最新高考数学命题热点 选择题的解题策略

合集下载

新高考下数学多选题的解题策略

新高考下数学多选题的解题策略

新高考下数学多选题的解题策略摘要:新高考下,数学多选题的闪亮登场,既深化高考内容和形式改革,又能更深入的考查学生的数学核心素养和综合数学能力,有利于分层选拔人才。

学生要快速有效的解答多选题,需要了解多选题的结构和得分模式,考查的内容方法,探究多选题的解题策略,有效解题,提高得分。

关键词:数学单选题;多选题;解法探究;解题策略;选项间的关系今年广东高考数学迎来了新高考卷,新高考下,数学不再分文理科,历史方向和物理方向考卷相同。

从试卷结构而言,最大的改变是,增加了——多选题。

选择题模块从12道单选题改成:8道单选题和4道多选题。

1了解多选题的相关内容1.1多选题的作用多选题体现新高考改革的“一核四层四翼”,知识覆盖面广、综合性强,增强了试题的开放性。

多选题综合考查学生的数学思维方法和数学核心素养。

从高考评价而言,多选题有利于区分学生层次,更有效实现分层选拨人才,实现考试目标的同时落实立德树人的根本任务和发展素质教育。

之前广东高考数学选择题模式是“单项选择题”。

四个选项中有且只有一个正确的。

这四选一的模式,使得即使该题不会的同学猜对的概率也有四分之一。

这样不够精准的反应考生的真实水平,不能有效区别学生的层次。

为了有效实现分层选拨人才,考查学生的综合数学能力,在新高考中,“多选题”闪亮登场。

多选题的选项中有正确项,有干扰项,有针对易错点设置的选项。

所以学生通过做多选题,有助于他们全面细致严谨到位的掌握知识方法,有利于数学核心素养的培养。

1.2多选题考查特点多选题突出数学核心概念,考查基础知识的掌握和数学能力应用。

考查的知识点容量更大,解题思路和方法更广,形式更为开放多样,构成要素可以更复杂。

多选题中正确选项增多而干扰项也就是诱误项减少。

正确选项增多,使得猜满分的难度提高。

所以多选题有“得分容易满分难”的特点。

考生要拿满分需要全面的数学综合能力,从而体现学生的实力;干扰项减少,保证考生容易得基础分,提高整卷的平均分。

选择题解题技巧

选择题解题技巧
A.①②③B.②③④C.①②④D.①③④
解析:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中②是一个面积最大的椭圆,故可先看②,显然直线和曲线 是相交的,因为直线上的点 在椭圆内,对照选项故选D。
6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。
(1)特殊值
例1、若sinα>tanα>cotα( ),则α∈()
A.( , )B.( ,0)C.(0, )D.( , )
解析:因 ,取α=- 代入sinα>tanα>cotα,满足条件式,则排除A、C、D,故选B。
例2、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为()
A.-24B.84C.72D.36
A.①②④B.①④C.②④D.①③
解析:取f(x)=-x,逐项检查可知①④正确。故选B。
(3)特殊数列
例5、已知等差数列 满足 ,则有 ( )
A、 B、 C、 D、
解析:取满足题意的特殊数列 ,则 ,故选C。
(4)特殊位置
例6、过 的焦点 作直线交抛物线与 两点,若 与 的长分别是 ,则 ()
A、 B、 C、 D、
解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d=-24,所以前3n项和为36,故选D。
(2)特殊函数
例3、如果奇函数f(x)是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()
A.增函数且最小值为-5B.减函数且最小值是-5
C.增函数且最大值为-5D.减函数且最大值是-5

高考数学选择题答题技巧(精选6篇)

高考数学选择题答题技巧(精选6篇)

高考数学选择题答题技巧(精选6篇)高考数学选择题答题技巧精选篇1所谓排除法就是对各个选项通过分析、推理、计算、判断,排除掉错误的选项,留下正确选项的一种选择方法。

直接法和排除法是高考做选择题时最常用的两种基本选择方法。

高考数学选择题答题技巧精选篇2将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

高考数学选择题答题技巧精选篇3所谓构建数学模型法就是将问题建立在某一个数学模型中,利用该数学模型所具有的`意义、几何性质等去解题的一种方法。

最后说及一点,选择方法固然重要,但根本上还是要学会通式通法,扎扎实实打好基础,才能最后成功。

高考数学选择题答题技巧精选篇4所谓直接法就是利用数学公式、法则或者定理直接进行计算来获得答案的方法。

通常是在做计算题时用此方法。

从另一个角度讲,考生在做选择题时,先观察一下四个选项,认为哪一个选项可能性最大就先做哪一个,而不是按照顺序逐个做,这也体现了一种直接选择的思想。

高考数学选择题答题技巧精选篇5一、解答选择题的基本策略解答选择题的基本策略是“小题小做,不择手段”.1.要充分挖掘各选择支的暗示作用;2.要巧妙有效的排除迷惑支的干扰.快速解答选择题要靠基础知识的熟练和思维方法的灵活以及科学、合理的巧解,应尽量避免小题大做.二、选择题常用解题方法由于高考数学选择题四个选项中有且只有一个结论正确,因而解选择题要沿着以下两个途径思考:一是否定3个结论;二是肯定一个结论.常用的方法有:直接法,筛选法(排除法),利用数学中的二级结论法,特例法 (特殊值,特殊图形,特殊位置,特殊函数)是重点方法,还有数形结合法,验证法,估算法,特征分析法,极限法等,还是要学会通式通法,扎扎实实打好基础,才能最后成功。

高考数学选择题答题技巧精选篇6所谓特值法就是利用满足题设条件的某些特殊数值、特殊位置、特殊函数、特殊图形等对各个选项进行验证或推理,利用问题在这一特殊条件下不真,则它在一般情况下也不真的原理,去伪存真作出选择的一种方法。

高考数学选择题满分答题技巧

高考数学选择题满分答题技巧

查找错题, 分析病因, 对症下药, 这是重点工作。
( 3)阅读《考试说明》和《试题分析》 , 确保没有知识盲点。
( 4)回归课本, 回归基础, 回归近年高考试题, 把握通性通法。
( 5)重视书写表达的规范性和简洁性,
掌握各类常见题型的表达模式,
避免“会 而不对, 对而
不全”现象的出现。
( 6)临考前应做一定量的中、低档题, 以达到熟悉基本方法、典型问题的目的,
分的考生少之又少 , 所以 , 你不要幻想 先易后难 , 分段得分 . 着在高考时数学能够拿满分 . 换个角度思考 ,
学习再好的学生也会出现一些错误 , 所以 , 遇到难题感到做不下去实际上很正常 , 就看你如何能够从这些
难题上尽可 能多的争到分数 . 在这个时候 , 分段得分就很重要了 . 一定要把每个能想到的与 题目考查范围
一般可在 五分钟之内做完下面几件事: ( 1)填写好全部考
( 2)调节情绪, 尽快进入考试状态, 可解答那些一眼就能看得出结论的简单选择
或填空题(一旦
解出, 信心倍增, 情绪立即稳定) ; ( 3)对于不能立即作答的题目, 可一边通览, 一边粗略地分为 A 、B 两类: A 类指 题型比较熟悉、
容易上手的题目; B 类指题型比较陌生、自我感觉有困难的题目,
其次, 填空题的解构, 往往是在一个正确的命 也可以是结论) , 留下空位, 让考生 独立填上,
考查方法比较灵活, 在对题目的阅读理解上, 较之选择题有时会显得较 为费劲。 当然并非常常如此,
这将取决于命题者对试题的设计意图。
填空题的考点少, 目标集中。 否则, 试题的区分度差, 其考
试的信度和效度都 难以得到保证。 这是因为:填空题要是考点多, 解答过程长, 影响结论的因素多,

“三新”背景下高考命题趋势和备考策略(2023)全文

“三新”背景下高考命题趋势和备考策略(2023)全文

素养基于实然而趋于应然,融二者为一体,有较强的观念 含蕴,凸显主动获得能力和主动应用能力的价值意义。从另一 个层面看,素养与先天禀赋有着重要区别。素养的土壤与养分 源自知识与能力,没有知识与能力,也就无法孕育素养。
命题的素养立意指向,体现在知识、能力、价值的融 通与应用中测评学生的素养水平。指向素养立意的试题, 更有结构性、整体性、情境性等真实任务的特点,更关注 任务的价值导向;更追求用做事来考查学生的思维水平与 探究水平,更关注思维、探究的动力状况,以及思维结果 、探究结果的价值意义。
“三新”背景下高考命题趋势和备考策略
2023年是湖南省“三新”背景下的高考元年!
“新课标”作为高考命题的重要依据,再也没有考 试大纲或考试说明!“新教材”作为高考命题内容的 重要载体!“新高考”的考试模型决定今后10年以上 高考命题的方向!
一、“三新”背景下高考命题的变化 变化一:新高考将不再有“选考”,全部是“必考”。 教育部颁的各学科课程标准有“新要求”,所选的学科 课程要全部学完所有选择性必修课程。
第三轮复习的时间段约在:第二年5月左右,就是平常所说的 冲刺阶段,该阶段的效果很大程度上决定着高考的成败。这轮复习 的主要目标是通过选择高质量的模拟题进行强化训练,提高解题速 率,加深对所学知识的深刻理解与融会贯通,在知识应用中提升学 科核心素养。
(3)第三轮复习:强化训练,提升能力,融会贯通
第三轮复习的基本模式为:考试讲评、反思纠错、回归教材、 答疑指导和总结提升,每一个环节都需要深刻理解与扎实推进,要 形成良好的学习习惯和时间观念,确保在高考中学科关键能力的应 用与迁移。
从知识层面上讲,学科知识是有内在的、紧密联系的,复 习的过程便是将这种联系形成知识网络的过程,这有利于知识 在头脑中的激活和提取;从素养层面上讲,学生应用所学知识 在不同问题情境中分析与解决实际问题,并在教师引导下对知 识加以整理和归纳,是提高学科关键能力的重要途径。

高考数学重点题型答题技巧

高考数学重点题型答题技巧

高考数学重点题型答题技巧高考数学重点题型答题技巧一、选择题:高考数学题选择题占40%的比重,把握好选择题是考取高分的基础。

选择题中一些特殊方法,如排除法、特殊值法、特殊图形法、极限思想等的合理运用会使结果更准确,速度更快,尤其是遇到较难的题目,首先应考虑是否可以用这些方法来解。

有些题目其实就是考查学生灵活应对能力的,常规思维很难解决。

而哪些题目可以用此法,关键是看题中所给的条件和所求结论是否在一定范围内具有一般性。

这里提一下特殊值法,特殊值法最适合的是选择题,尤其适合的是选项里都是一个答案的题目,可以直接用特殊值代入验证。

不过,用特殊值要熟练,思路要清晰,基础知识要完全考虑到,而且不能脱离题干,不然很容易得出错误的结论。

另外,特殊值法并不是只是代入一个特殊值就好了,可以尽量把能想到的两三个特殊值代进去,比如在三角形中,特殊值可以代入30°、60°、90°,但同时也应该注意三角形边角比例的关系,不然很容易得出错误的答案,这样就得不偿失了。

这里解析中取的特殊值是等边三角形,三个内角均为60°,如果取三个角分别为30°、60°、90°,虽然同样是我们比较熟悉的特殊值,但却跟题干中所提到的“三个角对应的三条边a、b、c为等差数列”不符,自然就无法得到正确答案了。

二、填空题:概念要清,方法要对,计算要准。

填空题对思维的严密和计算的准确性要求都很严格。

符号、小数点的错误都会造成劳而无获,因此要特别注意运算的规范,要一丝不苟,不可贪快不细,做无用功。

三、解答题:这一类型的题目的要求除了与填空题相同外,还应注意:1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。

2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。

高考数学试题中选择题的解题策略

高考数学试题中选择题的解题策略
法 解 ; 于 明 显 可 以 否 定 的选 择 应 及 早 排 除 , 缩 小 选 择 的 对 以
择 支 的 范 | 内 找 出 矛 盾 , 样 逐 步 筛 选 , 到 得 出 正 确 的 选 韦 l 这 直
择 . 与特 例 法 、 解 法 等 结 合 使 用 是 解 选 择 题 的 常 蹦 方 它 图 法 , 此 法 的 在 近 几 年 高 考选 择 题 中约 4 % 左 右 . 町 0 3 “ 住 特 征 , 施倒 行 ” 逆 推 法 ) .抓 逆 ( 将 符 个 选 择 项 逐 一 代 入 题 设 进 行 检 验 , 而 获 得 止 确 从 的划 断 . 即将 各 选 项 分 别 作 为 条 件 , 原 题 条 件 作 为 结 论 去 将 验证命题 , 能使 命 题成 立 的选 项 就 是 应 选 答 案 .
刊 n的取 值 范 围是 ( ) .
1 考 数 学 试 题 巾 , 择 题 注 重 多 个 知 识 点 的 小 型 综 .高 选 合 , 透 各 种 数 学 思 想 和 方 法 , 现 以 考 基 本 概 念 的 理 渗 体 解 、 本 方 法 的掌 握 和运 算 的熟 练 为 重 点 导 向 , 否 在 选 择 基 能 题上 获 取 高 分 , 高考 数学 成 绩 影 响 雨 大 . 答 选 择 题 的 基 对 解

合特 值 法 , 困是第 四个 选项 是 非确 定性 的. 原 总之 , 们 合理 运 我
用特 值 法 , 解答 选择 题就 能有 更大 的突 破.
近 几 年 高 考 选 择 题 巾 可用 或 可 结 合 特 值 法 解 答 的 约 占
3 % 左 . 0
2 “ 用蕴 涵 , 断 排除 ” 筛 选 法 ) .巧 果 (
例3 函数 、

新高考数学多选题的解题策略

新高考数学多选题的解题策略
mx2 +
ny2 =1,( ).
A.若 m >n>0,则 C 是椭圆,其焦点在 y 轴上
B.若 m =n>0,则 C 是圆,其半径为 n
C.若 mn <0,则 C 是 双 曲 线,其 渐 近 线 方 程 为
y=±
m
- x
n

以“五育并举”方 针 为 背 景 的 数 学 应 用 问 题,既 践
y2 x2
m
- x;当 m <0,
n>0 时,方 程 化 为 -

n



n
m
1,表示焦点 在 y 轴 上 的 双 曲 线,渐 近 线 方 程 为 y =
±
±
m
- x,故 C 正确 .
n
对于 D,当 m =0,
n>0 时,方程化为y=±
表示两条平行于 x 轴的直线,故 D 正确 .

,
n
综上可知,应选 A,
C,
D.
本题主要考查 椭 圆、双 曲 线 的 标 准 方 程 和 几
何性质,熟知常 见 曲 线 方 程 之 间 的 区 别 是 解
决本题的关键,属于基础题 .
例 2 (
2020 年 山 东 卷 11)已 知 a >0,
b>0,且
a+b=1,则( ).
A.
a2 +b2 ≥


B.
2a-b >
关注新高考
D.若 m =0,
n>0,则 C 是两条直线
把题设方程化 为 标 准 形 式,再 结 合 圆 锥 曲 线
的标准方程和几何性质逐一判断 .
1 1
对于 A,当 m >n>0 时,有 0< < ,方程化为
m n
◇ 福建 廖永福

高考数学各题型答题技巧及解题思路

高考数学各题型答题技巧及解题思路

高考数学各题型答题技巧及解题思路高考数学是高考三科中重要的一科,而其中数学各题型更是着重考查学生的数学基础和逻辑思维能力。

如何应对高考数学各题型,答题技巧及解题思路是重中之重,下文将对此进行详细阐述。

一、选择题型选择题型是高考数学中的必考题型,考查学生对于数学知识点的掌握以及运算技能的理解和应用。

在做选择题时,我们首先需要掌握以下答题技巧:1、理清题意,分析选项,进行排除。

首先要认真阅读题目中的条件和限制,充分理解题目意思。

接着,结合选项进行逐一排除,将不符合题目要求的选项进行剔除,尽可能缩小正确选项的范围。

2、关注题目中的关键点,确定答案。

有一些题目中会存在一些难以计算的数值,但是这些数值可能不是答案,只是一些附加信息。

因此,我们需要关注题目中的关键点,如某个几何图形的形状、数量、运算符号等,有时候答案就隐藏在其中。

3、复核答案,避免扣分。

做完选择题后,一定要检查答案的合理性和准确性,避免因为抄错、计算错误等原因导致分数的扣除。

二、填空题型填空题型是高考数学中常见的一种题型,也考查学生对于数学知识点的理解和运用,同时也是考查学生的计算技巧及对于一些表述的差别的理解。

具体答题技巧如下:1、仔细阅读题目,确定无关量并化简。

在做填空题时,首先要仔细阅读题目,将无关量进行化简,避免因为计算量过大而导致错误。

2、对于公式进行熟记熟练的运用。

对于常见的数学公式和定理,我们需要进行熟知和熟记,再进行熟练的运用。

例如对于等差数列,我们应该熟记其首项 a 和公差 d 的计算方法,并尽可能减少计算出错的可能性。

3、注意单位和精度要求。

填空题中,有时候会要求保留小数位数,或者使用特定单位。

我们需要注意这些细节,尽量减少算术粗劣的错误。

三、解答题型解答题型是高考数学中最常见的题型,也是最考验学生数学综合能力的题型之一。

其答题思路较为复杂,需要在做题时注意以下技巧:1、理解题目,寻求解题思路。

在解答题时,我们需要先仔细阅读题目,理解题目的条件、运算符号等,并寻求解题的思路。

高考数学的解题思路技巧

高考数学的解题思路技巧

高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有四种基本方法:1 回忆法。

直接从记忆中取要选择的内容。

2 直接解答法。

多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

3 淘汰法。

把选项中错误中答案排除,余下的便是正确答案。

4 猜测法。

(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。

函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。

分析和解决最值问题和定值问题的思路和方法也是多种多样的。

命制最值问题和定值问题能较好体现数学高考试题的命题原则。

应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题解答这种题目时,审题显得极其重要。

只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。

在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

高考数学选择题解题策略与技巧分享

高考数学选择题解题策略与技巧分享

高考数学选择题解题策略与技巧分享高考选择题解题策略与技巧分享高考数学选择题一般有两种解法。

首先,考虑问题,寻求结果;第二种是联合考虑阀杆和选项,或者探索阀杆条件是否符合选项。

但由于选择题是琐碎的事情,解题的原则是“琐碎”,解题的基本策略是充分利用题型和选项提供的信息进行判断。

一般来说,如果可以定性判断,就不再使用定量计算;如果可以用一个特殊的值来判断,就不需要常规的解法;如果可以用间接解法,就不需要直接解法。

如果能明确否定选项,尽早剔除,缩小选择范围;如果解决问题的方法很多,建议选择X简单解法等。

下面将讨论和分析主要的选择题解题策略和技巧。

一、直接法策略从问题的条件出发,通过正确的运算或推理,可以直接得出结论,然后根据选项进行判断。

二、间接法策略我们用拐弯抹角的方法得出正确的结论,而不是通过设置条件来推理和计算。

三.排除策略从已知条件出发,通过观察、分析或推理每个选项提供的信息,将错误的选项逐一排除,得出正确的结论。

例:(2005年高考试题)四个不共面的固定点到平面的距离相等,这样的平面共用()a3 b . 4 c . 6d . 7解决方法:第一种情况:当一个点在平面的一边,另外三个点在平面的另一边时,有四个点,不包括A和b。

第二种情况:当两个点在平面的一边,另外两个点在平面的另一边时,总共有三个点和七个点。

排除C,选择d。

四、特殊价值方法策略根据选项的xx正确性,限定的特殊值。

字母被替换到词干和选项中,从而确定正确答案。

关键在于选择合适的特殊值[包括特殊点(特殊位置)、特殊函数、特殊序列、特殊图形等。

].例:(2004年高考试题)已知函数y=loga(2-ax)是[0,1]中x的减函数,那么a 的取值范围是()A.(0,1)b(1,2)c(0,2)d[2,)解决方法:如果x1=0,x2=1,那么A和C可以排除。

设a=3,x=1,那么2-ax=2-30,对数没有意义,排除D,选择b。

动词(verb的缩写)替代验证、估计、数形结合、极限法等方法和策略除了以上方法,还有估算法、极限法等其他方法和技巧,也可以灵活运用在高考数学的选择题中。

2024新高考数学一轮题型归纳与解题策略

2024新高考数学一轮题型归纳与解题策略

2024年的新高考已经成为许多学生和家长关注的焦点。

其中,数学作为重要科目之一,其题型和解题策略更是备受瞩目。

在这篇文章中,我们将对2024新高考数学一轮题型进行归纳与解题策略的探讨,希望可以为广大考生提供一些帮助和参考。

一、选择题选择题一直是高考数学中的重要部分,2024年新高考数学考试也不例外。

选择题分为单选题和多选题两种,对考生的基础知识和解题能力提出了一定的要求。

1. 单选题单选题主要考察考生对基本概念和基本计算的掌握能力,解题时需要注意选项的干扰性和陷阱。

解题策略包括:(1)审题、理顺思路,理解题目的要求和条件,不要急于下结论;(2)注意排除干扰项,通过逐个比较选项的大小、符号等来判断正确答案;(3)在计算过程中,注意不同计算方法的灵活运用,选择合适的计算路径。

2. 多选题多选题要求考生在正确的基础上适当增加选项,或者在不正确的基础上适当删除选项,对考生的逻辑思维和分析能力提出了更高的要求。

解题策略包括:(1)审题,理清题意,对每个选项进行分析,找出其中的规律和通信;(2)大胆猜测,通过逻辑推理来确定正确答案,同时要注意排除干扰项;(3)多方面思考,不要被表象所迷惑,要注重本质和规律的把握。

二、填空题填空题是考察考生对知识的掌握和运用能力的重要手段,2024年新高考数学的填空题也不例外。

填空题题目设计灵活多样,涉及的知识点广泛。

解题策略包括:(1)审题,理清题意,弄清需要求解的未知数以及所形成的方程;(2)将已知条件和未知量通信起来,逐步推导出未知量的结果;(3)在解题过程中,要注意计算的准确性和规范性,特别是涉及到公式和计算方法的要求。

三、解答题解答题是数学考试中的重头戏,对考生的综合运用能力和解决问题的潜力提出了更高要求。

解答题的题型涵盖了数学的各个领域,如代数、几何、概率统计等,对考生的知识结构和综合能力提出了更高的要求。

1. 简答题简答题要求考生对于某种现象或者某个问题有一定的了解和认识,同时还要求考生能够用简练的语言进行准确的描述和分析。

高考数学解题策略“以退为进”

高考数学解题策略“以退为进”

高考数学解题策略“以退为进”“以退为进”整个主题框架——退到特殊环境、退到摸清纪律、退到看懂标题、退到性质定理、退到猜出终于、退到“同族”子题等。

退中有法,以退为进。

数学上的特殊环境包括:变量值的特殊化、函数剖析式的特殊化、图形形状的特殊化、位置干系的特殊化、极度化也是一种特殊化、甚至还包括定量标题特殊成定性标题……退到特殊环境,由此产生了“特殊值法、特殊函数法、特殊图形法、极度剖析法、估算法”等等。

都是大众熟悉的,用来办理选择、填空题是很有趣的。

以退为进,退出了一些选择题、填空题的解题技能,看似歪路左道,却减少时间,进步效率。

很多时候,只有在基础知识熟悉到一定程度上,解题阅历积累到一定程度上,胆识抵达一定程度,才有了这些“歪路左道”,要求本来挺高的。

这些要领正是表现了——退中有术(奇妙的办理要领)。

解数学题真的能培育学生的韧性和毅力。

很多时候,解题便是熬,谁能熬到最后,谁就熬出了成功,从这个层面上讲,解题还可以让我们修身养性。

我们不妨试想一下,当学生把我们教的知识点全都除掉的话,我们教给学生的工具还剩下什么?一定是思考和办理标题的计谋、要领还有意志,我觉得这便是能力,这应该是我们老师在传授历程中应该多多思虑的工具。

学生从“完全不明白”——“担心害怕”——“壮着胆量试试”——“慢慢明白”——“找到纪律”——“大胆猜测终于”——“用 点数学语言描述”。

我们让学生这样来体验一下完整的历程,可以锻炼他们动手办理标题的能力。

以退为进,先足够地退到我们最简略看明白的地方,认透了,钻深了,然后再上去。

知道怎么退,本来也就知道怎么进。

西席的高度影响了学生的高度,西席的态度决定了学生的态度。

标题1、11个女孩与n 个男孩去摘苹果,一共摘了2n +9n-2个苹果,假设每个小孩摘的苹果数相同,则____________多(填“男孩”或“女孩”)提示:可用多项式除法(2n +9n-2能被11+n 整除)或直接从1开始查验标题2设()()473102222n f n n N +=++++∈……则()f n = ( )A 、()2817n -B 、()+12817n -C 、()+32817n -D 、()+42817n - 提示:n 取0、1即可标题3、()()22020cos cos 120cos 240______ααα++++=提示:特殊值即可(不放心就多试几个)标题4:定义在R 上的偶函数()f x 的导函数为()f x ',且对()(),22x R f x xf x '∀∈+<恒成立,则不等式()()2211x f x f x -<-的解集为( )A 、{},1x x R x ∈≠±B 、 ()-11,C 、 ()()--1+∞⋃∞,1,D 、()()-1001⋃,, 提示:特殊偶函数:()0f x =标题5、()0203-sin 702cos 10=- A 、12 B 、2 C 、22 D 、3 提示:分子大于2,分母小于2,答案比1大标题6、如图G 为三角形OAB 的中线OM 上的一点,PQ 过G ,分别交OA 、OB 于点P 、Q ,OP m OA=,OQ n OB =。

高考数学核心考点解题方法与策略

高考数学核心考点解题方法与策略

一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。

二、解题策略选择1.先易后难是所有科目应该遵循的原则,而表现在数学试卷上显得更为重要。

一般来说,选择题的后两题,填空题的后一题,旧高考解答题的20和21题是难题,22和23是二选一的题目,相对比较容易,新高考解答题的后两题是难题(一般是入口容易,拿高分难,所以也不能完全放弃,应该是争取多拿分)。

当然,对于不同的学生来说,有的简单题目也可能是自己的难题,有的难题却可能是自己的容易题。

所以题目的难易只能由自己确定。

一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。

2.选择题有其独特的解答方法,首先重点把握选择项也是已知条件,利用选择项之间的关系可能使你的答案更准确。

切记不要“小题大做”。

注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。

虽然不能完全解答,但是也要把自己的想法与做法写到答题卷上。

多写不会扣分,写了就可能得分。

(1)直接法直接法在选择题中的具体应用就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.由于填空题和选择题相比,缺少选择项的信息,所以常用到直接法进行求解.直接法是解决选择、填空题最基本的方法,适用范围广,只要运算正确必能得到正确答案,解题时要多角度思考问题,善于简化运算过程,快速准确得到结果.直接法具体操作起来就是要熟悉试题所要考查的知识点,从而能快速找到相应的定理、性质、公式等进行求解,比如,数列试题,很明显能看到是等差数列还是等比数列或是两者的综合,如果是等差数列或等比数列,那就快速将等差数列或等比数列的定义(或)、性质(若,则或)、通项公式(或)、前n 项和公式(等差数列、,等比数列)等搬出来看是否适用;如果不能直接看出,只能看出是数列试题,那就说明,需要对条件进行化简或转化了,也可快速进入状态.(2)排除法排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高考数学选择题的解题策略一、知识整合1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。

一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。

解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.二、方法技巧1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin2x>cos2x,则x的取值范围是()(A){x|2kπ-34π<x<2kπ+π4,k∈Z} (B) {x|2kπ+π4<x<2kπ+54π,k∈Z}(C) {x|kπ-π4<x<kπ+π4,k∈Z } (D) {x|kπ+π4<x<kπ+34π,k∈Z}解:(直接法)由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以:π2+kπ<2x<32π+kπ,选D.另解:数形结合法:由已知得|sin x|>|cos x|,画出y=|sin x|和y=|cos x|的图象,从图象中可知选D.例2.设f(x)是(-∞,∞)是的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()(A) 0.5 (B)-0.5 (C) 1.5 (D)-1.5 解:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函数,得f (-0.5)=-f (0.5)=-0.5,所以选B .也可由f (x +2)=-f (x ),得到周期T =4,所以f (7.5)=f (-0.5)=-f (0.5)=-0.5. 例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A ) 1440 (B ) 3600 (C ) 4320 (D ) 4800解一:(用排除法)七人并排站成一行,总的排法有77A 种,其中甲、乙两人相邻的排法有2×66A 种.因此,甲、乙两人必需不相邻的排法种数有:77A -2×66A =3600,对照后应选B ;解二:(用插空法)55A ×26A =3600.直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( ) (A ))1,31( (B ))32,31( (C ))21,52( (D ))32,52( 解:考虑由P 0射到BC 的中点上,这样依次反射最终回到P 0,此时容易求出tan θ=21,由题设条件知,1<x 4<2,则tan θ≠21,排除A 、B 、D ,故选C . 另解:(直接法)注意入射角等于反射角,……,所以选C . 例5.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n =( )(A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1 解:(特值法)当n =2时,代入得C 20+C 22=2,排除答案A 、C ;当n =4时,代入得C 40+C 42+C 44=8,排除答案D .所以选B .另解:(直接法)由二项展开式系数的性质有C n 0+C n 2+…+C n n -2+C n n =2n -1,选B . 例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A )130 (B )170 (C )210 (D )260解:(特例法)取m =1,依题意1a =30,1a +2a =100,则2a =70,又{a n }是等差数列,进而a 3=110,故S 3=210,选(C ).例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫ ⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q解:取a =100,b =10,此时P =2,Q =23=R =lg 55=知选P <Q <R当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)解:∵ 2-ax 是在[0,1]上是减函数,所以a >1,排除答案A 、C ;若a =2,由2-ax >0得x <1,这与x ∈[0,1]不符合,排除答案D .所以选B .例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +2解:(筛选法)由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A 、C 、D ,所以选B ; 另解:(直接法)设过焦点的直线y =k (x -1),则y kx y x=-=⎧⎨⎩142,消y 得:k 2x 2-2(k 2+2)x +k 2=0,中点坐标有x x x k k y k k k k =+=+=+-=⎧⎨⎪⎪⎩⎪⎪12222222212(),消k 得y 2=2x -2,选B . 筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.4、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( ) (A )π2(B ) π (C ) 2π (D ) 4π 解:(代入法)f (x +π2)=sin[π3-2(x +π2)]+sin[2(x +π2)]=-f (x ),而 f (x +π)=sin[π3-2(x +π)]+sin[2(x +π)]=f (x ).所以应选B ; 另解:(直接法)y =32cos2x -12sin2x +sin2x =sin(2x +π3),T =π,选B . 例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( ) (A )x =-2π (B )x =-4π (C )x =8π (D )x =45π 解:(代入法)把选择支逐次代入,当x =-2π时,y =-1,可见x =-2π是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A .另解:(直接法) ∵函数y =sin (2x +25π)的图象的对称轴方程为2x +25π=k π+2π,即 x =2πk -π,当k =1时,x =-2π,选A . 代入法适应于题设复杂,结论简单的选择题。

若能据题意确定代入顺序,则能较大提高解题速度。

5、图解法:据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.例12.在)2,0(π内,使x x cos sin >成立的x 的取值范围是( )(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ 解:(图解法)在同一直角坐标系中分别作出y =sin x 与y =cos x 的图象,便可观察选C .另解:(直接法)由x x cos sin >得sin (x -4π)>0,即2 k π<x -4π<2k π+π,取k =0即知选C .例13.在圆x 2+y 2=4上与直线4x +3y -12=0距离最小的点的坐标是( ) (A )(85,65) (B )(85,-65) (C )(-85,65) (D )(-85,-65) 解:(图解法)在同一直角坐标系中作出圆x 2+y 2=4和直线4x +3y -12=0后,由图可知距离最小的点在第一象限内,所以选A .直接法先求得过原点的垂线,再与已知直线相交而得.例14.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)解:(图解法)在同一直角坐标系中,作出函数()y f x =的图象和直线1y =,它们相交于(-1,1和(1,1)两点,由0()1f x >,得01x <-或01x >而是一种数形结合的解题策略.但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.如:例15.函数y =|x 2—1|+1的图象与函数y =2 x 的图象交点的个数为( )(A )1 (B )2 (C )3 (D )4本题如果图象画得不准确,很容易误选(B );答案为(C )。

相关文档
最新文档