八年级数学经典错题分析
初中数学错题分析与纠错(含示范课课程设计、学科学习情况总结)

初中数学错题分析与纠错第一篇范文:初中数学错题分析与纠错本文针对初中数学教学过程中学生常犯的错误进行深入剖析,以人性化的语言提出有效的错题分析与纠错策略,旨在提高学生的数学学习效果,培养学生的自主学习能力。
在初中数学教学中,我们常常发现学生存在这样或那样的错误。
这些错误往往源自于学生对知识点的理解不深,或者是解题方法的不当。
为了提高学生的数学学习效果,我们需要对这些错误进行深入分析,并采取有效的纠错策略。
初中数学错题分析知识理解错误学生在解题过程中,可能会对某些数学概念、定理或公式理解不深,导致解题错误。
例如,学生在解决分数问题时,可能会忘记分数的乘除法规则,导致计算错误。
解题方法错误学生在解题过程中,可能会采用错误的解题方法,导致解题困难或错误。
例如,学生在解决几何问题时,可能会采用不适合的解题方法,导致无法得出正确答案。
计算错误学生在解题过程中,可能会出现计算错误。
这些错误可能是由于粗心大意,也可能是由于对数学规则的理解不清。
例如,学生在计算乘法时,可能会忘记交换因数的位置,导致计算错误。
初中数学纠错策略知识点的深入讲解对于知识理解错误,我们需要对学生进行深入的知识点讲解,帮助他们理解数学概念、定理或公式的本质。
例如,在讲解分数的乘除法规则时,我们可以通过实际例题,让学生理解分数乘除法的本质。
解题方法的指导对于解题方法错误,我们需要引导学生采用合适的解题方法。
例如,在解决几何问题时,我们可以引导学生采用画图的方法,帮助他们更好地理解问题和解题思路。
计算错误的纠正对于计算错误,我们需要帮助学生养成良好的计算习惯,并加强对数学规则的理解。
例如,在计算乘法时,我们可以提醒学生注意因数的交换位置,避免计算错误。
通过对初中数学错题的深入分析,我们可以发现学生常犯的错误,并采取有效的纠错策略。
这样,我们可以提高学生的数学学习效果,培养学生的自主学习能力。
以上是关于“初中数学错题分析与纠错”的教育文档示例,内容完整,语言人性化,符合教学实际需要。
数学八年级下册经典易错题集附答案解析

八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
初中数学错题分类整理与分析(含学习方法技巧、例题示范教学方法)

初中数学错题分类整理与分析在初中数学教学中,错题整理与分析是提高学生数学素养的重要环节。
通过对错题的深入剖析,学生可以更好地掌握数学知识,提升解题能力。
本文将从分类整理和分析的角度,探讨初中数学错题的处理策略。
一、错题分类1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
例如,分不清有理数和无理数,将导致有关根号的题目解答错误。
2.计算性错误:学生在计算过程中,由于疏忽、马虎等原因,出现算术错误。
例如,简单的加减乘除运算错误,或者在小数点和分数运算中出现失误。
3.逻辑性错误:学生在解题过程中,逻辑思维不严密,导致解答不完整或者答案错误。
例如,在解一元一次方程时,忽略检验解的正确性。
4.应用题错误:学生在解决应用题时,不能正确将数学知识运用到实际问题中,或者对题目的理解出现偏差。
例如,在解决几何问题时,不能准确运用面积公式。
5.构图错误:学生在作图过程中,不能准确地根据题目要求绘制图形,导致解题思路混乱。
例如,在解几何证明题时,作图不准确,导致无法找到关键证明步骤。
二、错题整理1.建立错题本:学生应养成建立错题本的的习惯,将每次考试、练习中出现的错题记录下来。
2.归纳错题类型:学生在记录错题时,应注意归纳错题的类型,以便于后续分析和复习。
3.标注错题原因:学生在整理错题时,应在每道错题旁边标注出错的原因,以便于查找和改正。
4.定期复习:学生应定期复习错题本,巩固已掌握的知识点,避免重复犯错。
三、错题分析1.自我分析:学生应对错题进行自我分析,找出自己在解题过程中的不足之处,如概念理解不深、计算不准确等。
2.寻求帮助:学生在分析错题时,如有遇到困难,可以向老师、同学请教,以便更好地掌握知识点。
3.总结经验:学生应总结错题解析过程中的经验教训,提高解题能力。
4.反馈调整:学生应对错题进行分析总结后,对自己的学习方法、复习计划等进行调整,以提高学习效果。
四、教学建议1.注重概念教学:教师应加强对数学概念的教学,让学生充分理解并掌握基本概念。
初中数学错题原因解析

初中学生数学习题错误原因及对策一、知识性错误及对策1、知识性错误的概念知识性错误是指对概念及性质的认识模糊不清导致的错误;忽视公式,定理,法则的使用条件而导致的错误;忽视隐含条件导致错误;遗漏或随意添加条件导致的错误.2、对策:正确看待学生的习题错误,合理利用学生习题错误资源错题和知识点是现象和本质的关系。
纠错是学习中不可缺少的一个环节,通过纠错可以帮助学生不断完善认识和理解概念,提高其解题的“免疫"力。
一个正确的认识、念头和做法,无不经历多次与错误的周旋,所以在学习中要为学生开辟好纠错的各种途径。
①在教学中要宽容学生的错误,重视错解中合理成分的提取和激活,使学生在心理上认同和接受“纠错",并自觉对自己的想法和做法作出修正和调整。
案例1:计算2222--+x x 学生小A 的解法:原式=284242)2(2)2(-=---=+--x x x x显然有误,有学生在下面轰笑.小A 很尴尬。
我问:“错在哪?”生答:“张冠李戴了,把分式运算当成了解方程。
”小A 是一个对数学不太敏感的女生,为了树立小A 学习数学的信心,我决定帮她挽回一点面子。
我说:“小A 把分式运算当成了解方程,显然是错的,但给我们一个启示,能否考虑利用解方程的方法来解它呢?”学生经过思考、讨论,最后终于形成了以下解法: 设A x x =--+2222 去分母得:)2)(2()2(2)2(2-+=+--x x A x x解得:)2)(2(8)2)(2()2(2)2(2-+-=-++--=x x x x x x A 错误是极佳的学习契机, 教师既要引导学生发现解题过程中的错误,让学生提出不同解法并进行比较,又要指出这种错误解题过程中的合理成分,使产生这种错误的学生在实事求是的激励性下接受帮助。
让学生主动参与找错、议错、评错、赏错,对学生来讲是一种可贵的成功体验.有时课堂上的一些错误反而会给课堂注入新的生命力。
学生产生的错误是宝贵的教学资源,只有善待学生的错误,给学生说理的机会,才能充分挖掘错误的根源,引领学生走向成功.这种教育的效果远远胜于直接告诉学生一个正确的结论。
人教版八年级上册数学易错题(含解析)

八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
初中数学错题分析方法(含示范课课程设计、学科学习情况总结)

初中数学错题分析方法第一篇范文:初中数学错题分析方法在初中数学教学过程中,错题分析是提高学生数学素养的重要环节。
本文将从以下几个方面阐述初中数学错题分析方法:错题分类、错因分析、纠错策略及巩固提高。
一、错题分类对错题进行分类,有助于我们找出学生在数学学习中存在的问题。
常见的错题分类有以下几种:1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
2.计算错误:学生在计算过程中出现的算术错误。
3.逻辑错误:学生在解题过程中,逻辑思维不严密,导致答案错误。
4.应用题错误:学生在解决应用题时,不能正确运用所学知识,或对题意理解不准确。
5.解决问题策略错误:学生在面对问题时,选择了错误的解决方法。
二、错因分析了解错因,有助于我们针对性地采取措施,避免学生在今后的学习中再次犯同样的错误。
常见的错因有以下几种:1.基础知识不扎实:学生对数学基本概念、定理、公式掌握不牢固。
2.学习方法不当:学生没有形成良好的学习习惯,如课前预习、课后复习等。
3.思维能力不足:学生逻辑思维、发散思维能力不强。
4.心理因素:学生对数学学科缺乏兴趣,或存在焦虑、恐惧等情绪。
5.教学因素:教师教学方法不适合学生,或教学内容安排不合理。
三、纠错策略针对不同类型的错题和错因,采取相应的纠错策略,有助于学生提高数学学习成绩。
以下是一些建议:1.概念性错误:引导学生加强对数学概念的理解,可通过举例、讲解等方式,让学生在实际问题中正确运用概念。
2.计算错误:加强学生的计算训练,培养学生的计算能力。
3.逻辑错误:培养学生严谨的逻辑思维,可通过逻辑游戏、思维训练等方式进行。
4.应用题错误:引导学生正确理解题意,培养学生的应用能力。
5.解决问题策略错误:引导学生学会分析问题,形成正确的解决问题思路。
四、巩固提高在错题分析的基础上,采取以下措施,有助于学生巩固所学知识,提高数学素养:1.定期复习:引导学生定期复习错题,加深对知识点的理解。
八年级上册数学常见易错题(内含答案解析)

八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
初二数学错集锦常见错误类型及纠正方法

初二数学错集锦常见错误类型及纠正方法在初二数学的学习过程中,同学们常常会在作业、考试中出现各种各样的错误。
将这些错误进行整理和分析,有助于我们发现自己的知识漏洞和思维误区,从而采取有效的纠正方法,提高数学成绩。
下面,我们就来一起探讨一下初二数学中常见的错误类型及纠正方法。
一、概念理解不清1、错误类型初二数学涉及到很多新的概念,如函数、根式、分式等。
有些同学对这些概念的理解只停留在表面,没有深入领会其内涵和本质,导致在解题时出现错误。
例如,对于函数的定义,有些同学认为只要有两个变量之间的关系就是函数,而忽略了对于每个自变量的值,函数都有唯一确定的因变量值与之对应这一关键条件。
2、纠正方法对于概念理解不清的问题,我们要加强对概念的学习和理解。
首先,要认真阅读教材中的定义、定理和公式,理解其推导过程和适用范围。
其次,可以通过做一些基础的练习题来加深对概念的理解,例如判断一些式子是否为函数、求根式和分式有意义的条件等。
最后,要善于总结和归纳,将相似的概念进行对比,找出它们的异同点,以便更好地理解和记忆。
二、计算错误1、错误类型计算错误是初二数学中最常见的错误之一,包括有理数的运算、整式的运算、分式的运算等。
常见的计算错误有:符号错误、运算顺序错误、粗心大意导致的数字抄错或漏写等。
例如,在进行整式的加减运算时,忘记了去括号时要变号;在进行分式的化简时,通分错误或者约分错误。
2、纠正方法要减少计算错误,首先要养成认真、细致的学习习惯。
在计算时,要集中注意力,看清题目中的数字和符号,按照正确的运算顺序进行计算。
其次,要加强练习,提高计算的熟练程度。
可以通过做一些专门的计算练习题,如有理数的混合运算、整式的乘除运算、分式的化简求值等,来提高自己的计算能力。
最后,要学会检查和验算。
计算完成后,要对结果进行检查,可以采用重新计算、代入原式等方法进行验算,确保计算结果的正确性。
三、解题思路错误1、错误类型解题思路错误是指在解题过程中,没有找到正确的解题方法或者解题方向,导致无法得出正确的答案。
数学八年级下册经典易错题集附答案解析

八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
初中数学错题分析与纠错(含学习方法技巧、例题示范教学方法)

初中数学错题分析与纠错第一篇范文在初中数学教学中,错题分析与纠错是提高学生数学素养的关键环节。
通过对错题进行深入分析,学生可以发现自己的知识漏洞,纠正错误思维,从而达到巩固知识、提高解题能力的目的。
本文将从以下几个方面对初中数学错题进行分析与纠错。
一、错题类型及原因分析1. 概念理解不清部分学生在解题过程中,对数学概念、定理、公式理解不透彻,导致答题错误。
例如,在解有关二次根式的问题时,学生可能忽视了二次根式的性质,导致计算错误。
2. 基本运算能力不足初中数学学习中,运算能力是基础。
部分学生由于运算能力不足,在解题过程中出现计算错误。
例如,在解有关代数方程的问题时,学生可能因为基本的加减乘除运算错误,导致整个解题过程出错。
3. 逻辑思维能力不强在解决数学问题时,逻辑思维能力至关重要。
部分学生在解题过程中,逻辑思维混乱,导致答题错误。
例如,在解决几何问题时,学生可能因为空间想象能力不足,对图形的性质理解不清晰,从而导致解题错误。
4. 解题方法不当在初中数学学习中,解题方法的选择与应用对解题效果有重要影响。
部分学生在解题过程中,方法选择不当,导致解题困难。
例如,在解决函数问题时,学生可能忽视了函数的性质,盲目尝试复杂的解题方法,导致解题效率低下。
二、错题纠正策略针对以上错题类型及原因,本文提出以下错题纠正策略,以帮助学生提高数学学习效果。
1. 强化概念理解学生应加强对数学概念、定理、公式的学习,通过查阅教材、参考书等资源,深入理解数学知识。
在学习过程中,注意总结规律,形成自己的知识体系。
2. 提高基本运算能力学生应通过大量练习,提高基本运算能力。
在日常学习中,注重运算技巧的培养,熟练掌握各种运算方法。
同时,教师在教学中,也应关注学生的运算能力培养,给予适当的指导和鼓励。
3. 锻炼逻辑思维能力学生应通过解决实际问题,锻炼自己的逻辑思维能力。
在学习中,注意分析问题、归纳总结,形成清晰的逻辑链条。
此外,教师在教学中,也应关注学生逻辑思维能力的培养,引导学生运用逻辑推理方法解决问题。
八年级数学经典错题分析报告

八年级数学经典错题分析报告引言数学是一门需要逻辑思维和解题能力的学科,八年级学生在学习数学时常常会遇到一些经典错题。
这些错题往往涉及一些基础概念和解题方法,通过分析和解答这些错题,可以帮助学生更好地理解数学知识和提高解题能力。
本文将对八年级数学中常见的经典错题进行分析,以帮助学生对这些错题有一个清晰的认识,并指导学生在解题过程中避免类似错误的发生。
一、题目一:平方根的性质题目描述:已知正整数a和b,且a>b,若a是b的平方的平方根,求a/b的值。
分析:这道题主要考察对平方根性质的理解和运用。
我们知道,一个数的平方根是这个数的一个正实数解。
因此,如果a是b的平方的平方根,那么必有a=\sqrt{b^2}。
根据分式的性质,我们可以将a/b写成\frac{a}{b}。
代入已知条件a=\sqrt{b2},我们可以得到\frac{\sqrt{b2}}{b}。
根据平方根的性质sqrt{b^2} = b,我们可以简化分式为\frac{b}{b}。
根据分数化简规则,分子和分母相等时,其值为1,因此a/b=1。
二、题目二:关于比例的考查题目描述:在一条直线上有3个点,A、B、C,其中点B在点A、C之间且AB:AC=2:3,点C与点D的距离为5cm,求点B到点D的距离。
分析:这道题主要考察对比例的理解和运用。
我们可以通过设x表示点B到点D的距离,进一步分析比例关系。
根据题意,可以得到AB/AC=2/3,即AB=(2/3)AC。
又因为BC=AC-AB,所以BC=\frac{1}{3}AC。
根据相似三角形的性质,有BC/CD=AB/AD,代入已知条件,可以得到\frac{\frac{1}{3}AC}{5}= \frac{2}{AD}。
通过求解方程,可以得到AD=\frac{50}{3}。
因为BD=AB-AD,代入已知条件,可以得到BD=\frac{40}{3}。
三、题目三:三角形内角和的计算题目描述:已知三角形ABC,∠ABC=45°,∠BCA=60°,求∠CAB的度数。
八年级数学经典错题分析

八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
初中学科知识点错题分析

初中学科知识点错题分析在初中学习过程中,错题是常见的现象。
通过对错题进行分析,可以发现学生的学习状况及存在的问题,从而有针对性地进行学习和提高。
本文将选取几个初中学科中常见的知识点,对其中的错题进行分析,并给出适当的学习建议。
一、数学错题分析1. 题目:一个圆柱体的侧面积是32π,如果底面半径是4,高是2,求它的体积。
错误答案:32π分析:该题需要计算圆柱体的体积,而错误答案直接给出了侧面积,没有进行正确的计算。
解决方法:圆柱体的体积公式为V = 底面积×高,底面积为πr^2,代入计算可得到结果V = 16π。
2. 题目:已知一条直线的斜率为-3/4,该直线上存在一点坐标为(2, y),求y的值。
错误答案:y = -2/3分析:该题需要利用斜率与点的坐标求直线的方程,错误答案计算时计算错误。
解决方法:直线的斜率为y的变化量与x的变化量的比值,即y的变化量/(2-x) = -3/4,代入计算可得到结果y = -3/2。
二、物理错题分析1. 题目:通过测量,一位同学得出用水从水龙头流出的速度为0.2m/s,请计算这位同学所测得的流速是多少公里/小时。
错误答案:0.72km/h分析:该题需要将流速的单位从米/秒转换成公里/小时,错误答案计算时计算错误。
解决方法:1小时有3600秒,所以0.2m/s = (0.2 * 3600)/ 1000 km/h = 0.72km/h。
2. 题目:电流强度与电阻成反比例关系,当电阻为4欧姆时,电流强度为0.5A,请计算当电阻为8欧姆时,电流强度是多少?错误答案:1A分析:该题需要利用反比例关系计算电流强度,错误答案没有利用反比例关系进行计算。
解决方法:电流强度与电阻成反比例关系,即I1 × R1 = I2 × R2,代入已知条件可得到I2 = I1 × R1 / R2 = 0.5 × 4 / 8 = 0.25A。
三、化学错题分析1. 题目:下列物质中,属于分子的是()。
初二期中数学试卷错题分析

一、引言期中考试已经结束,作为一名初中生,我们应该认真分析自己在考试中的错题,找出错误的原因,以便在今后的学习中加以改进。
以下是我对初二期中数学试卷错题的分析。
二、错题分类1. 算术错误在本次期中考试中,我发现自己有一些算术错误。
例如,在计算乘法、除法、加减法时,由于粗心大意,导致计算结果错误。
这种错误主要是因为我在做题时没有认真审题,没有仔细检查计算过程。
2. 基础知识错误基础知识错误主要体现在对公式、定理、法则掌握不牢固。
例如,在解方程时,我忘记了将方程两边同时乘以或除以一个数,导致方程无法求解。
3. 思维方法错误在解决一些复杂问题时,我常常陷入思维定势,无法找到合适的解题方法。
例如,在解决几何问题时,我总是习惯性地使用代数方法,而忽略了图形性质。
4. 时间管理错误在考试过程中,我发现自己时间管理不当,导致部分题目没有完成。
这主要是因为我在审题、计算过程中浪费了太多时间。
三、错误原因分析1. 粗心大意粗心大意是导致算术错误的主要原因。
在平时的学习中,我应该养成良好的做题习惯,认真审题,仔细检查计算过程。
2. 基础知识不牢固基础知识是学好数学的基础。
我应该加强对公式、定理、法则的掌握,提高自己的数学素养。
3. 思维方法单一在解决数学问题时,应该灵活运用多种思维方法。
我应该尝试从不同角度思考问题,提高自己的解题能力。
4. 时间管理不当在考试过程中,我应该合理安排时间,确保在规定时间内完成所有题目。
四、改进措施1. 培养良好的做题习惯,认真审题,仔细检查计算过程。
2. 加强对基础知识的学习,提高自己的数学素养。
3. 灵活运用多种思维方法,提高解题能力。
4. 合理安排时间,确保在考试过程中完成所有题目。
五、总结通过对初二期中数学试卷错题的分析,我认识到自己在数学学习中还存在很多不足。
在今后的学习中,我将努力改进,提高自己的数学成绩。
八年级数学下册12_3二次根式的加减根式问题常见错误例

根式问题常见错误例析在解二次要式的化简或计算问题时,常见一些同窗因概念不清或轻忽问题的必要条件而造成错误。
现举例剖析如下:一、概念不清例1 假设x+x 1=4,那么x-x1= . 错解:(x-x 1)2=(x+x 1)2-4=42-4=12,∴x -x 1=23. 评析:解题进程中轻忽了平方根概念中“x 2=a ”,x 可取正负两个值。
正解:(x-x 1)2=12,∴x-x1=±23。
二、错误明白得代数式的意义 例2 计算:x 12÷52x 。
错解:x 12÷25x =x 12÷52×x =x 12×25·x =5x 3。
评析:上面解法中错误地将根式52x 明白得为52x x ,前者是运算结果,后者是一种运算:错误地明白得改变了运算顺序: x 12÷52x 相当于x 12÷(52×x ); 而x 12×25·x 那么是(x 12÷52)·x 。
正解:原式=x 12÷52x =x 12÷52x =x 12×x 25=53。
三、轻忽运算法那么例3 计算:236+÷(31-21)。
错解:原式=236+÷31-236+÷21=236+×3-236+×2=56-12。
评析:此题误将乘法分派律用于除法,轻忽a ÷(b+c)≠a ÷b+a ÷c.正解:原式=236+÷2332+-=236+×326-=-6.四、轻忽“分母的有理化因式其值不能为零”分母有理化的一样方式是分子、分母同乘以分母的有理化因式,第二是借助分解,然后约分;利用前一方式分母有理化应注意的有理化因式值的情形。
例4 计算:x ÷(1+1+x )(x ≥-1).错解:x ÷(1+1+x )=)11)(11()11(+-+++-x x x x =x x x -+-)11(=1+x -1. 评析:因x ≥-1,故x=0符合题意,但当x=0时,1-1+x =0,现在相当于分子分母同乘以零.故虽计算结果正确,但其进程也是错误的。
八年级下学期数学解题常见错误分析——以勾股定理为例

八年级下学期数学解题常见错误分析——以勾股定理为例八年级下学期数学解题错误的类型较为复杂,具体分为书写错误、思路错误等。
对于初中生来说,要快速、精准地完成解题任务,必须提高审题准确性,锁定数学解题目标。
正确理解题意、合理选择解题方法,这是实现精准解题的基本前提条件。
勾股定理的数学问题并不复杂,但由于审题疏忽、计算错误,学生很容易解题出现错误。
合理调整数学解题方法,整合数学知识点,才能提升八年级下学期数学解题的精准度。
一、八年级下学期数学解题错误常见原因分析(一)曲解题意精准审题是解决数学问题的基本前提条件。
学生对于题干信息的理解反映了学生的基本信息搜集素养。
只有快速掌握解题要求,提出解题方向,学生才能有效应用数学知识解决问题。
但从教学情况来看,存在学生曲解题意的问题,部分学生在解题过程中,并没有正确理解相关信息,未能整合出具体的数学解题思路,对于问题产生错误理解,导致学生无法应用数学信息处理问题。
(二)方法不当数学经验可以帮助学生快速、准确地解决数学问题。
但需要强调的是,小学数学教学与中学数学教学之间存在着本质上的差别,从教学特点进行分析,小学数学强调的是学生基础计算能力、信息搜集能力的培养,解题方式较为单一;而在八年级下学期的数学解题活动中,学生需要对问题中的关键知识进行应用,形成逻辑性思维与数学推理能力。
受小学的计算经验影响,在解题的过程中,学生使用代入数值、假设猜测等错误的学习方法,解题效率低,学生形成思维惯性,数学解题误区也随之增多。
(三)产生前后知识冲突在解题的过程中,学生产生知识冲突,混淆数学概念与定理,导致学生无法精准解题。
以勾股定理的有关问题为例,其按照“勾三股四弦五”的基本思路设计问题,但受到其他数学知识的干扰,学生很容易将问题理解成“对三角形的探究”,从而形成错误思路导致解题方向上出现错误。
二、解决策略(一)预防错误,教师讲解要有针对性针对八年级下学期数学解题常见错误开展教学工作,要以“预防错误”为切入点,帮助学生在解题、学习的过程中掌握错误出现的原因、解决出错的有效方法,以此来提升初中生的数学解题能力。
初二数学易错题

初二数学易错题【原创版】目录1.初二数学易错题的概念和重要性2.常见的初二数学易错题类型3.如何避免犯初二数学易错题的错误4.提高初二数学成绩的方法正文【初二数学易错题的概念和重要性】初二数学易错题是指在初二数学学习过程中,学生经常犯错的题目。
这些题目往往具有一定的难度和迷惑性,学生容易在理解、计算或者思维上出现偏差,从而导致做错。
对于学生而言,掌握这些易错题的解决方法,不仅可以提高学习效率,还能增强自己的解题能力。
【常见的初二数学易错题类型】初二数学易错题类型繁多,主要包括以下几种:1.几何题:如求解三角形的面积、周长,四边形的面积等。
2.代数题:如一元一次方程、一元二次方程的解法,比例与均分等。
3.函数题:如函数图像的绘制、函数的性质等。
4.数据与概率:如统计图表的读取、概率的计算等。
5.方程与不等式:如解不等式、方程组等。
【如何避免犯初二数学易错题的错误】要避免犯初二数学易错题的错误,可以从以下几个方面入手:1.加强基础知识的学习,对概念、公式、定理进行深入理解。
2.做题时,要仔细审题,理解题意,明确题目要求。
3.做题过程中,要注意运算顺序、运算法则,避免粗心大意导致错误。
4.多做练习,积累解题经验,提高解题速度和准确率。
【提高初二数学成绩的方法】1.制定合理的学习计划,合理安排时间,保证学习效果。
2.多做习题,形成解题思路,提高解题能力。
3.及时复习,总结归纳,强化知识点的掌握。
4.积极参与课堂讨论,与同学互相学习,取长补短。
5.向老师请教,解决自己遇到的难题,扫清学习障碍。
总之,初二数学易错题是学生在学习过程中不可避免的难题,只有通过不断练习,加强基础知识的掌握,才能提高自己的解题能力,避免犯错。
初二数学易错题

初二数学易错题(最新版)目录1.初二数学易错题的概念2.常见的初二数学易错题类型3.如何避免犯初二数学易错题的错误4.提高初二数学成绩的方法正文【初二数学易错题的概念】初二数学易错题是指在学习初中数学过程中,学生容易犯错误或难以掌握的题目。
这些题目往往具有一定的难度和迷惑性,学生稍有不慎就可能出现错误。
特别是对于初二学生而言,他们正处于数学学习的关键时期,因此,掌握初二数学易错题的特点及解决方法显得尤为重要。
【常见的初二数学易错题类型】1.几何题:如证明线段平行、三角形全等、四边形面积等问题。
这类题目需要学生具备较强的逻辑思维能力和空间想象力。
2.代数题:如一元一次方程组、因式分解、分式方程等问题。
这类题目需要学生熟练掌握运算法则,善于观察题目特点。
3.函数题:如正比例函数、反比例函数、一次函数等问题。
这类题目需要学生理解函数的概念,掌握函数图像的性质。
4.数据与概率题:如统计图表的阅读、概率计算等问题。
这类题目需要学生具备较强的数据处理和分析能力。
【如何避免犯初二数学易错题的错误】1.养成良好的学习习惯:做题时要认真审题,仔细作答,避免粗心大意导致错误。
2.扎实掌握基础知识:加强基础知识的学习,提高自己的数学素养,以减少犯错的机会。
3.增强解题技巧:多参加数学竞赛、培训班等活动,提高自己的解题技巧和应试能力。
4.多做习题,总结经验:通过大量做题,总结自己的易错点和解题方法,不断提高自己的数学水平。
【提高初二数学成绩的方法】1.制定合理的学习计划:合理安排学习时间,确保每个知识点都能得到充分的复习。
2.及时反馈和纠正错误:在做题过程中,遇到错误要及时纠正,并向老师请教,确保问题得到解决。
3.形成良好的思维习惯:培养自己的逻辑思维、空间想象等能力,提高数学解题水平。
4.保持积极的学习态度:相信自己,保持信心,不断努力,克服学习中的困难。
总之,初二数学易错题是学生在学习过程中需要重点攻克的难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B=∠C ;B 、∠D=∠E ;C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。
正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ∆≅∆,∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。
4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ∆与BCA ∆全等吗?说明理由。
错解:ADB BCA ∆≅∆。
理由如下:,,,()CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴∆≅∆Q错误原因分析:两个三角形全等是正确的,但说明的理由不正确,三个角对应相等不能作为三角形全等的判定方法。
在初中数学中,往往有较多同学会从自己错误的主观意识出发,自己去编造一些不正确的定理,用来证明和计算。
这就要求我们学生在学习的过程中,要准确地理解和掌握自己所学过的一些性质和判定定理。
另外,在书写的要求上也要养成严谨的习惯。
象上面问题中,三组对应角相等的两个三角形全等,这不是三角形全等的判定方法。
在书写上也没有按照全等三角形书写的形式来规范书写。
正解:ADB BCA ∆≅∆。
理由如下:(),,()DBA CAB D C AB BA ADB BCA AAS ∠=∠∠=∠=∴∆≅∆Q 公共边5、已知,如图11-6,ABD AEC ∆∆和都是等边三角形,求证:BE=DC 。
错解:ABD AEC ∆∆Q 和都是等边三角形,0060,120.,.,.BAD CAE CAD EAB AB AD AE AC ABE ADC BE DC ∴∠==∠∠==∠==∴∆≅∆∴=又 错误原因分析:只靠眼睛直观,主观臆断,误认为D 、A 、E 三点在同一直线上,是造成解题的错误的主要原因。
实际上由于BAC ∠的大小不确定,所以D 、A 、E 三点不一定在同一直线上,而应该寻找DAC BAE ∠∠和相等。
象这种错误在初中学生解答有关几何题时经常出现的,这要求我们学生在审题时一定要审清楚题目中的已知条件及隐含条件,题目中没有出现的,我们不能去编造。
正解:ABD AEC ∆∆Q 和都是等边三角形,060,,.,.,.BAD CAE BAD BAC CAE BAC DAC BAE AB AD AE AC ABE ADC BE DC ∴∠==∠∴∠+∠=∠+∠∴∠=∠==∴∆≅∆∴=又6、到三角形三边所在的直线的距离相等的点有 个。
错解:1个。
错误原因分析:三角形的三个内角角平分线会相交于一点,且这个点到三角形三边的距离相等。
由于所求的点是到三边所在直线的距离相等,因此,相邻两个外角的角平分线的交点到三边所在直线的距离也相等,所以符合条件的点有4个。
正解:4个。
如图11-7,四个点分别是D 、E 、F 、G 。
7、写出下列各图形的对称轴。
(1)、角的对称轴是 ; (2)、等腰三角形的对称轴是 ; (3)、圆的对称轴是 。
错解:(1)角的平分线;(2)等腰三角形底边上的高;(3)圆的每一条直径。
错误原因分析:对对称轴的概念理解不准确,对称轴指的是一条直线,不能将它误认为是射线和线段。
象角平分线是射线而不是直线,所以它不是角的对称轴,等腰三角形底边上的高是线段,也不是直线,所以它也不是等腰三角形的对称轴,圆的直径是线段,也不是直线,所以它也不是圆的对称轴。
正解:(1)、角平分线所在的直线;(2)、等腰三角形底边上的高所在的直线;(3)、过圆心的每一条直线。
8、已知点A(1-a,5)与点B(3,b)关于y轴对称,求a-b的值。
错解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=3,b=-5,∴a=-2,∴a-b=-2-(-5)=3 。
错误原因分析:没有正确理解和掌握关于y轴对称的点的坐标特征,在平面直角坐标系中,关于x轴对称的两个点的横坐标相等,纵坐标互为相反数;关于y轴对称的两个点的纵坐标相等,横坐标互为相反数。
即点P(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)。
这题是将关于x轴对称点的坐标特征与关于y轴对称点的坐标特征搞混淆了。
正解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=-3,b=5,∴a=4,b=5 ,∴a-b=4-5=-1 。
9、等腰三角形的两边长分别为4cm和9cm,试求其周长。
错解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∴等腰三角形的周长为4×2+9=17(cm)。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
错误原因分析:本题分两种情况考虑了等腰三角形的特点(即腰长为4cm与9cm两种情况),但忽略了构成三角形的条件(三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边。
)。
因为4+4<9,所以4cm不能作为腰长。
只有9cm为腰长,4cm为底边一种情况成立。
正解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∵4+4<9 ,∴这种情况不成立。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
∴等腰三角形的周长为22cm 。
10、等腰三角形一腰上的高等于腰长的一半,求其顶角。
错解:如图12-1,AB=AC,BD⊥AC于D,且12BD AB,∴∠A=30°,即其顶角为30°。
错误原因分析:等腰三角形是比较特殊的三角形,它有许多特性和,在解决与等腰三角形有关的问题时,一定要全面地分析问题,不漏解,上题只考虑到腰上的高线在三角形的内部是产生错解的原因。
事实上,对于本题腰上的高线还可能在三角形的外部,应分两种情况进行求解。
正解:分两种情况来讨论:①、当高线在三角形内部时,如图12-1,AB=AC,BD ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
②、当高线在三角形外部时,如图12-2,AB=AC,BD ⊥AC 于D ,且12BD AB =, ∴∠BAD=30°,∴∠BAC=150°。
∴等腰三角形的顶角为30°或150°。
11、在一次数学课上,王老师在黑板上画出图12-3,并写下了四个等式: (1),(2),(3) ,(4) 。
要求同学从这四个等式中选出两个作为条件,推出是等腰三角形.请你试着完成王老师提出的要求,并说明理由。
(写出一种即可)已知:求证:是等腰三角形。
错解:已知:,,求证:是等腰三角形。
证明: ∵,,∴∴∴是等腰三角形.错误原因分析:受思维定势的影响,以为三个条件就可证两个三角形全等,思维混乱,,运用了不成立的命题“SSA ”去证明题目,即犯了“虚假理由”的错误。
说明对两个三角形全等的判定定理掌握不透,上课时没真正弄懂定理的运用。
中等偏下的学生易犯这种错误。
正解:如:已知:,,求证:是等腰三角形。
证明:∵,,∴∴∴是等腰三角形。
12、下列说法正确的是 ( )。
A 、 如果线段AB 和''A B 关于某条直线对称,那么AB=''A B ;B 、 如果点A 和点'A 到直线l 的距离相等,则点A 与点'A 关于直线l 对称;C 、 如果AB=''A B ,且直线MN 垂直平分A 'A ,那么线段AB 和''A B 关于直线MN 对称;D 、 如果在直线MN 两旁的两个图形能够完全重合,那么这两个图形关于直线MN 对称。
错解:选B 或C 或D 。
错误原因分析:对轴对称的定义和性质理解不够准确是这题解题错误的主要原因,因为线段AB 和''A B 关于某直线对称,则沿着这条直线对折AB 与''A B 一定能够重合,所以AB=''A B 。
故选A 。
B 、C 、D 三种情况的反例如图12-4所示。
正解:选A 。
B C13、下列说法正确的是 ( )。
A 、-8是()28-的算术平方根本; B 、25的平方根是±5;C 、4是-16的算术平方根;D 、1的平方根是它本身。
错解:选A 或C 或D 。
错误原因分析:对平方根和算术平方根的含义没有准确地理解是出现解题错误的主要原因。
A 项没有弄清算术平方根是不可能为负数的,它是一个非负数;C 项没有理解负数是没有平方根的,也就没有算术平方根了;D 项误认为一个正数的平方根只有一个,其实一个正数的平方根有两个,且这两个平方根互为相反数。