两角和与差及二倍角公式经典例题及答案
(完整版)两角和与差及二倍角公式经典例题及答案
成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。
1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。
两角和与差的三角函数及倍角公式练习及答案
1.0000sin347cos148sin32cos13+=____________2οοοο25sin 110sin 335cos 70cos +结果是( )A. 1B.22 C. 23D. 213、在∆ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形4、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=;5、sin13°cos17°+cos13°sin17°. 6. 求sin18π7cos 9π2-sin 9πsin 9π2的值.7 函数sin22x xy =的图像的对称轴方程是 8. 已知53sin =α,),2(ππα∈,则)4cos(απ-的值为( )A. 52-B. 102-C. 1027-D. 527- 9 οοοο15cos 15sin 15cos 15sin -+的值为( ) A.33B. 462+ C. 462- D. 3- 10. 设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则m M +等于( ) A. 32 B. 32- C. 34- D. 2-11、sin750= ( )A、1412、设α、β为钝角,且sin α,cos β=,则α+β的值为 ( )A、34π B、54π C、74π D、54π或74π13 1tan 751tan 75+-oo= ( )C、 D、14、cos420sin780+cos480sin120____________;15、已知cos α=17,α∈(0,2π),则cos(α+3π)=_____________;(2)sin13°cos17°+cos13°sin17°. 16. 求sin18π7cos 9π2-sin 9πsin 9π2的值. 17.Sin165º等于 ( )A .21B .23C .426+D .426- 18.Sin14ºcos16º+sin76ºcos74º的值是( )A .23 B .21 C .23 D .-2119.sin12π-3cos 12π的值是. ( ) A .0 B . —2C .2 D . 2 sin125π20.cos 24cos36sin 24sin 36.-----------------=o o o o21 .已知54cos =α,135sin =β,求()βα+cos 的值. 22.sin 37cos 23cos37sin 23.--------------------+=o o o o23 ο195sin 的值等于( ) A .462+-B .462-C .462+D .426-. 24、οοοο25sin 20sin 65sin 70sin -= ( )A .21 B .23 C .22D .22-25.设34sin ,cos 55αα=-=,那么下列各点在角α终边上的是 ( ) A .(3,4)- B .(4,3)- C .(4,3)- D .(3,4)-26.将函数y =sin2x 的图象向右平移π3个单位,所得图象的解析式是A .y =sin(2x +π3)B .y =sin(2x ―π3)C .y =sin(2x +2π3)D .y =sin(2x ―2π3)27.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则 ϕω和的取值是( )A .3,1πϕω== B 。
两角和与差及二倍角公式定理讲义,例题含规范标准答案
3.3 两角和与差及二倍角公式(答案)3.3 两角和与差及二倍角公式一.【复习要求】1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.2.掌握二倍角的正弦、余弦、正切公式.2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回顾】1.两角和与差的三角函数sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ;2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。
sin2α= ;cos2α= = =tan 2α= 。
3.降幂公式2sin α= ; 2cos α= .注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用4.辅助角公式证明:)sin cos x x y x x +=+=sin sin cos )x x ϕϕ+)x ϕ+其中,cos ϕ=sin ϕ=,tan baϕ=且角ϕ终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想如:sin cos αα+= ;sin cos αα-= 。
5.公式的使用技巧(1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++ (2)“1”的代换:22sin cos 1αα+=,sin 1,tan124ππ==(3)收缩代换:sin cos y x x =+=)x ϕ+,(其中,a b 不能同时为0) (4)公式的变形:tan tan tan()1tan tan αβαβαβ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++tan tan tan()1tan tan αβαβαβ--=+→tan()tan tan tan()tan tan αβαβαβαβ-=---如:tan 95tan 3595tan 35-=oooo。
高三数学两角和与差的三角函数试题答案及解析
高三数学两角和与差的三角函数试题答案及解析1.己知,则tan 2a=_________.【答案】【解析】由得,=,代入整理得,,解得=或=,当=时,=,所以=2,所以==;当=时,=-,所以=,所以==,综上所述,的值为.【考点】同角三角函数基本关系式,二倍角公式,分类整合思想2.凸四边形中,其中为定点,为动点,满足.(1)写出与的关系式;(2)设的面积分别为和,求的最大值。
【答案】(1);(2)【解析】(1)在三角形BCD和三角形BCD中,利用余弦定理表示出BD2,两者相等表示即可得到cosC与cosA的关系式;(2)利用三角形面积公式变形出S与T,进而表示出S2+T2,将第一问表示出的cosA代入得到关于cosC的二次函数,利用二次函数性质即可求出S2+T2的最大值.(1)在⊿PAB中,由余弦定理得:3分同理在⊿PQB中∴∴ 6分(2) 8分∴当时,。
12分【考点】1.余弦定理;2.三角形面积;3.同角三角函数间的基本关系以及二次函数的性质.3.在中,角A,B,C的对边分别为a,b,c,若.(1)求B;(2)设函数,求函数上的取值范围.【答案】(1);(2)【解析】(1)由可得,然后结合余弦定理求出从而确定角B的值.(2)结合(1)的结果,利用两角和与差的三角函数公式将函数式化简为再由得,根据正弦函数的性质求得的取值范围.解:(1)解法一:因为,所以 2分由余弦定理得,整理得所以 4分又因为,所以. 6分解法二:因为,所以 2分由正弦定理得所以整理得因为,所以,所以 4分又因为,所以. 6分(2)8分因为,则, 10分所以,即在上取值范围是. 12分【考点】1、余弦定理;2、两角和与差的三角函数公式;3、正弦函数的性质.4.(2013•重庆)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.【答案】(1)(2)tanα=1或tanα=4【解析】(1)∵a2+b2+ab=c2,即a2+b2﹣c2=﹣ab,∴由余弦定理得:cosC===﹣,又C为三角形的内角,则C=;(2)由题意==,∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)=,即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin(A+B)=,cos(A+B)=cosAcosB﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan2α﹣tanα+=,即tan2α﹣5tanα+4=0,解得:tanα=1或tanα=4.5. sin2012°=()A.sin32°B.﹣sin32°C.sin58°D.﹣sin58°【答案】B【解析】sin2012°=sin(5×360°+212°)=sin212°=sin(180°+32°)=﹣sin32°.故选B6.若,则=()A.B.C.D.【答案】(C)【解析】由所以.故选(C).【考点】1.角的和差公式.2.解方程的思想.7.在中,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)解三角形问题,通常利用正余弦定理进行边角转化.由正弦定理得:,.(2)由(1)及条件知三角形三边,故用余弦定理求角. 由,得,由同角三角函数关系,可得,再由二倍角公式得到,,因此=.试题解析:(1)因为 ,(2)=所以 ,【考点】正余弦定理, 同角三角函数关系, 二倍角公式8.在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足cs inA=ac o s C,则s inA+s inB的最大值是()A.1B.C.D.3【答案】C【解析】由cs inA=ac o s C,所以s inC s inA=s inA c o s C,即s inC=c o s C,所以t a nC=,C=,A=-B,所以s inA+s inB=s in(-B)+s inB=s in(B+)∵0<B<,∴<B+<,∴s inA+s inB的最大值为.故选C.【考点】1正弦定理;2两角和与差的正弦函数;3正弦函数的单调性.9.已知,,则的值为.【答案】【解析】因为,所以.【考点】两角和与差正切10.已知sinα=,α是第二象限角,且tan(α+β)=1,则tan2β=________.【答案】-【解析】由sinα=且α是第二象限角,得tanα=-,∵(α+β)-α=β,∴tanβ=tan[(α+β)-α]==7.∴tan2β=11.求sin210°+cos240°+sin10°cos40°的值.【答案】【解析】(解法1)因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°++sin10°·(cos10°-sin10°)=(sin210°+cos210°)=.(解法2)设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°,x-y=cos80°-cos20°-=-sin50°-=-cos40°-.因此2x=,故x=12.计算:(tan10°-)·sin40°.【答案】-1【解析】原式=·sin40°=====-1.13.已知cosα=,cos(α-β)=,且0<β<α<,求β.【答案】β=【解析】∵ 0<β<α<,∴ 0<α-β<.又cos(α-β)=,∴ sin(α-β)=,∴ cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.又0<β<,∴ β=14.已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.【答案】【解析】∵ α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴=1+tan2(α-β)=.∴ cos(α-β)=,sin(α-β)=-.又sinα=,∴ cosα=.∴ cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=15.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin(x-φ),则f(x)=,max依题意sin θ-2cos θ=,即sin θ=+2cos θ,代入sin2θ+cos2θ=1,得(cos θ+2)2=0.∴cos θ=-.16.若α,β∈(0,π),cos α=-,tan β=-,则α+2β=________.【答案】【解析】由条件得α∈,β∈,所以α+2β∈(2π,3π),且tan α=-,tan β=-,所以tan 2β==-,tan(α+2β)==-1,所以α+2β=.17.已知tan β=,sin(α+β)=,其中α,β∈(0,π),则sin α的值为().A.B.C.D.或【答案】A【解析】依题意得sin β=,cos β=;注意到sin(α+β)=<sin β,因此有α+β> (否则,若α+β≤,则有0<β<α+β≤,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=.18.设的内角所对的边长分别为,且.(1)求的值;(2)求的最大值.【答案】(1);(2).【解析】(1)利用正弦定理及三角形内角和关系,将原式化成,化简得,从而;(2)利用两角差的正切展开,将代入,接着利用均值不等式即可算出最大值.试题解析:(1)在中,由正弦定理及可得即,则;(2)由得当且仅当时,等号成立,故当时,的最大值为.【考点】1.正弦定理;2.两角差的正切;3.均值不等式.19.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.20.的值()A.B.C.D.【答案】C【解析】.【考点】三角恒等变换、诱导公式及三角函数值.21.设向量,,其中,若,则.【答案】【解析】两边平方化简得,,又,是单位向量,所以即,又,所以.【考点】三角函数、平面向量.22.若且则的可能取值是()A. B C. D.【答案】A【解析】由得,由得:,故,故,故选A.【考点】1.两角和的正切公式;2.基本不等式;3.正切函数的单调性23.定义运算,则函数的最小正周期为()A.4πB.2πC.πD.【答案】C【解析】根据新定义运算得:,所以最小正周期.【考点】1、创新意识;2、三角函数变换;3、三角函数的周期.24.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.25.若,则的值等于()A.B.C.D.【答案】B【解析】.【考点】同角三角函数基本关系式、二倍角正弦公式.26.,,则的值为( )A.B.C.D.【答案】D【解析】,因为,所以,则.【考点】两角和与差的正余弦公式.27.化简计算: _.【答案】【解析】本试题主要是考查了三角函数中两角和的正切公式的运用。
两角和与差及其二倍角公式知识点及典学生用
两角和与差及其二倍角公式知识点及典例1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=; C(α+β):cos(α+β)=;S(α+β):sin(α+β)=; S(α-β):sin(α-β)=;T(α+β):tan(α+β)=; T(α-β):tan(α-β)=;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为: tan α±tan β=_____________; tan αtan β= =. 1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、711B 、-713C 、713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665D .-16654、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B.3C .2 D .1例1求[2sin 50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒-例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.变式3:已知tan α= 17,tan β= 13,并且α,β 均为锐角,求α+2β的值.例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间?变式4(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;(2)若方程sin x x c =有实数解,则c 的取值范围是___________.1、下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D 2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件3、已知3sin 5α=,tan 0α<则tan()4πα-= . 4、=︒+︒-︒20sin 6420cos 120sin 32225、2sin()2sin()cos()333x x x πππ++---=______________.6、0000cos(27)cos(18)sin(18)sin(27)x x x x +---+=7、若sin α=sin β=,αβ都为锐角,则αβ+= 8、在△ABC 中,已知tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C 等于9、110sin - ;10、︒︒-︒70sin 20sin 10cos 2= 11、(1tan 22)(1tan 23)︒︒++=12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=13、(福建理17)在ABC △中,1tan 4A =,3tan 5B =.求角C 的大小; 14、已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(1)求α2tan 的值.(2)求β.15、如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B (1)求tan(α+β)的值;(2)求α+2β的值.。
两角和与差的正、余弦公式、正切公式、二倍角公式
1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。
2015届高考数学总复习 第三章 第三节两角和与差及二倍角三角函数公式课时精练试题 文(含解析)
1.计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33 D.32解析:原式=cos 45°=22.故选B.答案:B2.设tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝⎛⎭⎪⎫α+π4的值是( ) A.318 B.322 C.1318 D .-1322解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=322. 答案:B3.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-12 C.12 D.32答案:D4.(2012·江西卷)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:由tan θ+1tan θ=4得,sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=4,即112sin 2θ=4,∴sin 2θ=12.故选D.答案:D5.(2012·重庆卷)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12 C.12 D.32解析:sin 47°-sin 17°cos 30°cos 17°=+-sin 17°cos 30°cos 17°=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°=sin 30°=12.故选C.答案:C6.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α等于( ) A .-79 B .-13 C.13 D.79答案:C 7.(2012·山西省考前适应性训练)已知α,β都是锐角, cos 2α=-725,cos (α+β)=513,则sin β=( )A.1665B.1365C.5665D.3365解析:∵cos 2α=2cos 2α-1,cos 2α=-725,又α为锐角,∴cos α=35, sin α=45.∵cos (α+β)=513,∴(α+β)为锐角,sin (α+β)=1213.∴sin β=sin []α+β-α=sin (α+β)cos α-cos (α+β)sin α =1213×35-513×45=1665.故选A. 答案:A8.(2013·上海卷)若cos x cos y +sin x sin y =13,则cos(2x -2y )=________.解析: cos x cos y +sin x sin y =cos(x -y )=13,所以cos 2(x -y )=2cos 2(x -y )-1=-79.答案:-799.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎪⎫0,π2,则α+β=________________.解析:∵α,β∈⎝⎛⎭⎪⎫0,π2,sin α=35,cos β=35,∴cos α=45,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=0.∵α,β∈⎝⎛⎭⎪⎫0,π2,∴0<α+β<π,故α+β=π2.答案:π210.已知tan α=2,则2sin 2α+1sin 2α=________.解析:2sin 2α+1sin 2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=3×22+12×2=134.答案:13411.(2013·广州二模)已知α为锐角,且cos ⎝⎛⎭⎪⎫α+π4=35,则sin α=__________.解析:因为α为锐角,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,因为cos ⎝ ⎛⎭⎪⎫α+π4=35, 所以sin ⎝⎛⎭⎪⎫α+π4= 1-cos 2⎝⎛⎭⎪⎫α+π4=45,则sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝ ⎛⎭⎪⎫α+π4sin π4=45×22-35×22=210. 答案:21012.(2013·江门一模)已知函数f (x )=2sin x ·cos x +2cos 2x -1,x ∈R . (1)求f (x )的最大值;(2)若点P (-3,4)在角α的终边上,求f ⎝⎛⎭⎪⎫α+π8的值.解析:(1)f (x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以f (x )的最大值为 2.(2)由(1)得f ⎝ ⎛⎭⎪⎫α+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π8+π4=2sin ⎝ ⎛⎭⎪⎫2α+π2=2cos 2α, P (-3,4)在角α的终边上,cos α=-35.所以f ⎝⎛⎭⎪⎫α+π8=22cos 2α-2=-7225.13.(2013·梅州二模)已知函数f (x )=2cos 2x +23sin x cos x . (1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=2,2 sin B =cos(A -C )-cos(A +C ),求tan A 的值.解析:(1)函数f (x )=2cos 2+23sin x cos x =1+cos 2x +3sin 2x =2 sin ⎝ ⎛⎭⎪⎫2x +π6+1,∴函数的最小正周期为2π2=π.(2)∵f (C )=2,∴2 sin ⎝⎛⎭⎪⎫2 C +π6+1=2, ∴sin ⎝⎛⎭⎪⎫2 C +π6=12, ∵0<C <π,∴π6<2C +π6<2π+π6,∴2C +π6=5π6,C =π3;∵2 sin B =cos(A -C )-cos(A +C )=2 sin A sin C , ∴sin(A +C )=sin A sin C ,即:sin A cos C +cos A sin C =sin A sin C ,即:tan A =sin C sin C -cos C =sinπ3sin π3-cos π3=3232-12=3+32.。
(完整版)专题三:两角和差公式、二倍角公式
暑期培训专题三两角和差公式、二倍角公式1. 两角和与两角差公式: (2) sin( a + 3 )=(4) sin( a - 3 )=(6) tan( a - 3 )=2. 倍角公式: (1) sin2 a = ____________________________ :(2) COS2 a = _____________ = ________ (3) tan2 a =-,试求:(1) cos( ) ; (2) tan( ).5 4 3变式 1 cos75O =__________________________o2. tan 105 = ________________________54 3. 在△ ABC 中,已知 cosA =, cosB =,求 cosC 的值1354. △ ABC 不 是直角三角形,求证:tan A ta nB ta nC tan A?ta nB?ta nC1例 2、①已知 sin( + ) =, sin(2(1 ) COS ( a + 3 )= ______ (3)COS ( a - 3 )= _________(5) tan( a + 3 )=降幕公式:sin 2a2cos a = ________________;sin cos = ______例1设Q ),若sin)=—,求-tan—的值10 tan已知 sin +sin =3cos +cos—,求 cos(52变式(1)、( 07 福建)sin 15°cos75° cos15o sin105o例5、求证: cosx+sinx= ■, 2 cos(x)4二倍角公式应用:11、( 08 浙江)若 sin (— )—,贝U cos2 _____________________2 5(2) si n17 cos47sin 73 cos43 =例3.已知3■ ?, cos()44 44)的值.1 tan15 sin(—4tan1513’求 sin( +变式:已知壬 V aV, cos ( a — 3)=12 , sin ( a + 3)=—-,求 sin2 a 的值. 135例 4、tan10 tan 20 , 3(tan10 tan20 ) = __________变式〔、已知tan ,tan 是方程x 2 5x0的两个实根,求tan ( )的值。
(完整版)两角和与差及二倍角公式经典例题及答案
:两角和与差及其二倍角公式知识点及典例知识要点:1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式2S α:sin2α= ; 2T α:tan2α= ;2C α:cos2α= = = ;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:tan α±tan β=___________________; tan αtan β= = . 考点自测:1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、 711B 、-713C 、 713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或 3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B. 3 C .2 D .1 题型训练题型1 给角求值一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒- 题型2给值求值三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=--- 例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
4.3__两角和与差、二倍角的公式(二)(含答案版)
4.3 两角和与差、二倍角的公式(二)【知识点】 1.在公式S (α+β)、C (α+β)、T (α+β)中,当α=β时,就可得到公式S 2α、C 2α、T 2α,在公式S 2α、C 2α中角α没有限制在T 2α中,只有当α≠2πk +4π且α≠k π+2π时,公式才成立. 2.余弦二倍角公式有多种形式即cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.变形公式sin 2α=22cos 1α-,cos 2α=22cos 1α+.它的双向应用分别起到缩角升幂和扩角降幂作用. 【基础类题目】 1.下列各式中,值为21的是 A.sin15°cos15°B.2cos 212π-1C.230cos 1︒+ D.︒-︒5.22tan 15.22tan 2解析:︒-︒5.22tan 15.22tan 2=21tan45°=21. 答案:D2.已知sin2θ+cos 2θ=332,那么sin θ的值为____________,cos2θ的值为____________.解析:由sin 2θ+cos 2θ=332,得1+sin θ=34,sin θ=31,cos2θ=1-2sin 2θ=1-2·91=97.答案:31 973.已知f (x )=x -1,当θ∈(4π5,2π3)时,f (sin2θ)-f (-sin2θ)可化简为A.2sin θB.-2cos θC.-2sin θD.2cos θ解析:f (sin2θ)-f (-sin2θ)=θ2sin 1--θ2sin 1+=|sin θ-cos θ|-|sin θ+ cos θ|.∵θ∈(4π5,2π3), ∴-1<sin θ<-22<cos θ<0. ∴cos θ-sin θ>0,cos θ+sin θ<0.∴原式=cos θ-sin θ+cos θ+sin θ=2cos θ. 答案:D 4.已知sin (x -4π3)cos (x -4π)=-41,求cos4x 的值.剖析:4x 为2x 的二倍角,2x 为x 的二倍角. 解:由已知得sin (x -2π-4π)cos (x -4π)=-41,∴cos 2(x -4π)=41.∴sin2x =cos (2π-2x )=2cos 2(4π-x )-1=-87.∴cos4x =1-2sin 22x =1-6498=-3217. 5.若8cos (4π+α)cos (4π-α)=1,则sin 4α+cos 4α=_______. 解析:由已知得8sin (4π-α)cos (4π-α)=1, ∴4sin (2π-2α)=1.∴cos2α=41.sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α=1-21sin 22α=1-21(1-cos 22α) =1-21(1-161)=1-21×1615=3217. 答案:32176.已知α为第二象限角,cos 2α+sin2α=-25,求sin 2α-cos 2α和sin2α+cos2α的值. 解:由cos 2α+sin2α=-25平方得 1+2sin2αcos2α=45, 即sin α=41,cos α=-415.此时k π+4π<2α<k π+2π.∵cos2α+sin2α=-25<0, sin 2αcos 2α=81>0, ∴cos 2α<0,sin2α<0.∴2α为第三象限角.∴2k π+4π5<2α<2k π+2π3,k ∈Z . ∴sin2α<cos2α, 即sin2α-cos2α<0.∴sin2α-cos2α=-αsin 1-=-23, sin2α+cos2α=2sin αcos α+1-2sin 2α=8157-. 评述:由三角函数值判断2α的范围是关键.【提高类题目】7.若tan x =2,则xx x xcos sin 1sin 2cos 22+--=_______. 解析:原式=x x x x sin cos sin cos +-=x x tan 1tan 1+-=2121+-=1212--)(=22-3.答案:22-3 8.已知0<α<2π,tan 2α+cot 2α=25,求sin (α-3π)的值. 解:由已知tan 2α+cot2α=αsin 2=25,得sin α=54.∵0<α<2π,∴cos α=α2sin 1-=53.从而sin (α-3π)=sin α·cos 3π-cos α·sin 3π=54×21-53×23=101(4-33).9.设a =sin14°+cos14°,b =sin16°+cos16°,c =66,则a 、b 、c 的大小关系是 A.a <b <c B.a <c <bC.b <c <aD.b <a <c解析:a =2sin59°,c =2sin60°,b =2sin61°,∴a <c <b . 答案:B10.若f (tan x )=sin2x ,则f (-1)的值是 A.-sin2B.-1C.21 D.1解析:f (-1)=f [tan (-4π)]=-sin 2π=-1. 答案:B11.化简xx x x x 2sin 1cos sin 1cos sin ))((+--+.解:原式=xxx x x 2sin 12sin 21sin 12sin 21sin 22))((++---+=xxx xx x x x x cos 2cos 2sin 42sin 22cos 2sin 22sin 22cos 2sin 222))((+- =xxxx x x x cos 2cos 2sin2sin 2cos 2sin 2cos ⋅+-))(( =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=xx xx cos 2cos 2sincos ⋅⋅=tan 2x . 12.化简8sin 1-=_________.解析:8sin 1-=24cos 4sin )(-=|sin4-cos4|=sin4-cos4.答案:sin4-cos4 13.已知sin (4π-x )=135,0<x <4π,求)(x x +4cos 2cos 的值.分析:角之间的关系:(4π-x )+(4π+x )=2π及2π-2x =2(4π-x ),利用余角间的三角函数的关系便可求之.解:∵(4π-x )+(4π+x )=2π, ∴cos (4π+x )=sin (4π-x ). 又cos2x =sin (2π-2x ) =sin2(4π-x )=2sin (4π-x )cos (4π-x ), ∴)(x x +4πcos 2cos =2cos (4π-x )=2×1312=1324.14.已知sin2α=53,α∈(4π5,2π3). (1)求cos α的值;(2)求满足sin (α-x )-sin (α+x )+2cos α=-1010的锐角x . 解:(1)因为4π5<α<2π3, 所以2π5<2α<3π. 所以cos2α=-α2sin 12-=-54.由cos2α=2cos 2α-1,所以cos α=-1010. (2)因为sin (α-x )-sin (α+x )+2cos α=-1010, 所以2cos α(1-sin x )=-1010. 所以sin x =21. 因为x 为锐角,所以x =6π. 15.已知tan (4π+α)=2,求: (1)tan α的值;(2)sin2α+sin 2α+cos 2α的值.(1)解:tan (4π+α)=ααtan tan 1-1+=2,∴tan α=31.(2)解法一:sin2α+sin 2α+cos2α=sin2α+sin 2α+cos 2α-sin 2α =2sin αcos α+cos 2α =1+ααα2cos cos sin 2=ααααα222cos sin cos cos sin 2++ =1+1+αα2tan tan 2=23.解法二:sin2α+sin 2α+cos2α=sin2α+sin 2α+cos 2α-sin 2α =2sin αcos α+cos 2α.①∵tan α=31,∴α为第一象限或第三象限角.当α为第一象限角时,sin α=101,cos α=103,代入①得2sin αcos α+cos 2α=23; 当α为第三象限角时,sin α=-101,cos α=-103,代入①得2sin αcos α+cos 2α=23. 综上所述sin2α+sin 2α+cos2α=23. 16.设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π,求cos (α+β). 剖析:2βα+=(α-2β)-(2α-β).依上述角之间的关系便可求之. 解:∵2π<α<π,0<β<2π,∴4π<α-2β<π,-4π<2α-β<2π. 故由cos (α-2β)=-91,得sin (α-2β)=954.由sin (2α-β)=32,得cos (2α-β)=35.∴cos (2βα+)=cos [(α-2β)-(2α-β)]=…=2757. ∴cos (α+β)=2cos 22βα+-1=…=-729239.评述:在已知角的某一三角函数值而求另外一些角的三角函数值时,首先要分析已知和要求的角之间的关系,再分析函数名之间的关系.其中变角是常见的三角变换.17.tan15°+cot15°等于A.2B.2+3C.4D.334 解析一:tan15°+cot15°=︒︒15cos 15sin +︒︒15sin 15cos =︒︒︒+︒15sin 15cos 15cos 15sin 22=︒⋅30sin 211=4.解析二:由tan15°=tan (45°-30°)=︒︒+︒-︒30tan 45tan 130tan 45tan =331331+-=3333+-. ∴原式=3333+-+3333-+=4.答案:C【拓展类题目】 【万能公式】 18.若cos α=53,且α∈(0,2π),则tan 2α=____________. 解析一:由cos α=53,α∈(0,2π),得sin α=α2cos 1-=54, tan 2α=2cos2sinαα=2cos 2sin 22sin 22ααα=ααsin cos 1-=54531-=21. 解析二:tan 2α=ααcos cos 1+1-=531531+-=21. 答案:21 【技巧之“1”的用法】 19.已知6sin 2α+sin αcos α-2cos 2α=0,α∈[2π,π),求sin (2α+3π)的值. 分析:本题考查三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能. 解法一:由已知得(3sin α+2cos α)(2sin α-cos α)=0⇔3sin α+2cos α=0或2sin α-cos α=0. 由已知条件可知cos α≠0,所以α≠2π,即α∈(2π,π). 于是tan α<0,∴tan α=-32. sin (2α+3π)=sin2αcos 3π+cos2αsin 3π =sin αcos α+23(cos 2α-sin 2α) =αααα22sin cos cos sin ++23×αααα2222sin cos sin cos +-=αα2tan tan +1+23×αα22tan tan 1+1-. 将tan α=32代入上式得 sin (2α+3π)=232132)()(-+-+23×22321321)()(-+--=-136+3265,即为所求. 解法二:由已知条件可知cos α≠0,则α≠2π, ∴原式可化为6tan 2α+tan α-2=0, 即(3tan α+2)(2tan α-1)=0.又∵α∈(2π,π).∴tan α<0,∴tan α=-32.下同解法一.。
两角和与差、二倍角的公式(三)
05-04 两角和与差、二倍角的公式(三)点一点——明确目标能综合使用两角和与差、二倍角的三角函数公式进行求值、化简、证明,具有在不同的解题方法、方案中,对优秀者的选择能力.做一做——热身适应1.已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=_______. 解析:(cos α-cos β)2=41,(sin α-sin β)2=91. 两式相加,得2-2cos (α-β)=3613. ∴cos (α-β)=7259. 答案:72592.f (x )=xx xx cos sin 1cos sin ++的值域为 .解析:令t =sin x +cos x =2sin (x +4π)∈[-2,-1)∪(-1,2], 则f (x )=tt +-1212=21-t ∈[212--,-1]∪(-1,212-).答案:[212--,-1]∪(-1,212-) 3.满足cos αcos β=23+sin αsin β的一组α、β的值是 A.α=12π13,β=4π3 B.α=2π,β=3πC.α=2π,β=6π D.α=3π,β=6π解析:由已知得cos (α+β)=23,代入检验得A. 答案:A4.已知tan α和tan (4π-α)是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是 A.b =a +cB.2b =a +cC.c =b +aD.c =ab解析:⎪⎪⎩⎪⎪⎨⎧=--=-+,)(,)(a c ab αααα4πtan tan 4πtan tan∴tan 4π=aca b--1=1.∴-a b =1-ac . ∴-b =a -c .∴c =a +b . 答案:C理一理——疑难要点1.化简求值解题目标(1)能求出值的应求出值.(2)使三角函数种数、项数尽量少;分母尽量不含三角函数;被开方式尽量不含三角函数. 2.化简求值常用方法(1)活用公式(包括正用、逆用、变形用). (2)切割化弦、异名化同名、异角化同角等. 3.化简求值常用技巧(1)注意特殊角的三角函数与特殊值的互化.(2)注意利用代数上的一些恒等变形法则和分数的基本性质. (3)注意利用角与角之间的隐含关系. (4)注意利用“1”的恒等变形.拨一拨——思路方法【例1】 求证:αβαsin 2sin )(+-2cos (α+β)=αβsin sin .剖析:先转换命题,只需证sin (2α+β)-2cos (α+β)·sin α=sin β,再利用角的关系:2α+β=(α+β)+α,(α+β)-α=β可证得结论.证明:sin (2α+β)-2cos (α+β)sin α =sin [(α+β)+α]-2cos (α+β)sin α=sin (α+β)cos α+cos (α+β)sin α-2cos (α+β)sin α =sin (α+β)cos α-cos (α+β)sin α=sin [(α+β)-α]=sin β. 两边同除以sin α得 αβαsin 2sin )(+-2cos (α+β)=αβsin sin .评述:证明三角恒等式,可先从两边的角入手——变角,将表达式中出现了较多的相异的角朝着我们选定的目标转化,然后分析两边的函数名称——变名,将表达式中较多的函数种类尽量减少,这是三角恒等变形的两个基本策略.【例2】 试证:θθθθθθsin sin 1tan sin sin 1tan -+++)()(=θθθθsin tan sin tan +.证明:左边=θθθθθθθθsin sin 1cos sin sin sin 1cos sin -+++)()(=θθθθcos sin cos sin 1-+1++=2sin 22cos 2sin 22cos 22cos2sin222θθθθθθ++=2sin2cosθθ=cot 2θ, 右边=θθθθθθsin cos sin sin cos sin ⋅+=θθsin cos 1+=2cos2sin22cos 22θθθ=cot2θ,∴原等式成立. 【例3】 已知α、β∈(0,4π),3sin β=sin (2α+β),4tan 2α=1-tan 22α.求α+β的值.解:∵4tan2α=1-tan 22α, ∴2·tan α=1,tan α=21.∵3sin β=sin (2α+β),∴3sin β=sin (α+β)cos α+cos (α+β)sin α. ∴3sin (α+β)cos α-3cos (α+β)sin α =sin (α+β)cos α+cos (α+β)sin α. ∴sin (α+β)cos α=2cos (α+β)sin α.∴tan (α+β)=2tan α=1.∴α+β=4π.评述:角的变换是常用技巧.如2α+β=(α+β)+α,β=(α+β)-α等. 【例4】求cot10°-4cos10°的值.提示:cot10°-4cos10°=︒︒10sin 10cos -4cos10°=︒︒-︒10sin 20sin 210cos =︒︒-︒-︒10sin 20sin 22030cos )(=︒︒-︒+︒10sin 20sin 220sin 2120cos 23 =︒︒-︒10sin 20sin 2320cos 23 =︒︒-︒10sin 2030sin 3)(=3.练一练——巩固提高1.(2003年高考新课程卷)已知x ∈(-2π,0),cos x =54,则tan2x 等于 .解析:∵cos x =54,x ∈(-2π,0), ∴sin x =-53.∴tan x =-43. ∴tan2x =x x 2tan 1tan 2-=169123--=-23×716=-724. 答案:-724 2.函数y =5sin x +cos2x 的最大值是_______.解析:y =5sin x +cos2x =5sin x +1-2sin 2x =-2(sin x -45)2+833. ∴sin x =1时,y max =4.答案:43.(2004年春季北京)已知sin (θ+π)<0,cos (θ-π)>0,则下列不等关系中必定成立的是A.tan2θ<cot 2θ B.tan2θ>cot 2θ C.sin 2θ<cos 2θD.sin 2θ>cos 2θ解析:由已知得sin θ>0,cos θ<0,则tan 2θ-cot 2θ=2cos 2sinθθ-2sin2cosθθ=-θθsin cos 2>0. ∴tan2θ>cot 2θ. 答案:B4.下列四个命题中的假命题是A.存在这样的α、β,使得cos (α+β)=cos αcos β+sin αsin βB.不存在无穷多个α、β,使得cos (α+β)=cos αcos β+sin αsin βC.对于任意的α、β,cos (α+β)=cos αcos β-sin αsin βD.不存在这样的α、β,使得cos (α+β)≠cos αcos β-sin αsin β解析:由cos (α+β)=cos αcos β+sin αsin β=cos αcos β-sin αsin β,得 sin αsin β=0.∴α=k π或β=k π(k ∈Z ). 答案:B5.求周长为定值L (L >0)的直角三角形的面积的最大值.解法一:a +b +22b a +=L ≥2ab +ab 2. ∴ab ≤22+L.∴S =21ab ≤21(22+L )2=21·[222L )(-]2=4223-L 2.解法二:设a =c sin θ,b =c cos θ.abc∵a +b +c =L ,∴c (1+sin θ+cos θ)=L . ∴c =θθcos sin 1++L .∴S =21c 2sin θcos θ=22L 2cos sin 1cos sin )(θθθθ++. 设sin θ+cos θ=t ∈(1,2],则S =22L ·22121)(t t +-=42L ·11+-t t =42L (1-12+t )≤42L (1-122+)=4223-L 2. 6.(2004年湖南,17)已知sin (4π+2α)·sin (4π-2α)=41,α∈(4π,2π),求2sin 2α+tan α-cot α-1的值.解:由sin (4π+2α)·sin (4π-2α)=sin (4π+2α)·cos (4π+2α)=21sin (2π+4α)=21cos4α=41,得cos4α=21. 又α∈(4π,2π),所以α=12π5. 于是2sin 2α+tan α-cot α-1=-cos2α+ααααcos sin cos sin 22-=-cos2α+αα2sin 2cos 2-=-(cos2α+2cot2α)=-(cos 6π5+2cot 6π5)=-(-23-23)=253.7.求证:2sin 2sin 12αα-1+=2tan12tan1αα-+.证明:左边=ααcos sin 1+=2sin 2cos 2cos 2sin 222αααα-+)(=2sin 2cos 2sin2cos αα-+,右边=2cos2sin 12cos2sin 1αααα-+=2sin2cos2sin 2cos αααα-+,∵左边=右边,∴原式成立.8.(2005年春季北京,15)在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积.分析:本题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力.解法一:∵sin A +cos A =2cos (A -45°)=22, ∴cos (A -45°)=21. 又0°<A <180°,∴A -45°=60°,A =105°. ∴tan A =tan (45°+60°)=3131-+=-2-3.∴sin A =sin105°=sin (45°+60°) =sin45°cos60°+cos45°sin60°=462+. ∴S △ABC =21AC ·AB sin A =21·2·3·462+=43(2+6). 解法二:∵sin A +cos A =22, ①∴(sin A +cos A )2=21.∴2sin A cos A =-21. ∵0°<A <180°,∴sin A >0,cos A <0.∴90°<A <180°.∵(sin A -cos A )2=1-2sin A cos A =23, ∴sin A -cos A =26. ②①+②得sin A =462+. ①-②得cos A =462-.∴tan A =A Acos sin =462+·624-=-2-3.(以下同解法一)想一想——拓展发散锐角x 、y 满足sin y csc x =cos (x +y )且x +y ≠2π,求tan y 的最大值. 解:∵sin y csc x =cos (x +y ),∴sin y csc x =cos x cos y -sin x sin y , sin y (sin x +csc x )=cos x cos y . ∴tan y =x x xcsc sin cos +=x x x sin 1cos sin +=x x x x 22cos sin 2cos sin +=x x 2tan 21tan +≤xx tan 22tan =42,当且仅当tan x =22时取等号. ∴tan y 的最大值为42.。
3两角和与差的三角函数及二倍角公式(空).docx
三角函数——3.两角和与差的三角函数及二倍 角公式【知识要点】1、两角和与差的正弦、余弦、正切公式及倍角公式:如⑴下列各式中,值为扣J 是(2)命题 P : tan( A + B ) = 0 ,命题 Q : tan A + tanB = 0 ,则 P 是 Q 的 ()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件;(3)已知 $加(a_ 卩)cos a- cos( a-p )sina =—,那么 cos 20 的值为 —iR(4)------------------------------------------------------------------- 时血的值是A^ 血 15 co$15B cos 1127112tan 22.5Z\-tan 222.5°D 、 11 +cos30°V 2得的结果是 匕匚,对甲、乙求得的结果的正确性你的判断是 2d2. 三角函数的化简、计算、证明的恒等变形的基本思路是:2 71 1 71(1)如(1)己知 tan(a + 0) = —, tan(0——)=—,那么 tan(a + —)的值是5 4 4 4 (2)已知 0 v 0 v 亍 v a v 龙,_LL cos( ex —)=-百,sin( ——/3)—— > 求c()s( a 七卩丿的值;(3)己知 % 0 为锐角,sin a = x, coscos(cr + /?) = --,则 y 与兀的函数关系为 ______________________________ ;(2) 如(1)求值sin50°(l + V3tanl0°);(2)已知 抽 Qcos a = ],tan(a_0) = _Z ,求 tan(0-2a)的值; 1-COS 2Q 3(3)如(1)已知 A 、B 为锐角,且满足 tan A tan B = tan 4 + tan B +1,则 cos(A +(5)已知tanllO°=a,求tan50°的值(用a 表示)甲求得的结果是1 + \j3ci乙求B)⑵设 AABC 中,tan A + tan B + V3 = >/3 tan A tan B , sin A cos A =,4则此三角形是三角形;1 和 +—cos2a 为 ;2函数x) = 5sinxcosx-5A /3 COS 2 X +—V3(xe R 丿的单调递增区间如(1)若ae (7v,-7v ),化简2(2)如(1) 1 ▲ a t ~ l + tan — l +sin a2 : a 1 - tan —2求证: l-2sin 2-2 2 cos 4 x-2 cos 2(2)化简 ------ --------2 tan(— 一 x) sin 2 (— + x)44如已知 tana = 2 ,求sin 2(z + sin6ircos6r-3cos 2 a.(7)如(1)若 sinx±cosx = r,贝Osinxcosx= _________ ,特别提醒:这里ZG [-72,72];(2)若 aE (0,^), sin cr+cos a(3)已知 sm2a + 2snr a = &(£ v© v 兰),试用k 表示sina — cosa 的值。
两角和与差、二倍角的三角函数公式练习题
两角和与差、二倍角的三角函数公式课时作业1.若tan α=3,tan β=3,则tan(α-β)等于( )A .-3B .-13 C .32.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-123.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则tan ⎝ ⎛⎭⎪⎫α+π4等于( )B .7C .-17D .-74.已知sin(α-β)cos α-cos(α-β)sin α=35,那么cos 2β的值为( )C .-725D .-18255.已知0<α<π,sin α+cos α=12,则cos 2α的值为( )B .-74C .±74 D .-346.已知α,β为锐角且cos α=110,cos β=15,则α+β的值等于________.7已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35, sin ⎝ ⎛⎭⎪⎫β-π4=1213,则cos ⎝ ⎛⎭⎪⎫α+π4=________.8已知α,β均为锐角,且sin α-sin β=-12,cos α-cos β=13,则cos(α-β)=________.年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如右图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于________.10已知cos ()α+β=45,cos ()α-β=-45,且32π<α+β<2π, π2<α-β<π,分别求cos 2α和cos 2β的值.11已知函数f (x )=sin x +sin(x +π2),x ∈R .(1)求f (x )的最小正周期;(2)求f (x )的最大值和最小值,并求出取得最值时的x 的值; (3)若f (α)=34,求sin 2α的值.12设f (x )=6cos 2x -3sin 2x . (1)求f (x )的最大值及最小正周期;(2)若锐角α满足f (α)=3-23,求tan 45α的值.参考答案1.D 7,-5665,8..59729.解析:图中小正方形的面积为1,大正方形的面积为25,∴ 每一个直角三角形的面积是6,设直角三角形的两条直角边长分别为a ,b ,则⎩⎪⎨⎪⎧a 2+b 2=2512ab =6 ,∴ 两条直角边的长分别为3,4,直角三角形中较小的锐角为θ,cos θ=45,cos 2θ=2cos 2θ-1=725. 答案:72510.cos 2α=-725,cos 2β=-111.(1)2π (2)当x =π4+2k π,k ∈Z 时,f (x )max =2当x =-3π4+2k π,k ∈Z 时,f (x )min =-2(3)-71612.(1)f (x )的最大值为23+3;最小正周期为T =π. (2)3。
两角和与差及二倍角公式
两角和与差及二倍角公式一、选择题:1.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235 B.235 C .-45 D.452.已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝ ⎛⎭⎪⎫56π+α-sin 2⎝⎛⎭⎪⎫α-π6的值是( ) A.2+33 B .-2+33 C.2-33 D.-2+333.若sin α=55,sin β=1010,且α、β为锐角,则α+β的值为( ) A .-π4 B.π4 C .±π4 D.π34.在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-16655.若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .± 3C .0或 3D .0或± 36.(2011²海口质检)在△ABC 中,已知sin(A -B )cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形二、填空题7.2cos10°-sin20°sin70°的值是________. 8.已知cos ⎝ ⎛⎭⎪⎫π4-α=1213,α∈⎝ ⎛⎭⎪⎫0,π4则cos2αsin ⎝ ⎛⎭⎪⎫π4+α(α∈⎝ ⎛⎭⎪⎫0,π4)=________.9.(1+3tan10°)²cos40°=________.10.已知α、β均为锐角,且cos(α+β)=sin(α-β),则角α=________.三、解答题11.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.12.已知cos α=17,cos(α-β)=1314,且0<β<α<π2. (1)求tan2α的值;(2)求β的值.13.已知0<β<π4<α<34π,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求sin(α+β)的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:两角和与差及其二倍角公式知识点及典例
知识要点:
1、两角和与差的正弦、余弦、正切公式
C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式
2S α:sin2α= ; 2T α:tan2α= ;
2C α:cos2α= = = ;
3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:
tan α±tan β=___________________; tan αtan β= = . 考点自测:
1、已知tan α=4,tan β=3,则tan(α+β)=( )
711
A 、 711
B 、-
7
13C 、 713D 、-
2、已知cos ⎝⎛⎭⎫α-π6+ sin α=4
5
3,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.45
3、在△ABC 中,若cos A =45,cos B =5
13
,则cos C 的值是( )
A.1665
B.5665
C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )
A .0
B .±3
C .0或 3
D .0或
±3
5、三角式2cos55°
-3sin5°
cos5°
值为( )
A.3
2
B. 3 C .2 D .1 题型训练
题型1 给角求值
一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]︒︒︒+.
变式1:化简求值:2cos10sin 20.cos 20
︒︒
︒
- 题型2给值求值
三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如
()()ααββαββ=+-=-+,2()()
ααβαβ=++-,
2()()
αβαβα=+--,
22
αβαβ++=⋅
,()(
)
222αββ
ααβ+=--- 例2 设cos ⎝⎛⎭⎫α-β2=-19
,sin ⎝⎛⎭⎫α2-β=2
3,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).
变式2:π3π33π5
0π,cos(),sin(),4445413
βααβ<<
<<-=+=已知求sin(α+β)的值.
题型3给值求角
已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-1
7
,求2α-β的值.
变式3:已知tan α=
17,tan β= 1
3
,并且α,β 均为锐角,求α+2β的值.
题型4辅助角公式的应用
()
sin cos a x b x x θ+=+ (其中θ角所在的象限由a
, b 的符号确定,θ角的值由
tan b
a
θ=
确定) 在求最值、化简时起着重要作用。
例4求函数2
5f (x )sin x cos x x =-x R )∈的单调递增区间?
变式4
(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;
(2)若方程sin x x c -=有实数解,则c 的取值范围是___________. 题型5公式变形使用
二倍角公式的升幂降幂
tan tan αβ±()()tan 1tan tan αβαβ=± tan tan tan tan 1
tan()
αβ
αβαβ±=± 例5(1)设ABC ∆中,33tan A tan B tan Atan B ++=,3
4
sin Acos A =,则此三角形是____三角形
(2)化简1-sin822cos8++
变式5已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B += ; 专题自测
1、下列各式中,值为
1
2
的是 ( ) A 、1515sin cos B 、2
2
12
12
cos sin π
π
- C 、
22251225tan .tan .- D 、130
2
cos +
2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,
则P 是Q 的 ( ) A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件
3、已知3sin 5α=
,tan 0α<则tan()4
π
α-= . 4、=︒+︒
-︒20sin 6420cos 120sin 32
2
2 5、2sin()2sin()3cos()333
x x x πππ
++---=______________.
6、0
cos(27)cos(18)sin(18)sin(27)x x x x +---+=
7、若25sin 5α=
,310
sin 10
β=,,αβ都为锐角,则αβ+= 8、在△ABC 中,已知tan A 、tan B 是方程3x 2
+8x -1=0的两个根,则tan C 等于 9、
131080
sin sin -= ;
10、
︒
︒
-︒70sin 20sin 10cos 2=
11、(1tan 22)(1tan 23)︒︒
++=
12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=
13、(福建理17)在ABC △中,1tan 4A =,3
tan 5
B =. (Ⅰ)求角
C 的大小;
(Ⅱ)若ABC △最大边的边长为17,求最小边的边长.
14、(四川理17)已知0,14
13
)cos(,71cos 且=β-α=α<β<α<2π,
(1)求α2tan 的值. (2)求β.
15、(2008·江苏)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 两点的横坐标分别为225
,.105
(1)求tan(α+β)的值; (2)求α+2β的值.
答案:考点自测:1-5BCADD 变式1、3 2、
5665 3:4
π
4(1)-2 (2)[-2,2] 5、22-
专题自测:1、C 2、C 3、7- 4、32 5、0 6、22 7、3
4
π 8、2 9、4 10、3
3π4。