简单几何体的表面积和体积(含答案)
有关简单几何体的表面积与体积问题

一
个几何 体 的正视 罔和侧 视 图是腰 长 为 l的等腰 二 三
r T 8 , 26 , 得 r 4所 以 球 的 半 径 是 r × =r  ̄ r 解 +r r r = .
角 形 . 视 图 是 一 个 圆及 其 网 心 . 这 个 几 何 体 的 体 俯 当 积 最 大 时 . 的 半 径 是 圆
表 面积 为6 2 / 中的三 视 图 问题 , 考
查 学生 的识 图能 力、 间想 象能力等 基本 能 力. 复 空 在
图 2
体积 为 1 x X / × 一 1 l 、 = .
选 B .
习时 . 同学们要 熟练 掌握 各种 几何 体 的表 面积公 式
空间几何体的体j 手 {
例 1 若 某 空 间 几 何 体
的三 视 图如 图 1 示 . 所 则该 几
空闯几何体的表面积
例 2 若 一 个 底 面 是 正 三 角
形 的 三 棱 柱 的 正 视 图 如 图 4所 示 , 则 其表 面积等 于 解 由正 视 图可知 , 三棱 柱是
…
参 考 答 案 C
.
球 面 上 , A = = A = , 若 B AC A 2 的 表 面 积 等 于 .
C 10 , 此 球 = 2 。则
有关体积l最值问题 『 9
例 4 在 正 四棱 锥 s B D 中 , = 、 3 , C 2 / 则
解 在 △AB 中 , B= = C A AC 2, 当 该 棱 锥 的 体 积 最 大 时 . 的 高 为 它 A. 1 解 B 、了 一 ./ C2 . D3 .
及 通 过 三 视 图确 定 原 几 何 体 的 形 状 .
小 结 已知 空 间 几 何 体 的 三 视 图 求 体 积 , 高 是
简单几何体的表面积与体积跟踪训练含答案

8.3简单几何体的表面积与体积跟踪训练(答案)一、选择题1、已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( B )A.2B.2 2C.4D.4 2解:设圆锥的母线长为l,因为该圆锥的底面半径为2,侧面展开图为一个半圆,所以2π×2=πl,解得l=2 2.2、现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为( D )A.3πB.3π2 C.5π2 D.5π解:设底面圆的半径为R,圆柱的高为h,依题意2R=h=2,∴R=1.∴圆锥的母线l=h2+R2=22+1=5,因此S圆锥侧=πRl=1×5π=5π.3、等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积为( B )A.2πB.2π或()1+2πC.22πD.22π或()2+2π解:如果绕直角边所在直线旋转,那么形成圆锥,圆锥底面半径为1,高为1,母线长就是直角三角形的斜边长2,所以所形成的几何体的表面积S=πrl+πr2=π×1×2+π×12=(2+1)π;如果绕斜边所在直线旋转,那么形成的是同底的两个圆锥,圆锥的底面半径是直角三角形斜边高为22,两个圆锥的母线长都是1,所以形成的几何体的表面积S=2×πrl=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选B.4、对24小时内降水在平地上的积水厚度(mm)进行如下定义:0~1010~2525~5050~100小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级( B )A.小雨B.中雨C.大雨D.暴雨解:由相似关系可得,雨水形成的小圆锥的底面半径r =20022=50(mm),故 V 小圆锥=13×π×502×150=503·π(mm 3),从而可得积水厚度h =V 小圆锥S 大圆=503·ππ·1002=12.5(mm),属于中雨.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( C )A .5-14B .5-12C .5+14D .5+12解:设正四棱锥的高为h ,底面正方形的边长为2a ,斜高为m ,依题意得h 2=12×2a ×m ,即h 2=am ①,易知h 2+a 2=m 2 ②,由①②得m =1+52a (舍负),所以m2a =1+52a 2a =1+54.故选C .6、已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π解:设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,所以S 表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B .7、已知圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( C )A .81πB .100πC .168πD .169π解:圆台的轴截面如图,设上底面半径为r ,下底面半径为R ,高为h ,母线长为l ,则它的母线长l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π, S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.8、正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( D )A.20+12 3B.28 2C.563D.2823解:连接该正四棱台上、下底面的中心,如图,因为该四棱台上、下底面的边长分别为2,4,侧棱长为2,所以该棱台的高h =22-(22-2)2=2,下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13h (S 1+S 2+S 1S 2)=13×2×(16+4+64)=2823.9、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A.4B.6C.4 3D.6 3解:∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,∴AS ⊥平面ABC ,∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC =13×12×2×6×23=4 3. 10、如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是( C )A .23πB .324πC .223πD .22π解:如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为等边三角形ABC 的中心,连接AE 并延长,交BC 于点D .AE =23AD ,AD =32, 所以AE =23×32=33, 所以PE =P A 2-AE 2=63.设圆柱底面半径为r ,则r =AE =33,所以圆柱的侧面积S =2πr ·PE =2π×33×63=22π3.11、已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( C )A .4B .6C .4 3D .6 3解:因为∠ABC =π2,AB =2,BC =6,所以AC =AB 2+BC 2=22+62=210.因为∠SAB =π2,AB =2,SB =4,所以AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,所以AC ⊥AS .又因为SA ⊥AB ,AC ∩AB =A ,所以AS ⊥平面ABC ,所以AS 为三棱锥S -ABC 的高,所以V 三棱锥S -ABC =13×12×2×6×2 3=4 3.12、(多选)已知正四棱锥的侧面与底面所成的锐二面角为θ,若θ=30°,侧棱长为21,则( AC )A.正四棱锥的底面边长为6B.正四棱锥的底面边长为3C.正四棱锥的侧面积为24 3D.正四棱锥的侧面积为12 3解: 如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,SH ⊥AB ,设底面边长为2a (a >0),因为∠SHO =30°,所以OH =a ,OS =33a ,SH =233a ,在Rt △SAH 中,a 2+⎝ ⎛⎭⎪⎫233a 2=21,所以a=3,底面边长为6,侧面积为S =12×6×23×4=24 3.故选AC.二、填空题13、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.14、一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为____13____cm.解:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).15、已知圆锥的顶点为A,过母线AB,AC的截面面积是2 3.若AB,AC的夹角是60°,且AC与圆锥底面所成的角是30°,则该圆锥的表面积为___(6+43)π_____.解:如图所示,∵AB,AC的夹角是60°,AB=AC,∴△ABC是等边三角形,∴34×AC2=23,解得AC=2 2.∵AC与圆锥底面所成的角是30°,∴圆锥底面半径r=OC=AC cos 30°=22×32= 6.则该圆锥的表面积=π×(6)2+12×2π×6×22=(6+43)π.16、学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为__118.8____g.解:由题意得,四棱锥O-EFGH的底面积为4×6-4×12×2×3=12(cm2),其高为点O到底面EFGH的距离,为3 cm,则此四棱锥的体积为V1=13×12×3=12(cm3).又长方体ABCD-A1B1C1D1的体积为V2=4×6×6=144(cm3),所以该模型的体积V=V2-V1=144-12=132(cm3),因此模型所需原材料的质量为0.9×132=118.8(g).17、棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.解:如图,由正方体棱长为2及M,N分别为BB1,AB的中点,得S△A1MN =2×2-2×12×2×1-12×1×1=32,又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2,∴V A1-D1MN =V D1-A1MN=13·S△A1MN·D1A1=13×32×2=1.18、圆台的上、下底面半径分别为10 cm,20 cm,它的侧面展开图扇环的圆心角为180°,则圆台的表面积为___1 100π_____cm2.(结果中保留π)解:如图所示,设圆台的上底面周长为c cm,因为扇环的圆心角是180°,故c=π·SA=2π×10(cm),所以SA=20 cm.同理可得SB=40 cm,所以AB=SB-SA=20 cm,所以S表=S侧+S上底+S下底=π(10+20)×20+π×102+π×202=1 100π(cm2).故圆台的表面积为1 100π cm2.19、如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为___23_____.解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH .则原几何体分割为两个三棱锥和一个直三棱柱.依题意,三棱锥E -ADG 的高EG =12,直三棱柱AGD -BHC 的高AB =1. 则AG =AE 2-EG 2=12-⎝ ⎛⎭⎪⎫122=32.取AD 的中点M ,则MG =22, 所以S △AGD =12×1×22=24,∴V 多面体=V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.20、如图,设正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,则此正三棱锥的表面积为________.解:如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.因为S 侧=2S 底, 所以12·3a ·h ′=34a 2×2. 所以a =3h ′.因为SO ⊥OE ,所以SO 2+OE 2=SE 2.所以32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.所以h ′=23,所以a =3h ′=6.所以S 底=34a 2=34×62=93,S 侧=2S 底=18 3. 所以S 表=S 侧+S 底=93+183=27 3.21、已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__39π______.解;设该圆锥的高为h ,则由已知条件可得13×π×62·h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π.22、如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为____23____.解: ∵ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ED ⊥AD . ∵在正方形ABCD 中,AD ⊥DC , 而DC ∩ED =D , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF . ∵V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13=2×2×1×12×13=23,∴V ABCDEF =83+23=103.又V F -ABCD =FC ×S正方形ABCD×13=1×2×2×13=43,V A-DEF=AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.23、若E ,F 是三棱柱ABC -A 1B 1C 1侧棱BB 1和CC 1上的点,且B 1E =CF ,三棱柱的体积为m ,则四棱锥A -BEFC 的体积为____m3____.解: 如图所示,连接AB 1,AC 1.因为B 1E =CF ,所以梯形BEFC 的面积等于梯形B 1EFC 1的面积. 又四棱锥A -BEFC 的高与四棱锥A -B 1EFC 1的高相等, 所以V A -BEFC =V A -B 1EFC 1=12V A -BB 1C 1C .又V A -A 1B 1C 1=13S △A 1B 1C 1·AA 1, V ABC -A 1B 1C 1=S △A 1B 1C 1·AA 1=m , 所以V A -A 1B 1C 1=m 3,所以V A -BB 1C 1C =V ABC -A 1B 1C 1-V A -A 1B 1C 1=2m3, 所以V A -BEFC =12×2m 3=m3, 即四棱锥A -BEFC 的体积是m3.24、现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3),所以仓库的容积V=V锥+V柱=24+288=312(m3).故仓库的容积是312 m3.25、如图所示,底面半径为1,高为1的圆柱OO1中有一内接长方体A1B1C1D1-ABCD.设矩形ABCD的面积为S,长方体A1B1C1D1-ABCD的体积为V,AB=x.(1)将S表示为x的函数;(2)求V的最大值.解:(1)连接AC(图略),因为矩形ABCD内接于⊙O,所以AC为⊙O的直径.因为AC=2,AB=x,所以BC=4-x2,所以S=AB·BC=x4-x2(0<x<2).(2)因为长方体的高AA1=1,所以V=S·AA1=x4-x2=x2(4-x2)=-(x2-2)2+4.因为0<x<2,所以0<x2<4,故当x2=2即x=2时,V取得最大值,此时V max=2.。
高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。
8.3 简单几何体的表面积与体积(3

则 ⊥ ,如图所示,侧 = = × · = × × −
=
底 = 正方形 = = , 表面积 = 底 + 侧 = +
=
′
பைடு நூலகம்
题④ ——球的表面积与体积求解
①若一个球的大圆面积扩大为原来的2倍,那么这个球的体积扩大
为原来的多少倍?
球的大圆面积扩大为原来的2倍,则球的半径扩大为原来的 倍,那么
球的体积扩大为原来的 2 倍.
②若一个球的体积为 4 3 ,则它的表面积是多少?
设球的半径为 ,则 = ,所以 = , = ,
① 6是底面周长,4是三棱柱的高,
此时底面积 1 = × 2 × 3 = 3, 体积1 = 1ℎ1 = 4 3
② 4是底面周长,6是三棱柱的高,
此时底面积 2 = × ×
3
=
3
, 体积1
= 2ℎ2 =
3
将边长是1的正方形以其一边所在的直线为旋转轴旋
转一圈,所得几何体的表面积是多少?体积又是多少?
第8章 立体几何初步
8.3 简单几何体的表面积与体积(3)
题① ——柱体(棱柱、圆柱)的表面积与体积
[襄阳市2019高一期末]已知某个三棱柱的底面是正三角形,侧棱垂直于底
面,它的侧面展开图是边长分别为6和4的矩形,求它的体积.
由题意可知该三棱柱为正三棱柱,
∵ 正三棱柱的侧面展开图是边长分别为6和4的矩形,∴ 有如下两种情况:
易得 =
2
高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
专题10简单几何体的表面积与体积(知识精讲)(解析版)

数学第二册讲练测(人教A版2019必修第二册)专题10简单几何体的表面积与体积知识点课前预习与精讲精析核心知识点1:多面体的表面积1.柱体的表面积(1)侧面展开图:棱柱的侧面展开图是平行四边形,一边是棱柱的侧棱,另一边等于棱柱的底面周长,如图①所示;圆柱的侧面展开图是矩形,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=2πrl,表面积S表=2πr(r+l).【知识微点评】表面积是几何体表面的面积,它表示几何体表面的大小,常把多面体展开成平面图形,利用平面图形求多面体的表面积,侧面积是指侧面的面积,与表面积不同.一般地,表面积=侧面积+底面积.2.锥体的表面积(1)侧面展开图:棱锥的侧面展开图是由若干个三角形拼成的,则侧面积为各个三角形面积的和,如图①所示;圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,扇形的弧长等于圆锥的底面周长,如图②所示.(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=πrl,表面积S表=πr(l+r).3.台体的表面积(1)侧面展开图:棱台的侧面展开图是由若干个梯形拼接而成的,则侧面积为各个梯形面积的和,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.(2)面积:台体的表面积S 表=S 侧+S 上底+S 下底.特别地,圆台的上、下底面半径分别为r ′、r ,母线长为l ,则侧面积S 侧=π(r +r ′)l ,表面积S 表=π(r 2+r ′2+rl +r ′l ).核心知识点2:多面体的体积1.柱体的体积(1)棱柱(圆柱)的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)柱体的底面积S ,高为h ,其体积V =Sh .特别地,圆柱的底面半径为r ,高为h ,其体积V =πr 2h .2.锥体的体积(1)棱锥(圆锥)的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离.(2)锥体的底面积为S ,高为h ,其体积V =13Sh .特别地,圆锥的底面半径为r ,高为h ,其体积V =13πr 2h . 3.台体的体积(1)圆台(棱台)的高是指两个底面之间的距离.(2)台体的上、下底面面积分别是S ′、S ,高为h ,其体积V =13(S +SS ′+S ′)h .特别地,圆台的上、下底面半径分别为r 、r ′,高为h ,其体积V =13π(r 2+rr ′+r ′2)h . 核心知识点3:球的表面积和体积1.球的体积球的半径为R ,那么它的体积V = 43πR 3. 2.球的表面积球的半径为R ,那么它的表面积S = 4πR 2.3.与球有关的组合体问题(1)若一个长方体内接于一个半径为R 的球,则2R =a 2+b 2+c 2(a 、b 、c 分别为长方体的长、宽、高),若正方体内接于球,则2R =3a (a 为正方体的棱长);(2)半径为R 的球内切于棱长为a 的正方体的每个面,则2R =a .【知识微点评】对球的表面积与体积公式的几点认识:(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有惟一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.1.已知正方体外接球的体积是,那么该正方体的内切球的表面积为.【解析】解:设正方体外接球的半径为R,∵正方体外接球的体积是π,∴πR3,解得R=2.设正方体的棱长为a,则a=4,解得a,∴该正方体内切球的半径r,∴该正方体内切球的表面积为S=4πr2=4ππ.故答案为:π.2.已知正三棱柱ABC﹣A1B1C1的高为6,AB=4,点D为棱BB1的中点,则四棱锥C﹣A1ABD的表面积是,正三棱柱的体积为.【解析】解:正三棱柱ABC﹣A1B1C1的高为AA1=6,AB=4,点D为棱BB1的中点,如图所示,则四棱锥C﹣A1ABD的表面积是:SS△ABC+S△BCD(6+3)×4423×46×44=36+42;.故答案为:36+42;.3.已知圆柱的侧面展开图是一个边长为4π的正方形,则这个圆柱的表面积和体积分别为.【解析】解:设圆柱的底面半径为r、母线长为l,∵圆柱的侧面展开图是一个边长为4π的正方形,∴2πr=l=4π,得r=2、l=4π,∴圆柱的表面积为S=2πr2+2πrl=8π+16π2;体积V=πr2l=π•22•4π=16π2,故答案为:8π+16π2,16π2.4.如图,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,长1.6m,底面外接圆半径是0.46m,制造这个滚筒需要m2铁板(精确到0.1m2).【解析】解:因为此正六棱柱底面外接圆半径为0.46m,所以正六边形的边长是0.46m.设正六边形的周长为C,所以.所以S表=S侧+2S底=4.416+20.462×6≈5.5.故制造这个滚筒约需要 5.5m2铁板.故答案为:5.5.5.用一张(4×8)cm2的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积为.【解析】解:(1)若圆柱的高为4cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),(2)若圆柱的高为8cm,则圆柱的底面半径rcm,故圆柱的表面积为32+2πr2=24(cm2),故答案为:32cm2或32cm2.必考必会题型1:柱体、锥体、台体的表面积与体积【典型例题】已知直三棱柱底面的一边长为2cm,另两边长都为3cm,侧棱长为4cm,它的侧面积为,体积为.【解析】解:如图,ABC﹣A1B1C1为直三棱柱,AB=AC=3,BC=2,AA1=4.它的侧面积为:4×(2+3+3)=32cm2.∴24=8cm3.故答案为:32cm2;8cm3.【题型强化】现有一个圆锥形的钢锭,底面半径为3,高为4.某工厂拟将此钢锭切割加工成一个圆柱形构件,并要求将钢锭的底面加工成构件的一个底面,则可加工出的圆柱形构件的最大体积为.【解析】解:设该圆锥形钢锭内接圆柱的底面半径为x(0<x<3),高为h(0<h<4),则,即h=4,所以内接圆柱的体积V=πx2(4)=4π(x2x3),(0<x<3),则V'=4π(2x﹣x2),令V'=0,解得x=2或x=0(舍去),当0<x<2时,V'>0,单调递增,当2<x<3时,V'<0,单调递减,故当x=2时,V取极大值也为最大值,所以可加工出的圆柱形构件的最大体积为.故答案为:.【收官验收】如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路线长为.【解析】解:正三棱柱的侧面展开图如图所示的矩形,矩形的长为3,宽为1,则其对角线AA1 的长为最短路程.因此蚂蚁爬行的最短路程为:.故答案为:.【名师点睛】1.求解棱锥的表面积和体积时,注意棱锥的四个基本量,即底面边长、高、斜高、侧棱,并注意高、斜高、底面边心距所成的直角三角形的应用.2.求解圆锥的表面积和体积时,除应用“圆锥的侧面展开图是扇形,扇形的弧长为圆锥的底面周长”求出母线长和底面半径外,还需注意“圆锥的轴截面是等腰三角形”的应用.1.求解正棱台的表面积和体积时,注意棱台的五个基本量(上下底面边长、高、斜高、侧棱),并注意两个直角梯形(高、侧棱与上下底面外接圆半径所成的直角梯形,高、斜高与上下底面边心距所成的直角梯形)的应用.常用两种解题思路:一是把基本量转化到直角梯形中解决问题;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决问题.2.求解圆台的表面积和体积时,注意其轴截面是等腰梯形的应用.求圆台的表面积的关键在于求侧面积,“还台为锥”是解题的常用策略,利用侧面展开图将空间问题平面化也是解决问题的重要方法.必考必会题型2:球的表面积与体积【典型例题】如图,一个底面半径为R的圆柱形量杯中装有适量的水,若放入一个半径为r的实心铁球,水面高度恰好升高r,则.【解析】解:半径为r的实心铁球的体积是,由题意可知,升高的水的体积是:πR2r,则,∴,则.故答案为:.【题型强化】我国古代数学名著《九章算术》中相当于给出了已知球的体积V.求其直径d的一个近似公式d.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差,相对误差指的是测量所造成的绝对误差与被测量[约定]真值之比.”那么用这个公式所求的直径d结果的相对误差是.【解析】解:设球的直径为d,则V,由近似公式求得的直径的近似值为,绝对误差为||d,相对误差为.故答案为:.【收官验收】把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,则其中最小球的半径为.【解析】解:原球的体积为:,把一个半径为R的实心铁球铸成三个小球(不计损耗),三个小球的体积之比为1:3:4,最小球的体积为:,设小球的半径为r,可得,所以rR.故答案为:.【名师点睛】计算球的表面积和体积的关键都是确定球的半径,要注意把握表面积公式()和体积公式()中系数的特征和半径次数的区别.必要时需逆用表面积公式和体积公式得到球的半径.注意:计算与球有关的组合体的表面积与体积时要恰当地分割与拼接,避免遗漏或重叠.必考必会题型3:球的切、接问题【典型例题】设正方体的表面积为24,那么其外接球的体积是.【解析】解:正方体的表面积为24,设正方体的列出为a,所以6a2=24,解得a=2,所以正方体的体对角线的长度为2,外接球的半径为.所以外接球的体积:4.故答案为:4.【题型强化】在正四棱锥P﹣ABCD中,,若四棱锥P﹣ABCD的体积为,则该四棱锥外接球的体积为.【解析】解:设AC,BD的交点为E,球心为O,设AB=a,∵,则AEa,P Aa,∴PEa,∵四棱锥P﹣ABCD的体积为,∴•a2•PE⇒a=4,在RT△OBE中,OB2=OE2+EB2⇒R2=(8﹣R)2+16⇒R=5,∴该四棱锥外接球的体积为:π.故答案为:.【收官验收】已知一个球的体积是,则它的内接正方体的表面积为.【解析】解:由题意,正方体的体对角线的长度,是外接球的直径,球的体积是,所以4,解得R,正方体的体对角线的长度为2,所以正方体的棱长为:a,则,所以a=2,所以正方体的表面积为:6×2×2=24.故答案为:24.【名师点睛】球与几何体的切、接问题的解题思路1.球外接于几何体,则几何体的各顶点均在球面上,解题时要认真分析图形,一般需依据球和几何体的对称性,明确接点的位置,根据球心与几何体特殊点间的关系,确定相关的数量关系,并作出合适的截面进行求解.2.解决几何体的内切球问题,应先作出一个适当的截面(一般作出多面体的对角面所在的截面),这个截面应包括几何体与球的主要元素,且能反映出几何体与球的位置关系和数量关系.必考必会题型4:实际应用问题【典型例题】“中国天眼”是我国具有自主知识产权、世界最大单口径、最灵敏的球面射电望远镜(如图),其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,球冠表面积S=2πRh,其中R为球的半径,h球冠的高),设球冠底的半径为r,周长为C,球冠的面积为S,则的值为(结果用S、C表示)﹒【解析】解:如图,由(R﹣h)2+r2=R2,可得h=R,由已知可得,①,C=2πr,得C2=4π2r2②,①②两式对应相除得,可得,设,得,整理得,,即m,∴.故答案为:.【题型强化】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于.【解析】解:由图知正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R,正五边形的外接圆半径为r,正二十面体的棱长为l,则,得,所以正五棱锥的顶点到底面的距离是,所以R2=r2+(R﹣h)2,即,解得.所以该正二十面体的外接球表面积为,而该正二十面体的表面积是,所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于.故答案为:.【收官验收】《九章算术》是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的《几何原本》并称现代数学的两大源泉.《九章算术》卷五记载:“今有刍甍(音:刍chú甍méng),下广三丈,表四丈,上袤二丈,无广,高一丈.问积几何?”译文:今有如图所示的屋脊状楔体PQ﹣ABCD,下底面ABCD是矩形,假设屋脊没有歪斜,即PQ中点R在底面ABCD上的投影为矩形ABCD的中心点O,PQ∥AB,AB=4,AD=3,PQ=2,OR=1(长度单位:丈).则楔体PQ﹣ABCD的体积为(体积单位:立方丈).【解析】解:将楔体PQ﹣ABCD分成一个三棱柱、两个四棱锥,则V三棱柱3立方丈,2V四棱锥2立方丈,故V楔体PQ﹣ABCD=V三棱柱+2V四棱锥=3+2=5立方丈.故答案为:5立方丈.【名师点睛】解体积、表面积的实际应用题的关键点对于实际应用问题,解题的关键是正确建立数学模型,然后利用表(侧)面积或体积公式即可求解.另外,正确作出截面图,找出其中的等量关系也是常用的方法.与球有关的实际应用问题一般涉及容积问题,解题的关键是正确作出截面图,找出其中的等量关系.另外,利用总体积不变,正确建立等量关系,也是常用的方法.11/11。
高中数学简单几何体的表面积与体积考点及例题讲解

简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ABCD 与三棱锥E FBC 的体积之和,而四棱锥E ABCD 的体积等于13×(5×2)×3=10,三棱锥E FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。
高中数学8.3 《简单几何体的表面积与体积》基础过关练习题目

第八章8.3第1课时A级——基础过关练1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【答案】C【解析】底面圆半径为1,高为1,侧面积S=2πrh=2π×1×1=2π.故选C.2.(2020年上海徐汇区月考)一个棱锥被平行于底面的平面所截,截面面积恰好是棱锥底面面积的一半,则截得的小棱锥与原棱锥的高之比是()A.1∶2B.1∶8C.2∶2D.2∶4【答案】C【解析】∵在棱锥中,平行于底面的平面截棱锥所得的截面与底面相似,相似比等于截得的小棱锥与原棱锥对应棱长之比.∵一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,∴相似比为1∶2=2∶2.则截得的小棱锥与原棱锥的高之比是2∶2.故选C.3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于()A.πB.2πC.4πD.8π【答案】B【解析】设圆柱的底面半径为r,则圆柱的母线长为2r,由题意得S圆柱侧=2πr×2r=4πr2=4π,所以r=1,所以V圆柱=πr2×2r=2πr3=2π.故选B.4.(2020年赤峰期末)南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面面积分别为S1,S2,则()A.如果S1,S2总相等,则V1=V2B .如果S 1=S 2总相等,则V 1与V 2不一定相等C .如果V 1=V 2,则S 1,S 2总相等D .存在这样一个平面α使S 1=S 2相等,则V 1=V 2【答案】A 【解析】由题意可知如果S 1,S 2总相等,则V 1=V 2.故选A .5.(2020年赤峰期末)用边长分别为2与4的矩形作圆柱的侧面,则这个圆柱的体积为( )A .4πB .6πC .6π或8πD .4π或8π【答案】D 【解析】圆柱的侧面展开图是边长为2与4的矩形,当母线为2时,圆柱的底面半径是42π=2π,此时圆柱体积是π×⎝⎛⎭⎫2π2×2=8π;当母线为4时,圆柱的底面半径是22π=1π,此时圆柱的体积是π×⎝⎛⎭⎫1π2×4=4π.综上,所求圆柱的体积是4π或8π.故选D . 6.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是________.【答案】23 【解析】因为V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,所以V C -AA ′B ′B =1-13=23.7.表面积为3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________. 【答案】2 【解析】设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr ,解得r =1,即直径为2.8.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为________.【答案】168π 【解析】先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. 解:设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35×157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD -A 1B 1C 1D 1中,截下一个棱锥C -A 1DD 1,求棱锥C -A 1DD 1的体积与剩余部分的体积之比.解:已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C -A 1DD 1的底面积为12S ,高为h ,故三棱锥C -A 1DD 1的体积VC -A 1DD 1=13·⎝⎛⎭⎫12S h =16Sh , 余下部分体积为Sh -16Sh =56Sh .所以棱锥C -A 1DD 1的体积与剩余部分的体积之比1∶5.B 级——能力提升练11.(2020年株洲期末)《九章算术》卷5《商功》记载一个问题“今有圆堡壔(dǎo),周四丈八尺,高一丈-尺,文积几何?”意思是:今有圆柱形土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少立方尺?这个问题的答案是(π≈3,1丈=10尺)( )A .2 112B .2 111C .4 224D .4 222【答案】A 【解析】由已知,圆柱底面圆的周长为48尺,圆柱的高为11尺,∴底面半径r =482π=8(尺),∴它的体积V =11πr 2=2 112(立方尺).故选A .12.(2020年达州模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1和图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm 2,900 cm 2,高为9 cm ,长方体形凹橹的体积为4 300 cm 3,那么这个斗的体积是( )A .5 700 cm 3B .8 100 cm 3C .10 000 cm 3D .9 000 cm 3【答案】C 【解析】由题意可知这个斗的体积V =13×(400+400×900+900)×9+4300=10 000(cm 3).故选C .13.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.【答案】262-1 【解析】依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1.14.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.【答案】8 【解析】如图1为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图2所示,由图知正方形的边长为22,其面积为8.15.降水量是指水平平面上单位面积降水的深度,现用上口直径为38 cm 、底面直径为24 cm 、深度为35 cm 的圆台形水桶(轴截面如图所示)来测量降水量.如果在一次降雨过程中,此桶盛得的雨水正好是桶深的17,求本次降雨的降水量是多少毫米?(精确到1 mm)解:因为这次降雨的雨水正好是桶深的17,所以水深为17×35=5(cm).如图,设水面半径为r cm ,在△ABC 中,AC A ′C =CB C ′B ,所以7r -12=7,r =13.所以V 水=13×(π×122+π×122×π×132+π×132)×5=2 3453π(cm 3). 水桶的上口面积是S =π×192=361π(cm 2), 所以V 水S =2 3453π361π×10≈22(mm).故此次降雨的降水量约是22 mm.16.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.设圆柱底面半径为r , 因为r R =H -x H ,所以r =R -R H x .所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πR H <0,所以当x =2πR 4πR H=H2时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.C 级——探索创新练17.一个封闭的正三棱柱容器,高为3,内装水若干(如图1,底面处于水平状态).将容器放倒(如图2,一个侧面处于水平状态),这时水面所在的平面与各棱交点E ,F ,F 1,E 1分别为所在棱的中点,则图1中水面的高度为( )A .3B .2C .332D .94【答案】D 【解析】设正三棱柱的底面积为S ,则VABC -A 1B 1C 1=3S .∵E ,F ,F 1,E 1分别为所在棱的中点.∴S AEF S =14,即S AEF =14S .∴S BCEF =34S .∴VBCFE -B 1C 1F 1E 1=3×34S =94S .则图1中水面的高度为94.故选D .。
高中数学新教材必修第二册第八章 立体几何初步 8.3 简单几何体的表面积与体积(南开题库含详解)

第八章 立体几何初步 8.3 简单几何体的表面积与体积一、选择题(共40小题;共200分)1. 一个四面体的所有棱长都为 √2 ,四个顶点在同一球面上,则此球的表面积为 ( ) A. 3πB. 4πC. 3√3πD. 6π2. 有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为 ( )A. 24π,12πB. 15π,12πC. 24π,36πD. 以上都不正确3. 已知下列三个命题:①若一个球的半径缩小到原来的 12,则其体积缩小到原来的 18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线 x +y +1=0 与圆 x 2+y 2=12 相切.其中真命题的序号是 ( ) A. ①②③B. ①②C. ①③D. ②③4. 如图,是一个几何体的三视图,其主视图、左视图是直角边长为 2 的等腰直角三角形,俯视图为边长为 2 的正方形,则此几何体的表面积为 ( )A. 8+4√2B. 8+4√3C. 6+6√2D. 8+2√2+2√35. 一个四棱锥的三视图如图所示,其侧视图是等边三角形.则该四棱锥的体积等于 ( )A. 8√3B. 16√3C. 24√3D. 48√36. 如图,在长方体ABCD−A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=V AEA1−DFD1,V2=V EBE1A1−FCF1D1,V3=V B1E1B−C1F1C.若V1:V2:V3=1:4:1,则截面A1EFD1的面积为( )A. 4√10B. 8√3C. 4√13D. 167. 一个几何体的三视图如图所示,则该几何体的体积(单位:cm3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√38. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 64B. 72C. 80D. 1129. 在△ABC中,AB=2,BC=1.5,∠ABC=120∘,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )A. 32π B. 52π C. 72π D. 92π10. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 180B. 240C. 276D. 30011. 已知某四棱锥的三视图,如图所示.则此四棱锥的体积为( )A. 6B. 5C. 4D. 312. 正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是( )A. π3a B. π2a C. 2πa D. 3πa13. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A. √3+√6B. √3+√5C. √2+√6D. √2+√514. 某几何体的三视图如图所示,则该几何体的体积为( )A. 8−2πB. 8−πC. 8−π2D. 8−π415. 直三棱柱ABC−A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是( )A. AB1∥平面BDC1B. A1C⊥平面BDC1C. 直三棱柱的体积V=4D. 直三棱柱的外接球的表面积为4π16. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A. 9πB. 10πC. 11πD. 12π17. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 1+2π2πB. 1+4π4πC. 1+2ππD. 1+4π2π18. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 23π+4 B. 2π+4 C. π+4 D. π+219. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π20. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. √23B. √33C. 43D. 3221. 小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为( )A. 16+8πB. 64+8πC. 64+8π3D. 16+8π322. 正三棱锥的底面边长为a,高为√66a,则此棱锥的侧面积为( )A. 34a2 B. 32a2 C. 3√34a2 D. 3√32a223. 已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足∣MA∣+∣MB∣=10,则三棱锥A−BCM的体积的最大值是( )A. 48B. 36C. 30D. 2424. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 1525. 棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A. a33B. a34C. a36D. a31226. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π27. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )A. 36πB. 64πC. 144πD. 256π28. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A. 2B. 92C. 32D. 329. 如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A. 500π3cm3 B. 866π3cm3 C. 1372π3cm3 D. 2048π3cm330. 一个棱锥三个侧面两两互相垂直,它们的面积分别为12cm2,8cm2,6cm2,那么这个三棱锥的体积为( )A. 8√2πB. 8√23C. 24√2D. 8√231. E,F分别是边长为1的正方形ABCD边BC,CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. 13B. 16C. 112D. 12432. 如图,三棱柱ABC−A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为( )A. 2:3B. 1:1C. 3:2D. 3:433. 正方体的全面积为a2,它的顶点都在同一个球面上,这个球的半径是( )A. √36a B. √24a C. √22a D. √32a34. 如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC−A1B1C1在平面A1ABB1上的投影的面积为( )A. 274B. 92C. 9D. 27235. 如图,已知直三棱柱ABC−A1B1C1,点P,Q分别在侧棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( )A. 2:1B. 3:1C. 3:2D. 4:336. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A. 1B. 2C. 4D. 837. 如图所示,正方体ABCD−AʹBʹCʹDʹ的棱长为1,E,F分别是棱AAʹ,CCʹ的中点,过直线E F的平面分别与棱BBʹ,DDʹ交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDDʹBʹ;②当且仅当x=12时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥Cʹ−MENF的体积V=ℎ(x)为常函数.以上命题中假命题的序号为( )A. ①④B. ②C. ③D. ③④38. 如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33.给出下列四个结论:①CE⊥BD;②三棱锥E−BCF的体积为定值;③△BEF在底面ABCD内的正投影是面积为定值的三角形;④在平面ABCD内存在无数条与平面DEA1平行的直线.其中,正确结论的个数是( )A. 1B. 2C. 3D. 439. 已知正方体ABCD−A1B1C1D1棱长为1,点P在线段BD1上,当∠APC最大时,三棱锥P−ABC的体积为( )A. 124B. 118C. 19D. 11240. 一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A. √5+3√3π2+3π2+1 B. 2√5+3√3π+3π2+1C. √5+3√3π2+3π2D. √5+3√3π2+π2+1二、填空题(共40小题;共200分)41. 已知某球体的体积与其表面积的数值相等,则此球体的半径为.42. 若一个球的体积为4√3π,则它的表面积为.43. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.44. 一个正方体的各顶点均在同一球的球面上,若该球的体积为4√3π,则该正方体的表面积为.45. 某几何体的三视图如图所示,则该几何体的体积是.46. 已知某几何体的三视图如图所示,则该几何体的体积为.47. 一个几何体的三视图如图所示,则该几何体的体积为.48. 已知一个正方体的所有顶点在一个球面上,若球的体积为9π,则正方体的棱长为.249. 如图是一个几何体的三视图.若它的体积是3√3,则a=.50. 某空间几何体的三视图如图所示,则该几何体的体积为.51. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.52. 用一张长为12米,宽为8米的矩形铁皮围成圆柱的侧面,则这个圆柱的体积为.53. 有一个几何体的三视图及其尺寸(单位cm)如下图所示,则该几何体的表面积为:.54. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.55. 底面是正方形,容积为256的无盖水箱,它的高为时最省材料.56. 某几何体的三视图如图所示,则该几何体的体积为.57. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3.58. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为.59. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.60. 某几何体的三视图如图所示,则该几何体的体积为.61. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.62. 几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是.63. 一空间几何体的三视图如图所示,则该几何体的体积为.64. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积为.65. 已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.66. 如图是一个几何体的三视图,则这个几何体的体积为.,则正视图与侧视图中x的值67. 一空间几何体的三视图如右图所示,该几何体的体积为12π+8√53为.68. 如图是—个几何体的三视图,则该几何体的表面积为.69. 一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为.70. 如图所示,一款冰淇淋甜筒的三视图中俯视图是以3为半径的圆,则该甜筒的表面积为.71. ―个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.72. 正方体ABCD−A1B1C1D1的棱长为2√3,则四面体A−B1CD1的外接球的体积为.73. 已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.74. 如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.75. 已知某三棱锥的三视图如图所示,则它的外接球体积为.76. 如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm)可知该几何体的表面积为.77. 图中的三个直角三角形是一个体积为20cm3的几何体的三视图,该几何体的外接球表面积为cm278. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.79. 一个圆锥体被过其顶点的平面截去一部分,余下的几何体的三视图如图所示(单位:cm),则余下的几何体的体积为cm3.80. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.三、解答题(共20小题;共260分)81. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.82. 三棱锥S−ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S−BCED的体积.83. 在单位正方体AC1中,点E,F分别是棱BC,CD的中点.(1)求证:D1E⊥平面AB1F;(2)求三棱锥E−AB1F的体积;(3)设直线B1E,B1D1与平面AB1F所成的角分别为α,β,求cos(α+β)的值.84. 如图,三棱锥S−ABC内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知AB=5cm,BC=3cm,AC=4cm,SA=SB=SC=10cm,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求A经过圆锥的侧面到B点的最短距离.85. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且AMMD =PNNC=4.(1)求证:MN∥平面PAB;(2)求三棱锥P−AMN的体积.86. 如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45∘,AB=2AD=2,∠BAD=60∘.(1)求证:BD⊥平面ADG;(2)求此多面体的全面积.87. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12(m),高4(m),养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4(m)(高不变);二是高度增加4(m)(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?88. 如图,ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC,Eʹ和Fʹ是平面ABCD内的两点,EʹE和FʹF都与平面ABCD垂直.(1)证明:直线EʹFʹ垂直且平分线段AD.(2)若∠EAD=∠EAB=60∘,EF=2,求多面体ABCDEF的体积.89. 如图,三棱锥A−BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A−MBC的体积.90. 如图,四棱锥 P −ABCD 中,底面是以 O 为中心的菱形,PO ⊥ 底面 ABCD ,AB =2,∠BAD =π3,M 为 BC 上一点,且 BM =12.(1)证明:BC ⊥ 平面 POM ; (2)若 MP ⊥AP ,求四棱锥 P −ABMO 的体积.91. 如图,平行四边形 ABCD 中,∠DAB =60∘,AB =2,AD =4,将 △CBD 沿 BD 折起到 △EBD的位置,使平面 EBD ⊥ 平面 ABD .(1)求证:AB ⊥DE ; (2)求三棱锥 E −ABD 的侧面积.92. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为 12 m ,高 4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大 4 m (高不变);二是高度增加 4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的侧面积; (3)哪个方案更经济些?93. 如图所示,三棱柱 ABC −A 1B 1C 1 中,AA 1⊥平面ABC ,D ,E 分别为 A 1B 1,AA 1 的中点,点 F在棱 AB 上,且 AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱 AC 上是否存在一个点 G ,使得平面 EFG 将三棱柱分割成的两部分体积之比为 1:15,若存在,指出点 G 的位置;若不存在,请说明理由.94. 如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N−BCM的体积.95. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;,求该三棱锥的侧面积.(2)若∠ABC=120∘,AE⊥EC,三棱锥E−ACD的体积为√6396. 如图,在斜三棱柱ABC−A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120∘,E、F分别是棱B1C1、A1A的中点.(1)求A1A与底面ABC所成的角;(2)证明A1E∥平面B1FC;(3)求经过A1、A、B、C四点的球的体积.97. 如图1,∠ACB=45∘,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90∘(如图2所示).(1)当BD的长为多少时,三棱锥A−BCD的体积最大;(2)当三棱锥A−BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.98. 如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.99. 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30∘,求四棱锥P−ABCD的体积.100. 如图,已知正方体ABCD−A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM= AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.答案第一部分1. A2. A3. C4. A 【解析】由三视图知,该几何体是底面为正方形的四棱锥,其直观图如下图.所以其表面积为2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2.5. A【解析】由三视图可以看出,该几何体为四棱锥,所以V=13×12(2+4)×4×2√3=8√3.6. C7. A8. C 【解析】该几何体是由一个正方体和一个四棱锥组合而成,V=4×4×4+13×4×4×3=80.9. A 【解析】如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.因为AB=2,BC=1.5,∠ABC=120∘,所以AE=ABsin60∘=√3,BE=ABcos60∘=1,设V1是以ACD为轴截面的圆锥的体积,V2是以ABD为轴截面的圆锥的体积.V1=13π⋅AE2⋅CE=52π,V2=13π⋅AE2⋅BE=π,所以V=V1−V2=32π.10. B【解析】由三视图可知,该几何体是由一个四棱锥和一个正方体组成,所以表面积=4×12×6×5+ 5×62=240.11. C 【解析】V=13×12×(2+4)×2×2=412. B 【解析】设球的半径为R,则正方体的对角线长为2R,依题意知43R2=16a,即R2=18a,所以S球=4πR2=4π⋅18a=π2a.13. C 【解析】由三视图可得:该几何体是四棱锥(如图所示),所以BA=BC=√2,BP=1,PA=PC=√3,PD=√5,可得PA⊥AD;S△PBC=S△PBA=1 2×√2×1=√22,S△PDC=S△PDA=12×√2×√3=√62,所以该几何体的侧面积S=2S△PBC+2S△PDC=√2+√6.14. B 【解析】该几何体为一个棱长为2的正方体在两端各削去一个14圆柱,V=2×2×2−2×14×(π×12×2)=8−π.15. D16. D17. A18. C19. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.20. A【解析】提示:如图,作AM⊥EF于点M,BN⊥EF于点N,则可将原多面体分成一个直三棱柱和两个三棱锥,然后去求其体积.21. C 【解析】由三视图可知,该建筑物由一个圆锥、一个圆柱以及一个正方体拼接而成,故所求几何体的体积V=13×π×12×2+π×12×2+4×4×4=64+8π3.22. A 【解析】利用高、底面正三角形的边心距和斜高组成的直角三角形可得斜高为√(√66a)2+(13×√32a)2=12a,于是侧面积S=3×12×a×12a=34a2.23. D24. D25. C【解析】提示:算出一个正四棱锥的体积再乘2即可.26. B27. C 【解析】在三棱锥O−ABC中,底面OAB的面积确定,所以要使O−ABC的体积最大,则C到平面OAB的距离最大,即为球的半径.设球半径为R,则三棱锥O−ABC的体积V max=13×12×R2×R=36,解得R=6,此时球的表面积S=4πR2=144π.28. D29. A30. D31. D 【解析】设AF,AE,EF折起交于点P,因为AP⊥PF,AP⊥PE,所以AP⊥面PEF,所以V P−AEF=V A−PEF=13×1×12×12×12=124.32. B【解析】不妨设此三棱柱为正三棱柱,AB=1,AA1=2,则正三棱柱的体积V=√34×2=√32,V下面部分=13×√32×32=√34,所以V上面部分=√34,所以上下两部分的体积的比为1:133. B 【解析】由正方体外接球的直径2R等于正方体的体对角线的长,得2R=√3⋅√a26,所以R=√24a.34. A35. A【解析】设B到AC的距离为m,AC=x,棱柱的高为ℎ,可得V四棱锥B−ACQP =16xℎm,V三棱柱ABC−A1B1C1=12xℎm,V四棱锥B−ACQPV三棱柱ABC−A1B1C1=13,所以平面BPQ把三棱柱分成两部分的体积比为1:2.36. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.37. C 【解析】因为EF⊥BD,EF⊥面BDDʹBʹ,EF⊂面EMFN,所以平面MENF⊥平面BDDʹBʹ成立;又因为四边形EMFN为菱形,∣MN∣2=(1−2x)2+2,所以S MENF=12∣EF∣×∣MN∣=1 2×√2×√4x2−4x+3,当x=12时,面积最小,所以②成立;四边形MENF的周长L=f(x)=4√4x 2−4x +3,在 (0,12) 上是单调递减函数,在 (12,1) 上是单调递增函数,所以命题③不正确;V Cʹ−MENF =2V Cʹ−MNF =2V M−CʹNF =16,所以 V =ℎ(x ) 为常函数.38. D 【解析】因为在正方体 ABCD −A 1B 1C 1D 1 中,BD ⊥平面AA 1CC 1,CE ⊂平面AA 1CC 1,所以 BD ⊥CE ,①正确;EF =√33,而 C 到 EF 的距离即为 C 到 AC 1 的距离,所以 △EFC 面积为定值,又 B点到 平面EFC 的距离为定值,所以三棱锥 E −BCF 的体积为定值,②正确;因为 EF 为定值,且在体对角线 AC 1 上,所以 EF 在底面上的投影为定值,而点 B 到 AC 的距离为定值,所以 △BEF 在底面 ABCD 内的正投影是面积为定值的三角形,③正确;因为平面 ABCD 与平面 DEA 1 不重合,显然在平面 ABCD 内存在无数条与平面 DEA 1 平行的直线,④正确.39. B 【解析】设 AP =CP =a ,在 △PAC 中,利用余弦定理有 cos∠APC =a 2+a 2−22a 2=1−1a 2,又因为当 AP ⊥BD 1 时,AP 最小,当 P 与点 D 1 重合时最大,所以 a ∈[√63,√2],所以当 AP ⊥BD 1 时,∠APC 最大,在 △BDD 1 中,BP =√33,则 P 到面 ABC 的距离为 √33√3=13.所以 V P−ABC =12×1×1×13×13=118.40. A【解析】圆锥母线为 l =√(√5)2+1=√6,高为 ℎ=√(√5)2−1=2,圆锥底面半径为 r =√l 2−ℎ2=√2,截去的底面弧的圆心角为直角,截去的弧长是底面圆周的 14,圆锥侧面剩余 34,即为 S 1=34⋅π⋅rl =34π⋅√2×√6=3√32π,截面三角形的面积为 S 2=12×2×√5=√5,底面剩余部分为S 3=34πr 2+12×√2×√2=1+3π2,所以被截后该几何体的表面积为 S =3π2+3√3π2+√5+1.第二部分 41. 3 42. 12π【解析】提示:球的半径为 √3. 43. 14π 44. 24【解析】球的半径为 √3 ,则正方体的体对角线长为 2√3 ,从而正方体的棱长为 2 ,表面积为 6×22=24 . 45. 16π−16 46. 12π【解析】提示:由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成.47. 12+π【解析】该几何体是一个长方体和一个圆柱的组合体.由三视图可知长方体的长、宽、高分别为4、3、1,圆柱的底面半径为1,高为1,故该组合体的体积为V=4×3×1+π×1×1=12+π.48. √349. √3【解析】三视图对应的空间几何体是以2为底、高为a的三角形作为底面,以3为高的卧放的一个三棱柱.50. 2π+2√3351. 9√3π52. 288πcm3或192πcm3.53. 24πcm2【解析】由三视图可知:该几何体是一个圆锥,其母线长是5cm,底面直径是6cm.所以该三棱锥的表面积S=π×32+12×6π×5=24πcm2.54. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+13π×12×3=6+π.55. 456. 108+3π【解析】由三视图可知,该几何体由两个长方体和一个圆柱组成.所以V=2×6×6×32+π×12×3=108+3π.57. 48【解析】由三视图可知,该几何体为四棱锥,所以V=13×62×4=48.58. 5359. 9π260. 13【解析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A−BCDE的高为1,四边形BCDE是边长为1的正方形,则V=13×1×1×1=13.61. 20π3【解析】三视图可得该几何体是组合体,上面是底面圆的半径为2m、高为2m的圆锥,下面是底面圆的半径为1m、高为4m的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m3).62. 8√3+4√3π3【解析】由三视图可知,该几何体是由半个圆锥和一个四棱锥组成,所以体积为12×13×π×22×2√3+13×3×4×2√3=8√3+4√33π.63. 16+8π【解析】由三视图可知,该几何体是由一个长方体和半个圆柱形成,所以体积为V=2×2×4+ 12π×22×4=16+8π.64. 9√3π【解析】如下图所示:PO=√62−32=3√3,所以体积为13⋅3√3⋅π⋅32=9√3π.65. 20π3【解析】该几何体的体积为π⋅4+13π⋅22⋅2=20π3m3.66. 3【解析】由三视图可知,该几何体为上面一个三棱柱,下方一个四棱柱.故V上=12×1×1×2=1,V下=2×1×1=2,所以V=1+2=3.67. 3【解析】由三视图可以看出,该几何体是由一个四棱锥和一个圆柱组成.体积为13×(2√2)2×√5+π×22x=12π+8√53,所以x=3.68. 9π【解析】由三视图可知,该几何体的侧面积为2π×1×3=6π,下底面面积为π×12=π,顶部为半个球的表面积12×4π×12=2π,所以该几何体的表面积为9π.69. 7π【解析】由三视图可知该几何体是由一个圆柱和半个球组成,所以表面积为π×12+2π×1×2+12×4π×12=7π.70. 33π【解析】上半部分为半个球,表面积为12×4πr2=18π.下半部分为圆锥,侧面积为12×2πr×母线=15π.所以表面积为33π.71. 18+9π【解析】由三视图可知,该几何体为两个相切的球上方加了一个长方体组成的组合体,所以其体积为V=3×6×1+2×43π×(32)3=18+9π(m3).72. 36π.73. 11274. 1375. 43π【解析】由俯视图可知,直角三角形的斜边中线等于斜边的一半,根据射影定理,球心为斜边中点,半径为1,所以球的体积为43πr3=43π.76. (18+2√3)cm2.77. 77π【解析】提示:依题意得20=13×12×5×6×ℎ,解出ℎ=4.可算出外接球半径为√772,所以外接球表面积为77π.78. 83π【解析】由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1m,圆锥的高均为1m,圆柱的高为2m.因此该几何体的体积为V=2×13π×12×1+π×12×2=83πm3.79. 16π9+2√33【解析】由三视图可知,该几何体由23个圆锥和一个三棱锥组成,所以体积为23×13π×22×2+13×12×2√3×1×2=16π9+2√33.80. √63【解析】提示:设这个棱长为1的正四面体的四个顶点分别为A、B、C、D,可求得其高为ℎ=√63,设每个面面积为S,则V A−BCD =V P−ABC +V P−ACD +V P−ABD +V P−BCD ,所以13ℎS =13d 1S +13d 2S +13d 3S +13d 4S, 得 d 1+d 2+d 3+d 4=ℎ=√63. 第三部分81. (1) 交线围成的正方形 EHGF 如图.(2) 作 EM ⊥AB ,垂足为 M ,则 AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形 EHGF 为正方形,所以 EH =EF =BC =10. 于是 MH =√EH 2−EM 2=6,AH =10,HB =6.故 S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面 α 分为两个高为 10 的直棱柱,所以其体积的比值为 97(79 也正确). 82. ∵ D ,E 分别是 AB ,AC 中点, ∴ S △ADE =14S △ABC ,∴ V 三棱锥S−ADE =14V 三棱锥S−ABC ,∴ V 四棱锥S−BCED =V 三棱锥S−ABC −V 三棱锥S−ADE =34V 三棱锥S−ABC .∵ 三棱锥 S −ABC 的三条侧棱两两垂直,∴ V 三棱锥S−ABC =16⋅SA ⋅SB ⋅SC =16×5×4×3=10,∴ V 四棱锥S−BCED =34V 三棱锥S−ABC =34×10=152.83. (1) 因为点 E ,F 分别是棱 BC ,CD 的中点,所以AF ⊥DE又AF ⊥DD 1DE ∩DD 1=D}⇒AF ⊥面EDD 1⇒AF ⊥D 1E 又C 1D ∥B 1A C 1D ⊥面BCD 1}⇒D 1E ⊥B 1AB 1A ∩AF =A }}⇒D 1E ⊥面AB 1F.(2) V E−AB 1F =V B 1−AEF =13⋅1⋅38=18.(3) 由⑴可知:D 1E ⊥ 平面 AB 1F ,直线 B 1E ,B 1D 1 与平面 AB 1F 所成的角分别为 α,β,即 α+β=∠EB 1D 1,所以cos(α+β)=cos∠EB1D1=54+2−(14+1+1)2×√52×√2=√1010.84. (1)因为AB=5cm,BC=3cm,AC=4cm,所以∠ACB=90∘⇒AB为底面圆的直径⇒S侧=12⋅10⋅π⋅5=25π.圆锥的侧面展开图是一个扇形,设此扇形的中心角为θ,弧长为l,则l=10θ,所以2π×52=10θ,所以θ=π2.(2)沿着圆锥的侧棱SA展开,在展开图△ABS中,∠ASB=45∘,SA=SB=10,⇒AB2= SA2+SB2−2SA⋅SB⋅cos∠ASB⇒AB=10√2−√2.85. (1)在AC上取一点Q,使得AQQC=4,连接MQ,QN,则AMMD =AQQC=PNNC,所以QN∥AP,MQ∥CD,又CD∥AB,所以MQ∥AB.又因为AB⊂平面PAB,PA⊂平面PAB,MQ⊂平面MNQ,NQ⊂平面MNQ,所以平面PAB∥平面MNQ,又因为MN⊂平面MNQ,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AB=3,BC=5,AC=4,所以AB⊥AC.过C作CH⊥AD,垂足为H,则CH=3×45=125,因为PA⊥平面ABCD,CH⊂平面ABCD,所以PA⊥CH,又CH⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CH⊥平面PAD,因为PC=√PA2+AC2=√41,PNNC=4,所以N到平面PAD的距离ℎ=45CH=4825,所以V P−AMN=V N−PAM=13S△PAM⋅ℎ=13×12×5×4×4825=325.86. (1)在△BAD中,因为AB=2AD=2,∠BAD=60∘,所以由余弦定理可得BD=√3.AB2=AD2+BD2,所以AD⊥BD.又在直平行六面体中,GD⊥平面ABCD,BD⊂平面ABCD,所以GD⊥BD.又AD∩GD=D,所以BD⊥平面ADG.(2)由已知可得AG∥EF,AE∥GF,四边形AEFG是平行四边形.GD=AD=1,所以EF=AG=√2.EB=AB=2,所以GF=AE=2√2.过G作GM∥DC交CF于H,得FH=2,所以FC=3.过G作GM∥DB交BE于M,得GM=DB=√3,ME=1,所以GE=2.cos∠GAE=2×2√2×√2=34,所以sin∠GAE=√74.S AEFG=2×12×√2×2√2×√74=√7.该几何体的全面积S=√7+2×12×1×√3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=√7+√3+9.87. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13Sℎ=13×π×(162)2×4=2563π(m3),如果按方案二,仓库的高变成8m,则仓库的体积V2=13Sℎ=13×π×(122)2×8=2883π(m3).(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为l=√82+42=4√5,则仓库的表面积S1=π×8×4√5=32√5π(m2),如果按方案二,仓库的高变成8m.棱锥的母线长为l=√82+62=10,则仓库的表面积S2=π×6×10=60π(m2).(3)∵V2>V1,S2<S1,∴方案二比方案一更加经济.88. (1)因为EA=ED且EEʹ⊥平面ABCD,所以EʹD=EʹA,所以点Eʹ在线段AD的垂直平分线上,同理点Fʹ在线段BC的垂直平分线上.又ABCD是正方形,所以线段BC的垂直平分线也就是线段AD的垂直平分线即点EʹFʹ都居线段AD的垂直平分线上,所以直线E′F′垂直平分线段AD.(2)连接EB,EC,设AD中点为M,由题意知,AB=2,∠EAD=∠EAB=60∘,EF=2,所以ME=√3,BE=FC=2,则多面体ABCDEF可分割成正四棱锥E−ABCD和正四面体E−BCF两部分,在Rt△MEEʹ中,由于MEʹ=1,ME=√3,所以EEʹ=√2,所以V E−ABCD=13S正方形ABCD⋅EEʹ=13×4×√2=4√23.V E−BCF=V C−BEF=V C−BEA=V E−ABC=13S△ABC⋅EEʹ=13×12×4×√2=23√2,所以多面体ABCDEF的体积为V E−BCF+V E−ABCD=2√2.89. (1)在三棱锥A−BCD中,∵AB⊥平面BCD,又∵CD⊂平面BCD,∴AB⊥CD.又∵BD⊥CD,且BD∩AB=B,∴CD⊥平面ABD.(2)法一:由AB⊥平面BCD,得AB⊥BD,∵AB=BD=1,∴S△ABD=12.∵M是AD中点,∴S△ABM=12S△ABD=14.由(1)知,CD⊥平面ABD,∴三棱锥C−ABM的高ℎ=CD=1,因此三棱锥A−MBC的体积为V A−MBC=V C−ABM=13S△ABM⋅ℎ=112.法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12,又CD⊥BD,BD=CD=1,所以S△BCD=1 2 ,∴三棱锥A−MBC的体积V A−MBC=V A−BCD −V M−BCD =13AB ⋅S △BCD −13MN ⋅S △BCD=112.90. (1) 如图,因 ABCD 为菱形,O 为菱形中心,连接 OB ,则 AO ⊥OB ,因为 ∠BAD =π3,故OB =AB ⋅sin∠OAB =2sinπ6=1. 又因为 BM =12,且 ∠OBM =π3,在 △OBM 中OM 2=OB 2+BM 2−2OB ⋅BM ⋅cos∠OBM=12+(12)2−2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故 OM ⊥BM .又 PO ⊥ 底面 ABCD ,所以 PO ⊥BC ,从而 BC 与平面 POM 内两条相交直线 OM ,PO 都垂直, 所以 BC ⊥ 平面 POM .(2)由(1)可知,OA =AB ⋅cos∠OAB =2⋅cosπ6=√3, 设 PO =a ,由 PO ⊥ 底面 ABCD 知,△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由 △POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34,连接 AM ,在 △ABM 中,AM 2=AB 2+BM 2−2AB ⋅BM ⋅cos∠ABM=22+(12)2−2⋅2⋅12⋅cos 2π3=214,由已知MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=−√32(舍去),即PO=√32,此时S ABMO=S△AOB+S△OMB=12⋅AO⋅OB+12⋅BM⋅OM=12⋅√3⋅1+12⋅12⋅√32=5√3 8,所以四棱锥P−ABMO的体积V P−ABMO=13⋅S ABMO⋅PO=13⋅5√38⋅√32=5 16.91. (1)在△ABD中,因为AB=2,AD=4,∠DAB=60∘,所以BD=√AB2+AD2−2AB⋅ADcos∠DAB=2√3.所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD.平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.结合DE⊂平面EBD,可得AB⊥DE.(2)由(1)知AB⊥BD,因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=2√3,DE=DC=AB=2,所以S△DBE=12DB⋅DE=2√3.又AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△ABE=12AB⋅BE=4.又DE⊥BD,平面EBD⊥平面ABD,故得到ED⊥平面ABD.而AD⊂平面ABD,所以ED⊥AD,因此S△ADE=12AD⋅DE=4.综上,三棱锥E−ABD的侧面积S=8+2√3.92. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13S⋅ℎ=13×π×(162)2×4=2563π(m3)如果按方案二,仓库的高变成8m,则仓库的体积V2=13S⋅ℎ=13×π×(122)2×8=2883π(m3)(2)如果按方案一,仓库的底面直径变成16m,半径为8m.圆锥的母线长为l1=√82+42=4√5(m),则仓库的侧面积S1=π×8×4√5=32√5π(m2);如果按方案二,仓库的高变成8m,圆锥的母线长为l2=√82+62=10(m),则仓库的侧面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1.所以方案二比方案一更加经济.93. (1)取AB的中点M,连接A1M.因为AF=14AB,所以F为AM的中点.。
简单几何体的表面积和体积 (教师版)

简单几何体的表面积和体积1 柱体①棱柱体积:V=sℎ(其中ℎ是棱柱的高)②圆柱(1) 侧面积:S=2πrℎ(2) 全面积:S=2πrℎ+2πr2(3) 体积:V=Sℎ=πr2ℎ(其中r为底圆的半径,ℎ为圆柱的高)2 锥体①棱锥棱锥体积:V=13Sℎ(其中ℎ为圆柱的高);②圆锥(1) 圆锥侧面积:S=πrl(2) 圆锥全面积:S=πr(r+l)(其中r为底圆的半径,l为圆锥母线)(3) 圆锥体积:V=13Sℎ=13πr2ℎ(其中r为底圆的半径,ℎ为圆柱的高)3台体①圆台表面积S=π (r′2+r′2+r′l+rl)其中r′是上底面圆的半径,r是下底面圆的半径,l是母线的长度.②台体体积V=13(S′+√SS′ +S) ℎ其中S , S′分别为上,下底面面积,ℎ为圆台的高.4 球体面积S=4πR2,体积V=43πR3(其中R为球的半径)【题型一】几何体的表面积【典题1】已知正四棱柱ABCD-A1B1C1D1中AB=2,AA1=3,O为上底面中心.设正四棱柱ABCD-A1B1C1D1与正四棱锥O-A1B1C1D1的侧面积分别为S1,S2,则S2S1=.【解析】如图,正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,则正四棱柱ABCD-A1B1C1D1的侧面积分别为S1=4×2×3=24;正四棱锥O-A1B1C1D1的斜高为√12+32=√10.∴正四棱锥O-A1B1C1D1的侧面积S2=4×12×2×√10=4√10.∴S2S1=4√1024=√106.【点拨】注意侧面积和全面积的区别.【典题2】一个底面半径为2,高为4的圆锥中有一个内接圆柱,该圆柱侧面积的最大值为()A.2π B.3πC.4πD.5π【解析】圆锥的底面半径为2,高为4,∴内接圆柱的底面半径为x时,它的上底面截圆锥得小圆锥的高为2x因此,内接圆柱的高 ℎ=4−2x;∴圆柱的侧面积为:S=2πx(4−2x)=4 π(2x−x2)(0<x<2)令t=2x−x2,当x=1时t max=1;所以当x=1时,S max=4π.即圆柱的底面半径为1时,圆柱的侧面积最大,最大值为4π.故选:C .【点拨】① 圆柱的侧面积S =2πrℎ,则需要知道圆柱的高ℎ与底圆半径r ;② 在处理圆锥、圆柱问题时,要清楚母线、高、底圆的半径之间的关系,则要看轴截面(如下图),此时由相似三角形的性质可以得到每个量的关系.【典题3】 一个圆台上、下底面半径分别为r 、R ,高为ℎ,若其侧面积等于两底面面积之和,则下列关系正确的是( )A .2ℎ=1R +1rB .1ℎ=1R +1rC .1r =1R +1ℎD .2R =1r +1ℎ 【解析】设圆台的母线长为l ,根据题意可得圆台的上底面面积为S 上=πr 2,圆台的下底面面积为S 下=πR 2,∵圆台的侧面面积等于两底面面积之和,∴侧面积S 侧=π(r 2+R 2)=π(r +R)l ,解之得l =r 2+R 2r+R ∵l =√ℎ2+(R −r)2∴r 2+R 2r+R =√ℎ2+(R −r)2,∴(r 2+R 2r +R )2=ℎ2+(R -r)2 ∴2ℎ=1R +1r .故选 A . 【点拨】在处理圆台问题时,要清楚母线、上底圆半径、下底圆半径、高之间的关系,则要看轴截面(如下图),有 l =√ℎ2+(R −r)2.【题型二】几何体的体积【典题1】正方形ABCD被对角线BD和以A为圆心,AB为半径的圆弧DB̂分成三部分,绕AD旋转,所得旋转体的体积V1、V2、V3之比是()A.2: 1: 1B.1∶2: 1C.1∶1∶1D.2∶2: 1【解析】设正方形ABCD的边长为1,可得图1旋转所得旋转体为以AD为轴的圆锥体,高AD=1且底面半径r=1∴该圆锥的体积为V1=13π×AB2×AD=13π;图2旋转所得旋转体,是以AD为半径的一个半球,减去图1旋转所得圆锥体而形成,∴该圆锥的体积为V2=V半球−V1=12×43π×AD2-V1=13π;图3旋转所得旋转体,是以AD为轴的圆柱体,减去图2旋转所得半球而形成,∴该圆锥的体积为V3=π×AB2×AD-V半球=π-23π=13π综上所述V1=V2=V3=13π,由此可得图中1、2、3三部分旋转所得旋转体的体积之比为1∶1∶1.故选 C.【点拨】①圆锥是由直角三角形以某一直角边为轴旋转得到;圆柱是由矩形以某一边为轴旋转得到;球是由半圆以直径为轴旋转得到;②求解不规则图形可用“割补法”.【典题2】如图,圆锥形容器的高为ℎ,圆锥内水面的高为ℎ1,且ℎ1=13ℎ,若将圆锥的倒置,水面高为ℎ2,则ℎ2等于()A.23ℎB.1927ℎC.√633ℎD.√1933ℎ【解析】方法一设圆锥形容器的底面积为S,则未倒置前液面的面积为49S.∴水的体积V =13Sℎ-13×49S ×(ℎ−ℎ1)=1981Sℎ. 设倒置后液面面积为S′,则S′S =(ℎ2ℎ)2,∴S′=Sℎ22ℎ2.∴水的体积V =13S′ℎ2=Sℎ233ℎ2. ∴1981Sℎ=Sℎ233ℎ2,解得ℎ2=√193ℎ3. 故选 D .方法二 设容器为圆锥1,高为ℎ,体积为V ;倒置前液面上的锥体为圆锥2,高为ℎ′=ℎ−ℎ1,体积为V 1;倒置后液面以下的锥体为圆锥3,高为ℎ2,体积为V 2.∵ℎ1ℎ=13 ∴ℎ′ℎ=23 ∴V−V 水V =(23)3=827⇒V 水V =1927, 在倒置后,又有V 水V =(ℎ2ℎ)3 ∴(ℎ2ℎ)3=1927⇒ℎ2=√193ℎ3【点拨】 ① 涉及圆台的表面积和体积,可把圆台补全为圆锥;② 两个相似几何体,若相似比为a ,则对应线段比为a ,对应的平面面积比为a 2,对应的几何体体积比是a 3.【典题3】 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S −ABC 的体积V = .【解析】由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,如图所示,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥SABD 和CABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DBC =∠DAC =45°,所以在△BDC 中,BD =4-x ,所以x =4-x ,解得x =2,所以AD =BD =2,所以 ABD 为正三角形,所以V =13S △ABD ×4=4√33.【点拨】① 圆内直径所对的圆周角为90°;② 若垂直于三棱锥的某棱长的截面面积为S ,棱长长ℎ,则三棱锥的体积为13Sℎ.【题型三】与球有关的切、接问题【典题1】 已知三棱锥D −ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D -ABC 的体积取到最大值时,球O 的表面积为( )A. 5π3B. 2 πC. 5 πD. 20π3【解析】 如图,当三棱锥D −ABC 的体积取到最大值时,则平面ABC ⊥平面DBC ,取BC 的中点G ,连接AG ,DG ,则AG ⊥BC ,DG ⊥BC ,分别取△ABC 与△DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,由AB =AC =BC =DB =DC =1,得正方形OEGF 的边长为√36,则OG =√66∴四面体A −BCD 的外接球的半径R =√OG 2+B G 2=√(√66)2+(12)2=√512 ∴球O 的表面积为=4 π×(√512)2=5π3,故选:A .【典题2】 如图,在一个底面边长为2,侧棱长为√10的正四棱锥P -ABCD 中,大球O 1内切于该四棱锥,小球O 2与大球O 1及四棱锥的四个侧面相切,则小球O 2的体积为 .【解析】设O为正方形ABCD的中心,AB的中点为M,连接PM,OM,PO,则OM=1,PM=√PA2−AM2=√10−1=3,PO=√9−1=2√2,如图,在截面PMO中,设N为球O1与平面PAB的切点,则N在PM上,且O1N⊥PM,设球O1的半径为R,则O1N=R,因为sin∠MPO=OMPM =13,所以NO1PO1=13,则PO1=3R,PO=PO1+OO1=4R=2√2,所以R=√22,设球O1与球O2相切与点Q,则PQ=PO-2R=2R,设球O2的半径为r,同理可得PQ=4r,所以r=R2=√24,故小球O2的体积V=43πr3=√224π,故答案为√224π.巩固练习1(★)如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1≥S2【答案】B【解析】设圆柱的底面半径为r,图1水的表面积为 S1=2πr2+2πr•r=4πr2.对于图2,上面的矩形的面积的长是2r,宽是2r.则面积是4r2.曲面展开后的矩形长是πr,宽是2r.则面积是2πr2.上下底面的面积的和是π×r2.图2水的表面积S2=(4+3π)r2.显然S1<S2.故选B.2(★) 若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为()A.πB.3π2C.2π3D.π2【答案】A【解析】设圆锥的底面圆半径为r,高为ℎ;由圆锥的母线长为4,所以圆锥的侧面积为πr•4=4πr;又圆锥的轴截面面积为12•2r•ℎ=rℎ,所以4πr=4rℎ,解得ℎ=π;所以该圆锥的高为π.故选:A.3(★★) 某广场设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样大的四面体得到的(如图).则该几何体共有个面;如果被截正方体的棱长是50cm,那么石凳的表面积是cm2.【答案】14,10000【解析】由题意知,截去的八个四面体是全等的正三棱锥,8个底面三角形,再加上6个小正方形,所以该几何体共有14个面;如果被截正方体的棱长是50cm,那么石凳的表面积是S表面积=8×12×25√2×25√2×sin60°+6×25√2×25√2=10000(cm2).故答案为:14,10000.4(★★) 直角梯形的上、下底和不垂直于底的腰的长度之比为12√3,那么以垂直于底的腰所在的直线为轴,将梯形旋转一周,所得的圆台上、下底面积和侧面面积之比是.【答案】1: 4: 3√3【解析】由题意可设直角梯形上底、下底和不垂直于底的腰为x,2x,√3x;则圆台的上、下底半径和母线长分别为x,2x,√3x,如图所示;所以上底面的面积为S上底=π•x2;下底面的面积为S下底=π•(2x)2=4πx2;侧面积为S侧面=π(x+2x)•√3x=3√3πx2;所以圆台的上底、下底面积和侧面面积之比是πx2∶4πx2: 3√3πx2=1: 4: 3√3.5(★★) 如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是.【答案】2√2π3【解析】如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为的等边三角形ABC 的中心.AE =23AD ,AD =√32. ∴AE =23×√32=√33.∴PE =√PA 2−AE 2=√63.设圆柱底面半径为R ,则2R =1sin60°=2√3, ∴圆柱的侧面积=2πR •PE =√3π×√63=2√2π3,6(★★) 一竖立在地面上的圆锥形物体的母线长为4m ,侧面展开图的圆心角为2π3,则这个圆锥的体积等于 . 【答案】128√281πm 3【解析】设圆锥的底面半径为r ,圆锥形物体的母线长l =4m ,侧面展开图的圆心角为2π3,故2πr =2π3,解得 r =43m , 故圆锥的高ℎ=√l 2−r 2=83√2m ,故圆锥的体积V =13πr 2ℎ=128√281πm 3.7(★★) 如图①,一个圆锥形容器的高为a ,内装有一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为a2(如图②),则图①中的水面高度为 .【答案】(1−√732)a【解析】 令圆锥倒置时水的体积为V ′,圆锥体积为V ,则v′v =(a 2)3÷a 3=18,∴V 空V 锥=78,倒置后 V 水=18V , 设此时水高为ℎ,则ℎ3 a 3=78,∴ℎ=(1−√732)a . 故原来水面的高度为(1−√732)a .8(★★★) 半径为2的球O 内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为 .【答案】12√3【解析】如图所示,设正三棱柱上下底面的中心分别为O 1,O 2,底面边长与高分别为x ,ℎ,则O 2A =√33x ,在Rt △OAO 2中,ℎ24+x 23=4, 化为ℎ2=16−43x 2,∵S 侧=3xℎ,∴S 侧2=9x 2ℎ2=12x 2(12−x 2)≤12(x 2+12−x 22)2=432.当且仅当x 2=12-x 2,即x =√6时取等号,此时S 侧=12√3.9(★★★) 如图所示,在边长为5+√2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M 、N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,则圆锥的全面积与体积分别是 与 .【答案】10π,2√303π【解析】设圆锥的母线长为l ,底面半径为r ,高为ℎ,由已知条件可得{l+r+√2r=(5+√2)×√22πrl=π2,解得r=√2,l=4√2,∴S=πrl+πr2=10π,又∵h=√l2−r2=√30,∴V=13πr2ℎ=2√303π.故答案为10π,2√303π10(★★★) 已知四面体ABCD的棱长满足AB=AC=BD=CD=2,BC=AD=1,现将四面体ABCD放入一个主视图为等边三角形的圆锥中,使得四面体ABCD可以在圆锥中任意转动,则圆锥侧面积的最小值为.【答案】27π4【解析】因为四面体ABCD的棱长满足AB=AC=BD=CD=2,BC=AD=1,所以可以把其放到长宽高分别为a,b,c的长方体中,四面体的棱长是长方体的面对角线,∴a2+b2=22,①;b2+c2=22,②;c2+a2=12,③故四面体的外接球半径R满足:8R2=22+22+12=9;∴R2=98.∵四面体ABCD放入一个主视图为等边三角形的圆锥中,使得四面体ABCD可以在圆锥中任意转动,要想圆锥的侧面积最小;故需满足四面体的外接球恰好是圆锥的内切球;作圆锥的轴截面,如图:设BE=r,则AB=2r,AE=√3r;可得:OB2=OE2+EB2;∴R2=(√3r-R)2+r2⇒r=√3R;故圆锥侧面积的最小值为:πrl=2πr2=2π•3R2=27π4.故答案为:27π4.11(★★★) 在直三棱柱ABC-A1B1C1中,平面ABC是下底面.M是BB1上的点,AB=3,BC=4,AC=5,CC1=7,过三点A、M、C1作截面,当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为.【答案】1110【解析】由AB=3,BC=4,AC=5,得AB2+BC2=AC2,∴AB⊥BC.将平面ABB1A1与平面BCC1B1放在一个平面内,连接AC1,与BB1的交点即为M,此时BM=3,设四棱锥A-BCC1M的体积为V1,则V1=13×12×(3+7)×4×3=20,三棱柱ABC-A1B1C1的体积V=12×4×3×7=42.∴当截面周长最小时,截面将三棱柱分成的上、下两部分的体积比为V−V1V1=1110.12(★★★) 如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D-ABC1的体积为.【答案】13【解析】将直三棱柱ABC-A1B1C1展开成矩形ACC1A1,如图,连结AC1,交BB1于D,此时AD+DC1最小,∵AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点,∴当AD +DC 1最小时,BD =1,此时三棱锥D -ABC 1的体积V D−ABC 1=V C 1−ABD =13×S △ABD ×B 1C 1=13×12×AB ×BD ×B 1C 1=13×12×1×1×2=13.13(★★★) 已知△SAB 是边长为2的等边三角形,∠ACB =45°,当三棱锥S -ABC 体积最大时,其外接球的表面积为 .【答案】28π3【解析】由题可知,平面CAB ⊥平面SAB ,且CA =CB 时,三棱锥S -ABC 体积达到最大,如右图所示, 则点D ,点E 分别为△ASB ,△ACB 的外心,并过两个三角形的外心作所在三角形面的垂线,两垂直交于点O .∴点O 是此三棱锥外接球的球心,AO 即为球的半径.在△ACB 中,AB =2,∠ACB =45°⇒∠AEB =90°,由正弦定理可知,AB sin∠ACB =2AE ,∴AE =EB =EC =√2,延长CE 交AB 于点F ,延长SD 交AB 于点F ,∴四边形EFDO 是矩形,且OE ⊥平面ACB ,则有OE ⊥AE ,又∵OE =DF =13SF =13×√32AB =√33, ∴OA =√OE 2+AE 2=√73.∴S 球表面积=4πR 2=4π×( √73)2=28π3.14(★★★)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】如图,M是AC的中点.①当AD=t <AM=√3时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=√3-t,由△ADE∽△BDM,可得ℎ1=√(√3−t)2+1,∴ℎ=√(√3−t)2+1,V=13⋅12⋅(2√3−t)⋅1⋅√(√3−t)2+1=16√3−t)2√(√3−t)2+1,t∈(0,√3)②当AD=t>AM=√3时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t-√3,由等面积,可得12⋅AD⋅BM=12⋅BD⋅AH,∴1 2⋅t⋅1=12√(t−√3)2+1,∴ℎ=√(√3−t)2+1,∴V=13⋅12⋅(2√3−t)⋅1√(√3−t)2+1=16⋅√3−t)2√(√3−t)2+1,t∈(√3,2√3)综上所述,V=16√3−t)2√(√3−t)2+1,t∈(0,2√3)令m=√(√3−t)2+1∈[1,2),则V=16⋅4−m2m,∴m=1时,V max=12.故答案为12.。
专题8.2 简单几何体的表面积与体积(A卷基础篇)高一数学必修第二册同步单元卷(新教材人教A版)

专题8.2 简单几何体的表面积与体积(A 卷基础篇)(浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2021·浙江绍兴市·高二期末)已知球O 的体积为36π,则该球的表面积为( )A .6πB .9πC .12πD .36π 【答案】D【解析】根据球的体积公式求出半径,即可求出表面积.【详解】设球的体积为R ,则由题可得34363R ππ=,解得3R =,则该球的表面积为24336ππ⨯=.故选:D.2.(2021·安徽滁州市·高二期末(理))一个圆柱的轴截面是一个面积为16的正方形,则该圆柱的体积是( ) A .64πB .32πC .16πD .8π 【答案】C【解析】根据题意,求得圆柱的底面直径和高,代入公式,即可求得答案.【详解】因为轴截面的面积为16,所以圆柱的底面直径和高均为4,所以圆柱的体积22416V ππ=⋅⨯=.故选:C3.(2021·河南洛阳市·高一期末)如图网格中是某几何体的三视图(网格中每个小正方形的边长为1),则该几何体的体积为( )A .2B .5C .4D .25【答案】A【解析】根据三视图还原几何体,计算体积即可.【详解】还原几何体如图,为四棱柱,底面积为11⨯,高为2故体积为:2故选:A4.(2021·浙江舟山市·高二期末)已知圆锥的正视图是边长为2的等边三角形,则它的表面积是( )A .2πB .3πC .4πD .5π【答案】B【解析】根据圆锥的正视图,求得圆锥的底面半径和母线长,结合侧面积和圆的面积公式,即可求解.【详解】设圆柱的底面半径为r ,母线长为l ,因为圆柱的正视图为边长为2的等边三角形,可得22,2r l ==,所以1r =,所以圆锥的表面积为221213S S S rl r πππππ=+=+=⨯⨯+⨯=侧底.故选:B.5.(2021·湖南省平江县第一中学高二月考)体积为8的正方体的顶点都在同一个球面上,则该球的表面积为()A.8πB.12πC.16πD.32 3π【答案】B【解析】根据正方体的体对角线长等于其外接球直径可求出外接球半径,再根据球的表面积公式即可求出.【详解】因为正方体的体积为8,即其棱长为2,体对角线长为3233,所以其外接球的表面积为24312ππ⨯=.故选:B.6.(2021·陕西咸阳市·高三一模(理))已知某圆锥的轴截面是边长为4的正三角形,则它的体积为().A 23B43C83D.3π【答案】C【解析】根据题意,求得圆锥的高和底面圆的半径,代入公式,即可求得答案. 【详解】如图所示:ABC 为边长为4的正三角形,所以AB=AC=BC =4,取BC 中点为O ,则224223AO -= 所以圆锥的体积21832333V ππ=⨯⨯⨯=. 故选:C7.(2021·全国高一课时练习)若一个球的直径为2,则此球的表面积为( )A .2πB .16πC .8πD .4π 【答案】D【解析】得出球的半径,直接由球的表面积公式即可得结果.【详解】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.8.(2020·长春市第二十九中学高二月考(理))圆锥的表面积为12π,母线长为4,则该圆锥的底面半径为( )A .2B .3C .1D 3 【答案】A【解析】设圆锥的底面半径为r ,根据圆锥的表面积为12π,母线长为4,由212S r rl πππ=+=求解.【详解】设圆锥的底面半径为r ,因为圆锥的表面积为12π,母线长为4,所以212S r rl πππ=+=,即 24120r r +-=,解得 2r或 6r =-(舍去)故选:A9.(2020·四川成都市·高三其他模拟(理))一个多面体的三视图如图所示,其正视图、侧视图都是全等的等腰直角三角形,俯视图为边长为2的正方形,则其体积为( )A .83B .43C .8D .4【答案】A【解析】 由三视图知:该几何体是一条侧棱垂直与底面,底面是边长为2的正方形,高为2的倒立的四棱锥,然后利用锥体体积公式求解.【详解】 如图所示:由三视图知:该几何体是一个倒立的四棱锥S ABCD -,其中SA ⊥底面ABCD ,底面为正方形, 所以四棱锥S ABCD -的底面积为4,高为2,所以四棱锥S ABCD -的体积为: 184233V =⨯⨯=,故选:A10.(2020·陕西高三月考(文))一个长方体的长,宽、高分别为5,3则该长方体的外接球的表面积为( )A .36πB .40πC .45πD .70π 【答案】B【解析】根据长方体的外接球半径为长方体的体对角线的一半,再结合球的表面积公式,求出结果.【详解】该长方体的外接球的半径R 为体对角线的一半,则R === 则该长方体的外接球的表面积为:2440R ππ=.故选:B. 第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2021·全国高一课时练习)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】根据圆柱侧面积公式直径求解.【详解】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.12.(2021·重庆北碚区·西南大学附中高二期末)一圆锥高为2,底面半径为1,则它的侧面积为___________.【解析】首先计算母线长,再根据侧面积公式计算结果.【详解】由条件可知圆锥的高2h =,和底面圆的半径1r =,则母线长l =,则圆锥的侧面积S rl π==.故答案为:5π13.(2021·陕西咸阳市·高一期末)张衡(78年~139年)是中国东汉时期杰出的天文学家、数学家、发明家、地理学家、文学家,他的数学著作有《算罔论》.张衡给立方体定名为质,给球体定名为浑.他研究过球的外切立方体体积和内接立方体体积,研究过球的体积,其中还定圆周率值为10的开平方,直到五百多年后,印度和阿拉伯的数学家才得出这个数值.现有棱长为610的正方体,利用张衡的结论可得该正方体的内切球的体积为______.【答案】3600【解析】 设正方体的棱长为a ,内切球的半径为r ,由a =2r ,求得半径,再代入球的体积公式求解. 【详解】设正方体的棱长为a ,内切球的半径为r , 则a =2r ,因为a =10所以310r =10π=所以球的体积为(334410310360033V r π===,故答案为:360014.(2021·浙江高二开学考试)将半径为4的半圆卷成一个圆锥,则圆锥底面半径为________,圆锥的体积为________.【答案】2,83π 【解析】根据侧面展开图列方程计算圆锥的底面半径,根据勾股定理计算圆锥的高,代入体积公式计算即可.【详解】显然圆锥的母线长为 4,l = 设圆锥的底面半径为r ,则24,r ππ= 即2r, 所以圆锥的高2223,h l r =-=圆锥的体积 2118342333V r h πππ=⋅⋅=⨯⨯=故答案为:215.(2020·台州市洪家中学高二月考)正方体1111ABCD A B C D -的棱长为1,则其表面积为___________;其内切球的体积为___________.【答案】66π 【解析】正方体的表面积为6个面的面积和;球内切与正方体,则球的直径与正方体的棱长相等,即可得到球的半径,利用公式求体积即可.【详解】易得:616S =⨯=,因为球内切于棱长为1的正方体,所以球的直径等于正方体的棱长, 所以球的半径为12, 所以该球的体积为341()326ππ⨯=, 故答案为:6;6π. 16.(2020·全国高一课时练习)(1)已知一圆台上底面的半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,则此圆台的体积为________.(2)圆台的上、下底面半径分别为10cm ,20cm ,它的侧面展开图扇环的圆心角为180°,则圆台的表面积为______2cm .(结果中保留π) 【答案】383π 1100π 【解析】(1)先利用圆台的轴截面求出圆台的高,再利用圆台的体积公式求解即可;(2)根据条件先求出侧面展开的扇环的半径,再根据圆台表面积公式求解即可.【详解】解析:(1)作出圆台的轴截面,如图,设圆台的高为h ,则2636h -=,所以2h =, 所以圆台的体积为()221382233233V π=+⨯+⨯=π. (2)如图所示,设圆台的上底面周长为lcm ,因为扇环的圆心角是180°,故210l SA ππ=⋅=⨯,所以20SA cm =.同理可得40SB cm =,所以20AB SB SA cm =-=,所以表面积()222(1020)2010201100mS c ππππ=+⨯+⨯+⨯=. 故圆台的表面积为21100cm π.答案:(1)383π(2)1100π. 17.(2011·全国高三专题练习)某地球仪上北纬030纬线的长度为12()cm π,该地球仪的半径是__________cm ,表面积是______________cm 2. 【答案】3 192π.【解析】先利用圆周长公式,求出小圆的半径,根据球的截面性质,可求出球的半径,进而求出球的表面积.【详解】设北纬030所在圆面的关系为r ,由题可得:212r ππ=解得6r =,设地球仪的半径为0643cos30R ==地球仪表面积为24192R ππ=.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2021·海原县第一中学高一期末)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的几分之几?【答案】148. 【解析】 根据三棱锥和柱体的体积公式,即可求解.【详解】由题意,边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点, 锯掉的三棱锥的体积11111113222248V =⨯⨯⨯⨯=. 正方体的体积1111V =⨯⨯=. 锯掉的这块的体积是原正方体的148. 故答案为:148. 19.(2021·安徽池州市·高二期末(文))已知圆台上、下底面的底面积分别为16π,81π,且母线长为13. (1)求圆台的高;(2)求圆台的侧面积.【答案】(1)12;(2)169π.【解析】(1)依题意利用勾股定理计算可得;(2)利用圆台的侧面积公式()12S r r l π=+计算可得;【详解】解:(1)依题意,圆台的上底面半径14r =,下底面半径29r =,故圆台的高()22139412h =--=;(2)圆台的侧面积413913169S πππ=⨯⨯+⨯⨯=.20.(2020·福建三明市·高二期中)如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.【答案】(1)256;(2)240.【解析】(1)按照公式求出长方体和四棱锥的体积,求和即可;(2)先找到四棱锥侧面的高,然后可求出四棱锥的侧面积,继而求长方体的表面积,求和即可.【详解】连接11A C ,11B D 交于点O ,取11B C 的中点E ,连接PO ,OE ,PE(1)883192V =⨯⨯=长方体11111883643P A B C D V -=⨯⨯⨯= ∴19264256V =+=总(2)∵3PO =,4OE =∴225PE PO OE =+=1485802S =⨯⨯⨯=四棱椎侧 48388160S =⨯⨯+⨯=长方体80160240S =+=总21.(2020·湖北高二月考)有一堆规格相同的铁制(铁的密度为37.8g /cm )六角螺帽共重6kg ,已知该种规格的螺帽底面是正六边形,边长是12mm ,内孔直径为10mm ,高为10mm ,(1)求一个六角螺帽的体积;(精确到30.001cm )(2)问这堆六角螺帽大约有多少个?(参考数据:3 1.73,2.9527.823,1.0837.88.45π==⨯≈⨯≈)【答案】(1)()32.952cm;(2)261个. 【解析】(1)利用六棱柱的体积减去圆柱的体积即得解;(2)计算61000(7.8 2.952)⨯÷⨯即得解.【详解】 (1)由题得22310(12)610 3.141042V ⎛⎫=⨯⨯-⨯⨯ ⎪⎝⎭ 3736.8785=-()()332951.82952mm 2.952cm =≈=(2)这堆螺帽的个数为:61000(7.8 2.952)261⨯÷⨯≈(个)答:每个螺帽的体积为32.952cm ,共有261个螺帽.22.(2020·全国高三专题练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,求该四棱台的表面积.【答案】804815+【解析】首先求出四棱台上、下底面面积与侧面面积,然后求出表面积即可.【详解】如图,在四棱台1111ABCD A B C D -中,过1B 作1B F BC ⊥,垂足为F ,在1Rt B FB 中,1(84)22BF =⨯-=,18B B =, 故22182215B F =-= 所以111(84)21512152BB C C S =⨯+⨯=梯形 故四棱台的侧面积412154815S =⨯=侧, 所以四棱台的表面积48154488804815S =⨯+⨯=+表。
高中数学必修二 8 简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 旋转体的体积】1.(2021·吉林·延边二中高一期中)阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】因为该球的体积为36π,设球的半径为R ,则34363R ππ=,解得3R =。
所以圆柱的体积为:23654V ππ=⨯⨯=,故选:C.2.(2021·河北·保定市第二十八中学高一月考)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度)如图2所示,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,若122V V =,则半球的半径与圆柱的高之比为( )A .4:3B .3:4C .1:2D .5:3【答案】B 【解析】设圆柱的高为h ,半径为r ,则圆柱的体积为21=V r h π.而半球的体积为332412==323V r r ππ⨯. 因为122V V =,所以324=3r r h ππ,所以3=4r h . 故选:B3(2021·全国·高一课时练习)如图所示,半径为R 的半圆内(其中∠BAC =30°)的阴影部分以直径AB 所在直线为轴,旋转一周得到一个几何体,则该几何体的表面积为_____,体积为_____.2R 356R π 【解析】如图所示,过C 作CO 1⊥AB 于O 1,在半圆中可得∠BCA =90°,又∠BAC =30°,AB =2R ,∴AC ,BC =R ,CO 1,∴1AO S 圆锥侧=π=32πR 2,1BO S 圆锥侧=π×R R 2,∴S 几何体表=S 球+11AO BO S S +=圆锥侧圆锥侧R 2,πR 2. 又V 球=43πR 3,∴V 几何体=V 球-(11AO BO V V +圆锥圆锥)=43πR 3-13×AB ×π×C 2143O =πR 3-22536R π⎫⨯=⎪⎪⎝⎭πR 3.2R ;356R π4.(2021·全国·高一课时练习)若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是__________.【解析】设圆锥的底面半径为r ,则22ππ=r ,所以1r =,圆锥的高h = 所以圆锥的体积213V r h π=5.(2021·全国·高一课时练习)若一个圆锥的底面直径和高都与一个球的直径相等,那么这个圆锥的体积与球的体积之比为________. 【答案】12【解析】解析:设球体的半径为R 2312=2=33R V R R ππ⋅圆锥,343V R π球=,33213==423R V R V ππ圆锥球. 故答案为:12【题组二 旋转体的表面积】 1.(2021·全国·高一课时练习)如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=AD=2,则四边形ABCD 绕AD 所在直线旋转一周所成几何体的表面积为( )A .(60+πB .(60+)π C .(56+πD .(56+)π【答案】A 【解析】四边形ABCD 绕AD 所在直线旋转一周所成的几何体为一个圆台挖去一个圆锥,如图所示:因为25r AB ==,所以圆台下底面面积125S π=,又因为CD =,135ACD ∠=,所以12ED r ==,25l ==,所以圆台的侧面积()()212225535S r r l πππ=+=+⨯=.圆锥的侧面积3111122222S r l ππ=⨯⨯=⨯⨯⨯.所以几何体的表面积为(123253560S S S S πππ=++=++=+.故选:A2.(2021·山东邹城·高一期中)如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则( )A .圆锥的母线长为18B .圆锥的表面积为27πC .圆锥的侧面展开图扇形圆心角为60°D .圆锥的体积为【答案】D【解析】设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2S l π=,又圆锥的侧面积3S rl l ππ==圆锥侧,因为圆锥在平面内转到原位置时,圆锥本身滚动了3周,所以233l l ππ=⨯,解得9l =,所以圆锥的母线长为9,故选项A 错误;圆锥的表面积239336S S S πππ=+=⨯⨯+⨯=圆锥侧底,故选项B 错误;因为圆锥的底面周长为236ππ⨯=,设圆锥的侧面展开图扇形圆心角为α,则69πα=⋅,解得23πα=, 所以圆锥的侧面展开图扇形圆心角为120°,故选项C 错误;圆锥的高h =所以圆锥的体积为2133V π=⨯⨯⨯=,故选项D 正确. 故选:D .3.(2021·重庆·垫江第五中学校高一月考)如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为则此圆锥的表面积为__________【答案】5π【解析】将圆锥侧面沿母线AB 剪开,其侧面展开图为扇形,如图,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,最短距离即为线段BM 长,则有BM = 而M 是线段AB '中点,又母线长为4,于是得22220AM AB BM +==,即2BAB π'∠=,设圆锥底面圆半径为r ,从而有:242r ππ=⋅,解得1r =,所以圆锥的表面积为25S r r AB πππ=+⋅=.故答案为:5π4(2021·全国·高一课时练习)已知一块正方形薄铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),若用这块扇形铁片围成一个无底的圆锥,则这个无底的圆锥的表面积为多少平方厘米?【答案】()216cm π 【解析】由已知,可得这个无底的圆锥的母线长为8cm ,设圆锥的底面半径为cm r ,则282r ππ=⨯,所以2cm r =,所以圆锥的表面积即侧面积()22816cm S rl πππ==⨯=侧. 【题组三 多面体的体积】1.(2021·上海外国语大学闵行外国语中学高二期中)在三棱锥P ABC -中,已知5PA BC PB AC PC AB ======,则该三棱锥的体积为___________.【答案】8【解析】如图,设长方体的三条棱长为,,a b c ,由题得22220a b +==;2213a c +=;222525b c +==, 解之得2224,16,9a b c ===.所以2,4,3a b c ===. 所以该三棱锥的体积为112344243=832⨯⨯-⨯⨯⨯⨯⨯.故答案为:82(2021·全国·高一课时练习)已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________cm 3.【答案】【解析】依题意,原几何体是由一个正方体上面接一个正四棱锥组成,其中正方体的棱长为1cm ,正方体的体积为1cm 3,正四棱锥的底面边长和侧棱长均为1cm ,体积为2113⨯=3),所以该空间几何体的体积为(1V =cm 3.故答案为:3.(2021·全国·高一课时练习)球O 的球心为点O ,球O 3的圆锥,三棱锥V ABC -内接于球O ,已知,OA OB AC BC ⊥⊥,则三棱锥V ABC -的体积的最大值为_______.【解析】=O 的半径为r=,解得1r =, ,1OA OB OA OB ⊥==,AB ∴=AC BC ⊥,∴C 在以AB 为直径的圆上,∴平面OAB ⊥平面ABC ,∴O 到平面ABC 2,故V 到平面ABC 1+,又C 到AB∴三棱锥V ABC -的体积的最大值为,111)32⨯4.(2021·全国·高一课时练习)如图所示,△ABC 和△A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且12AO BO CO A O B O C O =''==',则O ABC O A B C V V --'''=___________. 【答案】18【解析】如题干图,12AO BO CO A O B O C O =''==', 可证AB //A ′B ′,AC //A ′C ′,BC //B ′C ′.所以平面//ABC 平面A B C '''三棱锥O ABC -和三棱锥O A B C '''-高之比也为12,由等角定理得∠CAB =∠C ′A ′B ′,∠ACB =∠A ′C ′B ′,所以△ABC ∽△A ′B ′C ′, 由12AO BO CO A O B O C O =''==', 可得211()24ABC A B C S S '''==, 所以O ABC O A B C V V --'''==111428⨯=. 故答案为:185.(2021·山东·日照神州天立高级中学有限责任公司高一月考)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的______.【答案】148【解析】1111113222248A FGH V -=⨯⨯⨯⨯=,所以148A FGH V V -=正方体, 故答案为:148. 6.(2021·黑龙江·哈师大附中高一期中)如图,在四面体ABCD 中作截面PQR ,其中14AR AD =,13AP AC =,12AQ AB =,则:A PQR D BCPQ V V --=______.【答案】1:20【解析】作RG ⊥平面ABC ,作DH ⊥平面ABC ,则GH 共线,由14AR AD =,则14RG DH =, 由12AQ AB =,13AP AC =,则16APQ ABC S S =, 所以15APQBCPQ S S =, 所以11113:154203APQ R APQA PQR D BCPQ D BCPQ BCPQ S RG V V V V S DH ----⋅===⨯=⋅,故答案为:1:20【题组四 多面体的表面积】1.(2021·上海市控江中学高二期中)若正四棱台的上底边长为2,下底边长为8,高为4,则它的侧面积为___________.【答案】100【解析】因正四棱台的上底边长为2,下底边长为8,高为4,则该正四棱台上底、下底面边心距分别为1,4,而正四棱台的高、斜高、两底面对应边心距构成直角梯形,于是得斜高5h '=, 因此,侧面积28451002S +=⨯⨯=, 所以所求的侧面积为100.故答案为:1002(2021·上海外国语大学闵行外国语中学高二期中)已知正三棱锥O ABC -的底面边长为4,高为2,则此三棱锥的侧面积为___________.【答案】【解析】由题意作出图形如图:因为三棱锥P ABC -是正三棱锥,顶点在底面上的射影D 是底面的中心,在三角PDF 中, 2PD =,DF =,PF ∴==则这个棱锥的侧面积为1342⨯⨯=故答案为:3.(2021·全国·高一课时练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________.【答案】80+【解析】如图,在四棱台1111ABCD A B C D -中,过点1B 作1B F BC ⊥,垂足为点F ,在1Rt B FB 中1(84)22BF =⨯-=,18B B =,故1B F =所以111(84)2BB C C S =⨯+⨯=梯形故四棱台的侧面积4S =⨯=侧,所以448880S =⨯+⨯=+表故答案为:80+4.(2021·全国·高一课时练习)已知正四棱台两底面边长分别为4cm,8cm ,侧棱长为8cm ,则它的侧面积为_______2cm .【答案】【解析】作出正四棱台的一个侧面如图,设,E F 分别为,AD BC 的中点,过D 作DG BC ⊥于点G .由题知4cm,8cm,8cm AD BC CD ===,得2cm,4cm DE FC ==,解得2cm GC =,在Rt DGC △中,DG =,即斜高为,所以所求侧面积为)21(1632)cm 2⨯+⨯=.答案:5.(2021·全国·高一课时练习)若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.【答案】5【解析】S S S =+表侧两底,则30255S S S =-=-=两底表侧.故答案为:5.6(2021·全国·高一课时练习)如图,已知正三棱锥S ABC -的侧面积是底面积的2倍,正三棱锥的高3SO =,则此正三棱锥的表面积为___________.【答案】【解析】如图,设正三棱锥的底面边长为a ,斜高为h ',侧面积、底面积分别为12,S S ,过点O 作OE AB ⊥,与AB 交于点E ,连接SE ,则,SE AB SE h '⊥=.由21 2S S =,即21322a h '⋅⋅=⨯,可得a '.由SO OE ⊥,则222SO OE SE +=,即2223h ⎫''+=⎪⎪⎝⎭.h '∴=6a =.222 6S ∴=== 1 S =∴表面积 1 2 S S S =+==故答案为:【题组五 有关球的计算】1.(2021·新疆·新和县实验中学高一期末)若三个球的表面积之比是1:2:3,则它们的体积之比是( )A .1:B .1:C .2:4:9D .【答案】A【解析】设三个球的半径分别为1R ,2R ,3R ,因为三个球的表面积之比为1:2:3,所以2221234π:4π:4π1:2:3R R R =,所以123::R R R =所以它们的体积之比为3333331231234π4π4π::::1:333R R R R R R == 故选:A.2.(2021·山东邹城·高一期中)已知长方体1111ABCD A B C D -的长、宽、高分别为2、1、1,且其顶点都在球面上,则该球的体积是( )AB .6πC .36πD .【答案】A【解析】长方体1111ABCD A B C D -=长方体1111ABCD A B C D -343π⨯=⎝⎭. 故选:A .3.(2021·全国·高一课时练习)两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.【解析】设大球的半径为R ,则有3334421,233R R ππ=⨯⨯=,所以R =4.(2021·全国·高一课时练习)一个底面直径是32cm 的圆柱形水桶装入一些水,将一个球放入桶内完全淹没,水面上升了9cm 且无溢出,则这个球的表面积是________.【答案】2576cm π【解析】由题意,上升的水的体积即为球的体积,若球的半径为R ,即23324923R ππ⎛⎫⨯= ⎪⎝⎭,解得12R =, 故这个球的表面积224412576S R πππ=⨯=⨯=.故答案为:2576cm π5.(2021·全国·高一课时练习)如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为3,则该半球的表面积为________.【答案】6π【解析】如图,连接AC ,BD 交点为O ,设球的半径为r ,由题意知:SO AO OC OD OB r =====.则AB =,四棱锥的体积为21)3V r =⨯⨯=r = ∴该半球的表面积为22214362S r r r ππππ=⨯+==.故答案为:6π6.(2021·全国·高一课时练习)在四棱锥S ABCD -中,底面ABCD 是边长为为【答案】48π【解析】因为四棱锥S ABCD -中,底面ABCD 是边长为 所以该四棱锥是正四棱锥,取正方形ABCD 的中心1O ,连接1SO ,AC ,则点1O 为AC 的中点,如图,则球心O 在1SO 上,因为正方形ABCD 边长为6AC ==,所以13AO =,因为SA =,所以1SO ==设四棱锥S ABCD -外接球的半径为r ,则11OO SO SO r =-,在1Rt AOO 中,22211AO AO OO =+,即)2223r r =+,解得:r =所以该四棱锥外接球的表面积为(224π4π48πr =⨯=.【题组六 综合运用】1(2021·全国·高一课时练习)如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x 的圆柱.(1)求出此圆锥的侧面积;(2)用x 表示此圆柱的侧面积表达式;(3)当此圆柱的侧面积最大时,求此圆柱的体积.【答案】(1);(2)224(02)S x x x ππ=-+<<圆柱侧;(3)π.【解析】(1)圆锥的底面半径R 与高H 均为2,则圆锥的母线长为L =2S RL ππ==⨯⨯=圆锥侧.(2)设圆柱的半径为r , 则222r x -=,解得2r x =-,且02x <<; 所以圆柱的侧面积为222(2)24(02)S rx x x x x x ππππ==-=-+<<圆柱侧.(3)22242(1)1S x x x πππ⎡⎤=-+=--+⎣⎦圆柱侧,02x <<;当1x =时,S 圆柱侧取得最大值为2π,此时1r =,圆柱的体积为2211V r x πππ==⋅⋅=圆柱.2.(2021·贵州·高一月考)在长方体1111ABCD A B C D -中,AB =6,BC =8,16AA =.(1)求三棱锥1D ABC -的体积;(2)在三棱柱111ABC A B C -内放一个体积为V 的球,求V 的最大值.【答案】(1)48;(2)323π. 【解析】(1)由长方体的几何特征知,1D 到平面ABC 的距离为116DD AA ==, 又1242ABC S AB BC =⋅=,所以11112464833D ABC ABC V S DD -=⋅=⨯⨯=; (2)设球的半径为R ,若该球与三棱柱111ABC A B C -的三个侧面均相切,则R 为ABC 的内切圆的半径,则()1242R AB AC BC ++=, 又=6+10+8=24AB AC BC ++,此时2R =;若该球与三棱柱111ABC A B C -的上下底面均相切,此时126R AA ==,3R =;所以在三棱柱111ABC A B C -内放一个体积为V 的球,该球半径最大为2,3max 4=2=3323V ππ⨯.3.(2021·浙江路桥·高一月考)如图所示,在平面五边形ABCDE 中,2AB AE CD ===,1BC =,DE =90ABC ∠=︒,90AED ∠=︒,分别沿AC ,AD 将ABC 与ADE 折起使得B ,E 重合于点P .试求:(1)三棱锥A PCD -的体积;(2)三棱锥A PCD -的外接球的表面积.【答案】(2)8π.【解析】(1)PD =1PC =,2CD =,则222 PC PD CD PC PD +=⇒⊥,又AP PD ⊥,AP PC ⊥,PC PD D ⋂=,AP ⊥平面PCD .所以111111233232A PCD PCD V S AP PC PD PA -=⋅=⨯⋅⋅⋅=⨯⨯=△ (2)将三棱锥补成长方体知三棱锥A PCD -的外接球的直径即为长方体的体对角线长,即2R R ==,所以球的表面积为24π8πR =. 4.(2021·河北定州·高一期中)定州市某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160000cm 3(1)求正方体石块的棱长;(2)为争创全国文明城市,现将表面脏污,棱角轻微磨损的多面形石凳(图(1))打磨成一个球形的石凳,并用一种环保底漆全面粉刷.已知这种底漆一瓶的净含量为235克,可粉刷21.5m 左右,求此球形石凳最大时,一瓶环保底漆大约可以粉刷几个球形石凳?(精确到1)(π按3.14算)【答案】(1)40cm ;(2)3个.【解析】(1)设正方体石块的棱长为a , 则每个截去的四面体的体积为3113222248a a a a ⨯⨯⨯⨯=. 由题意可得331600008483a a ⨯+=, 解得40a =.故正方体石块的棱长为40cm ;(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,∴球形石凳的表面积224041600cm 2S ππ⎛⎫=⨯= ⎪⎝⎭. 41.51031600π⨯≈, 所以一瓶环保底漆大约可以粉刷3个球形石凳.5.(2021·湖北孝感·高一期中)如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11A C ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.【答案】(1))3cm ;(2)3cm .【解析】(1)在图2中,水所占部分为四棱柱.四棱柱底面积为)222112sin 601sin 6022S cm =⨯⨯︒-⨯⨯︒=,又高为4cm所以水的体积为)34V cm ==,(2)设图1中水高度为cm h ,则212sin 602V h =⨯⨯︒⨯=3h =. 所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .6.(2021·福建宁德·高一期中)如图所示是在圆锥内部挖去一正四棱柱所形成的几何体,该正四棱柱上底面的四顶点在圆锥侧面上,下底面落在圆锥底面内,已知圆锥侧面积为15π,底面半径为3r =.(Ⅰ)若正四棱柱的底面边长为a =(Ⅱ)求该几何体内正四棱柱侧面积的最大值.【答案】(Ⅰ)16123π-;(Ⅱ)【解析】设圆锥母线长为l ,高为h ,正四棱柱的高为1h(Ⅰ)由S rl π=圆锥侧,有315l ππ=,故5l =,由222h r l +=,故4h =,所以圆锥体积为2211341233V r h πππ==⨯⨯=圆锥由a =2, 由图可得11h r h r -=,所以11318433r h h r --==⨯=, 故正四棱柱的体积为21816233V a h ==⨯=正四棱柱 所以该几何体的体积为16123V V π-=-圆锥正四棱柱 (Ⅱ)由图可得12r h h r =,即13243h =,即1312h +=由13h +≥,当且仅当136h ==时左式等号成立,有112h a ⇒≤12h =,a =故正四棱柱侧面积14S h a =≤侧12h =,a =所以该几何体内正四棱柱侧面积的最大值为7.(2021·福建福州·高一期中)如图所示的圆锥,顶点为O ,底面半径是5cm ,用一与底面平行的平面截得一圆台,圆台的上底半径为2.5cm ,这个平面与母线OA 交于点B ,线段AB 的长为10cm .(提示:本题的数据有长度单位)(1)求圆台的体积和圆台的侧面积;(2)把一根绳从线段AB 的中点M 开始到点A ,沿着侧面卷绕.使它成为最短时候,求这根绳的长度;【答案】cm 3,75πcm 2;(2)25cm. 【解析】(1)作出圆锥的轴截面和沿OA 剪开的侧面展开图,如下图由下底面半径是5cm ,上底半径为2.5cm ,AB 的长为10 cm ,可得:10OB =cm ,因此圆台的体积为:223115 2.5(33cm )V ππ=⨯⨯⨯=, 侧面积为:2520 2.510)75cm (S πππ=⨯⨯-⨯⨯=.(2)由圆锥的底面周长可得侧面展开图的弧长为10π, 所以,侧面展开图的圆心角为2π,在直角三角形MOA '中15OM =,可得25(cm)MA '=,所以最短时候,绳长为25cm。
高中数学必修二 8 3 简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.210=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2A .8B .12C .16D .20 【答案】B, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为6a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,12323OD a a =⨯⨯=,111326O D a a =⨯⨯=,116DE OD O D a ∴=-=.在1Rt DED 中,16D E a =,则1D D =a ==. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S 正棱锥侧=114443222ch =⨯⨯⨯=' 故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,则该正四棱锥的表面积为( )A B .12 C .8 D .【答案】B【解析】如图所示,在正四棱锥S ABCD -中,取BC 中点E ,连接SE ,则SBE △为直角三角形,所以2SE ==, 所以表面积1422422122SBC ABCD S S S =+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)81 【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高EF故2142h =⨯2=2h +故侧面积为(214448812h ⨯⨯==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .2+B .2+C .2+D .2+【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S1111222222222⨯⨯+⨯⨯⨯⨯⨯=+故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(2+B .2(4+C .2(8+D .2(16+ 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为= ∴该棱柱的表面积为2×22+4×2×+(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm【答案】【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得a =所以该正方体的体积为3V a ==3cm .故答案为:2.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A .2∶3B .1∶3C .1∶4D .3∶4【答案】B 【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc =,四棱锥1A ABCD -的体轵为213V abc =, 所以棱锥1A ABCD -的体积与长方体1AC 的体积的比值为13. 故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .324276mD .312138m【答案】A 【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】(()2211+=33V S S h a b h '=+⋅ ()2211305545615333=⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD -中,PO ⊥底面ABCD ,21PO =,34AB =,底面正方形的面积为234341156S m =⨯=,则正四棱锥P ABCD -的体积为311115621809233S PO m ⨯⨯=⨯⨯=, 故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D -中,截去三棱锥1A ABD -,求(1)截去的三棱锥1A ABD -的表面积;(2)剩余的几何体1111A B C D DBC -的体积.【答案】(1)6+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD -中,1A BD 是边长为1A AD 、1A AB 、ABD △都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD -的表面积(111231322642A BD A AD A AB ABD S S S S S =+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .B .4πC .D .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则l =,由题可知)2122⨯=,∴2r l ==,侧面积为rl π=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r =则它的母线长510l r ====∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行 ∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7 【答案】D【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a ,圆柱的底面半径为r ()02r <<,则由224r a-=,可得42a r =-,所以圆柱的侧面积()22242484(1)4S r r r r r πππππ=⋅-=-+=--+,所以1r =时,该圆柱的侧面职取最大值4π. 故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为最大值为______.【答案】【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r ,4r =,解得2h r =;所以()2224S rh r r r ππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧;当2r时,S 圆柱侧取得最大值为故答案为:. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________. 【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l , 由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1 故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( ) A .4π3cm B .9π3cmC .12π3cmD .36π3cm【答案】C【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =.故圆锥的高4h =,圆锥体积为21123V r h ππ==3cm .故选:C.2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r , 则由题意得R=10,由1802Rl π=,得16l π=, 由2lr π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cm π.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________.【答案】3【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO ∴∠=︒,由题意设圆锥的底面半径为r ,则母线长为2l r =,高为h =圆锥的侧面积为8π,2228S rl r r r ππππ∴==⋅⋅==侧面积,解得2r ,h =∴圆锥的体积为2211233V r h ππ=⋅⋅=⨯⨯=圆锥.故答案为:3.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( ) A .23πB .πC .2πD .4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=. 故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( ) A .61.73 B .61.71C .61.70D .61.69【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V , 则230r π=,所以=5r , 故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( ) A .24π米3 B .48π米3C .96π米3D .192π米3【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米. 故选:B. 【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为外接球的体积为( )A . BC .D .【答案】B【解析】设正方体的棱长为a ,则111111B D AC AB AD B C D C ======,由于三棱锥11A B CD -的表面积为所以)121442AB CS S==⨯=a ==,所以正方体的外接球的体积为34632π⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16 B .18C .20D .22【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长, 因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =,因此2R =22AB BC ==,所以3=12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=. 故选:A.3.(2020的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3【答案】B的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,13⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2,故此正三棱柱的体积V =54=cm 3. 故选:B .4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a π B .3aC 3aD .316a π【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12, 所以球的半径为2a ,所以球的体积为334326a a ππ⎛⎫= ⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( ) A .12π B .36πC .108πD .4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________. 【答案】163π【解析】设正方体棱长为a ,则3432323ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得a =∴内切球半径为23a r ==,表面积为21643S ππ=⨯=⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 323-【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个, 该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积. 两个四棱柱的体积和为222432V =⨯⨯⨯=. 交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,SB SB =边上的高为2,则SA =由该几何体前后,左右上下均对称,知四边形ABCD 的菱形. 设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中, 2.BH ==又AC SB ==所以 1222ABCDS=⨯⨯=因为BH SH =,所以112233ABCDS ABCD V S -=⨯=⨯=四棱柱所以求体积为3223233-⨯=-故答案为:20;323-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形, 所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为面积之比为1:4,求圆柱的表面积.【答案】1)π【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h 12=,即h = ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2221)S rh r πππ=+=.。
专题8.3 简单几何体的表面积与体积(解析版)

专题8.3 简单几何的表面积与体积运用一 体积【例1】(1)(2019·北京高二学业考试)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,如果3AB =,1AC =,12AA =,那么直三棱柱111ABC A B C -的体积为( )A.2B.3C.4D.6(2)(2019·云南省玉溪第一中学高二月考)一个四棱锥的三视图如图所示,则该四棱锥的体积为( )B.D.(3)某几何体的三视图如图所示,该几何体的体积是( )A.1123B.1363C.48D.56【答案】(1)B (2)A (3)C 【解析】(1)因为AB AC ⊥,所以322ABCAB AC S ⋅==; 所以11113232ABC A B C ABC V SAA -=⨯=⨯=,故选:B.(2)由三视图知,该几何体是一个直四棱锥,底面是一个直角梯形,底面积为()122+=,高为2,因此,这个四棱锥的体积为1232⨯=,故选:A.(3)根据三视图知,该几何体是平放的四棱柱,如图所示,且该四棱柱的底面为等腰梯形, 棱柱的高为4,它的体积为()12444482V Sh ==⨯+⨯⨯=.故选:C .【举一反三】1.(2019·北京高一期末)已知圆柱的侧面展开图是一个边长为2π的正方形,则这个圆柱的体积是( ) A .22π B .2πC .22π D .23π【答案】A【解析】底面圆周长22l r ππ==,1r = ,2S r ππ==所以222V Sh πππ==⨯= 故选:A2.(2019·河北高三月考(理))圆锥的母线长是4,侧面积是4π,则该圆锥的高为( )A B .4C .3D .2【答案】A【解析】设母线为l ,底面半径为r ,高为h ,则4rl ππ=,1r =,所以h =.答案选A3.设正六棱锥的底面边长为1 )A. C. D.2【答案】B【解析】由底面边长为12h ==.又因为底面积16222S =⨯⨯=112332V Sh ==⨯⨯=.故选B.4.已知圆台上、下底面的面积分别为π,4π,侧面积为6π,则这个圆台的体积为( ).A .14πB .143πC .3D .【答案】C【解析】依题意知圆台上底面半径为1r = ,下底面半径为2R =如图所示圆台展开为一个圆环的一部分即ABCD ,其小扇形弧长2AD π=,大扇形弧长4BC π=, 由2BC AD=知道OA AB l == ,则圆台的侧面积11622S BC OB AD OA π=-=2l ⇒= 所以高h =圆台的体积221()3V h r rR R π=++= 故选C 5.(2019·四川绵阳中学高一月考)圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( ) A.40π B.52πC.50πD.2123π 【答案】B【解析】作出圆台的轴截面如图所示:上底面半径2MD =,下底面半径6NC =,过D 做DE 垂直NC , 则624EC =-=由5CD =故3DE =即圆台的高为3,所以圆台的体积为2213(26523V πππ=⋅⋅⋅+⋅+=.故选:B . 运用二 表面积【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27πB.36πC.54πD.81π(2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .4+C .4+D .6+(3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( )A .16+B .16+C .12+D .12+【答案】(1)B(2)D(3)D【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.(2),斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+故选:D . (3)由三视图还原原几何体如图,该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2.则其表面积为S 111424222412222=⨯+⨯⨯+⨯⨯⨯⨯⨯=+.故选:D . 【举一反三】1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14B.12C.23D.45【答案】C【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ⋅=,表面积为222426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .5【答案】A【解析】1234511122222S S S S S S =++++=++++=+ 故答案选A3.若圆锥的轴截面是正三角形,则它的侧面积是底面积的( )A 倍B .3倍C .2倍D .5倍【答案】C【解析】由题意可知,如下图所示,设OC r =,则2AC r =所以圆锥的底面积为21S r π=,圆锥的侧面积为()2212222S r r r ππ=⋅= 即圆锥的侧面积是底面积的22212=2S r S rππ=倍故答案选C 运用三 球【例3】(1)由球O 的球面上一点P 作球的两两互相垂直的三条弦PA ,PB ,PC .已知3cm PA =,PB =,PC =,求球O 的表面积和体积.(2)(2019·四川石室中学高三月考(文))已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为__________.(3)正方体的外接球与内切球的半径之比为( ) ABC .2:1D .3:1【答案】(1)()236cmπ,()336cm π(2)254π(3)B 【解析】(1)以点P 为一个顶点,PA ,PB ,PC 为三条相邻棱,构造长方体PADB CEFG -.由于点P ,A ,B ,C 都在球O 的球面上,显然长方体PADB CEFG -内接于球O ,其对角线PF 长就是球O 的直径,所以()26cm R ==,3cm R =.()22436cm S R ππ∴==球,()33436cm 3V R ππ==球.(2)由圆锥体积为23π,其底面半径为1,设圆锥高为h 则221133h ππ=⨯⨯,可求得2h = 设球半径为R ,可得方程:()2221R R --=,解得:54R =25254=164S ππ∴=⨯本题正确结果:254π(3)设正方体的边长为1,画出图像如下图所示,设O 为正方体体对角线的交点,1O 为上底ABCD 的中心,所以正方体外接球的半径为122AC OA ===,正方体内切球的半径为111122OO CC ==,故正方体的外接球与内切球的半径之比为1:22=,故选B.【举一反三】1.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求: (1)圆锥的侧面积. (2)圆锥内切球的体积.【答案】(1)侧面积96S π=;(2)2563V π=【解析】(1)作出轴截面, 如下图所示:则等腰三角形CAB 内接于圆O ,而圆1O 内切于CAB ∆,设圆O 的半径为R ,由题意,得349723R ππ=,3729R ∴=, 918R CE =∴=; 已知162CD ED =∴=,连接AE ,CE 是直径,CA AE ∴⊥,21816288CA CD CE =⋅=⨯=,CA ∴=,AB CD ⊥, ,216232AD CD DE ∴=⋅=⨯=,AD ∴=,所以圆锥的侧面积96S AD CA πππ=⨯⨯=⨯=; (2)设圆锥的内切球1O 的半径为r ,也即CAB ∆的内切圆的半径为r ,ABC ∆的周长为c ==,111622ABC S AB CD ∆∴=⨯⨯=⨯=,又三角形的面积12ABC S c r ∆=⨯⨯,所以12r ⨯= 4r ∴=;∴圆锥的内切球1O 的体积3425633V r ππ==.2.(2019·广东实验中学高三月考(理))三棱锥P ABC -的底面ABC 是等腰三角形,120C ∠=,侧面PAB 是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为__________.【答案】20π【解析】由题意,由余弦定理2221AB =2+2-222-2⎛⎫⨯⨯⨯∴ ⎪⎝⎭,ABC 的外接圆半径21,R R =∴=等边三角形PAB 的高为3,设球的半径为,r 球心到底面的距离为x ,则22222r 2x 13x =+=+-(),所以x 1=,所以该三棱锥的外接球的表面积为24r 20ππ=. 故答案为:20π.3.已知棱长为a 的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为( ).A .91:3:4B .1:3:2C .D .31:2【答案】B【解析】由已知得甲球是正方体的内切球,示意图如下图1,从中截面可以看出甲球的直径等于正方体的棱长,设甲球的半径为1R ,则12R a =,所以12a R =,所以甲球的表面积为22211442a S R a πππ⎛⎫=== ⎪⎝⎭; 乙球是正方体的外接球,示意图如下图2, 从中截面可以看出乙球的直径等于正方体的体对角线长,设乙球的半径为2R ,则22R ==,所以2R =,所以乙球的表面积为222224432S R aπππ⎛⎫===⎪⎪⎝⎭;丙球与正方体的各条棱相切,示意图如下图3, 从中截面可以看出丙球的直径等于正方体的面对角线长,设丙球的半径为3R,则32R==,所以32R=,所以丙球的表面积为222334422S R aπππ⎛⎫===⎪⎪⎝⎭;所以()()()222123:::3:21:3:2S S S a a aπππ==,故选:B.1.(2019·四川棠湖中学高二月考)一个棱长为2的正方体被一个平面截去部分后,余下部分的三视图如图所示,则截去部分与剩余部分体积的比为()A .1:3B .1:4C .1:5D .1:6【答案】A【解析】由题意可知:几何体被平面ABCD 平面分为上下两部分,设正方体的棱长为2,上部棱柱的体积为:121222⨯⨯⨯=; 下部为:22226⨯⨯-=,截去部分与剩余部分体积的比为:13.故选:A . 2.(2019·全国高三月考(理))某几何体的三视图如图所示,则该几何体的体积是()A.23B.43C.83D.163【答案】C【解析】根据三视图可得对应的几何体为四棱锥P ABCD - , 它是正方体中去掉一个三棱锥和三棱柱,又2ABCD S ==矩形,P 到底面ABCD ,故1833V =⨯=, 故选C.3.(2019·天水市第一中学高三月考(理))已知一个简单几何体的三视图如图所示,则该几何体的体积为A.36π+B.66π+C.312π+D.12【答案】A【解析】由三视图知,该几何体有四分之一圆锥与三棱锥构成,故体积为211113433436,4332V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+,故选A.4.(2019·安徽省泗县第一中学高二期末(文))某几何体的三视图如图所示,则该几何体的体积等于()A .12B .15C .18D .21【答案】B【解析】根据三视图可得出该几何体为底面为直角梯形的直棱柱,底面积1(23)252S =⨯+⨯=,故该几何体的体积5315V =⨯=,故选:B .5(2019·广东高一期末)已知圆柱的轴截面为正方形,且该圆柱的侧面积为36π,则该圆柱的体积为 A.27π B.36πC.54πD.81π【答案】C【解析】设圆柱的底面半径r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r 因为该圆柱的侧面积为36π,所以2236r r ππ⨯=,解得3r =, 故该圆柱的体积为2232354r h πππ=⨯⨯⨯=.故答案选C6.(2019·江西上高二中高二月考(理))圆锥的母线长为4,侧面展开图为一个半圆,则该圆锥表面积为( ) A .10π B .12πC .16πD .18π【答案】B【解析】一个圆锥的母线长为4,它的侧面展开图为半圆, 半圆的弧长为12442l ππ=⨯⨯=,即圆锥的底面周长为4π, 设圆锥的底面半径是r ,则得到24r ππ=,解得2r =,这个圆锥的底面半径是2,∴圆锥的表面积为242212S πππ=⋅⋅+⋅=.故选:B .7.(2019·江苏高一期末)已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A. B.2πD.π【答案】B【解析】由于圆锥的底面半径1r =,母线与底面所成的角为3π, 所以母线长121cos32r l π=== ,故圆锥的侧面积=2S rl ππ=;故答案选B 8.(2019·河北高一月考)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的表面积之比为( )A.6:1):4+ B.64 C.5:1):4+D.5:4【答案】A【解析】设球的半径为R ,圆柱的表面积2221S 246R R R πππ=+=。
《简单几何体的表面积与体积》考点讲解复习与同步训练

《8.3 简单几何体的表面积与体积》考点讲解【思维导图】考法一多面体表面积【例1】(1)已知正六棱柱的高为6,底面边长为4,则它的表面积为()A.(483B.(483+C.24D.144(2)已知一个正三棱台的两个底面的边长分别为4和16,侧棱长为10,则该棱台的侧面积为().A.80B.240C.320D.640【一隅三反】1.已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是,则这个正四棱柱的表面积为( )A .290cmB .2C .272cmD .254cm2.棱长为1的正四面体的表面积为( )AB .C .D .3.正三棱锥底面边长为a ,高为6a ,则此正三棱锥的侧面积为( )A .234a B .232a C 2D 2考法二 多面体台体积【例2】底面边长为2,高为1的正三棱柱的体积是( )A B .1C .2D .13【一隅三反】1.如图,已知高为3的棱柱111ABC A B C -的底面是边长为1的正三角形,则三棱锥1B ABC -的体积为( )A .14B .12C .62.正四棱锥的底面边长和高都等于2,则该四棱锥的体积为( )A B C.83D.83.已知棱长均为4,底面为正方形的四棱锥S ABCD-如图所示,求它的体积.4.如图,正三棱锥P ABC-的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC-的表面积;(2)求正三棱锥P ABC-的体积.考法三旋转体的表面积【例3】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为()A B.2πC.D.【一隅三反】1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是()A.142ππ+B.122ππ+C.12ππ+D.142ππ+2把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( )A .10B .C .D .3.一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是( )A .32π B .3π C .5π D .4π考法四 旋转体的体积【例4】已知圆锥的母线长为5,底面周长为6π,则它的体积为( ) A .10π B .12πC .15πD .36π【一隅三反】1.将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为( )A .πB .C .3πD .32.古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为( )A .198π立方丈 B .1912π立方丈 C .198π立方丈 D .19π12立方丈3.已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A .3B .3πC .9D .9π考法五 球【例5】(1)已知一个正方体的8个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为( )A .3π B .2π C D (2).已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为 )A .4πB .8πC .12πD .24π【一隅三反】1.若一个球的直径为2,则此球的表面积为( ) A .2πB .16πC .8πD .4π2.棱长为2的正方体的外接球的表面积为( )A .4πB .43π C .12πD .3.已知一个正方体的体积为8,求此正方体内切球的表面积为( ) A .43π B .8πC .4πD .16π4.将一个棱长为3cm 的正方体铁块磨成一个球体零件,则可能制作的最大零件的体积为( )A .39cm πB .39m 2c πC .3cmD 3cm考法六 组合体的体积表面积【例6】如图,一个无盖的器皿是由棱长为3的正方体木料从顶部挖掉一个直径为2的半球而成(半球的底面圆在正方体的上底面,球心为上底面的中心),则该器皿的表面积S 为( )A .54B .542π+C .54π+D .543π+【一隅三反】1.某组合体如图所示,上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.正四棱锥P EFGH -,2EF =,1AE =,则该组合体的表面积为( )A .20B .12C .16D .82.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6+B .6(8+C .8(6+D .6(8+3.如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h =_______cm .《8.3 简单几何体的表面积与体积》考点讲解答案解析考法一 多面体表面积【例1】(1)已知正六棱柱的高为6,底面边长为4,则它的表面积为( )A .(483B .(483+C .24D .144(2)已知一个正三棱台的两个底面的边长分别为4和16,侧棱长为10,则该棱台的侧面积为( ).A .80B .240C .320D .640【答案】(1)A (2)B【解析】(1)由题知侧面积为664144⨯⨯=,两底面积之和为22464⨯⨯=所以表面积(483S =.故选:A.(2)由题意可知,该棱台的侧面为上下底边长为4和16,腰长为10的等腰梯形∴8= 等腰梯形的面积为:()14168802S '=⨯+⨯=∴棱台的侧面积为:3380240S S '==⨯=本题正确选项:B 【一隅三反】1.已知正四棱柱(即底面是正方形的直棱柱)的底面边长为3cm ,侧面的对角线长是,则这个正四棱柱的表面积为( )A .290cmB .2C .272cmD .254cm【答案】A6=.所以表面积为:224362390()S cm =⨯⨯+⨯=.故选:A.2.棱长为1的正四面体的表面积为( )A B .C .D .【答案】A 【解析】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以13sin 6024ABCSAB AC =⋅⋅=,所以可知:正四面体的表面积为4ABCS = 故选:A3.正三棱锥底面边长为a ,高为6a ,则此正三棱锥的侧面积为( )A .234a B .232a C .24a D .22a 【答案】Aa 23⨯=,且,所以利用直角三角形勾股定理可得侧棱长为22632632a a a ,2221222aa a ,所以侧面积为21133224S a a a .选A.考法二 多面体台体积【例2】底面边长为2,高为1的正三棱柱的体积是( )A 3B .1C D .13【答案】A【解析】底面边长为2,高为1的正三棱柱的体积是22)1⨯= A 【一隅三反】1.如图,已知高为3的棱柱111ABC A B C -的底面是边长为1的正三角形,则三棱锥1B ABC -的体积为( )A .14 B .12 C .6【答案】C【解析】三棱锥1B ABC -的体积为:111113332ABCSh ⋅⋅=⨯⨯⨯=故选:C 2.正四棱锥的底面边长和高都等于2,则该四棱锥的体积为( )A B C .83D .8【答案】C【解析】∵正四棱锥的底面边长和高都等于2, ∴该四棱锥的体积211822333V Sh ==⨯⨯=.故选:C . 3.已知棱长均为4,底面为正方形的四棱锥S ABCD -如图所示,求它的体积.【答案】3【解析】如图所示:连接AC ,BD 交于点O ,连接SO , 因为四棱锥的棱长均为4,所以SO ⊥平面ABCD ,即SO 为四棱锥的高,所以4,SA OA ==,所以SO ,所以114433V AB AD SO =⨯⨯⨯=⨯⨯⨯=.4.如图,正三棱锥P ABC -的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC -的表面积; (2)求正三棱锥P ABC -的体积.【答案】(1);(2)3. 【解析】(1)取BC 的中点D ,连接PD ,在Rt PBD △中,可得PD ==∴12PBC S BC PD =⋅=△.∵正三棱锥的三个侧面是全等的等腰三角形,∴正三棱锥P ABC -的侧面积是3PBC S =△∵正三棱锥的底面是边长为2的正三角形,∴122sin 602ABC S =⨯⨯⨯︒=△.则正三棱锥P ABC -的表面积为;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .且133OD AD ==.在Rt POD 中,PO ==.∴正三棱锥P ABC -的体积为13ABC S PO ⋅=△考法三 旋转体的表面积【例3】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为( )A B .2πC .D .【答案】C【解析】如图圆锥的轴截面是顶角为120,即60APO ∠=,2AP =,90POA ∠=,所以AO =AO PA π⨯⨯=.故选:C.【一隅三反】1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( ) A .142ππ+ B .122ππ+ C .12ππ+ D .142ππ+ 【答案】B【解析】设圆柱的底面半径为r ,圆柱的高为h , 圆柱的侧面展开图是一个正方形, 2r h π∴=,∴圆柱的侧面积为2224rh r ππ=,圆柱的两个底面积为22r π,∴圆柱的表面积为22222224r rh r r ππππ+=+,∴圆柱的表面积与侧面积的比为:22222241242r r r πππππ++=,故选:B .2.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( )A .10B .C .D .【答案】B【解析】半径为20的半圆卷成圆锥的侧面,则圆锥的底面圆周长为220r ππ=⨯, 所以底面圆的半径为r =10,所以圆锥的高为h ==. 故选:B3.一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是( )A .32π B .3π C .5π D .4π【答案】D 【解析】圆锥的底面半径为2,高为4, 设内接圆柱的底面半径为x , 则它的上底面截圆锥得小圆锥的高为422xx ⨯=, 因此,内接圆柱的高42h x =-;∴圆柱的侧面积为()()224242S x x x x ππ=-=-(02)x <<,令()22121==-+--t x x x ,当1x =时,1max t =; 所以当1x =时,4max S π=,即圆柱的底面半径为1时,圆柱的侧面积最大,最大值为4π. 故选:D.考法四 旋转体的体积【例4】已知圆锥的母线长为5,底面周长为6π,则它的体积为( ) A .10π B .12πC .15πD .36π【答案】B【解析】设圆锥的底面半径为r ,高为h ,因为底面周长为6π,所以26r ππ=,解得3r =,又因为母线长为5,所以h =4,所以圆锥的体积是21123V r h ππ==故选:B 【一隅三反】1.将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为( )A .πB .C .3πD .3【答案】D【解析】由扇形弧长公式可求得弧长2323L ππ=⨯=,∴圆锥底面周长为2π, ∴圆锥底面半径1r =,∴圆锥的高h =∴圆锥的体积2133V r h π=⋅=.故选:D .2.古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为( )A .198π立方丈 B .1912π立方丈 C .198π立方丈 D .19π12立方丈 【答案】B【解析】由题意得,下底半径32R π=(丈),上底半径212r ππ==(丈),高1h =(丈),所以它的体积为()222211313113322V h R r Rr ππππππ⎡⎤⎛⎫⎛⎫=++=⨯⨯++⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦所以19V =12π(立方丈).故选:B. 3.已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A .3 B .3πC .9D .9π【答案】B【解析】设圆锥的底面半径为r ,高为h ,则母线长为l则圆柱的侧面积为()2221122r r h ππ=+, 故表面积为()222192r h r πππ++=,得2231922r h +=①,又底面圆周长等于侧面展开半圆的弧长,故2r π=2r =得223h r =②,联立①②得:r =,3h =.故该圆锥的体积为2113333V Sh ππ==⨯⨯⨯=.故选:B.考法五 球【例5】(1)已知一个正方体的8个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为( )A .3πB .2π CD.12(2).已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为 )A .4πB .8πC .12πD .24π【答案】(1)B (2)C【解析】(1)设正方体的棱长为a ,球的半径为R,则22R R a =⇒=,球的表面积为22214432S R a a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭,正方体的表面积为226S a =, ∴2122362S a S a ππ==.故选:B (2)设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -2=,该正方体的体对角线长为所以,正三棱锥A BCD -的外接球直径为2R =R , 该球的表面积为2412S R ππ==. 故选:C. 【一隅三反】1.若一个球的直径为2,则此球的表面积为( ) A .2π B .16πC .8πD .4π【答案】D【解析】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.2.棱长为2的正方体的外接球的表面积为( )A .4πB .43π C .12πD .【答案】C【解析】因为正方体的外接球的直径为正方体的体对角线的长,所以2R =R =所以球的表面积为:2412S R ππ==.故选:C3.已知一个正方体的体积为8,求此正方体内切球的表面积为( ) A .43π B .8πC .4πD .16π【答案】C【解析】正方体的体积为8,故边长为2,内切球的半径为1,则表面积244S R ππ==,故选:C.4.将一个棱长为3cm 的正方体铁块磨成一个球体零件,则可能制作的最大零件的体积为( )A .39cm πB .39m 2c πC .3cmD 3cm 【答案】B【解析】正方体的棱长为3cm ,所以球体最大体积的半径32r cm =, 所以球的体积:334932V r cm ππ==.故选:B考法六 组合体的体积表面积【例6】如图,一个无盖的器皿是由棱长为3的正方体木料从顶部挖掉一个直径为2的半球而成(半球的底面圆在正方体的上底面,球心为上底面的中心),则该器皿的表面积S 为( )A .54B .542π+C .54π+D .543π+【答案】C【解析】器皿的表面积是棱长为3的正方体的表面积减去半径为1的圆的面积,再加上半径为1的半球的表面积,即器皿的表面积()()221633141542542S πππππ=⨯⨯-⨯+⨯⨯=-+=+.故选:C . 【一隅三反】1.某组合体如图所示,上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.正四棱锥P EFGH -,2EF =,1AE =,则该组合体的表面积为( )A .20B .12C .16D .8【答案】A【解析】由题意,正四棱锥P EFGH -2=,该组合体的表面积为122421422202⨯+⨯⨯+⨯⨯⨯=.故选:A2.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6+B .6(8+C .8(6+D .6(8+【答案】A【解析】由题图可知,该鲁班锁玩具可以看成是一个棱长为2+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,则该几何体的表面积为2116(248222S ⎡=⨯+-⨯+⨯⨯⎢⎣8(6=+.故选:A.3.如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h =_______cm .【答案】8【解析】由题意得半球的半径和圆锥底面圆的半径4r =, 如果冰淇淋融化后正好盛满杯子,则半球的体积等于圆锥的体积 所以()32141448233h h ππ⨯⨯=⨯⨯⇒= 故答案为:8《8.3 简单几何体的表面积与体积(精练)》同步练习【题组一 多面体表面积】1.长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .322.一个正四棱锥的底面边长为2,则该正四棱锥的全面积为 A .8B .12C .16D .203.若正三棱台上、下底面边长分别是a 和2a ,棱台的高为6a ,则此正三棱台的侧面积为( )A .2aB .212a C .292a D .232a 4.正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( ) A .32B .48C .64D .3235.已知正四棱锥的底面边长是2 )AB .12C .8D .6.已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)817.已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .2+B .2+C .2+D .2+8.长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( ) A .2B .3C .5D .69.一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(2+B .2(4+C .2(8+D .2(16+【题组二 多面体台体积】1.正方体的全面积为18cm 2,则它的体积是_________ 3cm2.如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A .2∶3B .1∶3C .1∶4D .3∶43.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .324276mD .312138m4.《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .40035.出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m6.如图,在棱长为2的正方体1111ABCD A B C D -中,截去三棱锥1A ABD -,求(1)截去的三棱锥1A ABD -的表面积;(2)剩余的几何体1111A B C D DBC -的体积.【题组三 旋转体的表面积】1.经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .B .4πC .D .2π2.某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π3.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .364.圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .75.圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π6.已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.7.已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.8.将底面直径为8,高为值为______.9.若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【题组四 旋转体的体积】1.若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( )A .4π3cmB .9π3cmC .12π3cmD .36π3cm2.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm .3.圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________.4.把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( )A .23πB .πC .2πD .4π5.《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( )A .61.73B .61.71C .61.70D .61.696.某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( )A .24π米3B .48π米3C .96π米3D .192π米3【题组五 球】1.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为接球的体积为( )A .BC .D .2.在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16 B .18 C .20 D .223的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .34.如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a π B .3a C 3a D .316a π 5.一个球的体积为36π,则这个球的表面积为( )A .12πB .36πC .108πD .4π6.已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为______. 【题组六 组合体的体积表面积】1.如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.2.如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.3.在底面半径为2,高为积之比为1:4,求圆柱的表面积.《8.3 简单几何体的表面积与体积(精练)》同步练习答案解析【题组一 多面体表面积】1.长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.210=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.一个正四棱锥的底面边长为2,则该正四棱锥的全面积为A .8B .12C .16D .20 【答案】B, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B3.若正三棱台上、下底面边长分别是a 和2a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D作1D E OD ⊥于点E .在直角梯形11ODD O 中,123OD a ==,111326O D a a =⨯=,116DE OD O D ∴=-=.在1Rt DED 中,1D E =,则1D D =a ==. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30oOE =, ∴S 正棱锥侧=114443222ch =⨯⨯⨯='故选:A5.已知正四棱锥的底面边长是2 )AB .12C .8D .【答案】B【解析】如图所示,在正四棱锥S ABCD -中,取BC 中点E ,连接SE ,则SBE △为直角三角形,所以2SE ===, 所以表面积1422422122SBC ABCD S S S =+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)81 【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高EF =故2142h =⨯,解得2=2h +故侧面积为(214448812h ⨯⨯==+=+, 故选:D. 7.已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .2+B .2+C .2+D .2+【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S11112222222222⨯⨯+⨯⨯⨯⨯⨯=+ 故选:A8.长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6【答案】D 【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(2+B .2(4+C .2(8+D .2(16+【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为=∴该棱柱的表面积为2×22+4×2×+(2cm ),故选:C【题组二 多面体台体积】1.正方体的全面积为18cm 2,则它的体积是_________ 3cm【答案】【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得a =所以该正方体的体积为3V a ==3cm .故答案为:2.如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A .2∶3B .1∶3C .1∶4D .3∶4【答案】B【解析】设长方体过同一顶点的棱长分别为,,a b c 则长方体的体积为1V abc =, 四棱锥1A ABCD -的体轵为213V abc =, 所以棱锥1A ABCD -的体积与长方体1AC 的体积的比值为13. 故选:B.3.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .324276mD .312138m【答案】A【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =, 所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h =丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003【答案】B【解析】(()2211+=33V S S h a b h '=⋅ ()2211305545615333=+⨯=⨯⨯=. 故选:B 5.出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD -中,PO ⊥底面ABCD ,21PO =,34AB =, 底面正方形的面积为234341156S m =⨯=, 则正四棱锥P ABCD -的体积为311115621809233S PO m ⨯⨯=⨯⨯=, 故选:A6.如图,在棱长为2的正方体1111ABCD A B C D -中,截去三棱锥1A ABD -,求(1)截去的三棱锥1A ABD -的表面积; (2)剩余的几何体1111A B C D DBC -的体积.【答案】(1)6+(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD -中,1A BD 是边长为三角形,1A AD 、1A AB 、ABD △都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD -的表面积(111231322642A BD A AD A AB ABDS SS S S=+++=+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD S AA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=.【题组三 旋转体的表面积】1.经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .B .4πC .D .2π【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则l =,由题可知)2122⨯=,∴2r l ==,侧面积为rl π=, 故选:C.2.某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( ) A .81π B .100π C .168π D .169π【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r =则它的母线长510l r ====∴2r,8r '=.∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R , 设圆锥的母线长为L ,截得小圆锥的母线长为l , ∵圆台的上、下底面互相平行 ∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3 故选B4.圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7【答案】D【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.圆柱底面半径为1,母线长为2,则圆柱侧面积为( ) A .4π B .3πC .5πD .2π【答案】A【解析】圆柱底面半径为1,母线长为2, 圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为_____. 【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a ,圆柱的底面半径为r()02r <<,则由224r a-=,可得42a r =-,所以圆柱的侧面积()22242484(1)4S r r r r r πππππ=⋅-=-+=--+,所以1r =时,该圆柱的侧面职取最大值4π. 故答案为:4π.8.将底面直径为8,高为值为______.【答案】【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r ,4r =,解得h =;所以()22242S rh r r r r ππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧;当2r时,S 圆柱侧取得最大值为故答案为:. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l , 由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1 故答案为:4:1【题组四 旋转体的体积】1.若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( ) A .4π3cm B .9π3cmC .12π3cmD .36π3cm【答案】C【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =.故圆锥的高4h ==,圆锥体积为21123V r h ππ==3cm .故选:C.2.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm .【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r ,则由题意得R=10,由1802Rl π=,得16l π=, 由2lr π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=。
练习08 简单几何体的表面积和体积 (原卷版)

专题练习08 简单几何体的表面积和体积一、选择题1.棱长为2的正四面体的表面积是()A.B.C.D.【分析】根据棱长为2的正四面体的表面积是四个边长为2的正三角形面积之和,求出即可.【解答】解:棱长为2的正四面体的表面积是四个边长为2的正三角形面积之和,所以表面积为S=4××2×=4.故选:D.2.已知圆柱的高为2,它的两个底面的圆周在直径为的同一个球的球面上,则圆柱的表面积为()A.B.C.D.【分析】设球的半径为R,圆柱的底面所在的圆的半径为r,由勾股定理可求出r的值,而圆柱的表面积S=2πr2+2×2πr,代入r的值即可得解.【解答】解:设球的半径为R=,圆柱的底面所在的圆的半径为r,则r==.所以圆柱的表面积S=2πr2+2×2πr=10π+4π=(10+4)π.故选:D.3.若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为()A.πB.C.D.【分析】设圆锥的底面圆半径为r,高为h,求出圆锥的侧面积和轴截面面积,列方程求得圆锥的高.【解答】解:设圆锥的底面圆半径为r,高为h;由圆锥的母线长为4,所以圆锥的侧面积为πr•4=4πr;又圆锥的轴截面面积为•2r•h=rh,所以4πr=4rh,解得h=π;所以该圆锥的高为π.故选:A.4.已知一个圆柱的侧面积等于表面积的,且其轴截面的周长是16,则该圆柱的体积是()A.54πB.36πC.27πD.16π【分析】设圆柱的底面半径为r,高为h,由题意列关于r与h的方程组,求得r与h的值,代入圆柱体积公式求解.【解答】解:设圆柱的底面半径为r,高为h,由题意可得,,解得.∴该圆柱的体积是πr2h=16π.故选:D.5.正四棱台的上、下底面边长分别为1cm,3cm,侧棱长为2cm,则棱台的侧面积为()A.4B.8C.4D.8【分析】利用已知条件求出斜高,然后求解棱台的侧面积即可.【解答】解:正四棱台的上、下底面边长分别为1cm,3cm,侧棱长为2cm,所以棱台的斜高为:=.所以棱台的侧面积是:4××=8.故选:D.6.已知某圆柱的底面周长为4,体积为,矩形ABCD是该圆柱的轴截面,则在此圆柱的侧面上,从B到D的路径中,最短路径的长度为()A.2B.C.D.【分析】设圆柱的底面半径为r,高为h,则解得h.进而考点此圆柱的侧面上从B到D的最短路径长度.【解答】解:设圆柱的底面半径为r,高为h,则解得h=2.故圆柱的侧面展开图是长为4,宽为2的矩形,则在此圆柱的侧面上从B到D的最短路径长度为.故选:D.7.设P为单位立方体ABCD﹣A1B1C1D1上的一点,则P A1+PC1的最小值为()A.B.C.2﹣D.前三个答案都不对【分析】直线结合三角形的两边之和大于第三边即可求解.【解答】解:因为P A 1+PC1≥,当且仅当P在线段A1C1上时等号成立,所以P A1+PC1的最小值为,故选:D.8.四面体ABCD中,△ABD和△CBD均为正三角形,且它们所在平面互相垂直,已知AB=2,则四面体ABCD外接球的表面积为()A.12πB.C.D.16π【分析】先确定球心的位置,然后结合球的性质R2=r2+d2求出R,再利用球的表面积公式可求.【解答】解:设三角形BCD外接圆半径r,圆心F,球的半径R,球心O,取BD中点M,由△ABD和△CBD均为正三角形,且它们所在平面互相垂直可得AM⊥BD,CM⊥BD,AM⊥平面BCD,过F作平面BCD的垂线,过A作MF的平行线,两直线交于E,则四边形AMCE为矩形,O在EF上,EF=PM=,由正弦定理得=2r,即r=,故MF=,设OF=d,则所以R2==()2+()2,解得d=,R2=,则四面体ABCD外接球的表面积S=4πR2=.故选:C.二、填空题9.已知边长为1的正△ABC的三点都在球O的球面上,AO的延长线与球面的交点为S,若三棱锥S﹣ABC的体积为,则球O的体积为.【分析】根据题意作出图形,欲求球O的表面积,只须求球的半径r.利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积,从而建立关于r的方程,即可求出r,从而解决问题.【解答】解:设球心为O,球的半径r.过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,作SD⊥平面ABC交CO1的延长线与D.OO1==,∴高SD=2OO1,∵△ABC是边长为1的正三角形,三棱锥S﹣ABC的体积为,∴S△ABC=,∴V三棱锥S﹣ABC=,h=,∴=,∴R=1.则球O的体积为=,故答案为:.10.一个漏斗的上半部分是一个长方体,下半部分是一个四棱锥,两部分的高都为米,公共的底面是边长为1米的正方形,那么这个漏斗的容积为米.【分析】由已知分别求出长方体与棱锥的体积,作和得答案.【解答】解:由长方体体积公式可得,容器上半部分的体积,由棱锥体积公式可得,容器上半部分的体积.则这个漏斗的容积为V=.故答案为:.11.将一个斜边长为4的等腰直角三角形以其一直角边所在直线为旋转轴旋转一周,所得几何体的表面积为.【分析】先求出等腰直角三角形的直角边长,进而求出旋转体圆锥的底面半径和母线,再利用圆锥的表面积公式即可求出结果.【解答】解:∵等腰直角三角形的斜边长为4,∴直角边长为2,由题意可知所得几何体是圆锥,其底面圆的半径r=,母线长l=4,则其表面积为,故答案为:.12.如图,在圆锥SO中,AB为底面圆O的直径,AB=6,且cos∠BSA=,则圆锥SO的侧面积为15π.【分析】连接SO,由圆锥的对称性可知cos∠ASO=,再利用同角三角函数间的基本关系可得sin∠ASO=,所以SA=5,再利用圆锥的侧面积公式,即可求出结果.【解答】解:连接SO,,由题意知∠ASO=,所以cos∠BSA=2cos2∠ASO﹣1=,所以cos∠ASO=,所以sin∠ASO==,易知AO=3,所以SA=5,所以圆锥SO的侧面积为π×3×5=15π.故答案为:15π.13.如图,在三棱锥A﹣BCD中,BC=CD=BD=2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的倍,则该三棱锥外接球的表面积为12π.【分析】取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,求出侧面积和底面积,从而可求出a的值,再利用球的几何性质结合勾股定理,求出球的半径,利用球的表面积公式求解即可.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以,由此可知该三棱锥的侧面积,底面△BCD的面积为,所以,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以,在Rt△ABF中,由勾股定理可得①,在Rt△OBF中,由勾股定理可得②,由①②解得,所以外接球的表面积S=4πR2=12π.故答案为:12π.三、解答题14.用斜二测画法画一个底面边长为4cm,高为3cm的正四棱锥P﹣ABCD的直观图,点P在底面的投影是正方形的中心O,计算它的表面积.【分析】正四棱锥P﹣ABCD的直观图的高不变,还是3,底面正方形的直观图变成了平行四边形,此平行四边形的长为4,宽为2,一个锐角等于45°,求出中心O到平行四边形各边的距离,勾股定理求出各侧面三角形的高,表面积等于底面面积和四个侧面的面积之和.【解答】解:正四棱锥P﹣ABCD的直观图的高不变,还是3,底面正方形的直观图变成了平行四边形,此平行四边形的长为4,宽为2,一个锐角等于45°,故底面的面积为4×=4.正方形的中心O到平行四边形较长的边的距离为,故以平行四边形较长的边为底边的侧面三角形的高为=,正方形的中心O到平行四边形较短的边的距离为,故以平行四边形较短的边为底边的侧面三角形的高为=,故直观图的表面积等于4+2×(4×)+2×(2×)=4+2+2.15.已知某圆锥的轴截面是面积为的等边三角形,球O内切于该圆锥.(1)求该圆锥的高;(2)求内切球O的体积.【分析】(1)作出该圆锥的轴截面,求解BC,然后求解圆锥的高.(2)通过Rt△AOE~Rt△ACD,设OE=R,求出R,然后求解圆锥的内切球体积即可.【解答】解:作出该圆锥的轴截面如图所示:(1)依题意,,解得BC=2,故BD=CD=1,,即该圆锥的高为;(2)依题意,Rt△AOE~Rt△ACD,故;设OE=R,则,故,故,故圆锥的内切球体积.16.已知正四棱台ABCD﹣A1B1C1D1上、下底面的边长分别为4、10,侧棱长为6.(1)求正四棱台的表面积;(2)求三棱锥B﹣AC1D的体积.【分析】(1)由已知求得正四棱台的斜高,然后利用正方形面积公式及梯形面积公式求正四棱台的表面积;(2)求出正四棱台的高,利用等体积法求三棱锥B﹣AC1D的体积.【解答】解:(1)如图,ABCD﹣A1B1C1D1为正四棱台,AB=4,A1B1=10,AA1=6.在等腰梯形A1B1BA中,过A作AE⊥A1B1,可得,求得,∴正四棱台的表面积;(2)连接AC,A 1C1,可得,,过A作AG⊥A1C1,可得,∴,则==.。
专题10 简单几何体的表面积与体积(核心素养练习)(解析版)

专题十 简单几何体的表面积与体积 核心素养练习一、核心素养聚焦考点一 数学抽象-与球有关的切、接问题例题8.(1)一球与棱长为2的正方体的各个面相切,则该球的体积为 . (2)正方体的全面积是a 2,它的顶点都在一个球面上,则这个球的表面积是 . (1) 【答案】43π【解析】由题意可知球是正方体的内切球,因此球的半径为1,其体积为43π(2)【答案】 πa 22【解析】正方体内接于球,则由球及正方体都是中心对称图形知,它们的中心重合.可见,正方体的对角线是球的直径.设球的半径是r ,则正方体的对角线长是2r .依题意,2r =3·a 26,即r 2=18a 2,所以S 球=4πr 2=4π·18a 2=πa 22. 考点二 数学运算-棱台与棱锥之间关系的综合问题例题9、已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.【解析】 如图,E ,E 1分别是BC ,B 1C 1的中点,O ,O 1分别是下、上底面正方形的中心,则O 1O 为正四棱台的高,则O 1O =12.连接OE ,O 1E 1,则OE =12AB =12×12=6,O 1E 1=12A 1B 1=3.过E 1作E 1H ⊥OE ,垂足为H ,则E 1H =O 1O =12,OH =O 1E 1=3,HE =OE -O 1E 1=6-3=3. 在Rt △E 1HE 中,E 1E 2=E 1H 2+HE 2=122+32=32×17, 所以E 1E =317.所以S 侧=4×12×(B 1C 1+BC )×E 1E =2×(6+12)×317=10817.考点三 直观想象-组合体的表面积与体积例题10.如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =a ,BC =2a ,∠DCB =60°,在平面ABCD 内过点C 作l ⊥CB ,以l 为轴旋转一周.求旋转体的表面积和体积.【解析】 如题图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =a ,BC =2a ,∠DCB =60°,∴CD =BC -ADcos 60°=2a ,AB =CD sin 60°=3a ,∴DD ′=AA ′-2AD =2BC -2AD =2a , ∴DO =12DD ′=a .由于以l 为轴将梯形ABCD 旋转一周后形成的几何体为圆柱中挖去一个倒放的与圆柱等高的圆锥. 由上述计算知,圆柱母线长3a ,底面半径2a ,圆锥的母线长2a ,底面半径a .∴圆柱的侧面积S 1=2π·2a ·3a =43πa 2,圆锥的侧面积S 2=π·a ·2a =2πa 2,圆柱的底面积S 3=π(2a )2=4πa 2,圆锥的底面积S 4=πa 2, ∴组合体上底面积S 5=S 3-S 4=3πa 2, ∴旋转体的表面积S =S 1+S 2+S 3+S 5 =(43+9)πa 2.又由题意知形成的几何体的体积为一个圆柱的体积减去一个圆锥的体积.V 柱=Sh =π·(2a )2·3a =43πa 3,V 锥=13S ′h =13·π·a 2·3a =33πa 3,∴V =V 柱-V 锥=43πa 3-33πa 3=1133πa 3. 二、学业质量测评一、选择题1.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R【答案】C【解析】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .2.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C .53π D .2π【答案】C 【解析】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥故选C.3.在棱长为a 的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A .33aB .34aC .36aD .312a【答案】C2a =的正方形,则该八面体的体积为:2311123226a a a ⎛⎫⋅⋅= ⎪⎝⎭4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 5.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【解析】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB 2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴=11132222E ABC E ABCD V V --==⨯=. E ABCD F EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH , 则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯,915322E AGHD EGH FBC V V V --=+=+=∴.解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF , 则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=,即12933233F BCM V -=-⨯⨯⨯=,32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D6.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.7.(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,下列结论正确的是( )A .圆柱的侧面积为22R πB .圆锥的侧面积为22R πC .圆柱的侧面积与球面面积相等D .圆柱、圆锥、球的体积之比为3:1:2【答案】CD【解析】依题意得球的半径为R ,则圆柱的侧面积为2224R R R ππ⨯=,∴A 错误;圆锥的侧面积为2R R π=,∴B 错误; 球面面积为24R π,∵圆柱的侧面积为24R π,∴C 正确;2322V R R R ππ=⋅=圆柱,2312233V R R R ππ⋅==圆锥,343V R =π球33324:2::3:1:233:V V V R R R πππ∴==圆柱圆锥球,∴D 正确.故选:CD .8.(多选题)已知ABC ∆的三边长分别是3AC =,4BC =,5AB =.下列说法正确的是( ) A .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为15π B .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为25π D .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为16π 【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,故A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥,侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,故C 错误,D 正确.故选:AD. 二、填空题9. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____. 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=. 10.如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则四棱锥11A BB D D -的体积为______cm 3.【答案】6.【解析】如图,过A 作AO BD ⊥于O ,∵长方体底面ABCD 是正方形,∴ABD ∆中,BD =2AO =,又由1AO BB ⊥,AO BD ⊥,∴AO ⊥平面11BB D D ,∴111263A BB D D V -=⋅=.11.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 12.如图所示,半径为R 的半圆内的阴影部分当以直径AB 所在直线为轴旋转一周时,得到一几何体,则该几何体的表面积是_________,体积是_______.(其中30BAC ︒∠=)【答案】2112R356R π 【解析】如图所示,过C 作1CO AB ⊥于点1O ,由题意得90BCA ︒∠=,30BAC ︒∠=,2AB R =,AC ∴=,BC R =,1CO R =.24S R π∴=球,12322AO S R R ππ=⨯=圆锥侧,1222BO S R R R π=⨯⨯=圆锥侧,112222342AO BO S S S S R R R R ππ∴=++=+=几何体表球圆锥侧圆锥侧.又343V R π=球, 122111 1134AO V AO CO R AO ππ=⋅⋅⋅=⋅圆锥,122111 1134BO V BO CO R BO ππ=⋅⋅⋅=⋅圆锥,()113 56AO BO V V V V R π∴=-+=几何体球圆锥圆锥.故答案为:2112R ,356R π三、解答题13.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.【答案】()232cm ,()248cm【解析】如图,2,30OE cm OPE ︒=∠=,∴在Rt POE 中,4sin 30OEPE ︒==.PB PC =,E 为BC 的中点,()21,8cm 2PBCPE BC SBC PE ∴⊥=⋅⋅= 侧棱长都相等,()2432cm PBC S S ∴==侧,()2321648cm S =+=全 14.已知一圆锥的母线长为10cm ,底面圆半径为6cm .(1)求圆锥的高;(2)若圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的表面积.【答案】(1)8(2)36π【解析】(1)据题意知,圆锥的高()8h cm ==(2)据(1)求解知,圆锥的高为8cm ,设圆锥内切球的半径为r ,则()()2221068r r -+=-,所以3r cm =所以所求球的表面积()22244336S r cm πππ==⨯=.15.一个圆锥的底面半径为2cm ,高为6cm ,在其内部有一个高为x cm 的内接圆柱. (1)求圆锥的侧面积;(2)当x 为何值时,圆柱的侧面积最大?并求出侧面积的最大值.【答案】(1)()2cm (2)3x =时,圆柱的侧面积取得最大值,且最大值为26cmπ【解析】(1=,∴圆锥的侧面积()212cmS π=⨯⨯=. (2)该几何体的轴截面如图所示.设圆柱的底面半径为r cm ,由题意,知626r x -=,63x r -∴=. ∴圆柱的侧面积()2222226(3)933S rx x x x πππ⎡⎤==-+=---⎣⎦, ∴当3x =时,圆柱的侧面积取得最大值,且最大值为26cm π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。