2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试数学试卷

合集下载

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷

2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8 2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥34.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3896.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=12.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处米.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB 边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.2020-2021学年湖南省怀化市鹤城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)将方程3x2=﹣6x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A.3、6、8B.3、﹣6、﹣8C.3、﹣6、8D.3、6、﹣8【解答】解:将方程3x2=﹣7x+8化为一元二次方程的一般形式为:3x2+6x﹣8=7,其二次项系数、常数项分别为3、6.故选:D.2.(4分)已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,∴k=2×(﹣3)=﹣6<5,∴该反比例函数经过第二、四象限.故选:C.3.(4分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥3【解答】解:根据题意得Δ=(﹣6)2﹣3×3×m>0,解得m<6.故选:A.4.(4分)若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.无法确定【解答】解:∵k=﹣1<0,∴反比例函数的两个分支在二、四象限,y随x的增大而增大,∵2>0,∴y1<4,∵﹣2<﹣1<8,∴0<y2<y6,∴y1<y2<y2,故选:A.5.(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=389【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元2元,由题意,得:389(6+x)2=438.故选:B.6.(4分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间(每组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%【解答】解:该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:×100%=60%;故选:C.7.(4分)如图,若P为△ABC的边AB上一点(AB>AC),则下列条件不一定能保证△ACP ∽△ABC的有()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=【解答】解:∵∠A=∠A,∴当∠APC=∠ACB或∠ACP=∠B或AC:AB=AP:AC或AC2=AB•AP时,△ACP∽△ABC.故选:D.8.(4分)正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.tan B=B.cos B=C.sin B=D.sin B=【解答】解:由图可知,AC=2;AB==;根据三角函数的定义,A、tan B==;B、cos B===;C、sin B===;D、sin B===.故选:D.9.(4分)如图,在矩形ABCD中,点E是边BC的中点,垂足为F,则tan∠BDE的值是()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,由矩形的对称性得:AE=DE,∴EF=DE,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.10.(4分)如图,△ABC中,D、E两点分别在BC、AD上,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6B.1:9C.2:13D.2:15【解答】解:∵AE:ED=2:1,∴AE:AD=6:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴S△ABE:S△ACD=4:7,∴S△ACD=S△ABE,∵AE:ED=5:1,∴S△ABE:S△BED=2:4,∴S△ABE=2S△BED,∴S△ACD=S△ABE=S△BED,∵S△ABC=S△ABE+S△ACD+S△BED=8S△BED+S△BED+S△BED=S△BED,∴S△BDE:S△ABC=2:15,故选:D.二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为=13,,s甲2=3.6,s乙2=4.2,则小麦长势比较整齐的是甲.【解答】解:∵s甲2=3.3,s乙2=4.8,∴s甲2<s乙2,∴小麦长势比较整齐的是甲,故答案为:甲.12.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且,则k的值为﹣2.【解答】解:根据题意得:x1+x2=﹣7,x1x2=k﹣4,x12+x42﹣x1x2=(x1+x2)7﹣3x1x7=4﹣3(k﹣7)=13,∴k=﹣2,经检验,k=﹣2符合题意,故答案为:﹣5.13.(4分)如图,在△ABC中,∠A=30°,AC=,则AB的长为3+.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.14.(4分)如图所示,AB⊥BD,CD⊥BD,BO=4,BD=1210.【解答】解:∵AB⊥BD,CD⊥BD,∴∠D=∠B=90o,∵∠DOC=∠BOA,∴△AOB∽△COD,∴,∵AB=3,BO=4,∴,∴CD=5,在Rt△DOC中,OC===10,故答案为:10.15.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B 处时,已知小明身高1.6米,他若继续往前走4米到达D处2米.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=4,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=5,故答案为:2.16.(4分)如图,在平面直角坐标系中,点A在第二象限内,∠AOB=30°,AB=BO(x <0)的图象经过点A,若S△ABO=,则k的值为﹣3.【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴=cot∠AOB=,∵∠AOB=30°,AB=BO,∴∠AOB=∠BAO=30°,∴∠ABD=60°,∴=cot∠ABD=,∵OB=OD﹣BD,∴=,∴=,∵S△ABO=,∴S△ADO=|k|=,∵反比例函数图象在第二象限,∴k=﹣8故答案为:﹣3.三、解答题(本大题8个小题,共计86分)17.(10分)解一元二次方程:(1)4x2﹣121=0;(2)(x﹣2)(x﹣4)=5.【解答】解:(1)4x2﹣121=5,x2=,所以x8=﹣,x2=;(2)整理得,x2﹣6x=﹣8,x2﹣6x+3=﹣3+9,即(x﹣7)2=6,x﹣4=±,所以x1=5+,x2=8﹣.18.(10分)计算:(1)cos30°﹣cos60°+sin245°;(2)(2020﹣π)0﹣()﹣1+|﹣2|+3tan30°.【解答】解:(1)原式=﹣×+×()5=﹣+=;(2)原式=3﹣3+2﹣+3×=﹣2+2﹣+=0.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣3,2),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【解答】解:(1)把A(﹣3,2)代入,∴反比例函数解析式为;把B(n,﹣6)代入,解得n=5,∴B点坐标为(1,﹣6),把A(﹣7,2),﹣6)代入y4=kx+b,得,解方程组得,∴一次函数解析式为y=﹣5x﹣4;(2)当x=0时,y=﹣7x﹣4=﹣4,﹣4),∴△AOB的面积=.20.(10分)钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点【解答】解:过点A作AD⊥BC于D,如图所示:根据题意得:∠ABC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在Rt△ADC中,∠ACD=60°,∴CD=AC cos60°=100×=50(海里),答:船继续航行50海里与钓鱼岛A的距离最近.21.(10分)如图,等腰三角形ABC中,AB=AC,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴∴∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.22.(10分)某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?【解答】解:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40﹣12﹣16﹣4=8,合格所占百分比:5÷40×100%=20%,优秀人数:12÷40×100%=30%,如图所示:(2)成绩未达到良好的男生所占比例为:20%+10%=30%,所以估计成绩未达到良好有600×30%=180(名).23.(12分)已知:如图所示,在△ABC中,∠B=90°,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,则同时停止运动.(1)如果P,Q分别从A,B同时出发,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,PQ的长度等于cm?(3)△PQB的面积能否等于7cm2?请说明理由.【解答】解:(1)设经过x秒以后,△PBQ面积为4cm2(4<x≤3.5)此时AP=xcm,BP=(8﹣x)cm,由,得,整理得:x5﹣5x+4=4,解得:x=1或x=4(舍);答:8秒后△PBQ的面积等于4cm2;(2)设经过t秒后,PQ的长度等于2=BP2+BQ7,即40=(5﹣t)2+(2t)2,解得:t=﹣1(舍去)或4.则3秒后,PQ的长度为;(3)假设经过t秒后,△PBQ的面积等于5cm2,即,,整理得:t2﹣7t+7=0,由于b2﹣4ac=25﹣28=﹣3<8,则原方程没有实数根,所以△PQB的面积不能等于7cm2.24.(14分)如图1,在矩形ABCD中,点E是CD边上的动点(点E不与点C,D重合),过点A作AF⊥AE交CB延长线于点F,连接EF,且点G在线段AB的左侧,连接BG.(1)求证:△ADE∽△ABF;(2)若AB=20,AD=10,设DE=x①求y与x的函数关系式;②当时,求x的值;(3)如图2,若AB=BC,设四边形ABCD的面积为S1,当时,求DC:DE的值.【解答】(1)证明:∵AE⊥AF,∴∠EAF=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ABF=∠D=90°,∴∠EAF=∠BAD,∴∠F AB=∠DAE,∵∠ABF=∠D=90°,∴△ADE∽△ABF;(2)①如图1,过点G作GH⊥BF于H,∵∠GHF=∠C=90°,∴GH∥EC,∵点G为EF的中点,∴FG=GE,∴FH=HC,∴EC=2GH=7y,∵DE+EC=CD=AB=20,∴x+2y=20,∴;②∵,∴设EC=8k,BG=5k,∵EC=6GH,∴GH=4k,由勾股定理得:BH=3k,∴FH=CH=4k+10,∴FB=6k+10,∵△ADE∽△ABF,∴,∵,x=20﹣8k,∴,∴,∴;(3)如图2,连接BE,CD=BC=b.∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴AB=BC=CD=AD,设DE=a,CD=BC=b,∵∠F AB=∠EAD,AD=AB,∴△ADE≌△ABF,∴BF=DE=a,∴,∵S=b2,S=5S1,∴b2=4b2﹣a2﹣ab,∴b3﹣ab﹣a2=0,∴,解得:,∴.。

2020-2021学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(上)期中数学试卷

2020-2021学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(上)期中数学试卷

2020-2021学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(上)期中数学试卷一、选择题(本大题共10小题,共30分)1.(3分)|﹣2020|=()A.﹣2020B.2020C.D.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)新冠病毒(2019﹣nCoV)平均直径约为100nm(纳米),即0.0000001米.0.0000001m 用科学记数法可以表示为()A.0.1×10﹣6m B.10×10﹣8m C.1×10﹣7m D.1×1011m4.(3分)下列运算正确的是()A.(x3)2=x5B.x3•x3=x6C.x6÷x3=x2D.(x﹣y)2=x2﹣y25.(3分)如图,已知直线a∥b,直线c分别与a,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°6.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环甲2=0.25,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁7.(3分)平面直角坐标系中,P(a,a﹣2)在第四象限,则a的取值范围是()A.a>2B.a<0C.﹣2<a<0D.0<a<28.(3分)在平面直角坐标系中,有一条“鱼”,它有六个顶点,则()A.将各点横坐标乘2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横坐标、纵坐标都乘2,得到的鱼与原来的鱼位似D.将各点横坐标乘2,纵坐标乘,得到的鱼与原来的鱼位似9.(3分)二次函数y=x2+2x+3的最小值是()A.1B.2C.3D.410.(3分)如图,在Rt△ABC中,∠ACB=Rt∠,BC=3cm.D是BC边上的一个动点,连接AD,连接BE,在点D变化的过程中()A.1B.C.2D.二、填空题(本大题共6小题,共18分)11.(3分)已知扇形的面积为3π,圆心角为120°,则它的半径为.12.(3分)一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则的值为.13.(3分)已知是方程组的解.14.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同.15.(3分)正方形EFGH内接于△ABC,且边FG落在BC上,若BC=3,那么EH的长为.16.(3分)如图,∠AOB=90°,反比例函数(﹣1,a),反比例函数(k>0,x>0)的图象过点B,过点B作MN∥OA,交x轴于点M,交双曲线于另一点.三、解答题(本题共9小题,共72分)17.计算:﹣|π﹣4|﹣20200+()﹣1.18.先化简,再求值:,其中x=6.19.每年的秋冬季节,青竹湖湘一外国语学校的银杏大道是学校最为靓丽的一条风景线,数学彭老师有一天为了测量一棵高不可攀的银杏树高度,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离银杏树(AB),然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,观测者目高CD=1.75m,则树高AB约是多少米?20.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛21.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.22.某学校计划从商店购买测温枪和洗手液,已知购买一个测温枪比购买一瓶洗手液多用20元,若用400元购买测温枪和用160元购买洗手液(1)求购买一个测温枪、一瓶洗手液各需多少元;(2)经商谈,商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠,如果该学校需要洗手液的数量是测温枪数量的2倍还多8个,那么该学校最多可购买多少个测温枪?23.如图,在△ABC中,∠C=90°,O是AB边上一点,以点O为圆心,作DE⊥AB于点E,延长DE交⊙O于点F(1)求证:BC是⊙O的切线;(2)求证:OA2=OB•OE;(3)若AE=9,CD=3,求△ACD与△COE的面积之比.24.我们知道:如图(1),点B把线段AC分成两部分,如果.(1)如图(1)美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的身段成为黄金比例,给人一种美感,下半身长与身高的比值是0.60,为尽可能达到匀称的效果(结果取整数,其中)(2)如图(2),已知矩形ABCD和正方形AEFD,如果矩形ABCD与矩形EBCF相似时;(3)如图(3),正五边形AFGBE中,连接它们的对角线,求证:C为BD的黄金分割点,并当BE=2时25.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,直线CP与x轴交于点Q,求此时P点坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CNM=90°,如果存在,请求出点M和点N的坐标.2020-2021学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,共30分)1.(3分)|﹣2020|=()A.﹣2020B.2020C.D.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、既是轴对称图形又是中心对称图形;C、不是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选:B.3.(3分)新冠病毒(2019﹣nCoV)平均直径约为100nm(纳米),即0.0000001米.0.0000001m 用科学记数法可以表示为()A.0.1×10﹣6m B.10×10﹣8m C.1×10﹣7m D.1×1011m【解答】解:0.0000001m=1×10﹣3m.故选:C.4.(3分)下列运算正确的是()A.(x3)2=x5B.x3•x3=x6C.x6÷x3=x2D.(x﹣y)2=x2﹣y2【解答】解:A、(x3)2=x2,原计算错误,故本选项不符合题意;B、x3•x3=x8,原计算正确,故本选项符合题意;C、x6÷x3=x6,原计算错误,故本选项不符合题意;D、(x﹣y)2=x2﹣7xy+y2,原计算错误,故本选项不符合题意.故选:B.5.(3分)如图,已知直线a∥b,直线c分别与a,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠4=180°﹣110°=70°,故选:B.6.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环甲2=0.25,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【解答】解:因为方差越小成绩越稳定,故选甲.故选:A.7.(3分)平面直角坐标系中,P(a,a﹣2)在第四象限,则a的取值范围是()A.a>2B.a<0C.﹣2<a<0D.0<a<2【解答】解:∵P(a,a﹣2)在第四象限,∴,解得0<a<3,故选:D.8.(3分)在平面直角坐标系中,有一条“鱼”,它有六个顶点,则()A.将各点横坐标乘2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横坐标、纵坐标都乘2,得到的鱼与原来的鱼位似D.将各点横坐标乘2,纵坐标乘,得到的鱼与原来的鱼位似【解答】解:A、将各点横坐标乘2,得到的鱼与原来的鱼不位似,不符合题意;B、将各点纵坐标乘2,得到的鱼与原来的鱼不位似,不符合题意;C、将各点横坐标,得到的鱼与原来的鱼位似,符合题意;D、将各点横坐标乘6,得到的鱼与原来的鱼不位似,不符合题意;故选:C.9.(3分)二次函数y=x2+2x+3的最小值是()A.1B.2C.3D.4【解答】解:∵y=x2+2x+7=(x+1)2+4,∴二次函数y=x2+2x+4的最小值是2,故选:B.10.(3分)如图,在Rt△ABC中,∠ACB=Rt∠,BC=3cm.D是BC边上的一个动点,连接AD,连接BE,在点D变化的过程中()A.1B.C.2D.【解答】解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C,∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),在Rt△BCM中,BC=3cm AC=4cm=5cm.∵ME′=MC=4cm,∴BE长度的最小值BE′=BM﹣ME′=3cm,故选:A.二、填空题(本大题共6小题,共18分)11.(3分)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=8,故答案为:3.12.(3分)一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则的值为﹣2.【解答】解:∵一元二次方程x2﹣2x﹣7=0的两根分别为x1,x4,∴x1+x2=3,x1x2=﹣4,则原式===﹣2,故答案为:﹣2.13.(3分)已知是方程组的解5.【解答】解:∵是方程组,∴,①+②得,4a﹣b=5,故答案为:5.14.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同10%.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x6=0.1=10%,x3=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.15.(3分)正方形EFGH内接于△ABC,且边FG落在BC上,若BC=3,那么EH的长为1.2.【解答】解:如图所示:∵四边形EFGH是正方形,边FG落在BC上,∴EH∥FG,EH=EF=FG=HG,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC,∵AD⊥BC,∴AM⊥EH,∴DM=EH,∴,,即,解得:EH=1.2.故答案为:3.2.16.(3分)如图,∠AOB=90°,反比例函数(﹣1,a),反比例函数(k >0,x>0)的图象过点B,过点B作MN∥OA,交x轴于点M,交双曲线于另一点510.【解答】解:∵反比例函数 的图象过点A(﹣3,∴a=﹣=8,∴A(﹣1,4),过A作AE⊥x轴于E,BF⊥x轴于F,∴AE=3,OE=1,∵AB∥x轴,∴BF=4,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴=,∴OF=16,∴B(16,4),∴k=16×4=64,∵直线OA过A(﹣1,5),∴直线AO的解析式为y=﹣4x,∵MN∥OA,∴设直线MN的解析式为y=﹣4x+b,∴6=﹣4×16+b,∴b=68,∴直线MN的解析式为y=﹣4x+68,∵直线MN交x轴于点M,交y轴于点N,∴M(17,4),68),解得,或,∴C(1,64),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=﹣﹣=510,故答案为510.三、解答题(本题共9小题,共72分)17.计算:﹣|π﹣4|﹣20200+()﹣1.【解答】解:﹣|π﹣4|﹣20203+()﹣6=2﹣4+π﹣2+2=π﹣1.18.先化简,再求值:,其中x=6.【解答】解:=×+4=x+4,当x=6时,x+4=6+2=10.19.每年的秋冬季节,青竹湖湘一外国语学校的银杏大道是学校最为靓丽的一条风景线,数学彭老师有一天为了测量一棵高不可攀的银杏树高度,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离银杏树(AB),然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,观测者目高CD=1.75m,则树高AB约是多少米?【解答】解:根据题意,易得∠CDE=∠ABE=90°,则△ABE∽△CDE,则,即,解得:AB=7(m),答:树高AB约是7m.20.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有60人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛【解答】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60﹣9﹣15﹣12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×=144°;(3)设两名男生分别为男5,男2,女2男4男2女1女3男1(男2,男2)(女1,男1)(女3,男1)男2(男8,男2)(女1,男5)(女2,男2)女4(男1,女1)(男3,女1)(女2,女8)女2(男1,女5)(男2,女2)(女7,女2)由表格可以看出,所有可能出现的结果有12种,其中恰好是1名男生和6名女生的情况有8种.则所选的2人恰好是5名男生和1名女生的概率是=.21.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.22.某学校计划从商店购买测温枪和洗手液,已知购买一个测温枪比购买一瓶洗手液多用20元,若用400元购买测温枪和用160元购买洗手液(1)求购买一个测温枪、一瓶洗手液各需多少元;(2)经商谈,商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠,如果该学校需要洗手液的数量是测温枪数量的2倍还多8个,那么该学校最多可购买多少个测温枪?【解答】解:(1)设购买一瓶洗手液需要x元,则购买一个测温枪需要(x+20)元,依题意,得:=,解得:x=4,经检验,x=5是原方程的解,∴x+20=25.答:购买一个测温枪需要25元,购买一瓶洗手液需要5元.(2)设该学校购买m个测温枪,则购买(2m+8)瓶洗手液,依题意,得:25m+5(2m+8﹣m)≤1540,解得:m≤50.答:该学校最多可购买50个测温枪.23.如图,在△ABC中,∠C=90°,O是AB边上一点,以点O为圆心,作DE⊥AB于点E,延长DE交⊙O于点F(1)求证:BC是⊙O的切线;(2)求证:OA2=OB•OE;(3)若AE=9,CD=3,求△ACD与△COE的面积之比.【解答】(1)证明:如图,连接OD,∵⊙O经过D,∴OD=OA,∴∠ODA=∠OAD,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴∴AC∥OD,∵∠C=90°,∴AC⊥BC,∴OD⊥BC,∴BC是⊙O的切线;(2)证明:∵∠ODB=90°,DE⊥AB,∴∠ODB=∠OED=90°,又∵∠BOD=∠DOE,∴△BOD∽△DOE,∴=,∴OD2=OB•OE,∵OA=OD,∴OA2=OB•OE;(3)连接OC,CE,∵AD平分∠BAC,DC⊥AC,CD=5,∴DE=CD=3,设OA=OD=r,则OE=AE﹣OA=9﹣r,在Rt△ODE中,OD7=OE2+DE2,∴r6=(9﹣r)2+72,∴r=5,∴OA=OD=8,OE=4,∵AC∥OD,S△AOC=S△ACD,∴===.24.我们知道:如图(1),点B把线段AC分成两部分,如果.(1)如图(1)美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的身段成为黄金比例,给人一种美感,下半身长与身高的比值是0.60,为尽可能达到匀称的效果(结果取整数,其中)(2)如图(2),已知矩形ABCD和正方形AEFD,如果矩形ABCD与矩形EBCF相似时;(3)如图(3),正五边形AFGBE中,连接它们的对角线,求证:C为BD的黄金分割点,并当BE=2时【解答】解:(1)设高跟鞋的高度为xcm,由题意得,160×0.60+x=,解得,x=,即x=32﹣64,∵32﹣64≈32×(2.236﹣2)=32×4.236=7.552≈8,∴x≈4,答:她应穿高跟鞋的高度大约为8cm.(2)如图(2),∵四边形ABCD,四边形AEFD是正方形,∴BC=AD=AE,∵矩形ABCD∽矩形EBCF,∴,∵,∴E为线段AB的黄金分割点.(3)如图(3),∵五边形AFGBE是正五边形,∴AE=AF,∠EAF=,∴∠AEF=∠AFE=36°,同理,∠AEB=108°,∴∠CED=∠AEB﹣∠AEF﹣∠BEG=∠36°,∠CEB=∠CBE=36°,∴∠EDC=180°﹣∠CED﹣∠CEB﹣∠CBE=72°,∠ECD=∠CEB+∠CBE=72°,∴∠EDC=∠ECD=72°,∠BED=∠CED+∠CEB=72°,∵ED=CE,BC=CE,∴ED=BC,∵∠ECD=∠BED,∠EDC=∠BDE,∴△EDC∽△BDE,∴,∴,∴C为BD的黄金分割点;∵∠BED=∠BDE=72°,∴BD=BE=2,设CD=x,则BC=3﹣x,由得,BC2=CD•BD,∴(2﹣x)7=2x,整理得,x2﹣2x+4=0,解得,x8=3,x8=3(不符合题意,∴CD的长为6.25.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,直线CP与x轴交于点Q,求此时P点坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CNM=90°,如果存在,请求出点M和点N的坐标.【解答】解:(1)把A(﹣1,0),7)代入y=ax2+bx+6得:,解得,∴抛物线的解析式为y=﹣2x7+4x+6;(2)由y=﹣6x2+4x+6得C(0,6),∴OC=5,当Q在x轴正半轴,如图:∵∠BQC=∠BCO,且∠COB=∠QOC,∴△COB∽△QOC,∴=,即=,∴OQ=12,∴Q(12,0),设直线CQ解析式为y=kx+6,则7=12k+6,∴k=﹣,即直线CQ为y=﹣,由得(与C重合,∴P(,),当Q在x轴负半轴,如图:同理可得:△BOC∽△BCQ,∴=,即BC6=OB•BQ,而OC=6,OB=3,∴BC=5,∴(3)2=3×BQ,∴BQ=15,∴Q(﹣12,8),设直线CQ为y=mx+6,则0=﹣12m+3,解得m=,∴直线CQ为y=x+6,由得(舍去)或,∴P(,),综上所述,P点坐标为(,,),(3)设M(t,﹣6t2+4t+5),则N(0,2+3t+6),∴MN=|t|,CN=|2t3﹣4t|,∵OC=6,OB=6,∴OC=2OB,∵△CMN与△OBC相似,∴MN=2CN或CN=7MN,①MN=2CN时,如图:∴|t|=2|7t2﹣4t|,解得t=或t=,∴M(,),N(0,,),N(6,);②CN=2MN时,如图:∴|3t2﹣4t|=5|t|,解得t=0(舍去)或t=3(M与B重合,舍去)或t=3,∴M(1,8),5),综上所述,M(,),)或M(,),)或M(8,N(0.。

湖南省长沙市浏阳市九年级上学期期末考试数学试卷

湖南省长沙市浏阳市九年级上学期期末考试数学试卷

2019-2020学年湖南省长沙市浏阳市九年级上学期期末考试
数学试卷解析版
一.选择题(本大题共12小题,每小题3分,共36分)
1.(3分)已知反比例函数y=k
x,当x>0时,y随x的增大而增大,则k的取值范围是()
A.k>0B.k<0C.k≥1D.k≤1
【解答】解:∵反比例函数y=k
x中,当x>0时,y随x的增大而增大,
∴k<0,
故选:B.
2.(3分)边长等于6的正六边形的半径等于()
A.6B.3√3C.3D.3√2
【解答】解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
∴边长为6的正六边形外接圆半径是6,
即正六边形的半径长为6.
故选:A.
3.(3分)在下列图形中,是中心对称图形的是()
A.B.
C.D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.
第1 页共16 页。

湖南省长沙市浏阳市2024届九年级上学期期中质量监测数学试卷(含答案)

湖南省长沙市浏阳市2024届九年级上学期期中质量监测数学试卷(含答案)

浏阳市九年级期中测试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填符合要求的选项字母代号.)1.方程2514x x -=的二次项系数和一次项系数分别为()A.5和4B.5和4- C.5和1- D.5和12.下面四种交通标志图中,是中心对称图形的是()A.B.C.D.3.用配方法解方程2250x x --=时,原方程应变形为()A.()216x += B.()229x += C.()216x -= D.()229x -=4.已知1x =是方程240x kx ++=的一个根,则方程的另一个根为()A.1-B.4C.5D.4-5.抛物线234y x x =--+与x 轴的交点个数是()A.3B.2C.1D.06.若二次函数()211y x =--的图象如图所示,则坐标原点可能是()A.点AB.点BC.点CD.点D7.如图,在一块长为22m ,宽为17m 的矩形地面内(两条道路分别与矩形的一条边平行),余下的铺上草坪,要使草坪的面积达到2300m ,设道路的宽为x m ,可列方程为()A.17221722300x x ⨯--=B.()()22217300x x x --+=C.()()2217300x x --= D.()22217300x x -+-=8.已知()3,4P ,将P 绕坐标原点顺时针旋转90°后得到1P,则1P 的坐标为()A.()3,4- B.()4,3 C.()4,3- D.()3,4-9.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于()A.120°B.135°C.150°D.160°10.二次函数()20y ax bx c a =++≠图象如图.下列结论:①0abc >;②0a b c -+<;③若m 为任意实数,则有2a b am bm +≥+;④若212122ax bx ax bx +=+,且12x x ≠,则122x x +=;其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分)11.请写出一个常数c 的值,使得关于x 的方程220x x c ++=无实数根,则c 的值可以是______.12.二次函数236y x =--的最大值是______.13.二次函数()212y x =-+-与y 轴的交点坐标是______.14.将抛物线223y x =-+向右平移1个单位,再向上平移2个单位,所得抛物线的函数表达式是______.15.在研究二次函数()213y x =-+-的图象和性质时,甲、乙、丙、丁四位同学的说法如下:甲:图象的顶点坐标为()1,3--;乙:函数的图象关于直线1x =-对称;丙:当1x =时,函数取得最大值3-;丁:当1x <-时,y 随x 的增大而增大.其中,说法错误的是______同学.16.如图,四边形ABCD 中的两条对角线AC ,BD 互相垂直,10AC BD +=,当AC 为______时,四边形ABCD 的面积最大.三、解答题(要求写出必要的解题步骤)17.(6分)解方程:()()2333x x x -=-.18.(6分)如图:Rt ABC △中,90ACB ∠=︒,40A ∠=︒,将Rt ABC △绕点C 顺时针旋转一个角度后,点D 正好落在AB 上,求ACE ∠.19.(6分)参加足球联赛的每两个队之间都要进行两场比赛,共要比赛90场,共有多少队参加比赛?20.(8分)已知关于x 的一元二次方程2220x mx m m +++=有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为1x ,2x ,且221212x x +=,求m 的值.21.(8分)为满足广大群众阅读需求,浏阳图书馆不断完善藏书数量,今月7月份图书馆中有藏书50000册,到今月9月份其中藏书数量增长到72000册.(1)求浏阳图书馆这两个月藏书的平均增长率.(2)按照这样的增长方式,请你估算出今月10月份浏阳图书馆的藏书量是多少?22.(9分)如图,顶点为M 的抛物线()214y a x =+-分别与x 轴相交于点A ,B (点A 在点B 的右侧),与y 轴相交于点()0,3C-.(1)求抛物线的解析式;(2)判断BCM △是不是直角三角形,并说明理由;23.(9分)在国庆期间,大润发商场新上市了一款童装,进价每件80元,现以每件120元销售,每天可售出20件.在试销售阶段发现,若每件童装降价1元,那么每天就可多售2件,设每件童装单价降价了x 元.(1)若销售单价降低5元,则该款童装每天的销售量为______件,每天利润是______元;(2)请写出每天销售该款童装的利润y (元)与每件童装降价x (元)之间的函数关系式;(3)当每件童装销售单价定为多少元时,商场每天可获得最大利润?最大利润是多少元?24.(10分)我们不妨定义:如果两个图形(或函数图像)关于y 轴对称,我们称互为蝴蝶图形(或互为蝴蝶图像);如果两个图形(或函数图像)关于x 轴对称,我们称互为倒影图形(或互为倒影图像);如果两个图形(或函数图像)关于原点对称,我们称互为梦幻图形(或互为梦幻函数图像)图1图2(1)(2分)在图1中画出ABC △的蝴蝶图形.(2)(2分)直接写出图像1y x =+的倒影图像的解析式:______(3)(6分)已知函数图像m 是函数图像223y x x =--的梦幻函数图像,则函数图像m 的解析式为______(要求顶点式),并列表描点法在图2画出函数图像,利用函数图像m 直接写出当30x -<<,y 的取值范围______.列表x ……y……25.(10分)如图,点()0,2A -,B 为x 轴上一动点,线段AB 的垂直平分线CD 交y 轴于点D ,BC x⊥轴交CD 于C ,记(),Cm n .图1图2(1)(2分)点C 的轨迹是()①一条直线②一条关于y 轴对称的折线③一条抛物线;(2)(3分)求n 与m 的关系式;(3)(3分)在B 的运动过程中,是否存在ABC △是等边三角形,如果不存在请说明理由,如果存在请求出此时C 的坐标;(4)(2分)当点O 到直线CD 距离等于2时,直接写出2m 的值.浏阳市九年级期中测试数学参考答案一、选择题:1—5题:BACBB6—10题:ACCCC二、填空题:11、1c >的数都可以,答案不唯一12、6-13、()0,3-14、()2215y x =--+15、丙16、5三、解答题:17、解:()()2333x x x --=.()()3320x x --=30x -=或320x -=(4分)13x =或223x =.(6分)18、解:由旋转可得:CB CD =,ACE BCD ∠=∠(解答中由旋转得出有价值信息可酌情记1-2分)∵90ACB ∠=︒,40A ∠=︒∴50B ∠=︒(2分)∵CB CD=∴50BDC B ∠=∠=︒(5分)∴18050280ACE BCD ∠=∠=︒-︒⨯=︒(6分)19、设共有x 队参加比赛:()190x x -=(3分)解得110x =,29x =-(舍去)答:共有10队参加比赛(6分)20、解:(1)∵一元二次方程2220x mx m m +++=有实数根,∴()()222410m m m ∆=-⨯⨯+≥,(2分)解得:0m ≤,∴的取值范围为0m ≤;(4分)(2)∵1x ,2x 是一元二次方程2220x mx m m +++=的两个根,∴122x x m +=-,212x x m m =+,(5分)∴()222121212212x x x x x x +=+-=,(6分)∴()()222212m m m --+=,即260m m --=,解得:12m =-,23m =(舍去),∴m 的值为2-.(8分,没舍去23m =计7分)21、(1)解:设浏阳图书馆这两个月藏书的平均增长率为x ,依题意得:()250000172000x +=,(可计3分)解得:10.220%x ==,2 2.2x =-(不合题意,舍去),答:浏阳图书馆这两个月藏书的平均增长率为20%;(5分)(2)()72000120%86400⨯+=,答:预计今月10月份浏阳图书馆的藏书量是86400册.(8分)22、解:(1)顶点为M 的抛物线()214y a x =+-,与y 轴相交于点()0,3C -则()23014a -=+-解得:1a =,函数的表达式为:()214y x =+-或223y x x =+-;(4分)(2)由(1)知,点()1,4M --,并可求得()3,0B -,()0,3C -(6分)则218BC =,22C M=,220BM =,∴222BM BC CM =+,故BMC △为直角三角形;(9分)23、解:(1)301050(3分)(2)()()()212080202260800040y x x x x x =--+=-++≤≤可不写取值范围(6分)(3)()222608002151250y x x x =-++=--+,当15x =时,销售单价定价为105元时,商场每天可获得最大利润1250元(9分)24、(1)111A B C △作图如下:()13,0A -,()12,2B (2分)(2)1y x =--(4分)(3)04y <≤(10分,m 顶点式、列表画图、y 的取值范围分别计2分)x (3)-2-1-01…y …313…25、(1)③(2)如图:作CH y ⊥轴于H ∵(),Cm n ,()0,2A -∴()0,Hn ,2AH n =--,CH m=∵CD 是AB 的垂直平分线∴AC BC n ==-∴()2222n m n --+=-整理得:2114n m =--(5分)(3)在B 的运动过程中,存在ABC △是等边三角形,此时A 在BC 的垂直平分线上,∵()0,2A-∴C 的纵坐标为4-,令4n =-,则21414m -=--,解得3m =±∴234(,C --)和()3,4-(8分)(4)当点O 到直线CD 距离等于2时,2123m =+(10分)。

2020-2021学年湖南省长沙市天心区长郡集团九年级(上)第三次限时训练数学试卷(解析版)

2020-2021学年湖南省长沙市天心区长郡集团九年级(上)第三次限时训练数学试卷(解析版)

2020-2021学年湖南省长沙市天心区长郡集团九年级第一学期第三次限时训练数学试卷一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×1083.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.45.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.4210.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.19.解不等式组:并把解集在数轴上表示出来.20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有人,a=,b=.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D 的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.参考答案一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个【分析】分别根据无理数、有理数的定义即可判定选择项.解:﹣3.14是有限小数,属于有理数;0是整数,属于有理数;,是整数,属于有理数;无理数有,π共2个.故选:B.2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30.81亿=3081000000=3.081×109.故选:C.3.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣1【分析】利用关于y轴对称的点的坐标特点可得a、b的值,进而可得答案.解:∵点M(3,﹣2)与Q(a,b)关于y轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5,故选:B.4.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.4【分析】分别根据倒数的定义,单项式的定义,绝对值的定义以及相反数的定义逐一判断即可.解:①若一个数的倒数等于它本身,则这个数是1或﹣1,说法正确;②若2a2与3a x+1的和是单项式,则x=1,说法正确;③若|x|=|﹣7|,则x=±7,故原说法错误;④若a、b互为相反数,则a、b的商为﹣1,说法错误,0的相反数是0.所以其中正确有①②共2个.故选:B.5.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.解:由题意可得,,故选:A.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)【分析】根据二次函数的性质对各小题分析判断即可得解.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解:∵共4个数,数字为偶数的有2个,∴指针指向的数字为偶数的概率为=.故选:D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.【分析】根据抛物线y=x2+2x﹣k﹣2与x轴没有交点,得方程x2+2x﹣k﹣2=0没有实数根,可以得到Δ<0,从而可以得到k的取值范围,然后即可得到函数y=的图象在哪个象限.解:∵抛物线y=x2+2x﹣k﹣2与x轴没有交点,∴方程x2+2x﹣k﹣2=0没有实数根,∴△=22﹣4×1×(﹣k﹣2)=4k+12<0,解得k<﹣3,∴函数y=的图象在二、四象限,故选:B.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.10.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)【分析】根据矩形的性质求出点P的坐标为(2,2),根据位似变换的性质计算,得到答案.解:∵矩形OABC的顶点B的坐标为(2,4),点P是BC的中点,∴点P的坐标为(2,2),以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,则P1的坐标为(2×1.5,2×1.5)或(﹣2×1.5,﹣2×1.5),即(3,3)或(﹣3,﹣3),故选:C.11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用锐角三角函数的定义即可求出BC的高度.解:∵BC⊥AC,AC=2,∠BAC=α,∴tanα=,∴BC=AC•tanα=2tanα,故选:B.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.【分析】连接DP,根据直线y=x+1与x轴、y轴分别相交于A、B两点,求得AB的长,即可得出⊙P的半径,证△PED≌△PFD,可得四边形PEDF面积=2S△PED=2×PE ×DE,当DP⊥AP时,四边形PEDF面积的最小,利用锐角三角函数求出DP的长,即可得出四边形PEDF面积的最小值.解:如图,连接DP,∵直线y=x+1与x轴、y轴分别相交于A、B两点,当x=0时,y=1,当y=0时,x=﹣2,∴A(﹣2,0),B(0,1),∴AB=,∵过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,∴DE=DF,PE⊥DE,∵PE=PF,PD=PD,∴△PED≌△PFD(SSS),∵⊙P的半径为,∴DE=,当DP⊥AP时,DP最小,此时DP=AD•sin∠BAO=5×,∵四边形PEDF面积=2S△PED=2×PE×DE=DE,∴四边形PEDF面积的最小值为.故选:A.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=60.【分析】根据方差的计算公式得出这组数据的平均数,再由平均数的定义求解可得答案.解:由s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]知这10个数据的平均数为6,所以x1+x2+x3+…+x10=6×10=60,故答案为:60.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=8cm.【分析】先根据垂径定理可得出CE的长度,再在Rt△OCE中,利用勾股定理可得出OE 的长度,然后利用AE=AO+OE即可得出AE的长度.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4(cm)在Rt△OCE中,OC=5cm,CE=4cm,∴OE===3(cm),∴AE=AO+OE=5+3=8(cm).故答案为:8cm.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为﹣.【分析】利用反比例函数系数的几何意义得到S△AOD=2,接着证明Rt△AOD∽Rt△OBC,利用相似三角形的性质得S△OBC=S△AOD=,所以•|k|=,然后根据反比例函数的性质确定k的值.解:如图,∵第一象限内的点A在反比例函数y=上,BC、AD垂直于x轴于C、D,∴S△AOD=×4=2,∵OA⊥OB,∴∠AOD+∠BOC=90°,∴∠AOD+∠OAD=90°,∴∠BOC=∠OAD,∵∠BCO=∠ODA=90°,∴Rt△AOD∽Rt△OBC,∵,∴=()2=,∴S△OBC=S△AOD=×2=,∴•|k|=,而k<0,∴k=﹣.故答案为﹣.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=3.【分析】过F作FG⊥CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG =EC,GE=2=CD;设EC=x,则DG=x,FG=x,再根据勾股定理,即可得到CE2=9,最后依据勾股定理进行计算,即可得出BE的长.解:如图所示,过F作FG⊥CD,交CD的延长线于G,则∠G=90°,∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,又∵∠BEF=90°,∴∠FEG+∠BEC=90°=∠EBC+∠BEC,∴∠FEG=∠EBC,又∵∠C=∠G=90°,∴△BCE∽△EGF,∴==,即==,∴FG=EC,GE=2=CD,∴DG=EC,设EC=x,则DG=x,FG=x,∵Rt△FDG中,FG2+DG2=DF2,∴(x)2+x2=()2,解得x2=9,即CE2=9,即此时顶点E在边CD延长线上时,∴Rt△BCE中,BE===3,故答案为:3.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和立方根的性质、绝对值的性质分别化简得出答案.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据方程x2﹣x﹣6=0,可以得到x的值,然后将使得原分式有意义的x的值代入化简后的式子即可解答本题.解:=()==x+3,由方程x2﹣x﹣6=0,可得x1=3,x2=﹣2,当x=3时,原分式无意义,∴x=﹣2,当x=﹣2时,原式=﹣2+3=1.19.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有50人,a=0.4,b=15.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;解:(1)参加演讲比赛的学生人数为4÷0.08=50人,a=20÷50=0.4,b=50×0.3=15,故答案为:50、0.4、15;(2)扇形统计图中B等级对应的扇形的圆心角的度数为360°×0.4=144°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B 地比原来少走多少路程.解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40(千米),答:开通隧道前,汽车从A地到B地要走80+40千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:(AC+BC)﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.【分析】(1)连接AD,与x轴交于点E,由四边形AODC为菱形,得到AE=DE,OE =CE,根据D坐标确定出DE的长,确定出AE与OE的长,进而求出A的坐标,将A 坐标代入直线解析式求出m的值,代入反比例解析式求出k的值.(2)联立两函数解析式求出B坐标,根据A与B横坐标,利用图象求出反比例函数值大于一次函数值时x的范围即可.(3)根据OC与AD的长,求出菱形ABCD的面积,设P(0,p),由OP为底,A横坐标为高表示出△OAP面积,根据△OAP的面积等于菱形OACD的面积,列出关于p的方程,求出方程的解即可得到p的值.解:(1)连接AD,与x轴交于点E,∵D(2,﹣3),∴OE=2,ED=3,∵菱形AODC,∴AE=DE=3,EC=OE=2,∴A(2,3),将A坐标代入直线y=mx+1得:2m+1=3,即m=1,将A坐标代入反比例y=得:k=6.(2)联立直线与反比例解析式得:,消去y得:x+1=,解得:x=2或x=﹣3,将x=﹣3代入y=x+1得:y=﹣3+1=﹣2,即B(﹣3,﹣2),则当x<﹣3或0<x<2时,反比例函数值大于一次函数值;(3)∵OC=2OE=4,AD=2DE=6,∴S菱形AODC=OC•AD=12,∵S△OAP=S菱形OACD,即OP•OE=12,∴设P(0,p),则×|p|×2=12,即|p|=12,解得:p=12或p=﹣12,则P的坐标为(0,12)或(0,﹣12).23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.【分析】(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)先证明△FEA∽△FBE,根据相似三角形对应边成比例求出AF=5,BF=20,BE =2AE.再根据圆周角定理得出∠AEB=90°,利用勾股定理列方程,即可求出AE的长.【解答】(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:在△FEA与△FBE中,∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE,∴==,∴AF•BF=EF•EF,∴AF×(AF+15)=10×10,解得AF=5.∴BF=20.∴=,∴BE=2AE,∵AB为⊙O的直径,∴∠AEB=90°,∴AE2+BE2=152,∴AE2+(2AE)2=225,∴AE=3.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.【分析】(1)由题意联立y=2x﹣1与y=,解方程组即可得出“关联点”和“关联函数”;(2)由题意根据一次函数y=(1+b)x+2a+2与反比例函数y=,得到它们的关联函数,利用已知得出a,b,c的关系式,再利用整数a,b,c满足条件c<b<8a,列出不等式,即可得出结论;(2)先写出它们的关联函数,求得它的对称轴为直线x=﹣m,然后根据已知的自变量x的取值范围分三种情况讨论,即可求得.解:(1)存在“关联点”和“关联函数”,理由如下:由题意得:,解得:,.∴“关联点”为(﹣1,﹣3)或(,2),它们的“关联函数”为:y=2x2﹣x﹣3.(2)由“关联函数”的定义可知:一次函数y=(1+b)x+2a+2与反比例函数y=的“关联函数”为:y=(1+b)x2+(2a+2)x﹣2021,∵一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,∴,∴.∵整数a,b,c满足条件c<b<8a,∴8a﹣2<9a﹣3<8a,∴1<a<3.∵a为整数,∴a=2.(3)由题意得:一次函数y=x+m和反比例函数y=的“关联函数”为:y=x2+mx ﹣m2﹣13.∴该函数的对称轴为直线x=﹣m.①当m+6<m,即m<﹣4时,当x=m+6时,函数取得最小值为6,即(m+6)2+m(m+6)﹣m2﹣13=6.解得:m=﹣17或m=﹣1(舍去).∴m=﹣17.∴其“关联函数”的解析式为:y=x2﹣17x﹣302.②当m<﹣m<m+6,即﹣4<m<0时,当函数在x=﹣m处取得最小值6,∴﹣13=6.此方程无解.③当m≥﹣m,即m≥0时,当x=m处函数取得最小值为6,∴m2+m•m﹣m2﹣13=6,解得:m=±(﹣舍去).∴m=.∴其“关联函数”的解析式为:y=x2+x﹣32.综上,其“关联函数”的解析式y=x2﹣17x﹣302或y=x2+x﹣32.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.【分析】(1)根据题意先求出点B、C的坐标,利用待定系数法即可求得答案;(2)①如图1,过点P作PK∥y轴交直线BC于点K,运用待定系数法求得直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),可得PK=t2+2t,由△PKD∽△BCO,可求得PD=﹣(t﹣4)2+,利用二次函数的性质可得最值及此时t的值,即可求出答案;②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),利用△KBH∽△CBO,求得CD=t2+t,再分两种情况:当△CPD∽△ACO时,当△CPD∽△ACO时,分别运用相似三角形性质即可求得答案.解:(1)∵点A(﹣2,0),∴AO=2,∵BO=4AO,∴OB=8,B(8,0),∵=tan∠OCB=2,∴OC=4,∴C(0,4),设抛物线解析式为y=a(x+2)(x﹣8),将C(0,4)代入,得:﹣16a=4,解得:a=﹣,∴y=﹣(x+2)(x﹣8)=x2+x+4,故该抛物线解析式为y=x2+x+4;(2)①存在.如图1,过点P作PK∥y轴交直线BC于点K,在Rt△BCO中,BC===4,设直线BC解析式为y=kx+d,∵B(8,0),C(0,4),∴,解得:,∴直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),∴PK=t2+t+4﹣(﹣t+4)=t2+2t,∵PK∥y轴,∴∠PKD=∠BCO,∵∠PDK=∠BOC=90°,∴△PKD∽△BCO,∴=,即=,∴PD=﹣t2+t=﹣(t﹣4)2+,∴当t=4时,PD取得最大值,∴P(4,6),∴PD=,设D(x,﹣x+4),∴(x﹣4)2+(﹣x+4﹣6)2=()2,解得:x1=x2=,∴D(,);②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),∴BH=8﹣t,KH=﹣t+4,∵∠BHK=∠BOC=90°,∠KBH=∠CBO,∴△KBH∽△CBO,∴=,即=,∴BK=(8﹣t),由①知,PK=t2+2t,PD=﹣t2+t,∵△PKD∽△BCO,∴==,∴DK=﹣t2+t,∴CD=BC﹣BK﹣DK=4﹣(8﹣t)﹣(﹣t2+t)=t2+t,当△CPD∽△ACO时,∴=,∴OC•CD=OA•PD,即4(t2+t)=2(﹣t2+t),解得:t=0(舍去)或t=3,∴P(3,);当△CPD∽△CAO时,∴=,∴OA•CD=OC•PD,即2(t2+t)=4(﹣t2+t),解得:t=0(舍去)或t=6,∴P(6,4);综上所述,点P的坐标为(3,)或(6,4).。

湖南省长沙市浏阳市2023-2024学年九年级下学期期中数学试题(含解析)

湖南省长沙市浏阳市2023-2024学年九年级下学期期中数学试题(含解析)

2024年上学期九年级调研考试数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项、本大题共10个小题,每小题3分,共30分)1.下列实数中绝对值最小的是( )A .2B .C .0D2.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是( )A . B. C . D .3.下列运算正确的是( )A .B .C .D .4.方程x (x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=﹣2D .x 1=0,x 2=25.已知,将一块直角三角板如图放置,使直角顶点位于直线和之间,若,则( )A .B .C .D .6.如图,直线y1=mx 经过P (2,1)和Q (-4,-2)两点,且与直线y2=kx+b 交于点P ,则不等式kx+b >mx 的解集为( )3-2-=()2211a a +=+()325a a =2322a a a ⋅=AB CD ∥AB CD 1∠=α2∠=90α︒-180α︒-α45a -︒A .x >2B .x <2C .x >-4D .x <-47.如图,O 为正方形对角线的中点,为等边三角形.若,则的长度为( )AB .C .D .8.若圆锥的底面半径为3,母线长为5,则这个圆锥的侧面积为( )A .15B.12πC .15πD .30π9.我国古代著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之,”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,设快马天可以追上慢马,可列方程是( )A .B .C .D .10.如图,在直角坐标系中,以点O 为圆心,半径为4的圆与y 轴交于点B ,点A (8,4)是圆外一点,直线AC 与⊙O 切于点C ,与x 轴交于点D ,则点C 的坐标为( )A .()B .(,)ABCD AC ACE △2AB =OE x 24015012240x x +=⨯24015012240x x -=⨯24015012150x x +=⨯24015012150x x -=⨯-12585-C .(,)D .(-2)二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:a 2﹣16b 2= .12.计算: .13.低空经济作为战略性新兴产业,中商产业研究院分析师预测,2024年市场规模将达5035亿元.请将5035亿元用科学记数法表示为 元.14.以下命题:(1)如果,那么(2)等弧所对的圆周角相等(3)对应角相等的两个四边形是相似四边形(4)方程有两个不相等的实数根(5)一条对角线平分一个内角的平行四边形是菱形.真命题共有 个.15.“一河诗画,满城烟花”,每逢过年过节,人们会在美丽的浏阳河边上手持网红烟花加特林进行燃放,当发射角度与水平面成45度角时,烟花在空中的高度(米)与水平距离(米)接近于抛物线,烟花可以达到的最大高度是米.16.如图:在平面直角坐标系中,的顶点,,对角线与相交于点,函数经过点,则 .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算: .18.解不等式组,并把它的解集在数轴上表示出来.165125-()()()a a b a b a b ab +-+--=22a b =a b =2310x x +-=y x 20.51038y x x =-+-OABC (5,0)A (1,3)C AC OB D k y x=D k =()1013tan 3032π-⎛⎫+︒+- ⎪⎝⎭31432x x x ->-⎧⎨<+⎩19.先化简,再求值:,其中.20.如图,在中,,是通过如图的作图痕迹作图而得,,交于点.(1)求证:.(2)若,求的度数.21.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,,,,,)b :七年级抽取成绩在7这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭2023x =ABC AB AC =CD DE BC ∥AC E DE CE =32CDE ∠=︒A ∠5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤080x ≤<(1)七年级抽取成绩在的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.22.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?23.张老师在带领同学们进行折角的探究活动中,按步骤进行了折纸:①对折矩形,使与重合,得到折痕,并把纸展平.②再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕,同时得到线段.③可得到.老师请同学们讨论说明理由.三个同学在一起讨论得到各自的方法.小彤说:连接,可证为等边三角形,从而得证;小如说:利用平行线分线段成比例性质,可证,再结合三角形全等的知识可证;小远说:利用的边角关系可证.(1)在考试过程中,小明和小峰这三种方法他们都会,都随机选取了这三种方法中的一种,请用列表或画树状图的方法求他俩选择了同一种方法的概率.(2)请你选择其中一个同学的方法或者用其他方法说明理由.24.如图,锐角内接于,,射线经过圆心并交于点,连接,,与的延长线交于点.6090x ≤<30︒ABCD AD BC EF A EF B BM BN l 2330∠∠∠===︒AN ABN MN NH =EBN △12330∠=∠=∠=︒ABC O AB AC =BE O O D AD CD BC AD F(1)求证:平分.(2)若,的长.(3)若,半径为4,直接写出阴影部分的面积.25.在平面直角坐标系xOy 中,已知抛物线经过A (4,0),B (1,4)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的解析式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分别为,,.判断是否存在最大值.若存在,求出最大值;若不存在,请说明理由.DF CDE ∠1tan 2ACD ∠=O DF 30F ∠=︒O 2y ax bx =+PD BO ∥1S 2S 3S 1223S S S S +参考答案与解析1.C 【分析】本题主要考查了绝对值、实数比较大小等知识,熟练掌握实数比较大小的方法是解题关键.首先确定各数的绝对值,比较大小即可获得答案.【解答】解:∵,,又∵,∴绝对值最小的是0.故选:C .2.D【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是两个小正方形,故选:D.【点拨】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.D【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【解答】解:A.B. ,故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意;故选:D.【点拨】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.4.C【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x (x +2)=0,∴x =0或x +2=0,解得x 1=0,x 2=﹣2.故选:C .21=33-=00=012<<<()22112a a a +=++()326a a =2322a a a ⋅=【点拨】此题考查解一元二次方程,正确掌握解方程的方法及能依据每个方程的特点选择恰当的解法是解题的关键.5.A【分析】设直角三角板的三个顶点分别为E ,G ,H ,过点E 作,可得,根据平行线的性质可得,即可求解.【解答】解:如图,设直角三角板的三个顶点分别为E ,G ,H ,过点E 作,∵,∴,∴,∴,∵,∴.故选:A【点拨】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.6.B【分析】从图象确定kx+b >mx 时,x 的取值范围即可.【解答】解:从图象可以看出,当x <2时,kx+b >mx ,故选B .【点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x 的值,是解答本题的关键.7.A【分析】如图,,则;由等边三角形,得,,得.【解答】如图,,则∵是等边三角形,O 是中点EF AB ∥AB EF CD ∥∥1,2GEF FEH ∠=∠∠=∠EF AB ∥AB CD ∥AB EF CD ∥∥1,2GEF FEH ∠=∠∠=∠1290GEF HEF GEH ∠+∠=∠+∠=∠=︒1∠=α290α∠=︒-2AB =AC ==EO AC ⊥OA =Rt AOE △OE =2AB =AC ==ACE △AC∴, 中,故选A .【点拨】本题考查正方形的性质、等边三角形的性质、解直角三角形;根据图形性质识别直角三角形,进而运用解直角三角形知识是解题的关键.8.C【分析】求出底面周长,即为侧面展开图的弧长,利用扇形面积公式即可求解.【解答】解:圆锥侧面积为,故选:C .【点拨】本题考查求圆锥侧面积,掌握扇形面积公式是解题的关键.9.D【分析】本题主要考查了一元一次方程的应用,理解题意,弄清数量关系是解题关键.设快马天可以追上慢马,根据“天快马行走路程天慢马行走路程慢马先走12天行走路程”,列出方程即可.【解答】解:设快马天可以追上慢马,可列方程为.故选:D .10.C【解答】解:作 AE ⊥x 轴于 E ,CH ⊥x 轴于 H ,连接 OC ,如图,∵B (0,4),A (8,4),∴AB =8,AE =OB =4,AB ⊥y 轴,∴AB 为⊙O 的切线,EO AC ⊥OA =Rt AOE △tan 60OE OA =⋅︒==12S lr =1235152ππ⨯⨯⨯=12S lr =x x -x =x 24015012150x x -=⨯∵直线 AC 与⊙O 切于点 C ,∴OC ⊥AC ,AC =AB =8,在△OCD 和△AED 中,∴△OCD ≌△AED ,∴OD =AD ,设 OD =x ,则 AD =x ,DE =8﹣x ,在 Rt △ADE 中,(8﹣x )2+42=x 2,解得 x =5,∴OD =5,DE =CD =3,∵ CH •OD =OC •CD ,∴CH ==,在 Rt △OCH中,OH ,∴C 点坐标为(,).故选C .【点拨】本题考查切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了坐标与图形性质.11.(a +4b )(a -4b )【分析】原式利用平方差公式分解即可.【解答】解:原式=(a +4b )(a -4b ).故答案为:(a +4b )(a -4b ).【点拨】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.12.【分析】本题主要考查了整式运算,熟练掌握相关运算法则和运算公式是解题关键.首先根据单项式乘多项式法则、平方差公式进行运算,然后合并同类项即可.【解答】解:.==ODC ADE OCD AED OC AE ∠∠⎧⎪∠∠⎨⎪=⎩1212345⨯125165165125-2b ()()()a a b a b a b ab+-+--222a ab a b ab=+-+-2b =故答案为:.13.【分析】本题主要考查了科学记数法的表示方法,解题关键要正确确定的值以及的值.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.据此即可获得答案.【解答】解:5035亿.故答案为:.14.3【分析】本题主要考查了判断命题真假,熟练掌握相关知识是解题关键.根据平方根的性质、圆周角定理、相似多边形的判定条件、一元二次方程的根的判别式、菱形的判定条件,逐一分析判断即可.【解答】解:(1)如果,那么或,故原命题是假命题;(2))等弧所对的圆周角相等,是真命题;(3)对应角相等,且对应边成比例的两个四边形是相似四边形,故原命题是假命题;(4)对于方程,因为,所以该方程有两个不相等的实数根,该命题是真命题;(5)一条对角线平分一个内角的平行四边形是菱形,该命题是真命题.综上所述,真命题共有3个.故答案为:3.15.12【分析】本题主要考查了二次函数的应用,熟练掌握二次函数的图像与性质是解题关键.将原抛物线解析式化为顶点式,结合二次函数的图像与性质即可获得答案.【解答】解:∵,又∵,∴当(米)时,烟花可以达到的最大高度,最大高度为12米.故答案为:12.16.4.5【分析】本题主要考查了待定系数法则求反比例函数解析式、平行四边形的性质、坐标与图形等知识,确2b 115.03510⨯a n 10n a ⨯110a ≤<n n a n 10≥n 1<n 11503500000000 5.03510==⨯115.03510⨯22a b =a b =a b =-2310x x +-=()23411130∆⨯-=-=⨯>()220.510380.51012y x x x =-+-=--+0.50a =-<10x =定点的坐标是解题关键.根据平行四边形“对角线相互平分”的性质可得,进而可得,将点的坐标代入反比例函数解析式并求解即可.【解答】解:∵四边形为平行四边形,∴,∵,,∴,∵函数经过点,即有,解得.故答案为:4.5.17.【分析】将二次根式化为最简二次根式,再用幂的运算公式及特殊角的三角函数值进行计算即可.【解答】解:原式【点拨】本题考查了实数的混合运算,掌握相关运算法则及特殊角的三角函数值是解题的关键.18.,见解答【分析】本题主要考查了解一元一次不等式组、在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的方法和步骤是解题关键.分别解两个不等式,然后按照“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则确定不等式组的解集,然后将其表示在数轴上即可.【解答】解:,解不等式①,得 ,解不等式②,得 ,∴该不等式的解集为 ,将解集在数轴上表示出来如下图:D OA OC =()3,1.5D D OABC OA OC =(5,0)A (1,3)C ()3,1.5D k y x =D 1.53k = 4.5k =3231=+-3=+-3=11x -<<31432x x x ->-⎧⎨<+⎩①②1x >-1x <11x -<<19.,.【分析】本题考查了分式的化简求值,根据分式的混合运算法则计算即可.【解答】,当时,原式.20.(1)见解答(2)【分析】本题主要考查了尺规作图—作角平分线、平行线的性质、等腰三角形的判定与性质、三角形内角和定理等知识,熟练掌握相关知识是解题关键.(1)由作图可知,为的平分线,易得,再根据“两直线平行,内错角相等”可得,进而可得,即可证明结论;(2)首先证明,结合为的平分线,易得,再根据可得,然后根据三角形内角和定理求解即可.【解答】(1)证明:由作图可知,为的平分线,∴,∵,∴,∴,∴;(2)解:∵,∴,11x +120242221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭()()()2111111x x x x x x x +-⎛⎫=-÷ ⎪--+-⎝⎭()()()211111x x x x +-=⨯-+11x =+2023x =1111202312024x ===++52︒CD ACB ∠BCD ACD ∠=∠EDC BCD ∠=∠EDC ACD ∠=∠32BCD CDE ∠=∠=︒CD ACB ∠264ACB BCD ∠=∠=︒AB AC =64ABC ACB ∠=∠=︒CD ACB ∠BCD ACD ∠=∠DE BC ∥EDC BCD ∠=∠EDC ACD ∠=∠DE CE =32CDE ∠=︒32BCD CDE ∠=∠=︒∵为的平分线,∴,∵,∴,∴.21.(1)38,理由见解析(2)77(3)甲(4)七年级竞赛成绩90分及以上人数约为64人【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.【解答】(1)解:由题意可得:70≤x <80这组的数据有16人,∴七年级抽取成绩在60≤x <90的人数是:12+16+10=38人,故答案为:38;补全频数分布直方图如图所示;(2)解:∵4+12=16<25,4+12+16>25,∴七年级中位数在70≤x <80这组数据中,∴第25、26的数据分别为77,77,∴m=,故答案为:77;CD ACB ∠264ACB BCD ∠=∠=︒AB AC =64ABC ACB ∠=∠=︒()18052A ABC ACB ∠=︒-∠+∠=︒7777772+=(3)解:∵七年级学生的中位数为77<78,八年级学生的中位数为79>78,∴甲的成绩在本年级抽取成绩中排名更靠前,故答案为:甲;(4)解:(人)答:七年级竞赛成绩90分及以上人数约为64人.【点拨】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解题意,综合运用这些知识点是解题关键.22.(1)购买一副乒乓球拍28元,一副羽毛球拍60元;(2)这所中学最多可购买20副羽毛球拍.【分析】(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由购买2副乒乓球拍和1副羽毛球拍共需116元,购买3副乒乓球拍和2副羽毛球拍共需204元,可得出方程组,解出即可.(2)设可购买a 副羽毛球拍,则购买乒乓球拍(30﹣a )副,根据购买足球和篮球的总费用不超过1480元建立不等式,求出其解即可.【解答】(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意得,,解得:.答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)设可购买a 副羽毛球拍,则购买乒乓球拍(30﹣a )副,由题意得,60a+28(30﹣a )≤1480,解得:a≤20,答:这所中学最多可购买20副羽毛球拍.考点:一元一次不等式的应用;二元一次方程组的应用.23.(1)(2)选择小彤的方法说明,理由见解答【分析】(1)用表示三种解题方法,根据题意作出树状图,结合树状图即可获得答案;(2)连接,由折叠的性质可得,,,,,由垂直平分线84006450⨯=211632204x y x y +=⎧⎨+=⎩2860x y =⎧⎨=⎩13l 2330∠∠∠===︒、、A B C AN AE BE =90AEN BEN ∠=∠=︒BA BN =12∠=∠的性质可得,即可证明为等边三角形,得到,由矩形的性质可得,可求出,即可证明结论.【解答】(1)解:用表示三种解题方法,根据题意,作出树状图如下,由树状图可知,共有9种等可能的结果,其中小明和小峰选择同一种方法的结果有3种,∴小明和小峰选择同一种方法的概率为;(2)选择小彤的方法说明,理由如下:连接,如下图,由折叠的性质可得,,,,,∴垂直平分,∴,∴,∴为等边三角形,∴,∴,∵四边形为矩形,∴,∴,∴.【点拨】本题主要考查了列举法求概率、折叠的性质、等边三角形的判定与性质、垂直平分线的性质等知识,解题关键是结合折叠的性质和垂直平分线的性质证明为等边三角形.24.(1)见解答(2)6AN BN =ABN 112302ABN ∠=∠=∠=︒90ABC ∠=︒330ABC ABN ∠=∠-∠=︒、、A B C 3193P ==l 2330∠∠∠===︒AN AE BE =90AEN BEN ∠=∠=︒BA BN =12∠=∠EN AB AN BN =BA BN AN ==ABN 60ABN ∠=︒112302ABN ∠=∠=∠=︒ABCD 90ABC ∠=︒330ABC ABN ∠=∠-∠=︒l 2330∠∠∠===︒ABN(3)【分析】(1)首先根据圆内接四边形的性质证明,再证明,易得,即可证明结论;(2)首先根据三角形函数定义以及“同弧或等弧所对的圆周角相等”可得,易得,在中,由勾股定理解得,,,证明,由相似三角形的性质解得,然后由求解即可;(3)连接,过点作于点,证明,进而可证明为等边三角形,然后由求解即可.【解答】(1)证明:∵四边形为的内接四边形,∴,∵,∴,∵,∴,又∵,∴,∴,∵,∴,∴平分;(2)∵是的直径,∴,∵,∴,∴,∴,又∵83π-CDF ABC ∠=∠ADB CDF ∠=∠CDF EDF ∠=∠1tan tan 2AD ACD ABD AB ∠=∠==2AB AD =Rt △ABD 2AD =4AB =BAD FAB ∽8AF =DF AF AD =-OA O OH AD ⊥H 60AOD ∠=︒OAD △AOD OAD S S S =- 阴影扇形ABCD O 180ABC ADC ∠+∠=︒180CDF ADC ∠+∠=︒CDF ABC ∠=∠ AB AB =ACB ADB Ð=ÐAB AC =A ABC CB =∠∠ADB CDF ∠=∠ADB EDF ∠=∠CDF EDF ∠=∠DF CDE ∠BD O 90BAD ∠=︒ AD AD =ABD ACD ∠=∠1tan tan 2AD ACD ABD AB ∠=∠==2AB AD =O∴∴在中,,解得,∴,由 (1)可知,,,∴,∴,即,解得,∴;(3)如下图,连接,过点作于点,∵是的直径,,∴,即,∴由(1)可知,,又∵,∴,∴,又∵,半径为4,∴为等边三角形,∴,,∵,∴,BD =Rt △ABD ()(22222222520BD AD AB AD AD AD =+=+===2AD =24AB AD ==ADB ACB ABC ∠=∠=∠BAD FAB ∠=∠BAD FAB ∽AB AD AF AB=424AF =8AF =826DF AF AD =-=-=OA O OH AD ⊥H BD O 30F ∠=︒90BCD ∠=︒CD BF ⊥9060CDF F ∠=︒-∠=︒60ADB EDF CDF ∠=∠=∠=︒90BAD ∠=︒9030ABD ADB ∠=︒-∠=︒260AOD ABD ∠=∠=︒OA OD =O OAD △4OA OD AD ===60OAD ∠=︒OH AD ⊥sin 4sin 60OH OA OAD =⨯∠=⨯︒=∴,∴【点拨】本题主要考查了圆内接四边形的性质、圆周角定理、相似三角形的判定与性质、等腰三角形的性质、勾股定理、解直角三角形、等边三角形的判定与性质、扇形面积计算等知识,综合性强,难度较大,综合运用相关知识是解题关键.25.(1)(2)存在,或(3,4)(3)存在,【分析】(1)待定系数法求解析式即可求解;(2)待定系数法求得直线AB 的解析式为,过点P 作PM ⊥x 轴,垂足为M ,PM 交AB 于点N .过点B 作BE ⊥PM ,垂足为E .可得,设,则.由,解方程求得的值,进而即可求解;(3)由已知条件可得,进而可得,过点分别作轴的垂线,垂足分别,交于点,过作的平行线,交于点,可得,设,,则,根据可得,根据,根据二次函数的性质即可求的最大值.【解答】(1)解:(1)将A (4,0),B (1,4)代入,得,解得.所以抛物线的解析式为.(2)设直线AB 的解析式为,11422OAD S AD OH =⋅=⨯⨯= 260843603AOD OAD S S S ππ︒=-=⨯⨯-=-︒ 阴影扇形241633y x x =-+162,3⎛⎫ ⎪⎝⎭9841633y x =-+PAB PNB PNA S S S =+△△△32PN =()()2416,1433P m m m m -+<<()416,33N m m -+()()2416416833333PN m m m =-+--+=m OBC PDC ∽1223S S CD PC S S BC OC +=+2PD OB=,B P x ,F E PE AB Q D x PE G DPG OBF ∽()()2416,1433P m m m m -+<<()416,33D n n -+416,33G m n ⎛⎫-+ ⎪⎝⎭PD DG OB OF =244n m m =-+1223S S CD PC S S BC OC +=+2DG OF =2159228m ⎛⎫=--+ ⎪⎝⎭2y ax bx =+16404a b a b +=⎧⎨+=⎩43163a b ⎧=-⎪⎪⎨⎪=⎪⎩241633y x x =-+()0y kx t k =+≠将A (4,0),B (1,4)代入,得,解得.所以直线AB 的解析式为.过点P 作PM ⊥x 轴,垂足为M ,PM 交AB 于点N .过点B 作BE ⊥PM ,垂足为E .所以.因为A (4,0),B (1,4),所以.因为△OAB 的面积是△PAB 面积的2倍,所以,.设,则.所以,即,解得,.y kx t =+404k t k t +=⎧⎨+=⎩43163k t ⎧=-⎪⎪⎨⎪=⎪⎩41633y x =-+PAB PNB PNAS S S =+△△△1122PN BE PN AM =⨯+⨯()12PN BE AM =⨯+32PN =14482OAB S =⨯⨯=△3282PN ⨯=83PN =()()2416,1433P m m m m -+<<()416,33N m m -+()()2416416833333PN m m m =-+--+=24201683333m m -+-=12m =23m =所以点P 的坐标为或(3,4).(3)记△CDP ,△CPB ,△CBO 的面积分别为,,.则如图,过点分别作轴的垂线,垂足分别,交于点,过作的平行线,交于点,,设直线AB 的解析式为.设,则162,3⎛⎫ ⎪⎝⎭PD BO∥OBC PDC∴ ∽CD PD PC BC OB OC∴==1S 2S 3S 1223S S CD PC S S BC OC +=+2PD OB =,B P x ,F E PE AB Q D x PE G()1,4B ()1,0F ∴1OF ∴=,PD OB DG OF∥∥ DPG OBF∴ ∽PD PG DG OB BF OF∴==()()2416,1433P m m m m -+<< 41633y x =-+()416,33D n n -+416,33G m n ⎛⎫-+ ⎪⎝⎭24164163333PG m m n =-++-()24443m m n =--+整理得时,取得最大值,最大值为【点拨】本题考查了二次函数综合,待定系数法求解析式,面积问题,相似三角形的性质与判定,第三问中转化为线段的比是解题的关键.DG m n=-24(44)341m m n m n +∴---=244n m m =-+∴1223S S CD PC S S BC OC +=+2PD OB=2DGOF=()2m n =-2424m m m ⎛⎫-+=- ⎪⎝⎭()21542m m =--+2159228m ⎛⎫=--+ ⎪⎝⎭52m ∴=1223S S S S +98。

2022-2023学年人教版九年级数学上学期压轴题汇编专题05 二次函数的图像和性质(含详解)

2022-2023学年人教版九年级数学上学期压轴题汇编专题05 二次函数的图像和性质(含详解)

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y22.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是13.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣24.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=35.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.6.(2分)(2022•长沙模拟)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.38.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤39.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0 10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x >﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y =ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.评卷人得分三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.24.(8分)(2020•雨花区二模)已知抛物线y=ax2+x+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由.25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;(2)若P为线段AC上方抛物线上一动点,求△ACP面积的最大值;(3)如图②过点A作AD⊥BC于点D,过D作DH⊥x轴于H,若G为直线DH上的动点,N为抛物线上的动点,在x轴上是否存在点M,使得以M、N、G、H为顶点的四边形为正方形?若存在,求出M点坐标,若不存在,请说明理由.2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【思路引导】利用配方法将已知抛物线方程转化为顶点式,根据抛物线的对称性质和增减性比较大小.【完整解答】解:∵y=2x2﹣4x+c=2(x﹣1)2+c﹣2.∴抛物线开口向上,对称轴是直线x=1.∴当x<1时,y随x的增大而减小,∵抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),﹣4<﹣2<<1,∴y1>y2>y3,故选:B.2.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是1【思路引导】在y=(x﹣1)2+1中,令x=0得y=2,可判定A不符合题意;由1>0,对称轴直线x=1可判断B不符合题意;根据当x=0时,y=2;当x=2时,y=2,可判定C符合题意;由y=(x﹣1)2+1,根据函数性质可判定D不符合题意.【完整解答】解:令x=0,则y=(0﹣1)2+1=2,∴二次函数y=(x﹣1)2+1的图象与y轴的交点坐标为(0,2),故A不符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x>1时,y随x的增大而增大,故B不符合题意;当x=0时,y=2,当x=2时y=(2﹣1)2+1=2,故C符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x=1时,y有最小值,故D不符合题意.故选:C.3.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣2【思路引导】直接根据二次函数图象平移的法则即可得出结论.【完整解答】解:根据“上加下减,左加右减”的法则可知,将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线的表达式是y=(x+4)2+1﹣3,即y=(x+4)2﹣2.故选:C.4.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=3【思路引导】根据抛物线的顶点式,可以写出该抛物线的对称轴,本题得以解决.【完整解答】解:∵抛物线y=(x+1)2﹣3,∴该抛物线的对称轴是直线x=﹣1,故选:A.5.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.【思路引导】根据每一选项中a、b的符号是否相符,逐一判断.【完整解答】解:A、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;B、由抛物线可知,a<0,b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知a>0,b<0,由直线可知a>0,b>0,故本选项错误;D、由抛物线可知,a<0,b<0,由直线可知,a>0,b<0,故本选项错误.故选:B.6.(2分)(2018秋•天心区校级期末)已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.【思路引导】当y>0时,,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣,所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1进而得出解析式,找出符合要求的答案.【完整解答】解:因为函数y=ax2+bx+c,当y>0时,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1则函数y=cx2﹣bx+a为函数y=x2+x﹣6即y=(x﹣2)(x+3)则可判断与x轴的交点坐标是(2,0),(﹣3,0),故选:A.7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.3【思路引导】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的;根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;⑥根据图形判断即可;逐个判断之后,可得出答案.【完整解答】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;⑥从图象上看,若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P,因此⑥也是正确的.故答案为:①②③④⑥.故选:B.8.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3【思路引导】根据题意,x=﹣≤2,≥﹣3【完整解答】解:当对称轴在y轴的右侧时,,解得≤m<3,当对称轴是y轴时,m=3,符合题意,当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,综上所述,满足条件的m的值为m≥.故选:A.9.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0【思路引导】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c<0.【完整解答】解:A.∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B.∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C.∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D.∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④【思路引导】①由非负数的性质,即可证得y2=﹣(x﹣2)2﹣1≤﹣1<0,即可得无论x取何值,y2总是负数;②由抛物线l1:y1=a(x+1)2+2与l2:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),可求得a的值,然后由抛物线的平移的性质,即可得l2可由l1向右平移3个单位,再向下平移3个单位得到;③由y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,可得随着x的增大,y1﹣y2的值减小;④首先求得点A,C,D,E的坐标,即可证得AF=CF=DF=EF,又由AC⊥DE,即可证得四边形AECD为正方形.【完整解答】解:①∵(x﹣2)2≥0,∴﹣(x﹣2)2≤0,∴y2=﹣(x﹣2)2﹣1≤﹣1<0,∴无论x取何值,y2总是负数;故①正确;②∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),∴当x=1时,y=﹣2,即﹣2=a(1+1)2+2,解得:a=﹣1;∴y1=﹣(x+1)2+2,∴H可由G向右平移3个单位,再向下平移3个单位得到;故②正确;③∵y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,∴随着x的增大,y1﹣y2的值减小;故③错误;④设AC与DE交于点F,∵当y=﹣2时,﹣(x+1)2+2=﹣2,解得:x=﹣3或x=1,∴点A(﹣3,﹣2),当y=﹣2时,﹣(x﹣2)2﹣1=﹣2,解得:x=3或x=1,∴点C(3,﹣2),∴AF=CF=3,AC=6,当x=0时,y1=1,y2=﹣5,∴DE=6,DF=EF=3,∴四边形AECD为平行四边形,∴AC=DE,∴四边形AECD为矩形,∵AC⊥DE,∴四边形AECD为正方形.故④正确.故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15 .【思路引导】根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【完整解答】解:∵点A、B的坐标分别为(﹣5,0)、(﹣2,0),∴AB=3,y=﹣2x2+4x+8=﹣2(x﹣1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=﹣2(3﹣1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=15,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15;故答案为:3≤S≤15.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有①③⑤.(填序号)【思路引导】由抛物线的对称轴为直线x=2可得a与b的关系,从而判断①,由x=﹣3时y>0可判断②,由抛物线经过(﹣1,0)及a与b的关系可判断③,由抛物线对称轴及开口方向可判断④,由x=2时y取最大值可判断⑤.【完整解答】解:∵抛物线对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,①正确.由图象可得x=﹣3时,y=9a﹣3b+c<0,∴9a+c<3b,②错误.∵抛物线经过(﹣1,0),∴a﹣b+c=a+4a+c=5a+c=0,∵抛物线开口向下,∴a<0,∴3a+c=5a+c﹣2a>0,③正确.由图象可得x<2时,y随x增大而增大,∴④错误.∵x=2时,函数取最大值,∴4a+2b+c≥am2﹣bm+c,即4a+2b≥am2﹣bm,⑤正确.故答案为:①③⑤.13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为②⑤.(注:只填写正确结论的序号)【思路引导】根据二次函数的图象与系数的关系即可求出答案.【完整解答】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(﹣,0)代入函数表达式得:a﹣2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=﹣=1,即b=﹣2a,故2a+b=0,故③错误,不符合题意;④由②③得:a﹣2b+4c=0,b=﹣2a,则c=﹣,故2c﹣3b=>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是①④⑤.【思路引导】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=﹣1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【完整解答】解:∵图象和x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,∴①正确;∵从图象可知:a>0,c<0,﹣=﹣1,b=2a>0,∴abc<0,∴②错误;∵b=2a>0∴2a+b=4a>0,∴③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,∴④正确;∵x=1时,y>0,∴a+b+c>0,把b=2a代入得:3a+c>0,选项⑤正确;故答案为①④⑤.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为 2 .【思路引导】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【完整解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【思路引导】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【完整解答】解:设P(x,x2﹣2x﹣3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2PA+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.【思路引导】根据轴对称,可以求得使得△PAB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△PAB的面积,本题得以解决.【完整解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△PAB的面积是:=,故答案为:.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是y2<y3<y1.【思路引导】把三点的坐标分别代入可求得y1、y2、y3,再比例其大小即可.【完整解答】解:∵抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),∴y1=16a﹣8a+m=8a+m,y2=4a﹣4a+m=m,y3=a+2a+m=3a+m,∵a>0,∴m<3a+m<8a+m,即y2<y3<y1,故答案为:y2<y3<y1.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是①②③⑤.【思路引导】根据二次函数的图象与性质即可求出答案.【完整解答】解:①由图象可知:x=1时,y<0,∴y=a+b+c<0,故①正确;②由图象可知:Δ>0,∴b2﹣4ac>0,故②正确;③由图象可知:<0,∴ab>0,又∵c=1,∴abc>0,故③正确;④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)∴令x=﹣2,y>0,∴4a﹣2b+c>0,故④错误;⑤由图象可知:a<0,c=1,∴c﹣a=1﹣a>1,故⑤正确;故答案为:①②③⑤20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有 2 个.【思路引导】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【完整解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故答案是:2.三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.【思路引导】根据待定系数法求二次函数解析式、一次函数解析式.【完整解答】解:(1)设二次函数解析式为y=a(x﹣1)(x﹣3),将C(0,3)代入得:3=a(0﹣1)(0﹣3),∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∴顶点坐标M(2,﹣1),(2)设直线CM的解析式为y=kx+b,将C(0,3)、M(2,﹣1)代入得:,∴.∴y=﹣2x+3.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.【思路引导】(1)利用待定系数法即可求出直线的解析式;(2)分x在对称轴右侧和左侧两种情况,分别求解即可;(3)分a<0、a>0两种情况,分别求解即可.【完整解答】解:(1)把点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.【思路引导】(1)将点(1,m+7)代入函数解析式即可;(2)设符合题意的两点分别是(x0,y0),(﹣x0,﹣y0),代入解析式,两式相加即可得到2(2m﹣1)x02+6=0,根据二次函数的性质即可求得;(3)当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5②当2m﹣1<0时,﹣>1.【完整解答】解:(1)抛物线经过点(1,m+7),∴m+7=2m﹣1+m+1+3,∴m=2;(2)设抛物线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:,∴两式相加可得:2(2m﹣1)x02+6=0,化简得:x02=﹣,又∵x0≠0,∴﹣>0,∴2m﹣1<0,∴m<,故满足条件的最大整数m=0;(3)∵新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,∵当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5,∴<m≤,②当2m﹣1<0时,﹣>1,∴<m<;综上所述:<m≤且m≠;24.(8分)(2017春•雨花区校级期末)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【思路引导】(1)直接把A点和C点坐标代入y=﹣x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D(,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(,4);当DP =DC时,易得P2(,),P3(,﹣);(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),则FE=﹣x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF =S△BEF+S△CEF=×4×EF=﹣x2+4x,加上S△BCD=,所以S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.【完整解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.【思路引导】(1)分别求出D(﹣1,0),B(3,0),则可求BD;(2)连接AO,求出顶点坐标为(1,﹣4),C(0,﹣3),再由S△CAB=S△OAB+S△OCA﹣S△OCB即可求解;(3)连接BC交对称轴与点P,由题意可知B点与D点关于对称轴x=1对称,则当P、B、C三点共线时,PC+PD的值最小,求出BC=3即为所求.【完整解答】解:(1)当y=0,则0=x2﹣2x﹣3,则(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3,∴D(﹣1,0),B(3,0),∴BD=4;故答案为:4.(2)连接AO,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴C(0,﹣3),∴S△CAB=S△OAB+S△OCA﹣S△OCB=×3×4+×3×1﹣×3×3=3;故答案为:3.(3)连接BC交对称轴与点P,∵y=(x﹣1)2﹣4,∴对称轴为直线x=1,∵B点与D点关于对称轴x=1对称,∴DP=PB,∴PC+PD=PC+BP≥BC,∴当P、B、C三点共线时,PC+PD的值最小,∵B(3,0),C(0,﹣3),∴BC=3,∴PC+PD的最小值即BC=.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【思路引导】(1)由抛物线解析式可得顶点坐标,将顶点坐标代入直线解析式求解.(2)由抛物线解析式可得顶点坐标,由抛物线顶点坐标及(1,3)可得直线解析式,进而求解.(3)由线y=x2+2x+n可得抛物线对称轴为直线x=﹣1,由抛物线与x轴两个交点间的距离为4可得抛物线与x轴交点坐标,进而可得n的值,将抛物线顶点坐标代入直线解析式可得m的值.【完整解答】解:(1)∵抛物线y=x2﹣4的顶点坐标为(0,﹣4),∴(0,﹣4)在直线y=﹣x+p上,∴p=﹣4.(2)∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线顶点坐标为(2,11),将(2,11),(1,3)代入y=kx+t得,解得,∴一次函数解析式为y=8x﹣5.将x=0代入y=8x﹣5得y=﹣5,将y=0代入y=8x﹣5得0=8x﹣5,解得x=,∴一次函数与坐标轴交点坐标为(0,﹣5),(,0),∴直线y=8x﹣5与坐标轴围成的三角形面积为×=.(3)∵y=x2+2x+n,∴抛物线对称轴为直线x=﹣=﹣1,∵抛物线与x轴的两个交点之间距离为4,﹣1+2=1,﹣1﹣2=﹣3,∴抛物线经过(1,0),(﹣5,0),将(1,0)代入y=x2+2x+n得0=1+2+n,解得n=﹣3.∴y=x2+2x﹣3=(x+1)2﹣4,∴抛物线顶点坐标为(﹣1,﹣4),将(﹣1,﹣4)代入y=mx﹣3得﹣4=﹣m﹣3,解得m=1.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;。

2020-2021学年湖南省邵阳市武冈二中九年级(上)第二次月考数学试卷【附答案】

2020-2021学年湖南省邵阳市武冈二中九年级(上)第二次月考数学试卷【附答案】

2020-2021学年湖南省邵阳市武冈二中九年级(上)第二次月考数学试卷一.选择题(每小题3分,10小题,共30分)1.(3分)抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)2.(3分)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.3.(3分)将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A.y=﹣2x2﹣12x+16B.y=﹣2x2+12x﹣16C.y=﹣2x2+12x﹣19D.y=﹣2x2+12x﹣204.(3分)二次函数y=ax2+bx+c的图象如图所示,其对称轴为x=1,有下列结论①abc<0;②b<a+c;③4a+2b+c<0;④a+b≥m(am+b),其中正确的结论有()A.①②B.②③C.①④D.②④5.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是直线x=﹣6.(3分)已知两点P1(x1,y1)、P2(x2、y2)在反比例函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<07.(3分)某银行经过最近两次降息,使一年期存款的年利率由2.25%降至1.98%,设平均每次降息的百分率为x,则可列方程为()A.2×2.25%(1﹣x)=1.98%B.2.25%(1﹣2x)=1.98%C.1.98%(1+x)=2.25%D.2.25%(1﹣x)2=1.98%8.(3分)△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:99.(3分)下列抽样统计的结果能合理地估计总体情况的是()A.对某校一个班的学生的视力进行检测,估算全校学生近视率B.对某商场10月份的销售情况进行统计,估计全年的销售额C.从一批灯泡中随机抽取50个进行试验,估算这批灯泡的使用寿命D.从100名学生中随机抽取2名学生测得他们的身高,估算这100名学生的身高10.(3分)如图,有一块锐角三角形材料,边BC=120mm,高AD=90mm,要把它加工成矩形零件,使其一边在BC上,其余两个顶点分别在AB,AC,且EH=2EF,则这个矩形零件的长为()A.36mm B.80mm C.40mm D.72mm二.填空题(每小题3分,8小题,共24分)11.(3分)已知y=(m﹣2)x|m|+2是y关于x的二次函数,那么m的值为.12.(3分)将二次函数y=x2的图象沿x轴向左平移1个单位,再沿y轴向上平移3个单位,得到的图象对应的函数表达式为.13.(3分)已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.14.(3分)已知点P在抛物线y=(x﹣2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.15.(3分)关于x的方程x2﹣m2x+3m=0的两个实数根的和为4,则m的值是.16.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于,并且是关于原点O 的位似图形,若点A的坐标为(3,6),则其对应点A1的坐标是.17.(3分)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,6)和B(8,3),如图所示,则不等式ax2+bx+c>kx+m的取值范围是.18.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S1=2S2.三.解答题(共7小题,19题6分、20题8分、21到24题每题10分,25题12分)19.(6分)计算题:(1)﹣22+﹣2cos60°+()﹣1.(2)2cos30°﹣tan45°﹣.20.(8分)解一元二次方程:(1)x2﹣3x+2=0;(2)2x2﹣3x﹣1=0.21.(10分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(参考数据:≈1.414,≈1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.22.(10分)如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD =∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.23.(10分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?24.(10分)某品牌钢笔进价为每支20元,经销商小周在销售中发现,每月销售量y(支)与销售单价x(元)之间满足一次函数y=﹣10x+500的关系,在销售中销售单价不低于进价,而每支钢笔的利润不高于进价的60%,设小周每月获得利润为w(元).(1)当销售单价定为每支多少元时,每月可获得最大利润?每月的最大利润是多少?(2)如果小周想要每月获得的利润不低于2000元,那么小周每月的成本最少需要多少元?(成本=进价×销售量).25.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.(3)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请直接写出点M的坐标.若不存在,请说明理由.2020-2021学年湖南省邵阳市武冈二中九年级(上)第二次月考数学试卷参考答案与试题解析一.选择题(每小题3分,10小题,共30分)1.(3分)抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(1,3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.2.(3分)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;D、观察图象可知a>0,b<0,符合题意.故选:D.3.(3分)将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A.y=﹣2x2﹣12x+16B.y=﹣2x2+12x﹣16C.y=﹣2x2+12x﹣19D.y=﹣2x2+12x﹣20【解答】解:y=2x2﹣12x+16=2(x2﹣6x+8)=2(x﹣3)2﹣2,将原抛物线绕顶点旋转180°后,得:y=﹣2(x﹣3)2﹣2=﹣2x2+12x﹣20;故选:D.4.(3分)二次函数y=ax2+bx+c的图象如图所示,其对称轴为x=1,有下列结论①abc<0;②b<a+c;③4a+2b+c<0;④a+b≥m(am+b),其中正确的结论有()A.①②B.②③C.①④D.②④【解答】解:①根据图象可知:a<0,c>0,对称轴在y轴左侧,∴b>0,∴abc<0.∴①正确;②根据图象可知:当x=﹣1时,y<0,即a﹣b+c<0,即b>a+c.∴②错误;③观察图象可知:当x=2时,y>0,即4a+2b+c>0.∴③错误.④∵当x=1时,顶点的纵坐标最大,∴a+b+c≥am2+bm+c,∴a+b≥m(am+b),∴④正确.所以①④,2个.故选:C.5.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是直线x=﹣【解答】解:(方法一)将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是直线x=﹣,D正确.故选:D.(方法二)∵当y=﹣2时,x1=﹣3,x2=﹣2,∴抛物线的对称轴是直线x==﹣.故选:D.6.(3分)已知两点P1(x1,y1)、P2(x2、y2)在反比例函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0【解答】解:∵3>0,∴y=在第一、三象限,且随x的增大y值减小,∵x1>x2>0,∴0<y1<y2.故选:A.7.(3分)某银行经过最近两次降息,使一年期存款的年利率由2.25%降至1.98%,设平均每次降息的百分率为x,则可列方程为()A.2×2.25%(1﹣x)=1.98%B.2.25%(1﹣2x)=1.98%C.1.98%(1+x)=2.25%D.2.25%(1﹣x)2=1.98%【解答】解:依题意得:2.25%(1﹣x)2=1.98%.故选:D.8.(3分)△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.9.(3分)下列抽样统计的结果能合理地估计总体情况的是()A.对某校一个班的学生的视力进行检测,估算全校学生近视率B.对某商场10月份的销售情况进行统计,估计全年的销售额C.从一批灯泡中随机抽取50个进行试验,估算这批灯泡的使用寿命D.从100名学生中随机抽取2名学生测得他们的身高,估算这100名学生的身高【解答】解:A、对某校一个班的学生的视力进行检测,估算全校学生近视率,抽查的样本不具有代表性,不能合理地估计总体情况;B、对某商场10月份的销售情况进行统计,估计全年的销售额抽查的样本不具有代表性,不能合理地估计总体情况;C、从一批灯泡中随机抽取50个进行试验,估算这批灯泡的使用寿命,抽查的样本具有代表性,能合理地估计总体情况;D、从100名学生中随机抽取2名学生测得他们的身高,估算这100名学生的身高,抽查的样本容量小,不能合理地估计总体情况;故选:C.10.(3分)如图,有一块锐角三角形材料,边BC=120mm,高AD=90mm,要把它加工成矩形零件,使其一边在BC上,其余两个顶点分别在AB,AC,且EH=2EF,则这个矩形零件的长为()A.36mm B.80mm C.40mm D.72mm【解答】解:设边宽为xmm,则长为2xmm,∵四边形EFGH为矩形,∴EH∥BC,EF∥AD,∴,∵BE+AE=AB,∴,∴,解得:x=36mm,∴EF=36mm,EH=72mm,故选:D.二.填空题(每小题3分,8小题,共24分)11.(3分)已知y=(m﹣2)x|m|+2是y关于x的二次函数,那么m的值为﹣2.【解答】解:∵y=(m﹣2)x|m|+2是y关于x的二次函数,∴|m|=2,且m﹣2≠0,解得:m=﹣2.故答案为:﹣2.12.(3分)将二次函数y=x2的图象沿x轴向左平移1个单位,再沿y轴向上平移3个单位,得到的图象对应的函数表达式为y=(x+1)2+3.【解答】解:二次函数y=x2的顶点坐标为(0,0),把点(0,0)沿x轴向左平移1个单位,再沿y轴向上平移3个单位所得对应点的坐标为(﹣1,3),所以平移后的抛物线解析式为y=(x+1)2+3.故答案为y=(x+1)2+3.13.(3分)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.14.(3分)已知点P在抛物线y=(x﹣2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是0≤y≤4.【解答】解:∵抛物线y=(x﹣2)2的对称轴是直线x=2,∴当x=2时y最小,最小值是0,∵0≤x≤3,∴当x=2时y最小,最小值是0,当x=0时,y最大,最大值为y=4,∴y的取值范围为:0≤y≤4.故答案为:0≤y≤4.15.(3分)关于x的方程x2﹣m2x+3m=0的两个实数根的和为4,则m的值是﹣2.【解答】解:∵关于x的方程x2﹣m2x+3m=0的两个实数根的和为4,∴m2=4,解得:m=±2,把m=2代入x2﹣m2x+3m=0得,x2﹣4x+6=0,∵Δ=16﹣24<0,∴方程x2﹣m2x+3m=0无实数根,把m=﹣2代入x2﹣m2x+3m=0得,x2﹣4x+6=0,方程x2﹣m2x+3m=0有实数根,故答案为:﹣2.16.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于,并且是关于原点O 的位似图形,若点A的坐标为(3,6),则其对应点A1的坐标是(9,18)或(﹣9,﹣18).【解答】解:∵△ABC和△A1B1C1的相似比等于,并且是关于原点O的位似图形,点A的坐标为(3,6),∴点A1的坐标是(3×3,6×3)或(﹣3×3,﹣6×3),即(9,18)或(﹣9,﹣18),故答案为:(9,18)或(﹣9,﹣18).17.(3分)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,6)和B(8,3),如图所示,则不等式ax2+bx+c>kx+m的取值范围是x <﹣2或x>8.【解答】解:当x<﹣2或x>8时,y1>y2,所以不等式ax2+bx+c>kx+m的解集为x<﹣2或x>8.故答案为x<﹣2或x>8.18.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=6秒时,S1=2S2.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.三.解答题(共7小题,19题6分、20题8分、21到24题每题10分,25题12分)19.(6分)计算题:(1)﹣22+﹣2cos60°+()﹣1.(2)2cos30°﹣tan45°﹣.【解答】解:(1)﹣22+﹣2cos60°+()﹣1=﹣4+3﹣2×+3=﹣4+3﹣1+3=1;(2)2cos30°﹣tan45°﹣=2×﹣1﹣(﹣1)=﹣1﹣+1=0.20.(8分)解一元二次方程:(1)x2﹣3x+2=0;(2)2x2﹣3x﹣1=0.【解答】解:(1)x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,所以x1=2,x2=1;(2)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=.21.(10分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(参考数据:≈1.414,≈1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.【解答】解:(1)∵新坡面坡角为α,新坡面的坡度为1:,∴tanα=,∴α=30°;(2)该文化墙PM不需要拆除,理由:作CD⊥AB于点D,则CD=6米,∵新坡面的坡度为1:,∴tan∠CAD=,解得,AD=6米,∵坡面BC的坡度为1:1,CD=6米,∴BD=6米,∴AB=AD﹣BD=(﹣6)米,又∵PB=8米,∴P A=PB﹣AB=8﹣(﹣6)=14﹣6≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM不需要拆除.22.(10分)如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD =∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=23.(10分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【解答】解:(1)设这条抛物线解析式为y=a(x+m)2+k由题意知:顶点A为(1,4),P为(0,3)∴4=k,3=a(0﹣1)2+4,a=﹣1.所以这条抛物线的解析式为y=﹣(x﹣1)2+4.(2)令y=0,则0=﹣(x﹣1)2+4,解得x1=3,x2=﹣1所以若不计其它因素,水池的半径至少3米,才能使喷出的水流不至于落在池外.24.(10分)某品牌钢笔进价为每支20元,经销商小周在销售中发现,每月销售量y(支)与销售单价x(元)之间满足一次函数y=﹣10x+500的关系,在销售中销售单价不低于进价,而每支钢笔的利润不高于进价的60%,设小周每月获得利润为w(元).(1)当销售单价定为每支多少元时,每月可获得最大利润?每月的最大利润是多少?(2)如果小周想要每月获得的利润不低于2000元,那么小周每月的成本最少需要多少元?(成本=进价×销售量).【解答】解:(1)由题意得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵a=﹣10<0,20≤x≤20(1+60%),∴当20≤x≤32时,w随x的增大而增大,∴当x=32时,w最大=﹣10(32﹣35)2+2250=2160.答:当销售单价定为每支32元时,每月可获得最大利润,每月的最大利润是2160元.(2)设小周每月的成本需要p(元),根据题意得:p=20(﹣10x+500)=﹣200x+10000,∵w=﹣10x2+700x﹣10000≥2000,∴30≤x≤40,又∵20≤x≤32,﹣200<0,∴当30≤x≤32时,w≥2000,p随x的增大而减小,∴当x=32时,p的值最小,p最小值=﹣200×32+10000=3600.答:想要每月获得的利润不低于2000元,小周每月的成本最少需要3600元.25.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.(3)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请直接写出点M的坐标.若不存在,请说明理由.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),则,解得,故直线AC为y=x+1;(2)如图,过点P作PQ⊥x轴交AC于点Q,交x轴于点H,过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3),∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2,又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+,∴面积的最大值为;(3)存在,理由:由抛物线的表达式知,其对称轴为x=1,设点M(1,m),由点A、M、N的坐标知,AM2=(1+1)2+m2=4+m2,同理AN2=10,MN2=1+(m﹣3)2,当AM是斜边时,则4+m2=10+1+(m﹣3)2,解得m=;当AN是斜边时,同理可得:m=1或2;当MN是斜边时,同理可得:m=﹣;故点M的坐标为(1,)或(1,1)或(1,2)或(1,﹣).。

2022-2023学年湖南省长沙市浏阳市九年级(上)期中数学试题及答案解析

2022-2023学年湖南省长沙市浏阳市九年级(上)期中数学试题及答案解析

2022-2023学年湖南省长沙市浏阳市九年级(上)期中数学试卷1. 下列方程中,关于x的一元二次方程是( )A. x2+2x=x2−1B. ax2+bx+c=0C. 3(x+1)2=2(x+1)D. 1x2+1x−2=02. 一元二次方程x2+3x=0的解是( )A. x=−3B. x1=0,x2=3C. x1=0,x2=−3D. x=33. 下列一元二次方程中,没有实数根的方程是( )A. x2−3x+1=0B. x2+2x−1=0C. x2−2x+1=0D. x2+2x+3=04. 解方程(5x−1)2=3(5x−1)的适当方法是( )A. 开平方法B. 配方法C. 公式法D. 因式分解法5. 已知关于x的一元二次方程(k−1)x2−2x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<−2B. k<2C. k>2D. k<2且k≠16. 函数y=−2(x−3)2+6的顶点坐标是( )A. (−3,6)B. (3,−6)C. (3,6)D. (6,3)7. 下列图案中,可以看作是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个8. 下列说法错误的是( )A. 二次函数y=3x2中,当x>0时,y随x的增大而增大B. 二次函数y=−6x2中,当x=0时,y有最大值0C. a越大图象开口越小,a越小图象开口越大D. 不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点9. 若A(−2,y1),B(−1,y2),C(−3,y3)为二次函数y=ax2(a<0)的图象上的三点,则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y1<y3<y210. 如图,把抛物线y=x2沿直线y=x平移√2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是( )A. y=(x+1)2−1B. y=(x+1)2+1C. y=(x−1)2+1D. y=(x−1)2−111. 把函数y=2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是______.12. 若二次函数y=mx2+x+m(m−2)的图象经过原点,则m的值为.13. 在一次同学聚会上,见面时两两握手一次,共握手28次,设共有x名同学参加聚会,则所列方程为______ ,x=______ .14. 如图,正方形ABCD的边长为2cm,E是CD的中点,将△ADE绕点A顺时针方向旋转能与△ABF重合,则EF=______.15. 二次函数y=(x−1)2+3的最小值为______.16. 对于二次函数y=ax2(a≠0),当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为______ .17. 解下列一元二次方程.(1)(3x+2)2=25;(2)2x2−3x+2=0.18. 一元二次方程x2+kx+k+1=0的两实数根分别为x1、x2,且x12+x22=1,求k的值是多少?19. 汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?20. 如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.21. 已知关于x的一元二次方程x2+2(k−1)x+k2−1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.22. 若抛物线的顶点坐标是A(1,16),并且抛物线与x轴一个交点坐标为(5,0).(1)求该抛物线的关系式;(2)求出这条抛物线上纵坐标为10的点的坐标.23. 如图,已知二次函数y=−1x2+bx−6的图象与x轴交于一点A(2,0),与y轴交于点B,2对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.24. 商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品,商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价−进价)25. 已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的表达式;(2求该抛物线的对称轴及顶点坐标;(3)点C(m,m)在该函数图象上(其中m>0),求m的值;(4)在(3)的条件下,试问在该抛物线的对称轴上是否存在一点P,使PC+PB的值最小,若存在求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、x2+2x=x2−1是一元一次方程,故A错误;B、ax2+bx+c=0,a=0时是一元一次方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、1x2+1x−2=0是分式方程,故D错误;故选:C.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.【答案】C【解析】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=−3,故选:C.分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.3.【答案】D【解析】解:A、△=b2−4ac=9−4=5>0,∴方程x2−3x+1=0有两个不相等的实数根;B、△=b2−4ac=4+4=8>0,∴方程x2+2x−1=0有两个不相等的实数根;C、△=b2−4ac=4−4=0,∴方程x2−2x+1=0有两个相等的实数根;D、△=b2−4ac=4−12=−8<0,∴方程x2+2x+3=0没有实数根.故选D.根据根的判别式△=b2−4ac,逐一分析四个选项中方程根的判别式的符号,由此即可得出结论.本题考查了根的判别式,熟练掌握当△=b2−4ac<0时方程没有实数根是解题的关键.4.【答案】D【解析】解:(5x−1)2=3(5x−1)(5x−1)2−3(5x−1)=0,(5x−1)(5x−1−3)=0,即用了因式分解法,故选D.移项后提公因式,即可得出选项.本题考查了对解一元二次方程的解法的应用.5.【答案】D【解析】解:根据题意得:△=b2−4ac=4−4(k−1)=8−4k>0,且k−1≠0,解得:k<2,且k≠1.故选:D.根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.6.【答案】C【解析】解:二次函数y=−2(x−3)2+6的顶点坐标是(3,6).故选C.根据二次函数的性质直接求解.此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.【答案】C【解析】【分析】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形是中心对称图形,第三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形,综上所述,看作是中心对称图形的有3个.故选C.8.【答案】C【解析】解:A、二次函数y=3x2图象开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,正确;B、二次函数y=−6x2中开口向下,顶点(0,0),故当x=0时,y有最大值0,正确;C、|a|越大,图象开口越小,|a|越小图象开口越大,错误;D、抛物线y=ax2的顶点就是坐标原点,正确.故选C.抛物线y=ax2(a≠0)是最简单二次函数形式.顶点是原点,对称轴是y轴,a>0时,开口向上,a<0时,开口向下;开口大小与|a|有关.此题考查了二次函数的性质:增减性(单调性),最值,开口大小以及顶点坐标.9.【答案】C【解析】【分析】本题考查了二次函数的性质,根据二次函数的性质找出函数的单调区间是解题的关键,由a<0可得出:当x<0时,y随x的增大而增大.再结合−3<−2<−1即可得出结论.【解答】解:∵二次函数y=ax2中a<0,∴当x<0时,y随x的增大而增大,∵−3<−2<−1,∴y3<y1<y2.故选C.10.【答案】C【解析】解:∵A在直线y=x上,∴设A(m,m),∵OA=√2,∴m2+m2=(√2)2,解得:m=±1(m=−1舍去),m=1,∴A(1,1),∴抛物线解析式为:y=(x−1)2+1,故选:C.首先根据A点所在位置设出A点坐标为(m,m)再根据AO=√2,利用勾股定理求出m的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.此题主要考查了二次函数图象的几何变换,关键是求出A点坐标,掌握抛物线平移的性质:左加右减,上加下减.11.【答案】y=2(x−3)2−2【解析】解:y=2x2的图象向右平移3个单位,再向下平移2个单位,得y=2(x−3)2−2.故填得到的二次函数解析式是y=2(x−3)2−2.按照“左加右减,上加下减”的规律.考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.【答案】2【解析】【分析】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.本题中已知二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m−2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m−2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案为2.13.【答案】x(x−1)=28×2;8【解析】解:参加此会的学生为x名,每个学生都要握手(x−1)次,∴可列方程为x(x−1)=28×2,解得x1=8,x2=−7(不合题意,舍去).∴x=8.故答案为:x(x−1)=28×2;8.每个学生都要和他自己以外的学生握手一次,但两个学生之间只握手一次,所以等量关系为:学生数×(学生数−1)=总握手次数×2,把相关数值代入即可求解.本题考查用一元二次方程解决握手次数问题,得到总次数的等量关系是解决本题的关键.14.【答案】√10【解析】解:∵正方形ABCD的边长为2cm,E是CD的中点,∴AD=AB=2,DE=1,∠D=90°,∠DAB=90°,∴AE=√AD2+DE2=√22+12=√5,∵将△ADE绕点A顺时针方向旋转能与△ABF重合,∴∠FAE=∠BAD=90°,FA=EA=√5,∴△AEF为等腰直角三角形,∴EF=√2AE=√2×√5=√10.故答案√10.根据正方形的性质得到AD=AB=2,DE=1,∠D=90°,∠DAB=90°,利用勾股定理可计算出AE=√5,由于将△ADE绕点A顺时针方向旋转能与△ABF重合,根据旋转的性质得∠FAE=∠BAD=90°,FA=EA=√5,则△AEF为等腰直角三角形,然后利用等腰直角三角形即可得到EF=√2AE=√2×√5=√10.本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了勾股定理、正方形与等腰直角三角形的性质.15.【答案】3【解析】【分析】本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.【解答】解:二次函数的解析式为y=(x−1)2+3,根据二次函数的性质可知,抛物线开口向上,对称轴为x=1,∴当x=1时,二次函数y=(x−1)2+3有最小值,最小值为3.16.【答案】0【解析】解:二次函数y=ax2的对称轴为y轴,∵x取x1,x2(x1≠x2)时,函数值相等,∴x1,x2关于y轴对称,∴x1+x2=0,∴当x取x1+x2时,函数值为0.故答案为0.判断出二次函数图象对称轴为y轴,再根据二次函数的性质判断出x1,x2关于y轴对称,然后解答即可.本题考查二次函数的性质.17.【答案】解:(1)(3x+2)2=25,∴3x+2=±5,∴x1=1,x2=−7;3(2)2x2−3x+2=0,∵a=2,b=−3,c=2,∴Δ=(−3)2−4×2×2=−7<0,∴此方程无实数解.【解析】(1)利用直接开平方法求解即可;(2)利用根的判别式即可判断方程无实数解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.【答案】解:∵方程x2+kx+k+1=0的两实数根分别为x1、x2,∴x1+x2=−k,x1x2=k+1,∵x12+x22=1,即(x1+x2)2−2x1x2=1,∴k2−2(k+1)=1,解得:k=−1或k=3,当k=−1时,方程为x2−x=0,解得:x=0或x=1;当k=3时,方程为x2+3x+4=0,方程无解,∴k=−1.【解析】利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意进行取舍.本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与,x1⋅x2=c a是解题的关键.系数的关系为:x1+x2=−ba19.【答案】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160,解得x1=0.2,x2=−2.2(不合题意,舍去),则1500(1+x)=1500(1+0.2)=1800.答:该公司2014年盈利1800万元.(2)2160×(1+0.2)=2592(万元).答:预计2016年盈利2592万元.【解析】(1)需先算出从2013年到2015年,每年盈利的年增长率,然后根据2013年的盈利,算出2014年的利润;(2)相等关系是:2016年盈利=2015年盈利×(1+每年盈利的年增长率).本题的关键是需求出从2013年到2015年,每年盈利的年增长率.等量关系为:2013年盈利×(1+年增长率)2=2015.20.【答案】解:(1)∵AB=AE,∠B=∠E,BC=EF,∴△ABC≌△AEF(SAS),∴∠C=∠F,∠BAC=∠EAF,∴∠BAC−∠PAF=∠EAF−∠PAF,∴∠BAE=∠CAF;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【解析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC−∠PAF=∠EAF−∠PAF,即有∠BAE=∠CAF;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.本题考查了全等三角形的判定、性质,三角形外角的性质,等式的性质等.21.【答案】解:(1)根据题意得4(k−1)2−4(k2−1)>0,解得k<1;(2)0可能是方程的一个根.设方程的另一个根为t,因为0⋅t=k2−1,解得k=1或k=−1,而k<1,所以k=−1,因为0+t=−2(k−1)=−2(−1−1),所以t=4,即方程的另一个根为4.【解析】(1)利用判别式的意义得4(k−1)2−4(k2−1)>0,然后解不等式即可;(2)设方程的另一个根为t,利用根与系数的关系得到0⋅t=k2−1,解得k=1或k=−1,利用k< 1得到k=−1,然后利用根与系数的关系可确定方程的另一个根.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+ x2=−b,x1x2=c a.也考查了根的判别式.a22.【答案】解:(1)设抛物线解析式y=a(x−1)2+16(a≠0).把(5,0)代入,得a(5−1)2+16=0,解得a=−1.故该抛物线解析式为:y=−(x−1)2+16;(2)由(1)知,该抛物线的关系式为y=−(x−1)2+16,即y=−x2+2x+15;将y=10代入,得:−x2+2x+15=10;解得x1=1+√6,x2=1−√6;∴这条抛物线上纵坐标为10的点的坐标为坐标为(1+√6,0)(1−√6,0)【解析】(1)设抛物线解析式为顶点式y=a(x−1)2+16,把点(5,0)代入,即利用待定系数法求出抛物线的解析式;(2)根据抛物线解析式可求出抛物线上纵坐标为10的点的坐标.本题考查了用待定系数法求函数解析式的方法,同时还考查了根与系数的关系,难度不大,属于中档题.23.【答案】解:将A(2,0)代入函数y=−1x2+bx−6,2得:0=−2+2b−6,解得:b=4,∴二次函数解析式为y=−1x2+4x−6.2当x=0时,y=−6,∴B(0,−6),抛物线对称轴为x=−b2a=4,∴C(4,0),∴S△ABC=12AC⋅OB=12×(4−2)×6=6.【解析】由点A的坐标利用待定系数法即可求出二次函数解析式,根据二次函数的解析式即可找出抛物线的对称轴,从而得出点C的坐标,再将x=0代入二次函数解析式求出点B的坐标,利用三角形的面积公式即可得出结论.本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出函数解析式是解题的关键.24.【答案】解:(1)当每件商品售价为170元时,比每件商品售价130元高出40元,即170−130=40(元),则每天可销售商品30件,即70−40=30(件),商场可获日盈利为(170−120)×30=1500(元).答:每天可销售30件商品,商场获得的日盈利是1500元.(2)设商场日盈利达到1600元时,每件商品售价为x元,则每件商品比130元高出(x−130)元,每件可盈利(x−120)元每日销售商品为70−(x−130)=200−x(件)依题意得方程(200−x)(x−120)=1600整理,得x2−320x+25600=0,即(x−160)2=0解得x=160答:每件商品售价为160元时,商场日盈利达到1600元.【解析】(1)首先求出每天可销售商品数量,然后可求出日盈利.(2)设商场日盈利达到1600元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.解与变化率有关的实际问题时:(1)注意变化率所依据的变化规律,找出所含明显或隐含的等量关系;(2)可直接套公式:原有量×(1+增长率)n=现有量,n表示增长的次数.25.【答案】解:(1)将A(−1,−1),B(3,−9)代入,得{a +4+c =−19a −12+c =−9, ∴a =1,c =−6,∴y =x 2−4x −6;(2)∵y =x 2−4x −6=(x −2)2−10,∴对称轴为直线x =2,顶点坐标为(2,−10);(3)∵点P(m,m)在函数图象上,∴m 2−4m −6=m ,∴m =6或−1.∵m >0,∴m =6.(3)存在.如图,由(3)可知C(6,6),作点B 关于对称轴的对称点B′(1,−9),连接CB′与对称轴的交点即为所求的点P .设直线CB′的解析式为y =kx +b ,把A 、B 代入得到{6k +b =6k +b =−9, 解得{k =3b =−12, ∴直线CB′的解析式为y =3x −12,∴P(2,−6).∴当点P 坐标为(2,−6)时,PB +PC 最小.【解析】(1)由条件可知点A和点B的坐标,代入解析式可得到关于a和c的二元一次方程组,解得a 和c,可写出二次函数解析式;(2)化成顶点是,即可求得出其对称轴和顶点坐标;(3)把点的坐标代入可求得m的值.(4)存在.如图,由(2)可知C(6,6),作点B关于对称轴的对称点B′(1,−9),连接CB′与对称轴的交点即为所求的点P.求出直线CB′的解析式即可解决问题.本题考查二次函数综合题、一次函数、待定系数法、最短问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决最值问题,属于中考压轴题.。

湖南省长沙市浏阳市2020-2021学年五年级上学期期末数学试卷

湖南省长沙市浏阳市2020-2021学年五年级上学期期末数学试卷

2020-2021学年湖南省长沙市浏阳市五年级(上)期末数学试卷一、填空题(每空1分,共18分。

)1.(3分)的分数单位是,它有个这样的分数单位,再添上个这样的分数单位就是1.2.(1分)在自然数中,既是偶数又是质数的数是。

3.(2分)2=cm3185mL=dm34.(2分)在横线里填上“>”、“<”或“=”。

15.(1分)把两个长、宽、高分别是10厘米、8厘米、2厘米的相同长方体拼成一个大长方体,这个大长方体的表面积最少是平方厘米。

6.(2分)一个两位数,同时是2、3、5的倍数,这个数最小是,最大是。

7.(4分)15÷=≈(填两位小数)。

8.(2分)如图:绕点O,指针从A开始,顺时针旋转90°到。

指针从B旋转到C需要。

9.(1分)12和的最大公因数是1。

二、选择题,将正确答案的序号填在括号内。

(每小题1分,共5分。

)10.(1分)至少需()个棱长是1厘米的小正方体,才能拼成一个大正方体.A.4B.8C.1611.(1分)下列各组数中,()组数的第一个数是第二个数的倍数。

A.36和12B.36和0.6C.6和3612.(1分)用铁丝焊接一个长方体框架,同一顶点上的三根铁丝的长度分别是20cm、15cm、12cm,则这个长方体框架的铁丝共长()厘米。

A.47B.188C.36013.(1分)在如图几个立体图形中,有一个从正面看到的形状是,左面看到的形状是,上面看到的形状是,这个立体图形是()A.B.C.14.(1分)如图,一长方体被挖去一块小长方体,下面说法正确的是()A.体积和表面积都减少了B.体积减少,表面积不变C.体积减少,表面积增加了三、计算:(28分)15.(10分)直接写得数。

=====3===3÷18= 2.5×0.4=0.216.(9分)计算下面各题,注意简便方法的运用。

17.(9分)解方程,最后一个写出验算过程。

验算:四、操作题:(9分)、18.(3分)在如图的线上找出并标出后面的数:、2、3.719.(3分)画出“风筝”绕A点顺时针旋转90°后的图形。

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第 1章《二次函数》单元测试卷式是()1. 卜列关于X 的函数一定为二次函数的是( A . y=4xB , y= 5x2 - 3xC. y=ax 2+bx+cD , y=x 3-2x+12.将二次函数y= 2x 2+5的图象先向左平移 3个单位,再向下平移 1个单位,则平移后的函数关系A. y=2 (x+3) 2+6 B . y=2 (x+3) 2+4 C. y=2 (x- 3) 2+6D. y=2 (x-3) 2+43. 如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长) ,其余三边除大门外用栅栏围成,栅栏总长度为 50m,门宽为2m.若饲养室长为 xm,占地面积为ym 2,则关于x 的函数表达式为(:2+26x (2<x<52)B. C. -2 .y= - . x +50x (2w x< 52) y= - x 2+52x (2< x< 52) - 2 一 一 一 __________ y=一方x2+27x- 52 (2<x< 52)(aw0)在同一坐标系中的图象可能是(D .5.以下抛物线的顶点坐标为(2, 0)的是(10.如图,已知顶点为(-3, -6)的抛物线y=ax 2+bx+c 经过点(-1, -4),则下列结论:-1;⑤若点(-2, m ) , (- 5, n )在抛物线上,则 m>n,其中正确的个数共有(二.填空题⑥y= ( x+1 ) 2- x 2.这六个式子中,二次函数有12.把二次函数 y=x 2- 4x+5化为y=a (x —h ) 2+k 的形式,那么h+k=A . y= 3x 2+2B . y= 3x2 - 2C. y=3 (x — 2) 2D. y=3 (x+2) 26.二次函数y= ax 2+bx+c 的图象如图所示,其对称轴是x=-1, 卜列结论中正确的是(8.二次函数C. 2a+b=0D. a - b+c>2 (x-1) 2+b (aw0)的图象经过点(0, 2) a+b 的值是( B. - 1C. 2D. 3 x 2- 2x+c 在-3< x< 2的范围内有最大值为一5, 则c 的值是(B. 3C. - 3D. - 69.二次函数 y=ax 2—2ax+b 中,当—1wxw 4 时,—2wyw3,贝U b — a 的值为( B. - 6或 7C. 3D. 3 或—2①b 2>4ac ;② ax 2+bx+c< - 6;③ 9a- 3b+c= - 6;④关于 x 的二次方程 ax 2+ bx+ c= - 4 的根为B. 2个C. 3个D. 4个11.观察:① y = 6x 2;② y=- 3x 2+5;③2 1y=200x 2+400x+200;④ y=x 3-2x;⑤ ¥二工 二.(只填序号)13. 一名男生参加抛实心球测试,已知球的高度 y (m )与水平距离 x (m )之间的关系是7.二次函数 y= a2B. 4ac< b -114 .已知抛物线的顶点坐标是(-2, 3),其图象是由抛物线 y=-8x 2+1平移得到的,则该抛物线的解析式为.15 .抛物线y=a (x- h) 2+k (a<0)经过(-1,3)、( 5, 3)两点,则关于 x 的不等式a (x- h -1) 2+k<3的解集为.16 .已知二次函数 y=ax 2+bx+c (aw0, a, b, c,为常数),对称轴为直线 x=1,它的部分自变量x 与函数值y 的对应值如下表.请写出ax 2+bc+c= 0的一个正数解的近似值 (精确到0.1)x - 0.4 — 0.3 — 0.2 — 0.117 .若函数y=x 2+2x+m 的图象与x 轴没有交点,则 m 的取值范围是 .18 .已知二次函数 y=ax 2+ (a-1) x- 2a+1,当1vxv3时,y 随x 的增大而减小,则 a 的取值范围是.19 .如果二次函数y=a (x-1) 2(aw0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是.20 .小甬是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=-/父2的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点 O,两直角边与该抛物线交于A, B 两点 (如图),对该抛物线,小甬将三角板绕点 O 旋转任意角度时惊奇地发现,交点A, B 的连线段总经过一个固定的点,则该点的坐标是三.解答题21 .已知二次函数 y=2x 2+4x- 6,(1)将二次函数的解析式化为y= a (x-h) 2+k 的形式.(2)写出二次函数图象的开口方向、对称轴、顶点坐标. 22 .已知二次函数(k 为常数),求k 的值.__ 1 2 产12工m,则这名男生抛实心球的成绩是3m.y= ax 2+ bx+c0.920.38—0.12—0.5823.在平面直角坐标系xOy中,抛物线y= ax2+4ax+4a-4 (aw0)的顶点为A.(1)求顶点A的坐标;(2)过点(0, 5)且平行于x轴的直线1,与抛物线y=ax2+4ax+4-4 (aw 0)交于B、C两点.①当a=1时,求线段BC的长;②当线段BC的长不小于8时,直接写出a的取值范围.532 -11— I I E II」] ■ I J 、-5 一4 4-2 口, 1 2 3 4 5x-2~-3-4-5 _____________24.已知二次函数的图象y=- x2+bx+c如图所示,它与轴的交点坐标为(- 1,0), (3, 0)(1)求b, c的值;(2)根据图象,直接写出函数值y<0时,自变量x的取值范围.25.二次函数y=ax2+bx+c (aw0)与一次函数y=x+k (kw0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c- x- k< 0的解集;(3)写出二次函数值y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c= m有两个不等的实数根,求m的取值范围;26.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.花园27.在平面直角坐标系xOy中,二次函数y = x2-2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度,向上平移1个单位长度得到点B.(1)直接写出点A的坐标为,点B的坐标为;(2)若函数y=x2-2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.参考答案与试题解析・选择题1.解:A、是一次函数,故此选项不符合题意;B、是二次函数,故此选项符合题意;C、当a=0时不是二次函数,故此选项不符合题意;D、不是二次函数,故此选项不符合题意;故选:B.2.解:根据“左加右减,上加下减”的法则可知,将抛物线y= 2x2+5向左平移3个单位,再向下平移1个单位,那么所得到抛物线的函数关系式是y=2 (x+3) 2+4.故选:B.3.解:y关于x的函数表达式为:y=g (50+2-x) x b-l= ---- x+26x (2W x<52).故选:A.4,解:①当a>0时,二次函数y= ax2-a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y= ax - a (aw0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y= ax2-a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax-a (aw0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.5.解:抛物线y= 3x2+2的顶点为(0, 2);抛物线y= 3x2-2的顶点为(0, - 2);抛物线y=3 (x-2) 2的顶点为(2, 0);抛物线y=3 (x+2) 2的顶点为(-2, 0);故选:C.6.解:A、由抛物线的开口向下知a<0,对称轴在y轴的左侧,a、b同号,即b<0,与y轴的交点为在y轴的正半轴上,. 0,因此abc>0,故错误;B、抛物线与x轴有两个交点,b2 - 4ac>0,即4acv b2,故正确;C、对称轴为x= ----- --= - 1,得2a = b,23.2a- b= 0,故错误;D、•.当x= - 1 时,y>0• -a- b+c>0,故错误.故选:B.7.解:二.二次函数y=a (x- 1) 2+b (aw0)的图象经过点(0, 2),a+b = 2.故选:C.8.解:把二次函数y= - x2-2x+c转化成顶点坐标式为y= - (x+1) 2+c+l,又知二次函数的开口向下,对称轴为x=- 1,故当x= - 1时,二次函数有最大值为- 5,故-1+2+c= - 5,故c= - 6.故选:D.2 29.解::抛物线y=ax — 2ax+b=a (x—1) +b- a,「•顶点(1, b - a)当a>0 时,当-1WxW4 时,—2WyW3,函数有最小值,b - a= - 2,当a<0 时,当—1wxw4 时,—2wyw3,函数有最大值,b - a= 3,故选:D.10.解:二•抛物线与x轴有2个交点,•・△= b2- 4ac>0,即b2>4ac,所以①正确;•.•抛物线的顶点坐标为(-3, - 6),即x= - 3时,函数有最小值,•.ax2+bx+c> - 6,所以②错误;•.•抛物线的顶点坐标为(-3, - 6),•••9a-3b+c= - 6,所以③正确;•••抛物线y= ax2+bx+c 经过点(-1, - 4),而抛物线的对称轴为直线x= - 3,.二点(-1, - 4)关于直线x= - 3的对称点(-5, - 4)在抛物线上,••・关于x的一元二次方程ax2+bx+c= - 4的两根为-5和-1 ,所以④错误;•••抛物线开口向上,对称轴为直线x= - 3,而点(-2, m) , ( - 5, n)在抛物线上,: - 3 - ( - 5) > - 2 - ( - 3),m<n,所以⑤错误.故选:B.二.填空题11.解:这六个式子中,二次函数有:①y=6x2;②y=- 3x2+5;③y= 200x2+400x+200;故答案为:①②③.12.解:y=x —4x+5= ( x _ 2) 2+1,. .h=2, k= 1,h+k=2+1= 3.故答案为:3.13.解:•••一名男生参加抛实心球测试,已知球的高度y (m)与水平距离x (m)之间的关系是7T小亭卷i 2: 1・・・当y=0,则0 = - y;5-x2+Vx+—, _L 乙O R-J解得:x1= 10, x2= - 2,,这名男生抛实心球的成绩为10m,故答案为:10.14.解:,•,该抛物线是由抛物线y= - 8x2+1平移得到的,a= - 8,又•••抛物线的顶点坐标是(- 2, 3),该抛物线的解析式为y=- 8 (x+2) 2+3.故答案为:y=- 8 (x+2) 2+3.15.解:二.抛物线y=a (x-h) 2+k (a>0)经过(-1, 3) , ( 5, 3)两点,,大致图象如图所示:•1-y= a (x- h- 1) 2+k (a>0)经过(0, 3) , (6, 3)两点则关于x的不等式a (x-h-1) 2+kW3的解集为:x< 0或x>6.故答案为:*^0或*>6.16.解:由表可知,当x= - 0.2时,y的值最接近0, 所以,方程ax2+bx+c= 0一个解的近似值为-0.2, 设正数解的近似值为a,.•.对称轴为直线x=1,一+(一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 18 页
2020-2021学年湖南省长沙市浏阳市九年级上学期期末考试
数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.关于反比例函数y =2x ,下列说法不正确的是( )
A .点(﹣2,﹣1)在它的图象上
B .它的图象在第一、三象限
C .它的图象关于原点中心对称
D .y 的值随着 x 的值的增大而减小
【解答】解:∵反比例函数y =2x ,
∴当x =﹣2时,y =﹣1,即点(﹣2,﹣1)在它的图象上,故选项A 正确; 它的图象在第一、三象限,故选项B 正确;
它的图象关于原点中心对称,故选项C 正确;
在每个象限内,y 的值随着x 的值的增大而减小,故选项D 不正确;
故选:D .
2.如图,⊙O 的周长等于4πcm ,则它的内接正六边形ABCDEF 的面积是( )
A .√3
B .3√3
C .6√3
D .12√3
【解答】解:如图,连接OA 、OB ,作OG ⊥AB 于点G ,
∵⊙O 的周长等于4πcm ,
∴⊙O 的半径为:4π2π=2,
∵ABCDEF 是⊙O 的内接正六边形,。

相关文档
最新文档