润最大?19.(本小题满分12分)设二次函数f (x) = x2• ax • a,方程f (x)「x = 0的两根为和X2满足0 :::为:::X2 : 1 .(I)求实数a的取值范围;(II)试比较f(0)f(1)-f(0)与丄的大小.并说明理由.1620.(本小题满分13分)已知数列{a.}和{b n}满足:a =1 , a^2 , a n 0 , b n f( n • N * ),且{bj是以q为公比的等比数列.(I)证明:a n 2 =a n q2;(II)若C n =a2n「2a2n,证明数列{C n}是等比数列;(III)求和:1111 11a 1 a2a3a4a2n—11.7 / 1321. (本小题满分14分)在平面直角坐标系 xOy 中,过定点C (0, p )作直线与抛物线 x 2 =2py ( p . 0)相交于A B 两点.(I )若点N 是点C 关于坐标原点 O 的对称点,求 △ ANB 面积的最小值;(II ) 是否存在垂直于 y 轴的直线l ,使得I 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出I 的方程;若不存在,说明理由.(此题不要求在答题卡上画图 )2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试卷参考答案一、 选择题:本题考查基础知识和基本运算 1.A 2.D 3.C 6.B7.A8.C二、 填空题:本题考查基础知识和基本运算12. 813. 3每小题5分,满分50分.4. A5.D 9. B 10.B 每小题5分,满分25分.28 / 1310t , 0 < t < 丄 i,I 10丿y 1; 0.6f 1 沖 f 1 ) — ,t > —26丿I 10丿三、解答题:本大题共 6小题,共75分.16•本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象 和性质解题的能力. 解:(i) T f(x) = 1-cos in2x —、3cos2x=1 sin2x -q ;3cos2x :12丿」=1 +2sin ‘2x -nI 3丿又- rd 訂2XE ^「即2 < “细严石广3,(n) ■/ f(x)—m c2u f (x)—2 c m c f (x)+2 , x 壬〔4 2 J••• m f (x)max -2 且 m f(x)min 2 , •••「:: m :: 4,即m 的取值范围是(1,4).17 •本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理 运算能力以及应用向量知识解决数学问题的能力.解法1:(1) 丁 AC =BC =a , •△ ACB 是等腰三角形,又 D 是AB 的中点,• CD _ AB ,又 VC _ 底面 ABC . • VC _ AB .于是 AB _ 平面 VCD . 又AB 二平面VAB , •平面VAB _平面VCD .(H)过点C 在平面VCD 内作CH _VD 于H ,则由(I)知 CD _平面VAB . 连接BH ,于是.CBH 就是直线BC 与平面VAB 所成的角.冗依题意.CBH ,所以6在 Rt △ BHC 中,CH 二 asin n -,6 21514.-12815.f (x)max=3, f (X )min - 2•在 Rt △ CHD 中,CH.I T -4即 sin— 2V 0 :: e <- •0=-. 24故交n=n r 时直线 nBC 与平面VAB 所成的角为一.46 解法2 : (I)以CA , CB , CV 所在的直线分别为 x 轴、y 轴、z 轴,建立如图所示的空C(0,0,0) A(a,O,O ) B(0, a,0)D i a ,-a ,0 , V 0,0,丄2 ata nr2 2 2于是,Eatanr ,2"AB =(-a , a,0).a ,°)・ I ,|,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005湖北卷试题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分 考试时间120分钟第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) A .9 B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x ey x 的图象大致是( )A B C D5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .387.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππD .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上13.函数x x x x f ---=4lg 32)(的定义域是 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1 (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离121.(本小题满分12分) 某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换 (Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字) 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由2005湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t≥t t 的取值范围是故解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f 'Θ的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B ο得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得2222212cos ,546428,8100.2b ac ac B a a a a =+-=+-⨯⨯∴-+=即124460,090,30120.a a B C A ===<<∴<<o o o o o Q 所得1,sin sin 303,sin sin sin sin 2a b b b a A A B B B ==⋅>⋅==>o 由得243,,4a a =<=而舍去故故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c Θ ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--ΛΛΛ两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T Λ20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力 解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离.113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n AE n 得由1⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 1111=++⨯==α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2. 所以寿命为1~2年的概率应为p 1-p 2. 其分布列为:寿命 0~1 1~2 2~ p 1-P 1 P 1-p 2 P 2(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p 1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1-p 2。