完整版绝对值重点题型.doc
绝对值和相反数(3个考点七大题型)(原卷版)
专题02 绝对值和相反数(3个考点七大题型)【题型 1 相反数的概念和表示】【题型 2 相反数的性质运用】【题型 3 绝对值的定义】【题型 4 绝对值的性质与化简】【题型 5 绝对值分非负性】【题型 6 绝对值的几何意义】【题型7 有理数的大小比较】【题型 1 相反数的概念和表示】1.(2023•惠山区三模)﹣4的相反数是()A.B.﹣4C.﹣D.4 2.(2023•东方模拟)有理数﹣(﹣5)的相反数为()A.B.5C.D.﹣5 3.(2022秋•藁城区期末)若数a的相反数是5,则a+1的相反数是()A.﹣5B.﹣4C.4D.64.(2022秋•文峰区校级月考)化简:﹣[+(﹣7)]=,﹣[﹣(﹣2)]=,+[﹣(+a)]=.【题型 2 相反数的性质运用】5.(2022秋•韩城市期末)若x与3互为相反数,则x+4等于.6.(2021秋•宁远县期末)若a与b互为相反数,则代数式2021a+2021b﹣5=.7.(2021秋•苏尼特右旗校级月考)已知a是﹣[﹣(﹣5)]的相反数,b比最小的正整数大3,c是最大的负整数的相反数,且m=﹣m,则a+b+c+m的值为.8.(2022秋•长沙月考)已知a+2与2﹣b互为相反数,则a﹣b的值为.9.(2022秋•东平县校级期末)若x﹣1与2﹣y互为相反数,则(x﹣y)2022=.10.(2021•迎泽区校级开学)已知m,n互为相反数,则3+5m+5n=.11.(2021秋•雨花区校级期中)若a,b互为相反数,则5(a+b)2022=.12.(2021秋•本溪期中)若m,n为相反数,则m+(﹣2021)+n为.【题型 3 绝对值的定义】13.(2023•市北区二模)下列各数中,绝对值等于的数是()A.2B.﹣2C.D.14.(2022秋•邢台期末)若|﹣7|=﹣a,则a的值是()A.7B.﹣7C.D.15.(2022秋•榆阳区校级期末)已知2x﹣3的绝对值与x+6的绝对值相等,则x的相反数为()A.9B.1C.1或﹣9D.9或﹣1 16.(2022秋•忠县期末)若,,,d=﹣2,则绝对值最大的数是()A.a B.b C.c D.d 17.(2022秋•苏州期末)计算|x﹣1|+|x+2|的最小值为()A.0B.1C.2D.3 18.(2022秋•渌口区期末)下列说法中正确的是()A.两个负数中,绝对值大的数就大B.两个数中,绝对值较小的数就小C.0没有绝对值D.绝对值相等的两个数不一定相等19.(2022秋•天河区校级期末)a、b是有理数,且|a|=﹣a,|b|=b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A.B.C.D.【题型 4 绝对值的性质与化简】20.(2023•涪城区模拟)若|5﹣x|=x﹣5,则x的取值范围为()A.x>5B.x≥5C.x<5D.x≤5 21.(2022秋•新市区校级期末)已知a、b、c的大致位置如图所示:化简|a﹣c|﹣|b﹣c|+|a+b|的结果是()A.﹣2a B.2a C.2a+2b﹣2c D.﹣2a+2b﹣2c 22.(2022秋•临朐县期末)已知a、b、c的大致位置如图所示:化简|a+c|+|b ﹣c|﹣|a﹣b|的结果是()A.2a+2c﹣2b B.0C.2c﹣2b D.2c 23.(2023•南皮县校级一模)若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.2 24.(2022秋•海林市期末)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2 25.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2 26.(2023春•松江区期中)如果a<1,化简:|2﹣a|﹣|a﹣1|=.27.(2022秋•吉安期末)已知有理数m,n满足mn≠0,则=.28.(2022秋•衡东县期末)若|x+a|+|x+1|的最小值为3,则a的值为.【题型 5 绝对值分非负性】29.(2021秋•叙州区期末)如果|a+3|+|b﹣2|=0,那么(a+b)2022等于()A.1B.﹣1C.2022D.﹣2022 30.(2022秋•锡山区校级月考)若|a﹣1|+|b+3|=0,则a×b﹣的值是()A.﹣B.﹣3C.﹣1D.2 31.(2022秋•增城区期中)已知|a﹣2|+|b+3|=0,则(a+b)2021的值为()A.1B.﹣1C.2021D.﹣2021 32.(2021秋•青龙县期末)若|n+2|+|m+8|=0,则n﹣m等于()A.6B.﹣10C.﹣6D.10 33.(2021秋•八步区期末)如果|x﹣3|+|y+1|=0,那么x﹣y等于()A.﹣4B.4C.2D.﹣2 34.(2022秋•方城县校级月考)已知|a﹣1|+|b+2|=0,则a+b的值为.35.(2022秋•龙子湖区校级月考)若5|x﹣2|+2|y+5|=0,则y x=.36.(2022秋•利州区校级期末)若|a﹣1|与|b﹣2|互为相反数,则a+b的值为.37.(2022秋•花垣县月考)若有理数a,b满足|a﹣20|+|b+19|=0,则|a|﹣|b|=.38.(2020秋•邗江区月考)已知|a+3|+|b﹣4|=0,则(a+b)2020=.39.(2022秋•抚远市期末)如果|m﹣3|+|n+5|=0,求的值.【题型 6 绝对值的几何意义】40.(2022秋•紫金县期中)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.41.(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.42.(2022秋•顺义区校级月考)已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+4|+|b﹣1|=0,A,B之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值.43.(2022秋•定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索(1)求|5﹣(﹣2)|=;(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【题型7 有理数的大小比较】45.(2023•茶陵县模拟)下列有理数的大小关系正确的是()A.B.|+6|>|﹣6|C.﹣|﹣3|>0D.46.(2023•广东模拟)四个有理数﹣1,0,1,﹣2中,最小的数是()A.﹣1B.0C.1D.﹣2 47.(2023•台湾)已知a=﹣1,,c=﹣1,下列关于a、b、c三数的大小关系,何者正确()A.a>c>b B.a>b>c C.b>c>a D.c>b>a 48.(2022秋•青神县期末)下列不等式正确的是()A.B.C.0<﹣1D.49.(2022秋•汝阳县期末)有理数a,b,c在数轴上的对应点的位置如图所示,若b+c=0,则a,b,c三个数中绝对值最大的数是()A.a B.b C.c D.无法确定50.(2022秋•崇川区期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b。
含绝对值的三角函数题型归纳
含绝对值的三角函数题型归纳1.sin .y x =的图象2.cos cos y x y x ==与的图象.3.tan y x =的图象.4.sin y x y x ==与的图象.5.tan y x y x ==与的图象.题型一:含绝对值的三角函数判断与应用1.关于三角函数的图像,有下列说法:①sin ||y x =与sin y x =的图像相同;②cos()y x =-与cos ||y x =的图像相同;③|sin |y x =与sin()y x =-图像关于x 轴对称;④cos y x =与cos()y x =-图像关于y 轴对称.其中正确的是__________.(写出所有正确说法的序号)【答案】②④【解析】对于②,()cos cos ,cos ||cos y x x y x x =-===,故其图像相同;对于④,()coscos y x x =-=,故其图像关于y 轴对称;由函数图像可知①③均不正确.故正确的说法是②④.故填②④2.图中的曲线对应的函数解析式是()A.|sin |y x =B.sin ||y x =C.sin ||y x =-D.|sin |y x =-【答案】C【解析】当x>0,所以y=-sinx,又因为此函数为偶函数,所以y=-sin|x|.3(多选).给出下列四个命题,其中正确的命题有()A.函数tan y x =的图象关于点(),02k k Z π⎛⎫∈⎪⎝⎭对称B.函数sin y x =是最小正周期为π的周期函数C.θ为第二象限的角,且cos tan θθ>,则sin cos θθ>.D.函数2cos sin y x x =+的最小值为1-答案AD 解:对于A:函数tan y x =的图象关于点(),02k k Z π⎛⎫∈⎪⎝⎭对称,故A 正确;对于B:函数sin y x ==sin ,0sin ,0x x x x ≥⎧⎨-<⎩,图象关于y 轴对称,不是周期函数,故B 错误;对于C:由为第二象限的角,得tan sin θθ>,由cos tan θθ>,得sin cos θθ<,故C 错误;对于D:函数22215cos sin sin sin 1sin ,24y x x x x x ⎛⎫=+=-++=--+ ⎪⎝⎭当sin 1x =-时,函数的最小值为-1,故D 正确.故选:AD.3.函数sin sin y x x =-的值域是()A.0B.[]1,1- C.[]0,1D.[]2,0-【答案】D【解析】:00y sinx sinx 20sinx sinx sinx >⎧=-=⎨<⎩,,,由此值域为[]y 2,0∈-4.在()0,2π内使sin cos x x >成立的x 的取值范围是()A.3,44ππ⎛⎫⎪⎝⎭B.53,,4242ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭C.,42ππ⎛⎫⎪⎝⎭D.57,44ππ⎛⎫⎪⎝⎭【答案】A,【解析】∵sin cos x x >,∴sin 0x >,∴()0,x π∈.在同一坐标系中画出sin y x =,()0,x π∈与cos y x =,()0,x π∈的图像,如图.观察图像易得使sin cos x x >成立的3,44x ππ⎛⎫∈ ⎪⎝⎭.故选A.5.已知函数()sin cos f x x x =,则(D )A.()f x 的值域为[]1,1- B.()f x 在0,2π⎡⎤⎢⎣⎦上单调C.π为()f x 的周期D.,02π⎛⎫⎪⎝⎭为()f x 图象的对称中心6.(多选).已知函数()[]sin cos f x x x =([]x 表示不超过实数x 的最大正数部分),则(AB)A.()f x 的最小正周期为2πB.()f x 是偶函数C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 D.()f x 的值域为[]sin1,sin1-.题型二:方程零点与函数交点问题1.(2022·全国课时练)方程cos x x =在(),-∞+∞内()A.没有根B.有且仅有一个根C.有且仅有两个根D.有无穷多个根【答案】C【解析】在同一坐标系中作出函数y x =及函数cos y x =的图象,如图所示.发现有2个交点,所以方程cos x x =有2个根.2.方程3sin ([2,2])xx x ππ=∈-的实数解有_______________个.【答案】2.【解析】在区间[]2π,2π-上,分别画出3x y =和sin y x =的图像如下图所示,由图可知,两个函数图像在区间[]2π,2π-上有两个交点,也即3sin ([2,2])x x x ππ=∈-的实数解有2个.故填:2.3.函数()lg cos f x x x =-在(),-∞+∞内的零点个数为__________.【答案】6.【解析】在同一平面直角坐标系中作出函数lg y x =和cos y x =的图像如图,结合图像的对称性可以看出两函数lg y x =和cos y x =的图像应有六个交点,即函数()lg cos f x x x =-在(),-∞+∞内有六个零点,应填答案6。
绝对值的十一种常见题型
绝对值的十一种常见题型一、绝对值的意义绝对值的定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
题型一:已知一个数,求该数的绝对值例1、(1) -3.5的绝对值是 ;-75的绝对值是 。
(2)|-3|= -|437-|= (3)若a<4,则|a-4|= (4)|3.14-π|=例2、计算|4131-|+|5141-|+…+|201191-|题型二:已知一个数的绝对值,求这个数例2、(1)在数轴上距原点4个单位长度的点表示的数是 ;(2)若|a |=2,则a= ;(3)若|a |=b ,且a=-0.5,则b= ;(4)绝对值不大于5的的所有整数为 ;(5)若|-m |=-(-10),则m=(6)若|x-6|=0,则x= ;(7)若|y-1|=2,则y= 。
题型三:已知绝对值的式子,求字母的取值范围例4、(1)若|a |=a ,则a 是 ;(2)若|a |=-a ,则a 是 ;(3)若|a |≥0,则a 是 ;(4)若|a |≤0,则a 是 ;(5)若|x-4|=4-x ,则x 的取值范围是 ;(6)若|y-4|=y-4,则y 的取值范围是 。
题型四:利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.例5、比较下面各对数的大小(1)-15 -7;(2)-π -3.14.题型五:求字母的值例6、(1)已知|a |=2,|b |=3,且a<b ,求a,b 的值。
(2)已知|m |=4,|n |=9,且m+n>0,求m-n 的值。
题型六:求数轴上表示两个数的点之间的距离用两个数的差的绝对值表示数轴上表示两个数的点之间的距离。
例7、(1)在数轴上表示-3.5和2的点之间的距离是 ;(2)在数轴上到表示-1的点的距离是3的数是 ;二、绝对值的非负性任何一个数的绝对值都是正数或0,绝对值最小的数是0.题型七:求最值例8、(1)当a=__时,|a-3|+2的最小值是 ;(2) 当x= 时,5-|x |的最大值是 ;(3) 当m=__时,|m+1|-10有 (最小值或最大值),是 。
初一数学绝对值知识点与经典例题
绝对值的性质及化简【绝对值必考题型】例1:已知|x -2|+|y -3|=0,求x+y 的值。
【例题精讲】(一)绝对值的非负性问题1. 非负性:若有几个非负数的和为0,那么这几个非负数均为0.2. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c = 【例题】若3150x y z +++++=,则x y z --= 。
总结:若干非负数之和为0, 。
【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【巩固】先化简,再求值:ab b a ab ab b a2)23(223222+⎥⎦⎤⎢⎣⎡---.其中a 、b 满足0)42(132=-+++a b a .(二)绝对值的性质【例1】若a <0,则4a+7|a|等于( )A .11aB .-11aC .-3aD .3a【例2】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例3】已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例4】若1-=xx ,则x 是()A .正数B .负数C .非负数D .非正数【例5】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例6】已知a .b 互为相反数,且|a-b|=6,则|b-1|的值为( )A .2B .2或3C .4D .2或4【例7】a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A .6B .-4C .-2a+2b+6D .2a-2b-6【例8】若|x+y|=y-x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x=0,y≥0或y=0,x≤0【例9】已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A .是正数B .是负数C .是零D .不能确定符号【例12】若x <-2,则|1-|1+x||=______若|a|=-a ,则|a-1|-|a-2|= ________【例15】已知数,,a b c则下列各式:①()0b a c ++->;②0)(>+--c b a ;③1=++ccb b a a ;④0>-a bc ; ⑤b c a b c b a 2-=-++--.其中正确的有 .(请填写番号)【巩固】已知a b c ,,是非零整数,且0a b c ++=,求a b c abc+++的值 ca 0b(三)绝对值相关化简问题(零点分段法)零点分段法的一般步骤:找零点→分区间→定符号→去绝对值符号.(1)求出2x +和4x -的零点值 (2)化简代数式24x x ++-【巩固】化简1. 12x x +++2. 12m m m +-+-的值3. 523x x ++-.4. (1)12-x ;变式5.已知23++-x x 的最小值是a ,23+--x x 的最大值为b ,求b a +的值。
绝对值题型分类专项
绝对值一、绝对值意义1.a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则a2>b2D.若a2>b2,则a>b2.下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数3.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或﹣4D.x=﹣34.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.15.下列说法中,正确的是()A.若a>|b|,则a>b B.若a≠b,则a2≠b2C.若|a|=|b|,则a=b D.若|a|>|b|,则a>b6.下列有理数中,比0小的数是()A.﹣2B.1C.2D.37.|﹣3|的值是()A.±3B.﹣3C.3D.8.在0,﹣,﹣,0.05这四个数中,最大的数是()A.0B.﹣C.﹣D.0.059.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|10.在数轴上表示下列四个数中,在0和﹣1之间的数是()A.﹣1B.﹣C.D.111.下列各数中最大的负数是()A.﹣B.﹣C.﹣1D.﹣312.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.113.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和114.下列结论成立的是()A.若|a|=a,则a>0B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0D.若|a|>|b|,则a>b.15.大于﹣1且小于等于2的正数有个.16.比较大小:﹣﹣.17.用“<”或“>”填空:31082144.18.写出一个比﹣2小的有理数:.19.比较大小:﹣﹣3(填“>”“<”或“=”)20..已知|x|=3,|y|=7,且xy<0,则x+y的值等于.21..若|m|=m+1,则(4m+1)2019=.22..数轴上顺次有不重合的A,B,C三点,若A,B,C三点对应的数分别为a,﹣1,b,试比较大小:(a+1)(b+1)0(填“>”或“<”或“=”)23..如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.24.若|﹣m|=2018,则m=.二、绝对值的非负性1.数﹣是()A.正数B.负数C.负数或零D.正数或零2.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.13.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|4.已知实数a、b、c满足a+b+c=0,abc<0,x=++,则x2019的值为()A.1B.﹣1C.32019D.﹣320195.若|﹣x|=4,则x═;若|x﹣3|=0,则x=;若|x﹣3|=1,则x=.6.|﹣2020|=.7.下列四组有理数的比较大小:①﹣1<﹣2,②﹣(﹣1)>﹣(﹣2),③+(﹣)<﹣|﹣|,④|﹣|<|﹣|,正确的序号是.8.3的相反数与﹣2的绝对值的和为.9.已知|x|=3,|y|=7,且xy<0,则x+y的值等于.10.若|﹣m|=2018,则m=.11.若|a|=﹣a,则a的取值范围是.12.若|m|=3,|n|=2且m>n,则2m﹣n=.13.若x>0,y<0,且|x|<|y|,用“<”把x,﹣x,y,﹣y连接起来:.14.已知|a﹣1|=5,|b|=4,且a+b=|a|+|b|,则a﹣b=.15.已知整数a,b满足|a﹣3|﹣|b﹣8|=0,则|a+b|的值为.16.若|m|=m+1,则(4m+1)2019=.17.已知a,m,n均为有理数,且满足|a﹣m|=6,|n﹣a|=4,那么|m﹣n|的最大值为.18.若|﹣a|=3,则a的相反数是.19.若|x|=5,|y|=9,则x+y=,x﹣y=.三、化简问题1.如果|a|=4,|b|=2,且|a+b|=a+b,则a﹣b的值是.2.有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.3.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=.4.化简|π﹣4|+|3﹣π|=.5.如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为.6.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.7.如图所示,化简|a﹣c|+|a﹣b|+|c|=.8.若|a|=|﹣2|,那么a=.9.当y满足时,|y﹣3|=3﹣y成立.10.已知|﹣x|=|﹣8|,x=.11.写出一个x值,使|x﹣2|=x﹣2,你写出的x值为.12.如果a•b<0,那么=.13.若|a|=﹣a,则a是;若|x|=|﹣5|,则x=.14.若有理数a、b满足ab>0,则+=.15.若m,n都是不为零的有理数,那么+的值是.16.若a,b都是不为零的有理数,那么+的值是.四、数轴动点问题1.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.2.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M 对应的数.3.已知A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为﹣1,点B表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点;(2)如图2,若数轴上M、N两点表示的数分别为﹣2和4,①若(M,N)的奇异点K在M、N两点之间,则K点表示的数是;②若(M,N)的奇异点K在点N的右侧,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为﹣20和40,现有一点P从点B出发,向左运动.若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?4.如图所示,在数轴上点A表示的有理数为﹣6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)当点P表示的有理数与原点的距离是a个单位长度时(其中0<a<4),直接写出所有满足条件的t值(用含a的代数式表示).5.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?6.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是.7.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?8.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣2x+1(1)求3*2的值;(2)对于任意两个有理数x,y,是否都有x*y=y*x成立?如果成立,请证明,如果不成立,请举反例说明;(3)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是1*(﹣9),点C在数轴上表示的数是(﹣8)*.若线段AB以6个单位长度每秒的速度向右匀速运动,同时线段CD以2个单位长度每秒的速度向左匀速运动.问运动多少秒时,BC=8(单位长度)?此时点B在数轴上表示的数是多少.9.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.10.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.。
绝对值的性质与几何意义、数轴上动点问题(6种常考题型)
绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A .2-B .1-C .0D .22.若0ab ≠,那么a ab b+的取值不可能是()A .2-B .0C .1D .23.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()A .21a b -+B .1b -+C .1b --D .21a b ---4.0a <,则化简a a aa aa++-的结果为()A .2-B .1-C .0D .25.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b +B .22a b c+-C .c-D .2b c--6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.8.a 、b 、c 三个数在数轴上的位置如图所示,则化简||2||a b a c --+的结果是.9.若12x <<,求代数式2121x x x x xx---+=--.10.若0a >,||a a=;若0a <,||a a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b ca b c ++=.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---13.a ,b 在数轴上的位置如图,化简b a a a b --++.14.已知有理数a 、b 、c 在数轴上位置如图所示,化简:|1|||||a c b a b c +---++.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-2.若()23a +与1b -互为相反数,则().A .3,1a b =-=-B .3,1a b =-=C .3,1a b ==D .3,1a b ==-3.若320x y -++=,则x y +的值是().A .5B .1C .2D .04.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()A .1-B .1±C .1D .25.若()22430||a b ++--=,则b =;a =.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.7.已知2(3)|24|0x y x +++-=,则y =.8.已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.9.已知230x y -++=.(1)求x y +的值.(2)求x y -的值.10.若|21||3|0x y -++=,求x 、y 的值.11.若201503b a --+=,求a ,b 的值.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()A .19B .20C .21D .222.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()A .2025B .2024C .2023D .20223.若a 是有理数,则|1|2a -+的最小值是()A .0B .1C .2D .34.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =7.已知,数轴上A ,B ,C 三点对应的有理数分别为a ,b ,c .其中点A 在点B 左侧,A ,B 两点间的距离为4,且a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.9.阅读下面的材料:点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和B 之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥C .12x -≤≤D .12x ≤≤-2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?4.阅读下面的材料:根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.(4)当a =_______时,代数式12x a x ++-的最小值是3.5.阅读下列材料:经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.6.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且19AB =.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .42.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是().A .1-B .0C .1D .26.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()A .2011或2012B .2012或2013C .2013或2014D .2014或20157.在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a ,b ,c ,d 表示的点是这些点中的4个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.9.一把刻度尺的部分在数轴上的位置摆放如图所示,若刻度尺上的刻度“4cm ”和“1cm ”分别对应数轴上的0和2,现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.10.如图,边长为3的正方形ABCD 的边AB 在数轴上,数轴上的点A 表示的数为4-,将正方形ABCD 在数轴上水平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 为数轴上的任意一点,则2PA PB PC ++的最小值为.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN =(用m ,n 表示)13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A 、B 两点之间的距离为2023(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?15.如图所示,在一条不完整的数轴上从左到右有三点、、A B C ,其中2AB =,1BC =,设点、、A B C 所对应的数的和是m .(1)若B 为原点.则A 点对应的数是__________;点C 对应的数是__________,m =__________.(2)若原点O 在图中数轴上点C 的右边,且6CO =.求m .六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()A .点AB .点BC .点CD .点D2.一个电子跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A.0B.100C.50D.-503.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为8个单位长度.4.如图,动点A,B,C分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,若⋅-为常数,则k为.k PM MN5.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.-,点N所表示的数为2如图2,M,N为数轴上两点,点M所表示的数为7(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是_;写出【N,M】美好点H所表示的数是_.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?6.若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;-,点B所表示的数为40.现有一只电子蚂蚁P从点(2)如图3,A、B为数轴上两点,点A所表示的数为20B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O 为坐标原点,若点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点同时运动时,设运动时间为t 秒()0t >.①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?8.如图,已知点A 、B 、C 是数轴上三点,O 为原点.点C 对应的数为3,2BC =,6AB =.(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M 、N 对应的数(用含t 的式子表示)②猜想MQ 的长度是否与t 的大小有关?如果有关请你写出用t 表示的代数式;如果无关请你求出MQ 的长度.9.阅读下面的材料:如图1,在数轴上A 点所示的数为a ,B 点表示的数为b ,则点A 到点B 的距离记为AB ,线段AB 的长可以用右边的数减去左边的数表示,即AB b a =-.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间-的值是否会随着t的变化而改变?请说明理由.为t秒,试探索:AC AB-、10,动点P从A出发,以每秒1个单位10.已知数轴上有A、B、C三个点,分别表示有理数24-、10长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.11.定义:数轴上A 、B 两点的距离为a 个单位记作AB a =,根据定义完成下列各题.两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.12.阅读下面材料:若点A B 、在数轴上分别表示实数a b 、,则A B 、两点之间的距离表示为AB ,且AB a b =-;回答下列问题:(1)①数轴上表示x 和2的两点A 和B 之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.A B C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分②点、、别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.。
绝对值的性质与几何意义、数轴上动点问题(6种常考题型(解析版)
绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a b a b +的值是()2.若0ab ≠,那么a ab b +的取值不可能是()A .2-B .0C .1D .2【答案】C【分析】本题考查了绝对值的意义,由0ab ≠,可得:①0a >,0b >,②0a <,0b <,③0a >,0b <,④0a <,0b >;分别计算即可,采用分类讨论的思想是解此题的关键.【详解】解:∵0ab ≠,,3.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()4.0a <,则化简a a a a a a ++-的结果为()5.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b+B .22a b c +-C .c -D .2b c--【答案】C 【分析】本题考查了整式的加减和去绝对值,根据数轴分别判断0a b +<,0c b ->的正负,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.的结果是.【答案】32a b c-+【分析】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.先根据各点在数轴上的位置判断出a 、b 、c 的符号及大小,再去绝对值符号,合并同类项即可.【详解】解: 由图可知,0b a c <<<,||a c >,0a b ∴->,0a c +<,∴原式()22232a b a c a b a c a b c =-++=-++=-+.故答案为:32a b c -+.9.若12x <<,求代数式21x x x ---+=.10.若0a >,a=;若0a <,||a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b c a b c ++=.1111||||||a b c a b c ++=-++=,当a 、b 、c 中有三个负数时,1113||||||a b c a b c ++=---=-,故答案为:1或3-.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.【答案】(1)见详解(2)3a【分析】(1)根据所给的范围确定数在数轴上的位置即可;(2)由题意可知0b c +>,0a b -<,0a c ->,再化简即可.本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.【详解】(1)解:依题意,有理数0a >,0b >,0c <,且a c b<<∴如图所示:(2)解:0a > ,0b >,0c <,且a c b <<,0b c ∴+>,0a b -<,0a c ->,|||||2|b c a b a c ∴+--+-()(2)b c b a a c =+--+-2b c b a a c=+-++-3=a .12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---【答案】2a c d--+【分析】此题综合考查了数轴、绝对值的有关内容,熟练掌握以上知识是解题的关键.先观察数轴,得到0a b c d <<<<,从而得到0a c +<,0b d -<,0c b ->,然后根据绝对值的性质进行化简即可.【详解】解:由数轴可知,0a b c d <<<<,∴0a c +<,0b d -<,0c b ->,∴2a c b d c b a c b d c b a c d++---=---+-+=--+13.a ,b 在数轴上的位置如图,化简b a a a b --++.b ,.【答案】21b -【分析】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a 、b 、c 的正负和绝对值的大小,从而可以化简题目中的式子.【详解】解:根据数轴,得10,0,0a c b a b c +<->++<,|1|(1),||,||()a a c b c b a b c a b c ∴+=-+-=-++=-++,|1|||||a cb a bc ∴+---++(1)()()a cb a bc =-+--+++1a c b a b c=---++++21b =-.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()2.若()23a +与1b -互为相反数,则().3,1a b =-=-3.若320x y -++=,则x y +的值是().4.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()5.若()22430||a b ++--=,则b =;a =.【答案】32【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++--=,∴20,30a b +=-=-,解得:3,2b a ==.故答案为:3,2.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.故答案为:1,2.2y =8.已知,b 是有理数,且满足,求与b 的值.【答案】1a =,2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-= ,10a ∴-=,20b -=,1a ∴=,2b =,故答案为:1a =,2b =.9.已知230x y -++=.(1)求x y +的值.x y -的值.,求、的值.11.若201503b a --+=,求a ,b 的值.【答案】3a =,2015b =根据绝对值的性质去绝对值是解题的关键.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()2.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()的最小值是()A .0B .1C .2D .3【答案】C【分析】根据绝对值的非负性即可求解.【详解】解:∵a 是有理数∴1a -可为正数、负数、零由绝对值的非负性可知:|1|0a -≥∴2|12|a -+≥即:|1|2a -+的最小值是2故选:C【点睛】本题考查绝对值的非负性.熟记相关结论即可.4.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥ 2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取对x 的值进行分类讨论,进而得出代数式的值.以1-和2为界点,将数轴分成三部分,对x 的值进行分类讨论,然后根据绝对值的意义去绝对值符号,分别求出代数式的值进行比较即可.【详解】解:如图,当1x <-时,10x +<,20x -<,|1||2|x x ++-(1)(2)x x =-+--12x x =---+213x =-+>;当2x >时,10x +>,20x ->,|1||2|x x ++-(1)(2)x x =++-12x x =++-213x =->;当12x -≤≤时,10x +≥,20x -≤,|1||2|x x ++-(1)(2)x x =+--123x x =+-+=;综上所述,当12x -≤≤时,|1||2|x x ++-取得最小值,所以当|1||2|x x ++-取得最小值时,x 的取值范围是12x -≤≤.故答案为:12x -≤≤.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?的点之间的距离,当23x -≤≤-时,23x x +++的最小值是为根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.故答案为:,,0.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .4【答案】D【分析】本题考查了数轴,画出数轴,然后根据两种情况确定出点C D 、的位置,再根据数轴上的两点间的距离求出C 的可能值,据此即可求解,掌握数形结合思想和分类讨论思想是解题的关键.【详解】解:如图,C D 、间的距离可能是0268、、、,∴C D 、之间的距离不可能是4,故选:D .2.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-【答案】C 【分析】本题考查了数轴,分类讨论思想是解题的关键.先根据两点间的距离公式求出点A 落在对应点表示的数,在利用中点公式求出C 点表示的数.【详解】设A '是点A 的对应点,由题意可知点C 是A 和A '的中点当点A 在B 的右侧,6BA '=,A '表示的数为10616+=,那么C 表示的数为:(1416)21-+÷=,当点A 在B 的左侧,6BA '=,A '表示的数为1064-=,那么C 表示的数为:(144)25-+÷=-,故选:C .3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个【答案】B 【分析】本题考查了数轴上两点距离.利用数轴,分类讨论即可求解.【详解】解: 已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,B ∴对应的数为:12186-=-;故①是正确的;1829÷= ,故②是正确的;当2BP =时,16AP =,1628t =÷=,故③是错误的;在点P 的运动过程中,9MN =,故④是错误的;故选:B .4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .1【答案】C【分析】此题考查了数轴上点的移动,由题意得点A 表示数为a ,点B 表示数为2,点C 表示数为2a +,熟知数轴A .1-B .0C .1D .2【答案】C 【分析】根据已知图形可写出墨水盖住的整数,相加即可;【详解】由图可知,被墨水盖住的整数为:3-,2-,1,2,3,相加为()321231-+-+++=;故选C .【点睛】本题主要考查了有理数的加法运算,准确表示出盖住的整数是解题的关键.6.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.【答案】12-【分析】根据题意,则2b a =+,3c a =+,7d a =+,结合343a b =-,列式解答即可.本题考查了数轴的意义,有理数的计算,熟练掌握有理数加减运算是解题的关键.【详解】解:仔细观察图形,由数轴可知:a b c d <<<.∵每相邻两点之间的距离是1个单位长,∴2b a =+,3c a =+,7d a =+.∵343a b =-,∴()3423a a =+-,∴5a =-,∴3532c a =+=-+=-,7572d a =+=-+=,∴521012c d -=--=-.故答案为:12-.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.【分析】本题考查了数轴上的动点问题,三角形的面积,解题的关键是根据正方形平移后正确地表示出各线段的长∵113922BEC S BE D A BE '''=⋅=⨯=V ,∴6BE =,∴369AE AB BE =+=+=,∵点E 是线段AA '的中点,∴18AA '=,∵点A 表示的数为4-,∴点A '表示的数为41814-+=;②当正方形ABCD 沿数轴向左移动时,如图,S V Q 6,BE ∴=∴633AE BE AB =-=-=,∵点E 是线段AA '的中点,∴6AA '=,∵点A 表示的数为4-,∴点A '表示的数为4610--=-.综上,数轴上点A '表示的数是14或10-;故答案为:14或10-.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 最小值为.【答案】6【分析】根据题意得出2AB BC ==,然后分情况讨论,作出相应图形求解即可.【详解】解:∵4AC =,点B 为AC 的中点,∴2AB BC ==,当点P 位于点A 左侧时,如图所示,()22410PA PB PC PA PA AB PA AC PA ++=++++=+;当点P 与点A 重合时,如图所示,202810PA PB PC ++=++=;当点P 位于点A 与点B 之间时,如图所示:()22226PA PB PC PB BC PB ++=++=+;当点P 与点B 重合时,如图所示,220226PA PB PC ++=++⨯=;当点P 位于点B 与点C 之间时,如图所示:22246PA PB PC AB PB PB PC ++=+++=+=;当点P 与点C 重合时,如图所示,2426PA PB PC ++=+=;当点P 位于点C 右侧时,如图所示,2264PA PB PC AC PC BC PC PC PC ++=++++=+;综上可得:2PA PB PC ++的最小值为6,故答案为:6.【点睛】本题主要考查数轴上两点之间的距离及分类讨论思想,理解题意,进行分类讨论是解题关键.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.+=--=-,617112∴x的值为2-或7.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2023(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?的和是m.(1)若B为原点.则A点对应的数是__________;点C对应的数是__________,m=__________.CO=.求m.(2)若原点O在图中数轴上点C的右边,且6【答案】(1)2--,1,1(2)22-A B C所对应的数是解题关键.【分析】本题主要考查了数轴的知识,根据题意确定点、、A B C所对应的数,即可获得答案;(1)根据题意,确定点、、A B C所对应的数,即可获得答案.(2)根据题意,确定点、、【详解】(1)解:根据题意,2BC=,AB=,1若B为原点,即点B对应的数为0,则点A 对应的数为2-,点C 对应的数为1,∴2011=-++=-m .故答案为:2-,1,1-;(2)解:根据题意,原点O 在图中数轴上点C 的右边,且6CO =,则点C 对应的数为6-,点B 对应的数为7-,点A 对应的数为9-,∴()()67922m =-+-+-=-.六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A .0B .100C .50D .-50【答案】C【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【详解】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为:C .【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.如图,在数轴上点A 、B 表示的数分别为﹣2、4,若点M 从A 点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N 从B 点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M 、N 同时出发,运动时间为t 秒,经过秒后,M 、N 两点间的距离为8个单位长度.【答案】14或149【分析】已知运动时间为t 秒,根据题意建立含有t 的一元一次方程,解出t 的值即可.【详解】解:已知运动时间为t 秒,根据题意M 、N 两点间的距离为8个单位长度,分析N 点的两种移动方向分别建立一元一次方程可得:当N 向左运动,则有25448t t -+-+=,解得t =149,当N 向右运动,则有25448t t -+--=,解得t =14.故答案为14或149.【点睛】本题主要考查线段的动点和数轴问题,根据题意分情况列出含有t 的一元一次方程是解决本题的关键.4.如图,动点A ,B ,C 分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,若k PM MN ⋅-为常数,则k 为.【答案】2【分析】运动t 秒后,点P 在数轴上表示的数为-15+t ,点M 在数轴上表示的数是5+2t ,点N 在数轴上表示的数是9+4t ,分别表示出PM =20+t ,MN =2t +4,再代入k PM MN ⋅-,根据k PM MN ⋅-为常数,得到关于k 的方程,解方程即可.【详解】解:根据题意得,点P 在数轴上表示的数为-3022t +=-15+t ,点M 在数轴上表示的数是1042t +=5+2t ,点N 在数轴上表示的数是1882t +=9+4t ,则PM =20+t ,MN =2t +4,(20)(24)(2)204k PM MN k t t k t k ∴⋅-=+-+=-+- k PM MN ⋅-为常数,2=0k ∴-2k ∴=故答案为:2.【点睛】本题考查一元一次方程的应用、数轴上点的位置关系,根据k PM MN ⋅-为常数列方程是解题关键.5.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是【M ,N 】美好点的是_;写出【N ,M 】美好点H 所表示的数是_.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?【答案】(1)G ;4-或16-(2)1.5,2.25,3,6.75,9,13.5【分析】本题考查数轴上的动点问题、数轴上两点之间的距离、点是【M ,N 】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,须区分各种情况分别确定P 点的位置,进而可确定t 的值.【详解】(1)解:根据美好点的定义,18GM =,9GN =,2GM GN =,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定4-符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是16-.故答案为:4-或16-;(2)解:根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当2MP PN =时,3PN =,点P 对应的数为231-=-,因此 1.5t =秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM PN =时,6NP =,点P 对应的数为264-=-,因此3t =秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当2PN MN =时,18NP =,点P 对应的数为21816-=-,因此9t =秒;第四种情况,M 为【P ,N 】的美好点,点P 在M 左侧,如图4,当2MP MN =时,27NP =,点P 对应的数为22725-=-,因此13.5t =秒;第五种情况,M 为【N ,P 】的美好点,点P 在M 左侧,如图5,当2MN MP =时,13.5NP =,点P 对应的数为213.511.5-=-,因此 6.75t =秒;第六种情况,M 为【N ,P 】的美好点,点P 在M ,N 左侧,如图6,当2MN MP =时, 4.5NP =,因此 2.25t =秒;第七种情况,N 为【P ,M 】的美好点,点P 在M 左侧,当2PN MN =时,18NP =,因此9t =秒,第八种情况,N 为【M ,P 】的美好点,点P 在M 右侧,当2MN PN =时, 4.5NP =,因此 2.25t =秒,综上所述,t 的值为:1.5,2.25,3,6.75,9,13.5.6.若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.(1)数所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)2或10t=秒或20秒或15秒(2)10【分析】本题考查了数轴上两点之间的距离、数轴上的动点问题:(1)根据数轴求出两点距离,再根据新定义的概念求出结果,注意有两种情况;(2)分情况讨论,根据好点的定义可求出结果;正确理解新定义是解题的关键.【详解】(1)解:设点H是【M,N】的好点,∴=,2HM HN当H在M、N之间时,HM HN MN∴+==--=,4(2)6∴+=,HN HN26∴=,2HN∴表示的数为422H-=,当H在N右边时,设H表示的数为h,h h∴--=-,(2)2(4)∴=,10h故答案为:2或10;(2)解:当P是【A,B】好点时,即2=,PA PB\-=´,t t60222t∴=;10当P是【B,A】好点时,即2=,PB PA∴=-,t t22(602)t∴=;20当B是【A,P】好点时,即2BA BP=,\=´,6022tt∴=,15当A是【B,P】好点时,即2=,AB AP∴=-,602(602)tt∴=;15t=秒或20秒或15秒时,P、A和B中恰有一个点为其余两点的好点.综上所述,当10、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O为坐标原点,若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点t>.同时运动时,设运动时间为t秒()0①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M、N对应的数(用含t的式子表示)②猜想的长度是否与t的大小有关?如果有关请你写出用t表示的代数式;如果无关请你求出的长度.如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB,线段AB的长可以用右边=-.的数减去左边的数表示,即AB b a请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,-的值是否会随着t的变化而改变?请说明理由.试探索:AC AB-,C表示4,图见解析;【答案】(1)A表示2-,B表示5CA=--=+=(cm);(2)4(2)426设D表示的数为a,度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.当Q 点未到达点,此时3AQ x =,BP x =,则Q 则()10243PQ x x =-+--+此时(343AQ AC QC =-=-则Q 点表示的数为2468-+-两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.。
专题06 绝对值压轴题型汇总(解析版)
专题06 绝对值压轴题型汇总一、单选题1.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a+b+c+d+e 的值为( ) A .1 B .2 C .-1 D .-2【答案】D 【分析】根据题意求出a 、b 、c 、d 、e 的值,再代入代数式求值即可. 【详解】a 是最小的正整数,a =1;b 是绝对值最小的数,b=0;c 是相反数等于它本身的数,c=0;d 是到原点的距离等于2的负数,d=-2;e 是最大的负整数,e=-1; a +b+c+d+e=1+0+0+(-2)+(-1)=-2 故选D 【点睛】本题考查了有理数中一些特殊的数,熟练掌握这是特殊的数是解题的关键.2.当x 满足( )时,1.50.5 2.50.5 3.50.5 4.50.5 5.50.5 6.50.5x x x x x x -+-+-+-+-+-的值取得最小. A .11119x ≤≤ B .1197x ≤≤C .1175x ≤≤D .111311x ≤≤ 【答案】A 【解析】 【分析】根据绝对值的意义分类讨论即可解决问题 【详解】设y=|1.5x -0.5|+|2.5x -0.5|+|3.5x -0.5|+|4.5x -0.5|+|5.5x -0.5|+|6.5x -0.5| =0.5(|3x -1|+|5x -1|+|7x -1|+|9x -1|+|11x -1|+|13x -1|), 当x≤113时,y=0.5(1-3x+1-5x+1-7x+1-9x+1-11x+1-13x )=3-24x ,此时y 的最小值为5913,当113<x≤111时,y=2-11x ,此时y 的最小值为1, 当111≤x≤19时,y=1+12x ,此时y 的最小值=1,当19≤x <17时,y=9x ,此时y 的最小值1, 当17≤x <15时,y=16x -1,y 的最小值为97, 当15≤x <13时,y=21x -2,此时y 的最小值为115,当x≤13时,y=24x -3,此时y 的最小值5,故选A . 【点睛】本题考查了绝对值的定义,熟记绝对值的定义是解题的关键.3.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个 B .1个 C .2个 D .3个【答案】B 【分析】根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答. 【详解】① 平方等于64的数是±8; ② 若a ,b 互为相反数,ab ≠0,则1ab=-; ③ 若a a -=,可得a≥0,则()3a -的值为负数或0;④ 若ab ≠0,当a>0,b>0时,a b a b +=1+1=2;当a>0,b<0时,a b a b +=1-1=0;当a<0,b>0时,a b a b +=-1+1=0;当a<0,b<0时,a b a b +=-1-1=-2;所以a ba b+的取值在0,1,2,-2这四个数中,不可取的值是1. 综上,正确的结论为②,故选B. 【点睛】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.4.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( ) A . B . C . D .【答案】A 【分析】从选项数轴上找出a 、B 、c 的关系,代入|c ﹣1|﹣|a ﹣1|=|a ﹣c|.看是否成立. 【详解】∵数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,设B 表示的数为b , ∵b=1,∵|c ﹣1|﹣|a ﹣1|=|a ﹣c|. ∵|c ﹣b|﹣|a ﹣b|=|a ﹣c|.A 、b <a <c ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a=|a ﹣c|.正确,B 、c <b <a 则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣a+b=2b ﹣c ﹣a≠|a ﹣c|.故错误,C 、a <c <b ,则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣b+a=a ﹣c≠|a ﹣c|.故错误.D 、b <c <a ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a≠|a ﹣c|.故错误. 故选A . 【点睛】熟记数轴定义以及运用有理数的运算规则是解决本题关键.更应该理解掌握验证等式是否成立的方法,若等式成立则必须左边运算结果等于右边运算结果.5.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为( ) A .2 B .3C .4D .5【答案】B 【详解】分析:若P 为定值,则化简后x 的系数为0,由此可判定出x 的取值范围,然后再根据绝对值的性质进行化简. 详解:∵P 为定值,∵P 的表达式化简后x 的系数为0; 由于2+3+4+5+6+7=8+9+10;∵x 的取值范围是:1-7x≥0且1-8x≤0,即18≤x≤17;所以P=(1-2x )+(1-3x )+…+(1-7x )-(1-8x )-(1-9x )-(1-10x )=6-3=3. 故选B .点睛:能够根据P 为常数的条件判断出x 的取值范围,是解答此题的关键.6.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a–2cB .–aC .aD .2b–a【答案】C 【解析】由数轴上a 、b 、c 的位置关系可知:a <b ,c >a ,c >b ,a <0,∵a –b <0,c –a >0,b –c <0,∵||||+||a b c a b c a -----=b –a –(c –a )+(c –b )–(–a )=b –a –c +a +c –b +a =a .故选C .7.已知x 的取值能使|x ﹣3|+|x+2|取得最小值,则所有2x中整数有( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】分析:由题意已知x 的取值能使32x x -++取得最小值,可以分类讨论①3x ≥;②23x -<<;③2x ,≤-求出x 的范围,然后把x 代入2x中,进行求解.详解:∵已知x 的取值能使|x −3|+|x +2|取得最小值,∵当3x ≥时,有|x −3|+|x +2|=x −3+x +2=2x −1,∵当x =3时有最小值:2×3−1=5; ∵当−2<x <3时,有|x −3|+|x +2|=3−x +x +2=5,∵其有最小值5;当2x -≤时,有|x −3|+|x +2|=3−x −x −2=1−2x ,∵当x =−2时有最小值5, ∵23x -≤≤,可以使|x −3|+|x +2|取得最小值, ∵3122x -≤≤, ∵所有2x中整数有−1,0,1,共3个,故选C.点睛:结合两个绝对值符号里面的数,分类讨论,化简绝对值是解决本题的关键.8.若存在3个互不相同的有理数a ,b ,c ,使得|1﹣a |+|1﹣3a |+|1﹣4a |=|1﹣b |+|1﹣3b |+|1﹣4b |=|1﹣c |+|1﹣3c |+|1﹣4c |=t ,则t = A .112B .34C .1D .2【分析】 【详解】存在3个互不相同的实数a ,b ,c ,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t ,当a≥1时,原式=a -1+3a -1+4a -1=8a -3;当1/3 ≤a <1时,原式=1-a+3a -1+4a -1=6a -1;当1/4 ≤a < 时,原式=1-a -3a+1+4a -1=1;当a <1/4 时,原式=1-a+1-3a+1-4a=3-8a ,则t=1, 故选C.二、填空题9.已知m 是正整数,设()()x y x m x m =---,例如:当x =2,m =6时,(2)26(26)8y =---=,若(1)(2)(3)(2019)110y y y y +++⋅⋅⋅⋅+=,则m =____. 【答案】11 【分析】分类讨论:当x m ≥时,()()x y x m x m =---=()()x m x m ---=0; 当x m <时,()()x y x m x m =---=()()m x x m ---=() 2m x -;然后表示出()()()()1232019y y y y +++⋅⋅⋅⋅+,即可计算出m 的值.【详解】解:∵当x m ≥时,()()x y x m x m =---=()()x m x m ---=0; 当x m <时,()()x y x m x m =---=()()m x x m ---=() 2m x -; ∵()()()()1232019y y y y +++⋅⋅⋅⋅+=2(m -1)+2(m -2)+2(m -3)+……+2[m -(m -1)]+2(m -m)+0+……+0=m(m -1) ∵m(m -1)=110,m 为正整数 ∵m=11. 【点睛】本题考查了绝对值的应用,分类讨论是关键.10.已知正整数a ,b ,满足220b b -+-=,0a b a b -+-=且a b ,则ab 的值为__________.【分析】根据绝对值的定义确定b 的范围,判断出a 的范围,再确定a 、b 的值,最后相乘即可. 【详解】解:∵220b b -+-= ∵2=2b 0b --≥,即b≤2 ∵b=1或b=2 又∵0a b a b -+-= ∵b-a 0a b -=≥,即a≤b ∵ab∵b=2,a=1 所以ab=2. 【点睛】考查绝对值的相关性质;通过确定a ,b 的范围确定a 、b 的值是解决本题的难点.11.若方程22|4|221||x x x x a -+-+-+=总有解,则a 的取值范围是___.【答案】a≥5. 【分析】根据线段上的点到线段两端点的距离的和最小,求出224221x x x x -+-+-+ 的最小值,可得答案. 【详解】解:∵224221x x x x -+-+-+可以看做22221x x -+-与4x x -+的和,∵22221x x -+-可以看作数轴上表示数2x 的点与表示2, 2, 1的点之间的距离求和,故当2=2x 时,22221x x -+-取得最小值1,此时=x ;4x x -+可以看作数轴上表示数x 的点与表示4, 0的点之间的距离求和,当04x << 时,4x x -+取得最小值4∵当x 224221x x x x -+-+-+有最小值为1+4=5, ∵当a≥5时,方程22422a 1=x x x x -+-+-+总有解.∵则a 的取值范围是:a≥5 故答案为: a≥5. 【点睛】考查了绝对值的应用,利用了两点之间的距离公式,注意224221x x x x -+-+-+可以看做数轴上表示数x 或2x 的点与表示4, 2, 2, 1, 0的点之间的距离求和,求得最小值,即可得a 的取值范围.12.已知x ,y 均为整数,且|x ﹣y |+|x ﹣3|=1,则x +y 的值为_____. 【答案】5或7或8或4 【分析】由绝对值的非负性质可知|x ﹣y |和|x ﹣3|这两个非负整数一个为1,一个为0,即1x y -=,30x -=或31x -=,0x y -=,然后解绝对值方程组即可,.【详解】解:因为x ,y 均为整数,31x y x -+-=, 可得:1x y -=,30x -=或31x -=,0x y -=, ∵当30x -=,1x y -=,可得:3x =,2y =,则5x y +=; 当30x -=,1x y -=-,可得:3x =,4y =,则7x y +=; 当31x -=,0x y -=,可得:4x =,4y =,则8x y +=; 当31x -=-,0x y -=,可得:2x =,2y =,则4x y +=, 故答案为5或7或8或4. 【点睛】本题考查了绝对值性质,由非负整数和为1得出加数分别为1和0,然后分类讨论解含绝对值的方程是关键.13.代数式|1008||504||1007|x x x ++++-的最小值是_____. 【答案】2015 【分析】根据两点之间的距离用绝对值的表达式,由图形确定出所求的最小值即可. 【详解】 如图:则代数式的最小值为|1007﹣(﹣1008)|=2015. 故答案为:2015. 【点睛】本题考查了绝对值及数轴,解题的关键是理解两点间的距离表达式.14.如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.【答案】﹣2 【分析】根据图示,点A 和点C 之间的距离是6,据此求出点C 表示的数,即可求得点B 表示的数. 【详解】∵点A 和点C 所表示的两个数互为相反数,点A 和点C 之间的距离是6 ∵点C 表示的数是﹣3,∵点B 与点C 之间的距离是1,且点B 在点C 右侧, ∵点B 表示的数是﹣2 故答案为﹣2 【点睛】本题为考查数轴和相反数的综合题,稍有难度,根据题意认真分析,熟练掌握数轴和相反数的相关知识点是解答本题的关键.三、解答题15.已知2(5)-40a b ++=.(1)求出,a b 并将这两个数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离记作AB .定义:AB a b =-.设点P 在数轴上对应的数为x . ① 当13PA PB +=时,直接写出x 的值 . ② 设PA PB m +=,借助数轴求出m 的最小取值及对应的x .【答案】(1)a=-5,b=4,数轴表示见解析;(2)①-7或6;②m 最小值为9,-5≤m≤4 【分析】(1)根据非负数的性质得到a 和b 的值,在数轴上表示即可;(2)①根据题意可将13PA PB +=理解为点P 到A 和到B 的距离之和为13,再通过计算得到点P 表示的数;②根据题意得到当点P 在线段AB 上时,m 值最小,从而求解. 【详解】解:(1)∵2(5)-40a b ++=,∵a+5=0,b -4=0, ∵a=-5,b=4, 数轴表示如下:(2)①∵13PA PB +=, ∵5413x x ++-=,即点P 到A 和到B 的距离之和为13, ∵AB=4-(-5)=9, (13-9)÷2=2,∵点P 表示的数为-7或6; ②∵PA PB m +=,即点P 到A 和到B 的距离之和为m , 根据数轴可知:当点P 在线段AB 上时, m 最小,且为9,此时-5≤m≤4. 【点睛】本题考查了非负数的性质,数轴上两点之间的距离,绝对值的意义,解题关键是理解题目的意思,结合数轴解决问题.16.点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题: (1)数轴上表示1和3两点之间的距离 .(2)数轴上表示﹣12和﹣6的两点之间的距离是 . (3)数轴上表示x 和1的两点之间的距离表示为 . (4)若x 表示一个有理数,则|x ﹣2|+|x +4|最小值为 .【答案】(1)2;(2)6;(3)|1|x -;(4)6 【分析】(1)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果. (2)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果. (3)依据在数轴上A 、B 两点之间的距离||AB a b =-,即可得到结果.(4)判断出x 的点在表示4-和2的两点之间有最小值,即可得到|2||4|x x -++的最小值值即为|42|--的值. 【详解】解:(1)数轴上表示1和3两点之间的距离为|31|2-=; (2)数轴上表示12-和6-的两点之间的距离是|6(12)|6---=;(3)数轴上表示x 和1的两点之间的距离表示为|1|x -; (4)42x -<<时|2||4|x x -++有最小值, ∴最小值|42|6=--=,故答案为:2,6,|1|x -,6. 【点睛】本题考查的是绝对值的几何意义,两点间的距离,理解绝对值的几何意义是解决问题的关键. 17.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离. 例1:已知|x|=2,求x 的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x 的值为-2或2. 例2:已知|x -1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x 的值为3或-1 仿照材料中的解法,求下列各式中x 的值. (1)|x|=3; (2)|x -(-2)|=4.(3)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x -2|=5,这样的整数是_______. 【答案】(1)-3或3;(2)2或-6;(3)-3,-2,-1,0,1,2 【分析】(1)|x|可表示数轴上表示x 的点到原点的距离,据此求解可得; (2)|x -(-2)|可表示数轴上与-2对应的点的距离,据此求解可得;(3)由于|x+3|表示x 与-3两数在数轴上所对的两点之间的距离,|x -2|表示x 与2两数在数轴上所对的两点之间的距离,而|x+3|+|x -2|=5,则x 表示的点在-3与2表示的点之间. 【详解】(1)在数轴上与原点距离为3的点表示的数为-3和3, ∵x 的值为:-3或3;(2)在数轴上与-2对应的点的距离为4的点表示的数为2和-6, ∵x 的值为:2或-6;(3)∵|x+3|表示x 与-3两数在数轴上所对的两点之间的距离,|x -2|表示x 与2两数在数轴上所对的两点之间的距离,而-3与2两数在数轴上所对的两点之间的距离为2-(-3)=5,|x+3|+|x -2|=5, ∵-3≤x≤2.∵使得|x+3|+|x -2|=5这样的整数是:-3,-2,-1,0,1,2.故答案为:-3,-2,-1,0,1,2.【点睛】本题考查了绝对值和数轴,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点.18.同学们都知道,│4-(-2)│表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理│x-3│也可理解为x与3两数在数轴上所对应的两点之间的距离,试探索:(l)在数轴上表示x和-1两点之间的距离表示为.如果它们的距离为3,那么x=(2)找出所有符合条件的整数x,使│x-4│+│x+2│=6成立.(3)由以上探索猜想,对于任何有理数为x,│x-3│+│x-6│是否有最小值?如果有,写出最小值;如果没有,说明理由.x+;-4或2;(2)符合条件的整数x有:-2,-1,0,1,2,3,4;(3)有,【答案】(1)1最小值为3【分析】(1)根据题干中的说明可得结果;(2)要x的整数值可以进行分段计算,令x-4=0或x+2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【详解】解:(1)由题意可得:x+,数轴上表示x和-1两点之间的距离表示为1如果它们的距离为3,那么x=-4或2,x+;-4或2;故答案为:1(2)令x-4=0或x+2=0时,则x=4或x=-2,当x<-2时,∵-(x-4)-(x+2)=6,-x+4-x-2=6,x=-2(范围内不成立),当-2<x<4时,∵-(x-4)+(x+2)=6,-x+4+x+2=6,6=6,∵x=-1,0,1,2,3,当x>4时,∵(x-4)+(x+2)=6,2x=8,x=4,x=4(范围内不成立),∵综上所述,符合条件的整数x 有:-2,-1,0,1,2,3,4;(3)由(2)的探索,设3、6、x 在数轴上所对应的点分别为A 、B 、X ,则|x -3|+|x -6|=AX+BX ,AB=|6-3|=3,∵AX+BX≥AB ,∵|x -3|+|x -6|≥3,当X 在A 、B 之间时成立.∵对于任何有理数x ,|x -3|+|x -6|有最小值为3.【点睛】本题考查的是绝对值的概念、几何意义、数轴等知识,在解决问题的过程中用到了分类讨论及数形结合的思想,是解决本题的关键.19.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)若()2230a b -++=,计算a b 的值.(2)当a ,b 在数轴上的位置如图所示,化简a b .(3)已知0a >,()8a a a =,求a 的值.【答案】(1)6;(2)-2b ;(3)2【分析】(1)先求出a 、b 的值,再根据题目中的规定,可以求得所求式子的值;(2)根据数轴可以判断a 、b 的正负和它们绝对值的大小,从而可以解答本题;(3)先表示出a a ,再表示()a a a ,根据题意和题目中的式子可以求得a 的值. 【详解】解:(1)∵()2230a b -++=,∵a=2,b=-3 ∵a∵b=|a+b|+|a -b|,∵a b =2∵(-3)=|2+(-3)|+|2-(-3)|=1+5=6;(2)由数轴可得,b <0<a ,|b|>|a|,∵a∵b=|a+b|+|a-b|=-(a+b)+(a-b)=-a-b+a-b=-2b;(3)∵a>0,(a∵a)∵a=8,∵(|a+a|+|a-a|)∵a=8,∵2a∵a=8,∵|2a+a|+|2a-a|=8,∵3a+a=8,解得,a=2.【点睛】本题考查有理数的混合运算,解答本题的关键是理解新运算“”的法则,明确有理数混合运算的计算方法.20.观察下列每对数在数轴上的对应点间的距离4与﹣2,3与5,﹣2与﹣6,﹣4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A表示的数为x,点B表示的数为﹣1,则A与B两点间的距离可以表示为;若|x﹣6|=3,则x=.(3)结合数轴求出|x﹣2|+|x+1|的最小值为,此时符合条件的整数x为.【答案】(1)所得距离与这两个数的差的绝对值相等;(2)|x+1|;x=9或3;(3)3;-1,0,1,2【分析】(1)直接借助数轴可以得出;(2)分三种情况进行讨论.当x<-1时,距离为-x-1,当-1<x<0时,距离为x+1,当x>0,距离为x+1;若|x-6|=3,则x-6=±3,求出x即可;(3)为x为有理数,所以要分类讨论x-1与x+3的正负,再去掉绝对值符号再计算.【详解】解:(1)由观察可知:所得距离与这两个数的差的绝对值相等;故答案为:所得距离与这两个数的差的绝对值相等;(2)结合数轴,我们发现应分以下三种情况进行讨论.当x<-1时,距离为-x-1,当-1<x <0时,距离为x+1,当x >0,距离为x+1.综上,我们得到A 与B 两点间的距离可以表示为|x+1|;若|x -6|=3,则x -6=±3,x=9或3;故答案为:|x+1|;x=9或3;(3)因为x 为有理数,就是说x 可以为正数,也可以为负数,也可以为0,所以要分情况讨论.①当x <-1时,x -2<0,x+1<0,所以|x -1|+|x+3|=-(x -2)-(x+1)=-2x -1>3;②当-1≤x <2时,x -2<0,x+1≥0,所以|x -1|+|x+3|=-(x -2)+(x+1)=3;③当x≥2时,x -2≥0,x+1>0,所以|x -2|+|x+1|=(x -2)+(x+1)=2x -1≥3;综上所述,当x=-1,0,1,2,所以|x -2|+|x+1|的最小值是3.故答案为:3;-1,0,1,2.【点睛】本题考查了数轴,借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题.这种相互转化在解决某些问题时可以带来方便.事实上,|A -B|表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离.一、单选题 1.(已知非零实数a ,b ,c ,满足1b a c a b c ++=-,则||abc abc 等于( ) A .±1B .﹣1C .0D .1【答案】D【详解】 1b a c a b c++=-,∴a,b,c 两个是负数,一个是正数,0abc ∴>, 1abcabc ∴=.选D.点睛:(1)b a c a b c++需要分类讨论,a,b,c 同正,同负,两正一负,两负一正. (2)化简绝对值公式:|x |,0,0x x x x -<⎧=⎨≥⎩.2.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .4 【答案】A【分析】根据绝对值非负数的性质解答即可.【详解】解:∵|x −1|≥0,∵当|x −1|=0,即x =1时式子|x −1|-3取最小值.故选A .【点睛】本题主要考查绝对值的性质.理解一个数的绝对值是非负数这一性质是解题的关键. 3.满足27218a a ++-= 的整数 a 的个数有 ( )A .9 个B .8 个C .5 个D .4 个【答案】D【解析】令2a +7=0,2a -1=0,解得,72a =-,12a =, 1)当72a ≤-时, 27218a a ---+=,72a =-.舍去. 2)7122a -<<时, 27218a a +--=,0=0,所以a 为任何数,所以a 为-3,-2,-1,0.3)12a ≥-时,27218a a ++-=, 12a = ,舍去. 综上,a 为-3,-2,-1,0.选D.点睛:绝对值问题,要“找零点,分区间,分类讨论”,也就是令绝对值内为0,然后分别讨论,去绝对值利用公式x =,0,0x x x x ≥⎧⎨-<⎩,具体问题,往往把x 看做一个式子. 4.如果a 表示有理数,那么a +1,|a +1|,(a +1),|a |+1中肯定为正数的有( ) A .1个 B .2个 C .3个 D .4个【详解】根据有理数和绝对值的意义,可根据a 的值不确定,知a+1不一定是正数,(a+1)的值不确定,但是|a|≥0,可知|a+1|是正数, |a|+1一定是一个正数.故选A.5.已知a 、b 、c 在数轴上的位置如图所示,试化简|a +b |﹣|b |+|b +c |+|c |的结果是( )A .a +bB .a +b ﹣2cC .﹣a ﹣b ﹣2cD .a +b +2c【答案】C【解析】试题分析:根据数轴上右边的数总是大于左边的数即可判断a 、b 、c 的符号和大小,根据绝对值的性质即可去掉绝对值符号,然后合并同类项即可.解:根据数轴可得b <c <0<a ,且|a |<|b |,则a +b <0,b +c <0.则原式=﹣(a +b )+b ﹣(b +c )﹣c=﹣a ﹣b +b ﹣b ﹣c ﹣c=﹣a ﹣b ﹣2c .故选C .6.如果有理数a 和它的相反数的差的绝对值等于﹣2a ,则( )A .a≤0B .a≥0C .a=0D .任意有理数【答案】A【解析】根据绝对值的定义和性质,可知|a ﹣(﹣a )|=﹣2a ,可得a≤0,故选:A .点睛:本题考查绝对值的定义以及性质,解题的关键是熟练掌握基本概念,属于中考常见题.二、填空题7.若x 是有理数,则24682018x x x x x -+-+-+-+⋯+-的最小值是________.【答案】509040【分析】首先判断出|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣|就是求数轴上某点到2、4、6、…、的距离和的最小值;然后根据某点在a 、b 两点之间时,该点到a 、b 的距离和最小,当点x 在2与之间时,到2和距离和最小;当点在4与2016之间时,到4和2016距离和最小;…,所以当x =1010之间时,算式|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣的值最小,据此求出|x ﹣2|+|x ﹣4|+|x ﹣6|+…+|x ﹣|的最小值是多少即可.解:根据分析,可得当x=1010时,算式|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣的值最小,最小值是:(﹣2)+(2016﹣4)+(2014﹣6)+…+(1010-1010)=2016+2012+2008+…+0=(2016+0)×505÷2=2016×505÷2=509040∵|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣|的最小值是509040.【点睛】此题主要考查了绝对值的几何意义:|x|表示数轴上表示x的点到原点之间的距离,要熟练掌握,解答此题的关键是要明确:|x-a|表示数轴上表示x的点到表示a的点之间的距离.8.x是有理数,则10095221221x x-++的最小值是________.【答案】15 17【分析】本题分3种情况①当x<-95221时;②当-95221≤x≤100221时;③当x>100221时进行讨论,从而得到所求的结果.【详解】解:分三种情况讨论:(1)当x<-95221时,原式=-(x-100221)-(x+95221)=-x+100221-x-95221=-2x+5221>-2⨯(-95221)+5221=195221=1517;(2)当-95221≤x≤100221时,原式=-(x-100221)+x+95221=-x+100221+x+95221=195221=1517;(3)当x>100221时,原式=x-100221+x+95221=2x-5221>2×100221-5221=95221=1517;综合(1),(2),(3),可得最小值是15 17.故答案为1517. 【点睛】本题主要考查了绝对值的运用,关键是讨论时要讨论所有的情况,不能缺少一个. 9.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.【答案】3或4-【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;∵满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.10.如图A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3a b +=则原点可能是_________.【答案】B 或E【分析】先利用数轴特点确定a ,b 的关系从而求出a ,b 的值,确定原点.【详解】解:当为A 为原点时,|a|+|b|>3,当B 为原点时,|a|+|b|可能等于3,当C为原点时,|a|+|b|<3,当D为原点时,|a|+|b|<3,当E为原点时,|a|+|b|可能等于3.故答案为:B或E.【点睛】本题主要考查的是数轴与绝对值,分类讨论是解题的关键.11.①若2a与1-a互为相反数,则a=_________.②已知|a|=3,|b-1|=4,|a-b|=b-a,则a+b=_____________.【答案】-1 8或2或-6【分析】①根据互为相反数的两数和为0,列等式求解;②根据绝对值性质求出a,b值,再根据a b b a-=-确定a≤b,根据此关系确定a,b的值求解即可.【详解】解:①∵2a与1-a互为相反数,∵2a+(1-a)=0∵a=-1.②∵|a|=3,∵a=3或a= -3;∵|b-1|=4,∵b-1=4或b-1= -4,∵b=5或b= -3.∵|a-b|=b-a,∵a-b≤0,∵a≤b.∵a=3,b=5或a= -3,b=5或a= -3,b= -3,∵a+b=3+5=8或a+b=(-3)+5=2或a+b=(-3)+(-3)= -6即a+b的值为8或2或-6故答案为:①-1;②8或2或-6【点睛】本题考查相反数和绝对值的性质以及简单代数式求值问题,掌握绝对值的性质是解答此题的关键.12.已知a、b、c满足(a+b)(b+c)(c+a)=0,且abc<0,若a b cma b c=++,n2=且m n m n+=--,则3m2n+4mn2=____.【答案】10.【分析】根据(a+b)(b+c)(c+a)=0,可知a 、b 、c 中有2个数互为相反数,另一个为正数,故1111a b c m a b c=++=+-=,由n 2=且m n m n +=--,可求出n 的值,最终2234m n mn +即可得解。
绝对值贯穿有理数经典题型(八大题型)(原卷版)
专题1.1 绝对值贯穿有理数经典题型(八大题型)【题型1 利用绝对值的性质化简或求值】 【题型2 根据绝对值的非负性求值】 【题型3 根据参数的取值范围化简绝对值】 【题型4 根据绝对值的定义判断正误】 【题型5 根据绝对值的意义求取值范围】 【题型6 绝对值中分类讨论aa问题】 【题型7 绝对值中的分类讨论之多绝对值问题】 【题型8 绝对值中最值问题】【题型1 利用绝对值的性质化简或求值】【典例1】有理数a ,b ,c 在数轴上对应点的位置如图所示.(1)在数轴上表示﹣c ,|b |.(2)试把﹣c ,b ,0,a ,|b |这五个数从小到大用“<”连接起来; (3)化简|a +b |﹣|a ﹣c |﹣2|b +c |.【变式1-1】有理数a ,b ,c 在数轴上对应的点如图所示,化简|b +a |+|a +c |+|c ﹣b |的结果是( )A .2b ﹣2cB .2c ﹣2bC .2bD .﹣2c【变式1-2】a 、b 、c 三个数在数轴上位置如图所示,且|a |=|b |(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【题型2 根据绝对值的非负性求值】【典例2】已知|a−|+|b+|+|c+|=0,求a﹣|b|+(﹣c)的值.【变式2-1】已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|+3a.【变式2-3】若|x﹣2|+2|y+3|+3|z﹣5|=0.计算:(1)x,y,z的值.(2)求|x|+|y|﹣|z|的值.【变式2-4】已知m,n满足|m﹣2|+|n﹣3|=0,求2m+n的值.【变式2-5】已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.【变式2-6】若|a+2|+|b﹣5|=0,求的值.【变式2-7】若a、b都是有理数,且|ab﹣2|+|a﹣1|=0,求++ +……+的值.【题型3 根据参数的取值范围化简绝对值】【典例3】已知1<a<4,则|4﹣a|+|1﹣a|的化简结果为()A.5﹣2a B.﹣3C.2a﹣5D.3【变式3-1】已知1<x<2,则|x﹣3|+|1﹣x|等于()A.﹣2x B.2C.2x D.﹣2【变式3-2】若1<x<2,则化简|x+1|﹣|x﹣2|的结果为()A.3B.﹣3C.2x﹣1D.1﹣2x【变式3-3】已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【变式3-4】若a<0,则化简|3﹣a|+|2a﹣1|的结果为.【题型4 根据绝对值的定义判断正误】、【典例4】在实数a,b,c中,若a+b=0,b﹣c>c﹣a>0,则下列结论:①|a|>|b |,②a >0,③b <0,④c <0,正确的个数有( ) A .1个B .2个C .3个D .4个【变式4-1】将符号语言“|a |=a (a ≥0)”转化为文字表达,正确的是( ) A .一个数的绝对值等于它本身 B .负数的绝对值等于它的相反数C .非负数的绝对值等于它本身D .0的绝对值等于0【变式4-2】已知a 、b 、c 的大致位置如图所示:化简|a +c |﹣|a +b |的结果是( )A .2a +b +cB .b ﹣cC .c ﹣bD .2a ﹣b ﹣c【变式4-3】下列说法中正确的是( ) A .两个负数中,绝对值大的数就大 B .两个数中,绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【题型5 根据绝对值的意义求取值范围】【典例5】若|5﹣x |=x ﹣5,则x 的取值范围为( ) A .x >5B .x ≥5C .x <5D .x ≤5【变式5-1】已知|a |=﹣a ,则化简|a ﹣1|﹣|a ﹣2|所得的结果是( ) A .﹣1B .1C .2a ﹣3D .3﹣2a【变式5-2】若|1﹣a |=a ﹣1,则a 的取值范围是( ) A .a >1B .a ≥1C .a <1D .a ≤1【变式5-3】若不等式|x ﹣2|+|x +3|+|x ﹣1|+|x +1|≥a 对一切数x 都成立,则a 的取值范围是 .【题型6 绝对值中分类讨论aa问题】 【典例6】计算:(abc ≠0)= .【变式6-1】若n=,abc>0,则n的值为.【变式6-2】已知abc>0,则式子:=()A.3B.﹣3或1C.﹣1或3D.1【变式6-3】已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5B.0或±1C.0或±5D.±1或±5【变式6-4】已知:,且abc>0,a+b+c=0.则m 共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.1【变式6-5】已知a、b、c均为不等于0的有理数,则的值为.【变式6-7】已知a,b,c都不等于零,且++﹣的最大值是m,最小值为n,求的值.【变式6-8】在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+1=3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.【变式6-9】阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.【题型7 绝对值中的分类讨论之多绝对值问题】【典例7】(2022•河北模拟)(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使|x+1|+|x﹣3|=x?(3)是否存在整数x,使|x﹣4|+|x﹣3|+|x+3|+|x+4|=14?如果存在,求出所有的整数x;如果不存在,说明理由.【变式7-1】(2022春•宝山区校级月考)已知|a﹣1|+|a﹣4|=3,则a的取值范围为.【变式7-2】(2022秋•玉门市期末)在数轴上有四个互不相等的有理数a、b、c、d,若|a﹣b|+|b﹣c|=c﹣a,设d在a、c之间,则|a﹣d|+|d﹣c|+|c﹣b|﹣|a﹣c|=()A.d﹣b B.c﹣b C.d﹣c D.d﹣a【题型8绝对值中最值问题】【典例8】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=1时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.【变式8-1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.【变式8-2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.【变式8-3】阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x =﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.。
专题12绝对值-重难点题型(举一反三)(原卷版)
专题2.6 绝对值-重难点题型【题型1 绝对值的定义】【例1】(2020秋•郯城县期中)下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个B.2个C.1个D.0个【变式1-1】(2020秋•吴江区期中)若|x|=﹣(﹣8),则x=.【变式1-2】(2020秋•长安区校级月考)已知|a|=2,|b|=3,且b<a,试求a、b的值.【变式1-3】(2020春•怀宁县期末)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n【题型2 绝对值的化简求值】【例2】(2021•成都校级期中)化简|π﹣4|+|3﹣π|= .【变式2-1】(2020秋•澧县校级期中)若﹣1<x <4,化简|x +1|+|4﹣x |.【变式2-2】(2020秋•邗江区校级月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7;根据上面的规律,把下列各式写成去掉绝对值符号的形式:(1)|7﹣21|= ;(2)|−12+0.8|= ;(3)|717−718|= ;(4)用合理的方法计算:|15−12014|+|12014−12|﹣|−12|+11007. 【变式2-3】(2020秋•锦江区校级期末)若x =120192020,则|x |+|x ﹣1|+|x ﹣2|+|x ﹣3|= .【题型3 绝对值的非负性】【例3】(2020秋•达孜区期末)已知|x ﹣4|+|5﹣y |=0,则12(x +y )的值为 . 【变式3-1】(2020秋•青羊区校级月考)当a = 时,|1﹣a |+2会有最小值,且最小值是 .【变式3-2】(2020秋•江岸区校级月考)若|2x ﹣4|与|y ﹣3|互为相反数,求3x ﹣y 的值.【变式3-3】(2020秋•灞桥区校级月考)已知|a -3|+|b ﹣5|=0,x ,y 互为相反数,求3(x +y )﹣a +2b 的值.【题型4 与绝对值有关的求值问题】【例4】(2020秋•海安县月考)列式计算:﹣213的相反数比−23的绝对值的相反数大多少? 【变式4-1】(2020秋•盐津县校级月考)已知a =﹣2,b =3,c =﹣7,d =616,回答下列问题: (1)求a 、b 的相反数;(2)求c 、d 的绝对值;(3)求a +b +c +d 的值.【变式4-2】(2020秋•盐城月考)|a |=2,b 与﹣3互为相反数,c 是绝对值最小的有理数,a <c ,求a ,b ,c 的值.【变式4-3】(2020秋•文登区校级期中)设a 是绝对值大于1而小于5的所有整数的和,b 是不大于2的非负整数的和,求a 、b ,以及b ﹣a 的相反数.【题型5 绝对值在实际问题中的应用】【例5】(2020秋•海淀区校级期末)厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是 .【变式5-1】(2020秋•河源校级月考)一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A 1,A 2,A 3,A 4,A 5表示,如图:(1)站在点 上的机器人表示的数的绝对值最大,站在点 和点 、 和 上的机器人表示的数到原点距离相等;(2)怎样将点A 3移动,使它先到达A 2点,再到达A 5点,请用文字语言说明.(3)若原点是零件供应点,那5个机器人分别到达供应点取货的总路程是多少?【变式5-2】(2020秋•临沭县期中)如果一个物体某个量的实际值为a ,测量值为b ,我们把|a ﹣b |称为绝对误差,把|a−b|a 称为相对误差.例如,某个零件的实际长度为10cm ,测量得9.8cm ,那么测量的绝对误差为0.2cm ,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b 是 .【变式5-3】(2020秋•宽城区期中)已知零件的标准直径是100mm ,超过标准直径长度的数量(mm )记作正数,不足标准直径长度的数量(mm )记作负数,检验员某次抽查了五件样品,检查结果如下: 序号1 2 3 4 5 直径长度( mm )+0.1 ﹣0.15 0.2 ﹣0.05 +0.25(1)指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm 之内是正品,误差的绝对值在0.18~0.22mm 之间是次品,误差的绝对值超过0.22mm 是废品,那么这五件样品分别属于哪类产品? 【题型6 绝对值的几何意义】【例6】(2020秋•随州校级月考)同学们都知道,|3﹣(﹣1)|表示3与﹣1之差的绝对值,实际上也可理解为3与﹣1两数在数轴上所对的两点之间的距离.试探索:(1)求|3﹣(﹣1)|= .(2)找出所有符合条件的整数x ,使得|x ﹣3|+|x ﹣(﹣1)|=4,这样的整数是 .【变式6-1】(2020秋•抚顺县期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.(2)如果|x +1|=3,那么x = ;(3)若|a ﹣3|=2,|b +2|=1,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|= .【变式6-2】(2020秋•思明区校级期末)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式6-3】(2020秋•龙泉驿区期中)我们知道,在数轴上,|a|表示数a到原点的距离.进一步地,点A,B在数轴上分别表示有理数a,b,那么A,B两点之间的距离就表示为|a﹣b|;反过来,|a﹣b|也就表示A,B两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题.例,若|x+5|=2,那么x为:①|x+5|=2,即|x﹣(﹣5)|=2.文字语言:数轴上什么数到﹣5的距离等于2.②图形语言:③答案:x为﹣7和﹣3.请你模仿上题的①②③,完成下列各题:(1)若|x+4|=|x﹣2|,求x的值;①文字语言:②图形语言:③答案:(2)|x﹣3|﹣|x|=2时,求x的值:①文字语言:②图形语言:③答案:(3)|x﹣1|+|x﹣3|>4.求x的取值范围:①文字语言:②图形语言:③答案:(4)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.①文字语言:②图形语言:③答案:。
(完整版)关于绝对值的几种题型与解题技巧
关于绝对值的几种题型及解题技巧所谓绝对值就是只有单纯的数值而没有负号。
即0≥a 。
但是,绝对值里面的数值可以是正数也可以是负数。
怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。
所以,0≥a ,而a 则有两种可能:o a 和0 a 。
如:5=a ,则5=a 和5-=a 。
合并写成:5±=a 。
于是我们得到这样一个性质:a很多同学无法理解,为什么0 a 时,开出来的时候一定要添加一个“负号”呢?a -。
因为此时0 a ,也就是说a 是一个负数,负数乘以符号就是正号了。
如2)2(=--。
因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。
例如:0 b a -,则)(b a b a --=-。
绝对值的题解始终围绕绝对值的性质来展开的。
我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。
绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a >0)a 0 a0 0=a a - 0 a(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0);(7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|一:比较大小典型题型:【1】已知a 、b 为有理数,且0 a ,0 b ,b a ,则 ( )A :a b b a -- ;B :a b a b -- ;C :a b b a --;D :a a b b --这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。
绝对值经典题型
题型一:定义考察正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|-3|的相反数是.【解析】:|-3|的绝对值为3,3的相反数是-3.例2.绝对值大于2小于5的所有整数有.【解析】:绝对值大于2小于5的整数有-4、-3、3、4.例3.已知|X|= 4,则X= ; 已知|-X|= 5,则X= ;【解析】:(1)绝对值等于4的数有±4;(2)虽然|-X|有个“-”,但带有绝对值,这个“-”可以直接去掉,可以同(1)一样,绝对值等于5的数有±5.例4.已知|X-5|=2,则X= .【解析】:解法1:可以把绝对值里面的数当作一个整体,(X-5)的绝对值为2,则X-5=±2解得X=7或X=3解法2:利用绝对值的几何意义来解题:|X-5|=2,一个数到5的距离为2,则这个数为3或者7例5.下列语句:○1一个数的绝对值一定是正数;○2-a 一定是一个负数;○3没有绝对值为-3 的数;○4若|a| =a,则a 是一个正数;○5在原点左边离原点越远的数就越小.正确的有( )个A.0B.3C.2D.4【解析】:○1一个数的绝对值的绝对值可能是正数也肯是负数;○2一个字母前面带“-”,不能确认这个字母是正是负还是0,所以带上“-”后也不能确定是正是负还是0;○3一个数的绝对值只可能≥0○4一个数的绝对值等于它本身,这是数可能是正数也有可能是0○5在原点左边离原点越远的数就越小,在原点右边离原点越远数就越大例6.若|a| = -a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【解析】:一个数的绝对值等于它的相反数,它可能是负数也可能是0题型二:非负性一个数的绝对值≥0例1.已知|a+3|+|c-2|=0,则a+c= .【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a+3=0,c-2=0 → a=-3,c=2,∴a+c=-1例2.若|x+3|+(y-1)2 = 0,求xy的值.【解析】:一个数的绝对值≥0,一个数的平方也是≥0,两个≥0的数相加等于0,只可能是它们分别为0,即: x+3=0,y-1=0,∴x=-3,y=1;∴xy=-3例3.若|2x-4|与|y-3|互为相反数,求3x-y的值.【解析】:一个数的绝对值≥0,两个绝对值互为相反数,只有可能两者都为0,因为0的相反数仍为0∴2x-4=0,y-3=0;∴x=2,y=3;∴3x-y=9例4.已知|a-3|+|b -5|=0,x,y互为相反数,求3(x+y) -a+2b的值.【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a-3=0,b-5=0,a=3,b=5;∵x,y互为相反数,∴x+y=0所以3(x+y) -a+2b=7题型三:去绝对值正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|3-π|+|π-4|= .【解析】:要想去绝对值,得先搞清楚绝对值里面的正负,这样我们才能正确把绝对值去掉.因为3-π<0,π-4<0,所以|3-π|=π-3,|π- 4|=4 -π所以|3-π|+|π-4|=1例2.如图所示,则|a-b|-|2c+b|+|a+c|= .【解析】:从图中可知c < b < c,|c|>|a|>|b|a-b>0,2c+b<0,a+c<0|a-b|=a-b,|2c+b|=-(2c+b),|a+c|=-(a+c)所以|a-b|-|2c+b|+|a+c|=a - b --(2c+b)-(a+c)=a-b+2c+b-a-c=c> 0,化简|a|-|b|+|a+b|+|ab|.例3.若a<-b,ab【解析】:因为a> 0,所以○1a>0,b>0;○2a<0,b<0b○1当a>0,b>0时,与a<-b矛盾,所以这种情况不存在○2当a<0,b<0时,|a|-|b|+|a+b|+|ab|=-a+b-(a+b)+ab=-2a+ab 例4.若1<a<5,则|1-a|+|5-a|= .【解析】:因为1<a<5,所以1-a<0,5-a>0所以|1-a|+|5-a|= -(1-a)+(5-a)=4例5.若|m-n|=n-m,且|m|=4,|n|=4,则m-n= .熟记:|a|=a,则a≥0,|a|=-a,则a≤0切记别把“0”漏掉【解析】:因为|m-n|=n-m,所以m-n≤0○1第一种情况:m-n=0;○2第二种情况:m-n<0;又因为|m|=4,|n|=4所以m=-4,n=4即:m-n=-8例6.若x<-2,则y=|1-|1+x||等于.提示:多个绝对的情况,由内到外依次去绝对值【解析】:∵x<-2,∴1+x<0原式=|1-[-(1+x)]=|1+1+x|=|2+x|=-(2+x)题型四:分类讨论例1.若|a|=5,|b|=7,且|a+b|=a+b,则a-b= . 【解析】:∵|a+b|=a+b∴a+b≥0又∵|a|=5,|b|=7∴a=±5,b=7(负舍)∴a-b=-2或a-b=-12例2.若a>0,则|a|a = ,若a<0,则|a|a= .【解析】:○1∵a>0,∴|a|=a,∴|a|a = aa= 1;○2∵a<0,∴|a|=-a,∴|a|a = −aa= -1;例3.已知abc≠0,求|a|a + |b|b+ |c|c=【解析】:○1当a、b、c没有负数时,则原式=3○2当a、b、c有一个负数时,则原式=-1+1+1=1○3当a、b、c有两个负数时,则原式=-1-1+1=-1○4当a、b、c有全是负数时,则原式=-1-1-1=-3例4.若|ab|ab =1,则|a|a+ |b|b=【解析】:∵|ab|ab=1,∴a,b同号∴○1当a,b大于0时,原式=2○2当a,b小于0时,原式=-2题型5:零点分段零点:令绝对值等于0的x值,称为该绝对值的零点.步骤:○1找出每一个绝对值的零点;○2根据零点值给x分段;○3在每一段所属范围内,化简绝对值.例1.化简|x-1|+|x-4|【解析】:零点分别为1和4.○1当x <1时,原式=1-x+4-x=5-2x○2当1≤x≤4时,原式=x-1+4-x=3○3当x >4时,原式=x-1+x-4=2x-55-2x(x <1)|x-1|+|x-4|= 3 (1≤x≤4)2x-5(x >4)题型六:绝对值方程常用公式:若|a|=|b|,则a=b或a=-b步骤:○1根据绝时位内的正员分类,并去绝对值○2解出每一类对应的程○3检验方程的解是符合分类的范围要求例1.解方程:|2x-1|=|x+2|解:2x-1=±(x+2)○1当2x-1=x+2x=3○2当2x-1= -(x+2)2x-1=-x-23x=-1x= -13例2.解方程:|x-1|=2x-5解:x-1=±(2x-5)○1当x-1=2x-5x=4○2当x-1=-(2x-5)x-1= -2x+5X=2题型七:最值问题几何意义:|a-b|表示数轴上,a到b的距离Eg.|x-2|表示数轴上x到2的距离|x+3|表示数轴上x到-3的距离例1.当x在什么范围内|x-1|+|x-3|有最小值,最小值又是多少?【解析】:几何意义x到1的距离与与到3的距离之和○1当x<1时,|x-1|+|x-3|=d1+d2>2○2当1≤x≤3时,|x-1|+|x-3|=d1+d2 = 2○3当x>3时,|x-1|+|x-3|=d1+d2>2总结:|x-a|+|x-b|在a,b之间最小为|a-b|例2.求|x+1|+|x-5|+|x-2|的最小值【解析】:几何意义x到-1,5,2的距离之和当x=2时,最小值为6例3.求|x+2|+|x-1|+|x+4|+|x-7|的最小值.当-2≤x≤1时,最小值为14总结:奇为中间点,偶取中间段题型八:定值问题解题思路:让未知数之间相互抵消,则结果就是一个定值.例1. 若|x -1|+|x -2|+ … +|x -2022|的值为定值,求x 的范围.【解析】:偶数个绝对值相加,要想原式为定值,则一半的式子为x ,后一半式子-x ,这样未知数就都抵消了,所得结果为定值.(x -1)+(x -2)+ … +(x -1011)+(-x+1012)+ … +(-x+2022)这样正好将x 都消掉 解:当20222≤x ≤20222 + 1,即1011≤x ≤1012时,原式为定值例2. 若2a+|4-5a|+|1-3a|的值是一个定值,求a 的取值范围.【解析】:要想原式为定值,就要把a 都给抵消掉原式=2a+4-5a+3a -1解: 4-5a ≥0,1-3a ≤0,即:13≤x ≤45 原式=2a+4-5a+3a -1=3。
七年级上册数学绝对值必考八大经典题型pdf
七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。
答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。
答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。
答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。
|2-x|=1表示x与2的距离是1,故x=1或3。
答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。
答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。
答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。
答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)(原卷版)
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)类型一、绝对值的有关概念1.(23-24·吉林延边·阶段练习)在下列数中,绝对值最大的数是()A .0B .1-C .2-D .12.(23-24七年级上·甘肃定西·阶段练习)如果a 的相反数是0.74-,那么a =.3.(23-24七年级上·全国·课后作业)化简下列各数:(1)34--;(2)()0.5-+-⎡⎤⎣⎦;(3)6217⎡⎤⎛⎫-++ ⎪⎢⎥⎝⎭⎣⎦;(4)()2-+.类型二、绝对值的几何意义4.(2024·辽宁抚顺·三模)下列各数在数轴上表示的点距离原点最远的是()A .2-B .1-C .3D .05.(23-24七年级上·四川宜宾·期中)若有理数m 在数轴上的位置如图所示,则化简3m m ++结果是.6.(23-24七年级上·四川成都·阶段练习)已知|2||1|6a a ++-=,则=a ;类型三、绝对值的非负性7.(23-24七年级下·河南南阳·期末)已知3535x x -=-,则x 的取值范围是.8.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是()A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数9.(23-24·黑龙江哈尔滨·期中)已知a 为有理数,则24a -+的最小值为.类型四、利用绝对值进行大小比较10.(24-25七年级上·全国·随堂练习)比较大小:76-65--.11.(24-25七年级上·全国·假期作业)比较下列各对数的大小:①1-与0.01-;②2--与0;③0.3-与13-;④19⎛⎫-- ⎪⎝⎭与110--.12.(23-24七年级上·湖南怀化·期末)已知下列各数,按要求完成各题:4.5+,142--,0, 2.5-,6,5-,()3+-.(1)负数集合:{......};(2)用“<”把它们连接起来是;(3)画出数轴,并把已知各数表示在数轴上.类型五、利用绝对值的非负性求值13.(23-24七年级上·海南省直辖县级单位·期末)如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-14.(23-24·黑龙江哈尔滨·开学考试)已知|3||5|0x y -++=,求||x y +的值.15.(21-22七年级上·陕西·期中)已知(a +2)2+|b ﹣3|=0,c 是最大的负整数,求a 3+a 2bc ﹣12a 的值.类型六、利用绝对值的性质进行化简16.(23-24七年级上·四川南充·阶段练习)若12x <<,求代数式2121x x x x x x---+=--.17.(23-24·上海杨浦·期末)12345x x x x x -+-+-+-+-的最小值为.18.(2024七年级下·北京·专题练习)已知112x -<<,化简|||2|3x x ---=.类型七、绝对值与数轴相关的化简问题19.(24-25七年级上·全国·随堂练习)在数轴上,a ,b ,c 对应的数如图所示,b c =.(1)确定符号:a ______0,b ______0,c _____0,b c +_____0,a c -______0;(2)化简:a c b +-;(3)化简:a a c --.20.(23-24·北京海淀·期中)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.类型八、绝对值方程问题21.(23-24七年级下·河南周口·阶段练习)求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论的思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了.比如,求解方程:32x -=.解:当30x -≥时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =,所以原方程的解是5x =或1x =.请你依据上面的方法,求解方程:3270x --=,得到的解为.22.(23-24七年级下·甘肃天水·期中)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1:解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2:解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;类型九、利用绝对值求式子的最值23.(24-25七年级上·全国·假期作业)数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示x 和3-的两点之间的距离表示为.(2)若34x +=,则x =.(3)32x x --+最大值为,最小值为.24.(23-24七年级上·四川南充·阶段练习)我们知道,a 可以理解为0a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A ,B ,分别用数a ,b 表示,那么A ,B 两点之间的距离为AB a b =-,反过来,式子a b -的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是_________.(2)数轴上点A 用数a 表示,则①若35a -=,那么a 的值是_________.②36a a -++有最小值,最小值是_________;③求123202*********a a a a a a ++++++++++++ 的最小值.类型十、绝对值的实际应用问题25.(23-24·黑龙江哈尔滨·期中)出租车司机李师傅某日上午一直在某市区一条东西方向的公路上营运,共连续运载八批乘客,若按规定向东为正,李师傅营运八批乘客里程数记录如下(单位:千米):8+,6-,3+,4-,8+,4-,5+,3-.(1)将最后一批乘客送到目的地后,李师傅位于第一批乘客出发地多少千米?(2)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元,不超过5千米则收取起步价,求李师傅在这期间一共收入多少元?26.(23-24·黑龙江哈尔滨·阶段练习)刚刚闭幕的第33届“哈洽会”,于2024年5月16日至21日在哈尔滨市举办,中外宾客齐聚冰城.为确保全市道路交通安全有序,哈尔滨市公安交通管理局在开幕式当日对会展中心周边区域,以及部分道路进行交通管制和诱导分流.萧萧作为哈市青年当日也贡献了自己的一份力量.如图是某一条东西方向直线上的公交线路的部分路段,西起A 站,东至L 站,途中共设12个上下车站点,“哈洽会”开幕式当日,萧萧参加该线路上的志愿者服务活动,从C 站出发,最后在某站结束服务活动,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5,3,4,5,8,2,1,3,4,1+-+-+-+--+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次萧萧志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若萧萧开始志愿服务活动时该汽车油量占油箱总量的1170,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?一、单选题1.(22-23七年级上·云南保山·期末)有理数a ,b ,c 在数轴上的位置如图所示,在下列结论中:①0a b ->;②0ab <;③a b a b +=--;④()0b a c ->,正确的个数有()A .4个B .3个C .2个2.(23-24七年级上·浙江台州·期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0ab >B .4b a ->C .2a b a b +=D .()()230a b +-<3.(23-24七年级上·山东德州·期末)有理数a 、b 、c 在数轴上的位置如图所示,则b a b c a c --+--的化简结果为()A .2c -B .2aC .2bD .22b c+4.(18-19七年级上·北京海淀·期末)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是()A .a b +B .a b -C .abD .a b-5.(23-24七年级上·江西抚州·期末)适合|5||3|8a a ++-=的整数a 的值有()A .5个B .7个C .8个D .9个二、填空题6.(23-24七年级上·浙江绍兴)已知a 、b 为整数,202320a b +--=,且b a <,则a 的最小值为.7.(23-24七年级上·湖北省直辖县级单位·阶段练习)若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②a b c =--;③22()a b c =+;④a b c abc a b c abc +++的值为0或2;其中正确的结论是.8.(23-24七年级上·河南南阳·阶段练习)已知x a b ,,为互不相等的三个有理数,且a b >,若式子||||x a x b -+-的最小值为2,则2023a b +-的值为.三、解答题9.(23-24七年级上·江苏南京·阶段练习)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)15+,3-,13+,11-,10+,12-,4+,15-,16+,19-(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由.10.(23-24七年级下·四川资阳·期末)(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:“2a <”可理解为:;我们定义:形如“x m ≤,≥x m ,x m <,x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.例如:315x x -≤+我们将x 作为一个整体,整理得:315x x -≤+3x ≤再根据绝对值的几何意义:表示数x 在数轴上的对应点到原点的距离不大于3,可得:解集为33x -≤≤仿照上述方法,解下列绝对值不等式:①254x x -<-②1312313x x -+<-.11.(23-24六年级下·黑龙江绥化·期中)数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|3-=;数轴上表示数3和1-的两点距离为|3(1)|4--=;由此可知|63|+的意义可理解为数轴上表示数6和3-这两点的距离;|4|x +的意义可理解为数轴上表示数x 和4-这两点的距离;(1)如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A 的距离与P 到B 的距离之和最小?(2)如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C ,,三点的距离之和最小?(3)如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C D ,,,四点的距离之和最小?(4)①|3||4|x x ++-的最小值是_________,此时x 的范围是_________;②|6||3||2|x x x ++++-的最小值是_________,此时x 的值为_________;③|7||4||2||5|x x x x ++++-+-的最小值是_________,此时x 的范围是_________.12.(23-24七年级上·安徽安庆·期中)有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.13.(23-24七年级上·江西上饶·期中)如图所示,数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2021,点B 、点C 两点间的距离BC 的长是1000.(1)若以点C 为原点,直接写出点A ,B 所对应的数;(2)若原点O 在A ,B 两点之间,求a b b c ++-的值;(3)若O 是原点,且18OB =,求a b c +-的值.14.(22-23七年级上·北京·期中)已知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是______;此时x 的取值范围是______.。
绝对值应用的九种常见题型
2.绝对值不大于 3 的所有整数为_0_,__±__1_,__±__2_,__±__3_______.
3.阅读下列材料: 我们知道|x|的几何意义是数轴上数 x 的对应点与原点之间的 距离,即|x|=|x-0|,也可以说,|x|表示数轴上数 x 与数 0 对 应点之间的距离.这个结论可以推广为|x1-x2|表示数轴上数 x1 与数 x2 对应点之间的距离.
(2)表示 m,n 两数的点之间的距离为多少?
表示 m,n 两数的点之间的距离为 n-m=-2.5-(-6)=-2.5 +6=3.5.
9.若a-12+b+13+c-14=0,求 a+b-c 的值.
解:由题意得 a=12,b=-13,c=14. 所以 a+b-c=12-13-14=-112.
10.三个有理数 a,b,c 在数轴上的对应点的位置如图所示,其 中数 a,b 互为相反数.试求解以下问题:
6.若|x-2|=2-x,则 x 的取值范围是___x_≤__2____.
7.把-(-1),-23,--45,0 用“>”号连接,正确的是( C ) A.0>-(-1)>--45>-23 B.0>-(-1)>-23>--45 C.-(-1)>0>-23>--45 D.-(-1)>0>--45>-23
11 见习题 12 见习题 13 见习题
答案显示
1.(1)①正数的绝对值:|+5|=___5___,|12|=_1_2____; ②负数的绝对值:|-7|=__7____,|-15|=_1_5____; ③0 的绝对值:|0|=___0_____.
(2)根据(1)中的规律发现:不论是正数、负数还是 0,它们的绝对 值一定是__非__负__数__,即|a|__≥______0.
(1)|x|=5; 解:数轴上与原点距离为5的点表示的数为-5和5, 所以x的值为5或-5.
函数绝对值(DOC)
辅导讲义154年高三第二次模拟文科)函数D )( 2.+∞对任意两个不相等的正数a、b22+|a b ab22+a b ab[3,)+∞……………………………………………………时,在区间[12],上,1当2当∴综上,解:8 、(2012届高三一模徐汇区理23)对定义在区间D 上的函数()f x ,若存在闭区间[],a b D ⊆和常数C ,使得对任意的[],x a b ∈都有()f x C =,且对任意的[],x a b ∉都有()f x C >恒成立,则称函数()f x 为区间D 上的“U 型”函数。
(1)求证:函数()13f x x x =-+-是R 上的“U 型”函数;(2)设()f x 是(1)中的“U 型”函数,若不等式12()t t f x -+-≤对一切的x R ∈恒成立,求实数t 的取值范围;(3)若函数2()2g x mx x x n =+++是区间[)2,-+∞上的“U 型”函数,求实数m 和n 的值.解:(1)当[]1,3x ∈时,1()132f x x x =-+-= 当[]1,3x ∉时,1()|1||3||13|2f x x x x x =-+->-+-=故存在闭区间[][],1,3a b R =⊆和常数C=2符合条件,…………………………4分 所以函数1()13f x x x =-+-是R 上的“U 型”函数…………………………5分 (2)因为不等式12()t t f x -+-≤对一切的x R ∈恒成立, 所以min 12()t t f x -+-≤…………………………7分 由(1)可知min min ()(13)2f x x x =-+-=…………………8分所以122,t t -+-≤…………………………9分 解得:1522t ≤≤…………………………11分 (3)由“U 型”函数定义知,存在闭区间[][),2,a b ⊆-+∞和常数C ,使得对任意的[],x a b ∈,(23)a -23a =-;,)+∞上递增;21,2aa =当且仅当时,函数y =时,函数(y f x =时,函数y =因为2>a ,所以a a <+22,所以)(x f 在⎥⎦⎤ ⎝⎛+∞-22,a 上单调递增,在⎥⎦⎤⎢⎣⎡+a a ,22上单调递减.…………(5分)综上,函数)(x f 的单调递增区间是⎥⎦⎤⎝⎛+∞-22,a 和),[∞+a , 单调递减区间是⎥⎦⎤⎢⎣⎡+a a ,22.………………(6分) (3)①当22≤≤-a 时,022≤-a ,022≥+a ,所以)(x f 在),(∞+-∞上是增函数,关于x 的方程)()(a f t x f ⋅=不可能有三个不相等的实数解.…………(2分)②当42≤<a 时,由(1)知)(x f 在⎥⎦⎤ ⎝⎛+∞-22,a 和),[∞+a 上分别是增函数,在⎥⎦⎤⎢⎣⎡+a a ,22上是减函数,当且仅当4)2()(22+<⋅<a a f t a 时,方程)()(a f t x f ⋅=有三个不相等的实数解.即⎪⎭⎫⎝⎛+4+=+<<4818)2(12a a a a t .…………(5分) 令aa a g 4)(+=,)(a g 在]4,2(∈a 时是增函数,故5)(max =a g .…………(7分)所以,实数t 的取值范围是⎪⎭⎫⎝⎛89,1.…………(8分)13 已知函数()(),f x x a x a R =⋅-∈。