单调性与最大(小)值 精品教案
单调性与最大(小)值(第二课时)教案
1.3 函数的基本性质1.3.1 单调性与最大(小)值(第二课时)一、教材分析:二、学习目标:①通过实例,使学生体会、理解函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识;②能够用函数的性质解决日常生活中简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.三、教学重点:理解函数的最大(小)值的概念及其几何意义.四、教学难点:了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.五、课时安排:1课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m2的矩形新厂址,新厂址的长为x m,则宽为m,所建围墙y m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?2、自主探索,尝试解决老师给出学生们一些问题让学生思考,并对学生的回答进行点评,然后一起总结得出结论.层层引入,完成本节课学习的主题.问题1:作出函数y=-x2-2x,y=-2x+1(x∈[-1,+∞)),y=f(x)的图象如图所示.观察这三个图象的共同特征.函数y=-x2-2x图象有最高点A,函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.问题2:你是怎样理解函数y=f(x)的图象的?函数图象是点的集合,是函数y=f(x)的一种表示形式,其上每一点的坐标(x,y)的意义是:自变量x的取值为横坐标,相应的函数值y为纵坐标.图象从“形”的角度描述了函数的变化规律.问题3:你是怎样理解函数图象最高点的?图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.问题4:问题1中,在所作函数y=f(x)的图象上任取一点A,设图像最高点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象的最高点C?由于点C是函数y=f(x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.3、信息交流,揭示规律问题5:在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.问题6:函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.问题7:函数最大值的几何意义是什么?函数图象上最高点的纵坐标,体现了数形结合思想的应用.问题8:函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.问题9:点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?不是,因为该函数的定义域中没有-1.问题10:由这个问题你发现了什么值得注意的地方?讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.问题11:类比函数的最大值,请大家思考一下给出函数最小值的定义及其几何意义.函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图象上最低点的纵坐标.问题12:类比问题10,你认为讨论函数最小值应注意什么?讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.(二)、合作学习 让学生合作做练习,教师巡视指导然后讲解例题. 【例1】“菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度h m 与时间t s 之间的关系为h (t ) = – 4.9t 2 + 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m )?解:作出函数h (t ) = – 4.9t 2 + 14.7t + 18的图象(如图). 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t ) = – 4.9t 2 + 14.7t +18,我们有:当t =14.72( 4.9)-⨯-=1.5时,函数有最大值h =24( 4.9)1814.74( 4.9)⨯-⨯-⨯-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29m.【例2】已知函数y =21x -(x [2,6]),求函数的最大值和最小值.分析:由函数y =21x -(x [2,6])的图象可知,函数y =21x -在区间[2,6])的图象可知,函数y =21x -在区间[2,6]上递减. 所以,函数y =21x -在区间[2,6]的两个端点上分别取得最大值和最小值.解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1) – f (x 2) =122211x x --- =21122[(1)(1)](1)(1)x x x x -----=21122()(1)(1)x x x x ---. 由2≤x 1<x 2≤6,得x 2 –x 1>0,(x 1–1) (x 2–1)>0,于是 f (x 1) – f (x 2)>0,即 f (x 1)>f (x 2).所以,函数y =21x -是区间[2,6]上是减函数. 因此,函数y =21x -在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得的最大值,最大值是2,在x = 6时的最小值,最小值是0.4(三)、当堂检测1、课本题组题,1,5,3932B p p2、已知函数f (x ) = x 2 – 2x – 3,若x ∈[t ,t +2]时,求函数f (x )的最值.解:∵对称轴x = 1,(1)当1≥t +2即t ≤–1时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (t +2) = t 2 +2t –3.(2)当22t t ++≤1<t +2,即–1<t ≤0时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (1) = – 4.(3)当t ≤1<22t t ++,即0<t ≤1,f (x )max = f (t +2) = t 2 + 2t – 3,3、.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.解:设商品售价定为x 元时,利润为y 元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).当且仅当x=12时,y 有最大值160元,即售价定为12元时可获最大利润160元.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)请同学们从下列几方面分组讨论:1.最值的概念2.应用图象和单调性求最值的一般步骤.3..函数的最值及几何意义如何?4..你学了哪几种求函数最值的方法?5..求函数最值时,要注意什么原则?七.课外作业课本P39习题1.3 A组第5题,B组第1,2题.八、教学反思:。
函数的单调性与最大最小值的教案
函数的单调性与最大最小值的教案一、教学目标1. 让学生理解函数的单调性的概念,掌握判断函数单调性的方法。
2. 让学生了解函数的最大值和最小值的概念,掌握求函数最大值和最小值的方法。
3. 培养学生运用函数的单调性和最值解决实际问题的能力。
二、教学内容1. 函数的单调性1.1 单调增函数和单调减函数的定义1.2 判断函数单调性的方法1.3 单调性在实际问题中的应用2. 函数的最大值和最小值2.1 最大值和最小值的定义2.2 求函数最大值和最小值的方法2.3 最大值和最小值在实际问题中的应用三、教学重点与难点1. 教学重点:函数的单调性的概念及判断方法,函数最大值和最小值的求法及应用。
2. 教学难点:函数单调性的判断方法,求函数最大值和最小值的方法。
四、教学方法1. 采用讲解法,引导学生理解函数的单调性和最值的概念。
2. 采用案例分析法,让学生通过实际问题体验函数单调性和最值的应用。
3. 采用小组讨论法,培养学生合作解决问题的能力。
五、教学准备1. 教学课件:函数单调性和最值的定义、判断方法和求法。
2. 教学案例:实际问题涉及函数单调性和最值的解答。
3. 练习题:针对本节课内容的练习题,巩固所学知识。
六、教学过程1. 导入:通过复习上一节课的内容,引导学生回顾函数的概念和性质,为新课的学习做好铺垫。
2. 讲解:讲解函数的单调性,通过示例让学生理解单调增函数和单调减函数的定义,介绍判断函数单调性的方法。
3. 案例分析:分析实际问题,让学生运用函数的单调性解决实际问题,体会函数单调性的重要性。
4. 讲解:讲解函数的最大值和最小值的概念,介绍求函数最大值和最小值的方法。
5. 案例分析:分析实际问题,让学生运用函数的最值解决实际问题,体会函数最值的重要性。
6. 练习:让学生独立完成练习题,巩固所学知识。
7. 总结:对本节课的内容进行总结,强调函数的单调性和最值在实际问题中的应用。
七、课堂练习1. 判断下列函数的单调性:1. y = x^22. y = -x^23. y = 2x + 32. 求下列函数的最大值和最小值:1. y = x^2 4x + 52. y = -x^2 + 4x 53. 运用函数的单调性和最值解决实际问题。
《单调性与最大(小)值》教案
《单调性与最大(小)值》教案 11.观察下列各个函数的图象,并说说它过的函数入手,教师归纳:从上引出函数单调面的观察分析可性的概念。
这就以看出:不同的是我们今天所函数,其图象的要研究的函数变化趋势不同,的一个重要性同一函数在不同质——函数的区间上变化趋势单调性(引出课也不同,函数图②在区间____________ 上,随着x 的②在区间____________ 上,随着x 的增大,f(x)的值随着________ .(3)f (x) = x2①在区间____________ 上,义,会求简单函数的值域,那么函数有哪些性质呢?这一节课我们研究这一问题.y 轴右侧是上升的,如何x ,x ,当x <x 时,都有1 2 1 2f(x )< f(x ),那么就说f(x)在区间 D 上是增函数(increasing function)如果函数y=f(x)在某个区间上是增函数或能有(严格的)单调性,区间例1 如图是定义在区间[-5,5]上的函数正常数)告诉我们,对于一定量的气体,当其体积V 减少时,压强P 将增大.试用函数的单调性证明之.分析:按题意,只要证明函数P= 在区间(0,+∞)上是减函数即可.1 +在(,∞)D 上的单调性的一般步骤:②作差f(x ) f(x )-;③变形(通常是因式分解和配方);④定号(即判断差f(x ) f(x )②它在定义域I 上的单调性怎样?证明你1.讨论一次函数y= m x+ b(x R) 的单调性.1.函数的单调性一般是先根据图象判断,再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论(1)函数y xx 1在(-1,+∞)上为f (x)在区间 D 上是增函。
函数的单调性与最大(小)值教案
函数的单调性与最大(小)值教案§1.1.9函数的单调性与最大(小)值(1)第一课时单调性【教学目标】1.知识与能力目标(1)理解函数的单调性、最大(小)值及其几何意义。
(2)学会运用函数图象理解和研究函数的性质.。
(3)理解增区间、减区间等概念,掌握增(减)函数的证明和判别。
2. 过程与方法目标(1)逐步借助图像、表格、自然语言和数学符号语言,建立增(减)函数的概念。
(2)学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养,借助函数图象的直观性得出函数的最值,(3)培养学生利用数学语言对概念进行概括的能力。
3. 情感态度与价值观目标(1)通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯.(2)通过问题链的引入,激发学生学习数学的兴趣;学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习的信心。
【教学重点难点】重点:函数的单调性和最值及其几何意义.难点:增函数、减函数、奇函数、偶函数形式化定义的形成.利用函数的单调性定义判断、证明函数的单调性【教学过程】导入新课如图1-3-1-8所示,观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:图1-3-1-8随x 的增大,y 的值有什么变化?引导学生回答,点拨提示,引出课题.设计意图:创设情景,引起学生兴趣.推进新课新知探究提出问题问题①:分别作出函数y=x+2,y=-x+2,y=x 2,y=x1的图象,并且观察自变量变化时,函数值的变化规律.如图1-3-1-9所示:图1-3-1-9问题②:能不能根据自己的理解说说什么是增函数、减函数?设计意图:从图象直观感知函数单调性,完成对函数单调性的第一次认识:直观感知. 问题③:如图1-3-1-10是函数y=x+x2(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图1-3-1-10设计意图:使学生体会到用数量大小关系严格表述函数单调性的必要性.问题④:如何从解析式的角度说明f(x)=x 2在[0,+∞)上为增函数?设计意图:把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习作好铺垫.问题⑤:你能用准确的数学符号语言表述出增函数的定义吗?设计意图:让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.引导方法与过程:问题①:引导学生进行分类描述图象是上升的、下降的(增函数、减函数),同时明确函数的图象变化(单调性)是对定义域内某个区间而言的,是函数的局部性质. 问题②:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识. 学生的困难是难以确定分界点的确切位置.问题③:通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.问题④:对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x 1、x 2.问题⑤:师生共同探究:利用不等式表示变大或变小,得出增函数严格的定义,然后学生类比得出减函数的定义.归纳总结:1.函数单调性的几何意义:如果函数y=f(x)在区间D 上是增(减)函数,那么在区间D 上的图象是上升的(下降的).2.函数单调性的定义:略.可以简称为步调一致增函数,步调相反减函数.讨论结果:①(1)函数y=x+2,在整个定义域内y 随x 的增大而增大;函数y=-x+2,在整个定义域内y 随x 的增大而减小.(2)函数y=x 2,在[0,+∞)上y 随x 的增大而增大,在(-∞,0)上y 随x 的增大而减小.(3)函数y=x1,在(0,+∞)上y 随x 的增大而减小,在(-∞,0)上y 随x 的增大而减小.②如果函数f(x)在某个区间上随自变量x 的增大,y 也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x 的增大,y 越来越小,我们说函数f(x)在该区间上为减函数.③不能.④(1)在给定区间内取两个数,例如2和3,因为22<32,所以f(x)=x 2在[0,+∞)上为增函数.(2)仿(1),取多组数值验证均满足,所以f(x)=x 2在[0,+∞)上为增函数.(3)任取x 1、x 2∈[0,+∞),且x 1<="" p="">⑤略应用示例例1课本P 29页例1.思路分析:利用函数单调性的几何意义.学生先思考或讨论,再回答.点评:本题主要考查函数单调性的几何意义.图象法求函数单调区间的步骤:①画函数的图象;②观察图象,利用函数单调性的几何意义写出单调区间.图象法的难点是画函数的图象,常见画法有描点法和变换法.答案:略.变式训练课本P 32练习4.例2课本P 32页例2.思路分析:按题意,只要证明函数p=Vk 在区间(0,+∞)上是减函数即可,用定义证明. 点评:本题主要考查函数的单调性.利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:(定义法)①任取x 1、x 2∈D ,且x 1<="" p="">②作差f(x 1)-f(x 2);③变形(通常是因式分解和配方);④定号(即判断差f(x 1)-f(x 2)的正负);⑤下结论(即指出函数f(x)在给定的区间D 上的单调性).易错分析:错取两个特殊值x 1、x 2来证明.答案:略.变式训练判断下列说法是否正确:①已知f(x)=x1,因为f(-1)<f(3),则函数f(x)在区间[2,3]上为增函数.<="">③若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数. ④因为函数f(x)=x 1在区间(-∞,0)和(0,+∞)上都是减函数,所以f(x)=x1在(-∞,0)∪(0,+∞)上是减函数.活动:教师强调以下三点后,让学生判断.1.单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.2.有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).3.函数在定义域内的两个区间A 、B 上都是增(或减)函数,一般不能认为函数在A ∪B 上是增(或减)函数.答案:这四个判断都是错误的.思考:如何说明一个函数在某个区间上不是单调函数?证明一个命题成立时,需要有严格的逻辑推理过程,而否定一个命题只需举一个反例即可.也就是说,只要找到两个特殊的自变量,不符合定义就行.知能训练课本P 32练习2.拓展提升试分析函数y=x+x1的单调性. 活动:先用计算机画出图象,找出单调区间,再用定义法证明.答案:略.课堂小结学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法:数形结合.(4)函数单调性的几何意义是:函数值的变化趋势,即图象是上升的或下降的.【作业】:课本P 39习题1.3A 组2、3、4【反思】。
1.3.1 单调性与最大(小)值 教案
1。
3.1 单调性与最大(小)值第1课时错误!教学目标1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点难点教学重点:函数单调性的概念、判断及证明.教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.教学方法教师启发讲授,学生探究学习.教学手段计算机、投影仪.错误!创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.图1引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.【设计意图】由生活情境引入新课,激发兴趣.归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数y=x+2,y=-x+2,y=x2,y =错误!的图象,并且观察自变量变化时,函数值有什么变化规律?图2预案:(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.(2)函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.(3)函数y=错误!在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y 越来越小,我们说函数f(x)在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数y=x+错误!(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图3学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.(3)任取x1,x2∈[0,+∞),且x1<x2,因为x12-x22=(x1+x2)(x1-x2)<0,即x12<x22,所以f(x)=x2在[0,+∞)为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2。
《单调性与最大(小)值》第一课时参考教案
1。
3.1 单调性与最大(小)值(第一课时)一、 教学目标1.知识与技能:(1)理解函数单调性的概念(2)学会判断一些简单函数在给定区间上的单调性(3)掌握利用函数图像和单调性定义判断、证明函数单调性的基本方法、步骤2.过程与方法:通过函数单调性概念的学习,让学生体验概念形成的过程,同时了解从特殊到一般、具体到抽象、感性到理性的数学思考的基本方法,培养学生的数学思维能力3.情感态度与价值观:通过函数单调性的探究过程,培养学生细心观察、认真分析、严谨论证的良好思维习惯。
同时,让学生体会到数学来自于生活、又服务于生活。
二、教学重点与难点教学重点:函数单调性的概念教学难点:从图像的直观感知到函数增减的数学符号语言的过渡三、教学模式:引导探究四、教学方法:教师启发讲授五、 教学基本流程:六、 教学过程:1.创设情境(1)(提问学生)据说,由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请说明时间调动的原因.(2)由图象可知,7月25日之后的16天内,北京平均气温、平均降雨量和平均降雨天数均呈现上升的趋势。
而8月8日到8月24日,均呈现下降的趋势,比较适宜大型国际体育赛事.(过渡性语言)原来啊,8月8日除了好意头之外,还有这么一个关于天气的原因.从这个事情可以看出,如果我们可以掌握“上升、下降”的变化规律,对我们的生活是十分有帮助的。
同样的,我们之前所学习的函数也有这样的一种变化规律,下面让我们一起来学习一下。
2. 探究新知(1)观察图像,感知特征(直观感知)首先,我们看看十分熟悉的两个函数,一次函数x x f =)(和二次函数2)(x x f =,现在,我们一起来观察一下两个图像,有没有发现类似于我们前面天气图像的变化规律?(预测):学生通过感知,可以看出,从左到右,一次函数x x f =)(的图像是上升的;而二次函数2)(x x f =的图像在y 轴左侧是下降的,在y 轴右侧是上升的。
函数的单调性与最大(小)值 高中数学获奖教案
、3.2.1单调性与最大(小)值(第一课时)(人教A 版普通高中教科书数学必修第一册第三章)一、教学目标1.借助函数图像,会用符号语言表达函数的单调性、最大(小)值,理解它们的作用与实际意义;2.会用定义简单证明函数的单调性;3.通过函数的单调性可以画出函数图像;4.在探究抽象函数单调性的过程中感受数学概念的抽象过程及符号表示的作用.二、教学重难点1.函数的单调性精确定义;2.利用函数定义判断函数单调性.三、教学过程1.研究函数单调性的过程1.1创设情境,引发思考【实际情境】 前面我们学习了函数的定义、表示方法,知道函数是描述客观世界中变量之间的一种对应关系,这样可以通过研究函数性质来把握世界的一般规律.什么是函数性质呢?比如随着自变量的增大函数值是增大还是减小的,或者有没有最大值?总的来说函数的性质就是”变化中的规律,变化中的不变性”.今天我们来研究一下函数的一个很重要的性质—函数的单调性.2019新型冠状病毒爆发(2019-nCoV ,世卫组织2020年1月命名;SARS-CoV-2,国际病毒分类委员会2020年2月11日命名 ).面对疫情政府采取了积极、高效、公开、透明的举措,不仅全力维护人民群众生命安全和身体健康,也为维护全球和地区公共卫生安全做出重大贡献,给世界带来信心.我们要为我们生在中国而自豪.要为我们是中国人而自豪!下面函数图像是截取4月16日-6月10日的数据,图1是全国现有确诊趋势;图2本土新增确诊趋势,从这两幅函数图像中我们可以直观的感受疫情的变化.全国现有确诊趋势本土新增确诊趋势问题1:(1)请看这两幅函数图像,从中你发现了图像的哪些特征?你觉得他们反映了函数哪方面的性质?【预设的答案】第一幅函数图像是上升的趋势,也就是函数值随自变量的增大而增大,但是第二幅图有上升有下降.总的来说这两幅图体现函数变化趋势比如上升下降,我们把这种性质叫做函数的单调性.【设计意图】让学生从直观的图像上感知函数的单调性.问题2:下面我们进一步用符号语言刻画函数的单调性.我们先来看一个简单的例子:f(x) =x2,在初中的时候我们就学习了这函数图像,你能现在画出这个图像吗?请在草稿纸上画出来.我们一般都用的是五点作图,在(0,+∞]上我们取的两个点满足随自变量的增大而增大,你能能否证明在(0,+∞]上所有点变化趋势也是这样的吗?也就是说明我们还有必要用代数的方法证明一下.请大家思考一下如何证明.【活动预设】我们不可能把所有的点取一遍,因为区间上的点是有无穷多个,那我们怎么把”无限”的问题转化为一种”有限”的问题?(让学是感受数学符号语言的作用)那我们可以用x1, x2来表示,请大家看一下几何画板我们发现只要x1<x2时,都有f(x1)<f(x2).(这里可以让学生用之前学习的不等式的性质证明一下f(x1)<f(x2))【设计意图】主要是引导学生如何定量的刻画函数的单调性,这个过程要让学知道定量刻画函数单调性的必要性.体会形少数时难入微.同时感受符号语言巨大的作用.1.2探究典例,形成概念活动1:通过以上活动,请同学们用符号语言总结一下上面函数的性质.【活动预设】∀x1,x2∈(0,+∞),当x1<x2时,都有f(x1)<f(x2),这时我们就说函数在区间(0,∞)上是单调递增的.【设计意图】让学生更加熟悉符号语言的表示方法.问题3:通过上述例子给出函数f(x)在区间D上单调性的符号表述.【活动预设】一般的,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减. 活动2:请同学们判断下列命题知否正确(1) 设A是区间D上某些自变量的值组成的集合,而且∀x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),我们能说函数f(x)在区间D上单调递增吗?你能说明理由吗?(2) 如果∀x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(3) 如果∀x,x+1∈D, 都有f(x)<f(x+1),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(4) 函数的单调性是对定义域的某个区间而言,您能举出在整个定义域内单调递增的函数例子吗?你能举出在定义域内的某些区间上单调递增但在另一些区间上单调递减的例子吗?【活动预设】(1)第一问构造了函数f(x)=xsinx+2x,取整函数就可以说明(2)和(3)不正确.(4)让学进一步感知“增函数”、“单调递增”的概念,以及在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.【设计意图】(1)引导学生辨析概念中“任意”两个字;(2)在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.2.初步应用,理解概念例1 根据定义证明函数y=1在区间(0,+∞)上是单调递减的.x【预设的答案】略【设计意图】(1)进一步的熟悉定义,通过定义画出图像(2)单调区间不能并.练1 根据定义证明函数y=x+1在区间(1,+∞)上单调递增.x【预设的答案】略【设计意图】(1)让学生自己动手练习;(2)进一步熟悉定义.例2 根据定义,研究f(x)=kx+b(k≠0)的单调性.【预设的答案】略【设计意图】体会如何求解含参函数的单调性.3.归纳小结,文化渗透1. 什么叫函数的单调性?你能举出一些具体例子吗?2. 你认为在理解函数单调性的时候应把握好哪些关键问题?3. 结合本节课学习过程你对函数性质的研究内容和方法有什么体会?【设计意图】(1)进一步让学生强化对单调性定义的准确把握;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会函数性质的研究方法,体会数学语言的强大,体会数形结合的重要.四、课外作业。
单调性与最大(小)值 --优质教案 (5)
《1.3.1单调性与最大(小)值(第1课时)》教学设计课型:新授课一、教学内容解析函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都要经历直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.二、教学目标按照教学大纲的要求,根据教材和学情,确定如下教学目标:1.从实际问题出发,使学生通过观察、思考,直观感知函数的单调性.通过探究,讨论函数图像的变化趋势与y值随自变量x的变化情况之间的关系.让学生体验“任意”二字的含义,将图形语言与自然语言建立联系.在此过程中培养学生细心观察、认真分析、严谨论证的良好思维习惯.2.从具体的二次函数2x,0(+∞上为增函数入手,通过学生对“y值y=在区间)随x的增大而增大”的逐层深入认识,将自然语言转化为数学符号语言,教师再加以合理引导,顺利突破本课第一个难点。
使学生从形与数两方面理解增、减函数的概念,掌握运用函数图像和单调性的定义判断函数单调性的方法.在此,让学生领会数形结合的数学思想方法,经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.3.通过对增、减函数概念的深入挖掘,初步掌握证明函数单调性的方法与步骤,培养学生归纳、概括、抽象的能力和语言表达能力,提高学生的推理论证能力.三、学生学情分析学生在初中学习了一次函数、二次函数、反比例函数的基础上对函数的增减性有一个初步的感性认识,已具备了一定的观察事物能力和抽象思维能力,但对于感性思维向理性思维的过渡仍有一定的障碍,对于自然语言向符号语言的转化,学生会觉得比较困难.另外,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.四、重、难点分析重点:增、减函数概念的形成及单调性的初步应用.难点:增、减函数的概念形成以及根据定义证明函数的单调性.五、教学策略分析本节课是函数单调性的起始课,根据新课改的教学理念,结合本节课的教学内容和学生的认知水平,主要采用让学生自主探究、独立思考、合作交流、探究成果展示及教师启发引导的教学方式进行教学.同时使用多媒体辅助教学,增强直观性,提高教学效果和教学质量.在学生的学法上我重视让学生利用图形直观启迪思维,完成从感性认识到理性思维的质的飞跃.让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.六、教学过程(一)创设情境引例某品牌电热水壶,烧开一壶水需要6分钟,水开后自动断电,50分钟后冷却至室温.(1)你能描述一下,水温随时间的变化时如何变化的吗?(2)你能用图像表示出这种变化关系吗?(3)你能将“图像的变化趋势”与“水温随着时间的增加而变化”相结合起来吗?这是一个实际问题,在描述上述变化关系时,把定义域分成了两个区间去研究.函数图像上升、下降的趋势反应的是函数的一个基本性质------函数的单调性.(通过朴素的实际问题,让学生把增、减函数的图形语言与自然语言对应起来,同时为理解函数的单调性是函数的局部性质打下伏笔.)(二)自主探究1. 个人独立完成或学习小组合作完成.任意写出一个函数的解析式及定义域,画出草图,任意列出一些自变量和相应的函数值,将“图像的上升、下降趋势”与“y 值随x 的变化”结合起来.2.展示探究成果. 探究成果预设:)(2R x x y ∈= }0{1≠=x x xyX<0 x>0)(2R x x y ∈=,在),(+∞-∞上,y 值随x 的增大而增大,图像是上升的.)0,(-∞∈x 时,y 值随x 的增大}0{1≠=x x xy 当而减小,图像是下降的;当),0(+∞∈x 时,y 值也随x 的增大而减小,图像也是下降的.教师追问:能不能说xy 1=的图像在整个定义域上是下降的?能不能说整个定义域上y 值随x 的增大而减小?3.教师用几何画板演示二次函数2x y =的函数值y 随x 的变化而变化的过程,并任意选取自变量给出相应的y 值,让学生再次感受图像上升与y 随x 的增大而增大相对应;图像下降与y 随x 的增大而减小相对应.(三)抽象出增、减函数的定义1.问题引导:究竟如何理解“y 随x 的增大而增大”呢?学生探讨,得出“y 随x 的增大而增大”可以用符号语言表示为“当21x x <时,都有)()(21x f x f <”.函数2x y =,在),0(+∞∈x 上满足,当21x x <时,)()(21x f x f <,则2x y =在),0(+∞上是增函数.2.一般的,对于函数x f y (=),在定义域的某个区间),(b a 上,如何说明它是增函数呢?让学生归纳出增函数的定义:一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f 在区间D 上是增函数.用图像刻画增函数.3.对比增函数的定义,由学生归纳出减函数的定义. 一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间D 上是减函数.用图像刻画减函数。
《单调性与最大(小)值》教案
《单调性与最大(小)值》教案教学目标1、理解增函数、减函数、单调区间、单调性等概念.2、掌握增(减)函数的证明和判别.3、学会运用函数图像进行理解和研究函数的性质.教学重难点重点:判断函数单调性,找出单调区间,熟练求函数的最大(小)值.难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值.教学过程在教法学法方面,采用启发式、探讨式的教学方法,引导学生自主探究,合作交流。
通过学生身边熟悉的事物,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。
一、情景导入问题:1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:(1)随x 的增大,y 的值有什么变化?(2)能否看出函数的最大、最小值?二、新课教学(一)函数单调性定义1.增函数一般地,设函数y =f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性。
○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) .注意“任意”两字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换,两个任意的自变量是属于同一个单调区间。
2.函数的单调性定义如果函数y =f(x)在某个区间上是增函数或是减函数,那么就说函数y =f(x)在这一区间具有(严格的)单调性,区间D 叫做y =f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(即指出函数f(x)在给定的区间D 上的单调性).4、判定函数单调性的常见方法(1)定义法:如上述步骤,这是证明或判定函数单调性的常用方法(2)图象法:根据函数图象的升降情况进行判断。
单调性与最大(小)值 精品教案
单调性与最大(小)值【教学目标】1.巩固函数单调性的概念;熟练掌握证明函数单调性的方法和步骤;初步了解复合函数单调性的判断方法。
2.会求复合函数的单调区间。
明确复合函数单调区间是定义域的子集。
【教学重点】熟练证明函数单调性的方法和步骤。
【教学难点】单调性的综合运用【课时安排】1课时【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:1.对于函数的定义域I 内某个区间上的任意两个自变量的值)(x f 21,x x (1)若当<时,都有<,则说在这个区间上是增函数;1x 2x )(1x f )(2x f )(x f (2)若当<时,都有 >,则说在这个区间上是减函数。
1x 2x )(1x f )(2x f )(x f 2.若函数在某个区间是增函数或减函数,则就说函数在这一区间具有)(x f y =)(x f y =(严格的)单调性,这一区间叫做函数的单调区间。
此时也说函数是这一区间上的)(x f y =单调函数。
3.判断证明函数单调性的一般步骤是:(1)设,是给定区间内的任意两个值,且1x 2x <;(2)作差-,并将此差式变形(要注意变形的程度);(3)判断1x 2x )(1x f )(2x f )(1x f -的正负(要注意说理的充分性);(4)根据-的符号确定其增减性。
)(2x f )(1x f )(2x f 二、讲解新课:1.函数单调性的证明例1.判断并证明函数的单调性3)(x x f =证明:设则21x x <)x x x )(x x (x x x )f(x )f(x 22212121223121++-=-=-∵ ∴ ,,21x x <021<-x x 0432(22221222121>++=++xx x x x x x ∴即 (注:关键的判断)021<-)f(x )f(x )f(x )f(x 21<021<-)f(x )f(x ∴在R 上是增函数。
高中数学新人教版A版精品教案《1.3.1 单调性与最大(小)值》
§函数的单调性(人教版必修一)教案河北易县中学边红霞一、教材分析1、地位及作用本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质,常伴随着函数的定义域、值域、最值、奇偶性等其它性质出现。
它既是在学生学过函数概念、图象、表示方法等知识后的延续和拓展,又是后面研究指数函数、对数函数、幂函数等各类函数的基础,同时单调性在比较大小、解不等式、证明不等式、数列的性质以及其它知识的综合应用中发挥着重要作用。
研究函数单调性的过程体现了数学的“数形结合”和“从特殊到一般”的思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
2、教学目标1)、知识目标:(1)理解单调性概念,掌握函数单调性的应用(2)函数单调性的研究经历了从直观到抽象,以图助数的过程,在这个过程中,通过自主探究活动,体验数学概念的形成过程。
2)、能力目标:在探索过程中培养分析、归纳、抽象思维及推理判断能力。
初步运用函数思想理解和处理现实生活和社会中的简单问题。
3)、情感目标:在参与过程中体验成功的喜悦,感受学习数学的乐趣,提高学好数学的自信。
3、教学重点与难点难点:函数单调性定义。
重点:利用定义证明函数的单调性。
二、教学方法根据学生的认知规律,本节采用探索式的教学方法,利用启发、合作探究、由浅入深进行教学,以激发学生思维,使教学过程真正成为学生的学习过程,以熟悉的问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
在鼓励学生主体参与的同时,发挥教师的主导作用,教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
三、学法分析1、让学生利用图形直观启迪思维,并通过对比构造,来完成从感性认识到理性思维质的飞跃,不断体验函数是描述客观世界变化规律的基本数学模型。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
单调性与最大小值说课稿教案精修订
单调性与最大小值说课稿教案GE GROUP system office room 【GEIHUA16H-GEIHUA《单调性与最大(小)值》说课稿各位领导、专家:你们好!我说课的内容是《普通高中课程标准实验教科书数学》(必修一)§1.3.1《单调性与最大(小)值》,下面谈谈我的教学设想。
一、教材分析1.教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2.教材的地位和作用函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3.教材的重点﹑难点﹑关键教学重点:函数单调性的概念和判断某些函数单调性的方法。
明确单调性是一个局部概念.教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.4.学情分析高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.二、目标分析(一)知识目标:1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
《函数的单调性与最大(小)值》教学设计(第一课时)完美版
《函数的单调性与最大(小)值》教学设计(第1课时)一.教材地位分析《单调性与最大(小)值(1)》系新课标实验教材必修Ⅰ第一章第三节内容,该节中内容包括:函数的单调性、函数的奇偶性。
它是在学习了函数的基础上进一步研究函数必不可少的一部分内容。
二.教学目标设计1.知识与技能:1)使学生理解函数单调性的的概念,并能判断一些简单函数在给定区间上的单调性。
2)启发学生能够发现问题、提出问题,培养学生分析问题、认识问题的能力和创造的解决问题的能力。
3)通过观察—猜想—推理—证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
{2.过程与方法:1)通过渗透数形结合的数学思想,对学生进行辨证唯物注意的思想教育。
2)探究与活动,明白考虑问题要细致,说理要明确。
3.情感态度与价值观:营造亲切、活跃的课堂气氛,实施多元化评价,激励学生,使学生尝试成功,以点燃学生的学习热情,理性认识生活中的增长、递减现象。
三.教学重点和难点设计教学重点:领会函数单调性的实质,明确单调性是一个局部概念。
教学难点:利用函数的单调性的定义证明具体函数的单调性。
`四.学情、教法分析及教材处理按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数。
学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;同时,学生在概念的掌握上缺少系统性、严谨性,在教学中须加强。
根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主。
五.教具准备多媒体课件(Ppowerpoint)六.教学流程设计<:七.教学情境设计 1.【情景导入】2.【新课探究】3.【讲解例1】4.【知识迁移】5.【讲解例2】6.【知识巩固】7.【课堂小结】(通过提问的形式,让学生总结)八.情景设计说明1.注重创设问题情景,通过学生观察,提出问题并建立数学模型解决问题,让学生了解数学的实际应用。
最新最全《单调性与最大小值》教学设计(超全面)
最新最全《单调性与最大(小)值》教学设计(超全面)1《单调性与最大(小)值》教学设计【教学目标】1.知识与技能:(1)初步掌握函数单调性的概念,会判断函数的单调性;(2)掌握基本初等函数的单调性,能运用函数的单调性解决一些实际问题;(3)了解函数的最大(小)值及其几何意义,初步学会求一些简单函数的最值2.过程与方法:(1)通过观察、操作、探究、交流等活动获得感性认识,在活动中获得成功的体验;(2)经历从具体情境中抽象出数学问题,用数学符号表示、通过运算求解的过程,发展符号感、数感、运算能力和推理能力;(3)经历用函数观点去考察变量之间的相互依赖关系,通过数形结合的方法,发现函数的单调性、最大(小)值等性质,发展数形结合思想3.情感态度与价值观:(1)通过学习函数的单调性和最大(小)值,体验到数学的应用价值,激发学习数学的兴趣和求知的欲望;(2)通过独立思考、合作交流,探究解决问题的方法,形成一丝丝与他人合作的意识和愿望;(3)通过了解我国古代数学中的相关问题,增强民族自豪感和爱国热情【教学重点难点】1.教学重点:(1)初步掌握函数单调性的概念,会判断函数的单调性;(2)会运用函数的单调性解决一些实际问题;(3)了解函数的最大(小)值及其几何意义,会求一些简单函数的最值2.教学难点:(1)抽象概括出函数的单调性、最大(小)值等性质;(2)运用数形结合的方法研究函数的性质并将其落实到具体的解题中【教学过程】一、导入新课问题情境引入:分别作出函数和的图象,并观察图象回答问题。
二、新课学习1.函数单调性的概念:问题1:观察图象回答下列问题:当自变量x增大时,函数值y是增大还是减小?能用数学式子表示吗?引导学生得出结论,教师加以总结。
并给出函数单调性的定义。
板书定义并由学生找出关键词。
练习:根据定义判断下列函数的单调性:和。
学生完成后由学生总结判断函数单调性的方法。
由学生板书。
2.函数单调性的判断:探究:观察图象回答下列问题:你是如何判断的?依据是什么?如何用定义证明?学生完成后由学生板书证明过程。
单调性与最大(小)值 说课稿 教案 教学设计
单调性与最大(小)值【教学目标】1.知识与技能:(1)通过函数图象了解函数最大值、最小值在图象上的特征。
(2)会用函数的解析式和数学语言刻画函数最大值和最小值的概念。
(3)了解函数最值在实际中的应用,会求简单的函数的最值。
2.过程与方法:从已有知识出发,通过学生的观察、归纳、抽象和推理论证培养学生的数学能力,进一步领会数形结合和分类的思想方法。
3.情感态度价值观:通过知识的探究过程,突出学生的主观能动性,培养学生认真分析、科学论证的数学思维习惯.【重点难点】1.教学重点:理解函数的最值。
2.教学难点:运用函数的单调性求函数的最值。
【教学策略与方法】1.教学方法:问题引导,主动探究,启发式教学.2.教具准备:多媒体【教学过程】教学流程教师活动学生活动设计意图一、情境引入;喷泉喷出的抛物线型水柱到达“最高点”后便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究——函数的最大值与最小值.1.观察与思考;问题1. 这两个函数图象有何共同特征?问题 2. 设函数y=f(x)图象上最高点的纵坐标为M,则对函数定义域内任意自变量x,学生通过对图像的观察,进行口答。
遵循学生的认知规律,从感性的图像入手来体会函数的单调性,进而为抽象出单调性的数学概念打下基础。
yx o x图M2()([2,6])1=∈-f x x x f(x)与M 的大小关系如何?环节二:二、观察思考,归纳抽象,形成概念; 问题1.函数最大值的“形”的定义: 当函数图象有最高点,我们就说这个函数有最大值。
当函数图象无最高点时,我们说这个函数没有最大值。
问题2.函数图象最高点的数的刻画: 函数图象在最高点处的函数值是函数在整个定义域上最大的值。
对应函数 而言,即对于任意的()y f x = ,都有0()()f x f x ≤函数最大值定义一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有________; (2)(2)存在x0∈I ,使得_______。
单调性与最大(小)值 精品教案
单调性与最大(小)值【教学目标】1.知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识。
再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。
掌握用定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
2.过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性。
3.情态与价值使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感。
【教学重难点】重点:函数的单调性及其几何意义。
难点:利用函数的单调性定义判断、证明函数的单调性。
【教学准备】投影仪、计算机。
【教学过程】一、问题情境1.情境:第2.1.1小结开头的第三个问题。
2.问题:说出气温在哪些时间段内是升高的,怎样用数学语言刻画“随着时间的增大气温逐步提高”这一特征?二、学生活动问题1:观察下列函数的图象(如图1),指出图象变化的趋势。
f x () = 2⋅x+1ox y(1) (2) (3)(4) 图(1)观察得到:问题2:你能明确说出“图象呈逐渐上升趋势”的意思么?讨论得到:在某一区间内, 图象在该区间内呈逐渐上升趋势⇔ 图象在该区间内呈逐渐下降趋势⇔函数的这种性质称为函数的单调性。
三、建构数学问题3:如何用数学语言来准确地描述函数的单调性呢?例如,在区间(0,)上当x 的值增大时,函数y 的值也增大的事实应当如何表述?+∞能不能由于x=1时,y=3;x=2时,y=5,就说随着x 的增大,函数值y 也随着增大?能不能由于x=1,2,,3,4,5,…,相应地y=3,5,7,9,…,就说随着x 的增大,函数值y 也随着增大?通过讨论,结合(2)给出f (x )在区间I 上是单调增函数的定义从图1(1)可以看出:问题4:如何定义单调减函数?(结合图(3)叙述)单调性、单调区间定义:举例(图1 ):四、数学应用例题例1 作出下列函数的图象,并写出函数的单调区间:(1)y=-x 2+2 ; (2)y=(x 0)1x ≠提问:能不能说,函数y=(x 0)在定义域(-)上是单调减函数?1x ≠,0∞(0,)⋃+∞观察下列函数的图象(如图5),并指出它们是否为定义域上的增函数:图(5)学生总结:证明函数在区间(上是增函数。
单调性与最大(小)值 精品教案
§1.3.1单调性与最大(小)值(特色班)(第一课时)【教学目标】:(1)知识目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图象理解和研究函数的性质;能够熟练应用定义判断数在某区间上的的单调性.(2)过程与方法目标:从已有的函数知识经验出发,系统的学习函数知识,理解函数性质(3)情感与能力目标:从知识的发现认识过程中,提升知识的理解,建立数学学习的信心。
通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力。
函数单调性的研究经历了从直观到抽象,从图形语言到数学语言,理解增函数、减函数、单调区间概念的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程,使学生学习数学思考的基本方法,培养学生的数学思维能力.【教学重点】:函数的单调性及其几何意义.【教学难点】:形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;用定义证明函数的单调性..【教学突破点】:从已有的函数知识引入通过函数单调性的概念,而通过具体函数的图像形象理解函数单调性的定义。
——————————————第 1 页(共9页)————————————————————————————第 2 页(共9页)————————————————————————————第 3 页(共9页)————————————————————————————第 5 页(共9页)————————————————————————————第 6 页(共9页)————————————————————————————第 7 页 (共 9页)——————————————§单调性与最大(小)值班级 姓名 A 组一、选择题:1.若一次函数),()0(+∞-∞≠+=在k b kx y 上是单调减函数,则点),(b k 在直角坐标平面的( )A .上半平面B .下半平面C .左半平面D .右半平面2.函数y=x 2+x+2单调减区间是( )——————————————第 8 页 (共 9页)——————————————A .[-21,+∞] B .(-1,+∞) C .(-∞,-21) D .(-∞,+∞) 3.下列函数在(0,3)上是增函数的是( )A .xy 1=B .2x y +=C .2x y -=D .122--=x x y 4.已知函数2)1(2)(2+-+=x a x x f 在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a ≥3B .a ≤-3C .a ≥-3D .a ≤5 5.设A=[1,b](b >1),)(1)1(21)(2A x x x f ∈+-=,若f (x )的值域也是A ,则b 值是( )A .23 B .2 C .3 D .27 6.定义在R 上的f (x )满足f (-x )=f (x ),且在(-∞,0)上是增函数,若)1()1(2f a f <-,则a 的取值范围是( ) A .2||<a B .|a|>2 C .1|1|2<-a D .2||>a二、填空题:7.若函数f(x)=(-k 2+3k+4)x+2是增函数,则k 的范围是 8.定义在区间[a 、b]上的增函数f (x ),最大值是________,最小值是________。
《单调性与最大(小)值》教案10(新人教A版必修1).doc
湖南省省级示范性高中……洞口三中高一数学第一学期授课讲义讲义八:函数的的基本性质•…单调性和最值(1)(一)、基本概念及知识体系:1、教学要求:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质。
2、教学重点:掌握运用定义或图彖进行函数的单调性的证明和判别。
3、教学难点:理解概念。
(二)、教学过程与典例剖析:•、复习准备:1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?2.观察下列各个函数的图象,并探讨下列变化规律:①随兀的增大,y的值有什么变化?②能否看出函数的最大、最小值?③函数图象是否具有某种对称性?★题3.画出函数f(x)=x+2、f(x)二x的图像。
(小结描点法的步骤:列表f描点f连线)二、讲授新课:1・教学增函数、减函数、单调性、单调区间等概念:①根据f(x)=3x+2、f(x)=x.. (x>0)的图象进行讨论:随x的增大,函数值怎样变化?当x >x.时,f(x・)与f(x・.)的大小关系怎样?②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量Xi,X2,当X02时,都有f(Xi)vf(X2),那么就说f(x)在区间D上是增函数(increasing function)④探讨:仿照增函数的定义说出减函数的定义;一区间局部性、取值任意性⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。
⑥讨论:图像如何表示单调增、单调减?所有函数是不是都具有单调性?单调性与单调区间有什么关系?y=x・的单调区I'可怎样?③练习(口答):如图,定义在卜4,4]上的f(x),根据图像说出单调区间及单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们按照列表、描点、连线等步骤先分别画函数 y x2 和 y x3 的图
象。 y x2 的图象如图 1, y x3 的图象如图 2.
图1
2.引入:从函数 y x2 的图象(图 1)看到:
y
图象在 y 轴的右侧部分是上升的,也就是说,当 x 在区间[0,+ )上取值
时,随着 x 的增大,相应的 y 值也随着增大,即如果取 x1, x2 ∈[0,+ ),得到
【教学重点】
函数的单调性的概念;
【教学难点】
利用函数单调的定义证明具体函数的单调性
【课时安排】
1 课时
【教学准备】
多媒体、实物投影仪
【教材分析】
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研 究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问 题中均需用到函数的单调性;在历年的高考中对函数的单调性考查每年都有涉及;同时在这 一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学
单调性与最大(小)值
【教学目标】
(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意 思
(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调 性、写出单调区间
(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单 函数的单调性
-5
y -2 O 1 3 5 x
3)上是减函数,在区间[-2,1),[3,5]上是增函数。
说明:函数的单调性是对某个区间而言的,对于单独
的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题;
质,
x
y x3
y1 = f (x1 ) , y2 = f (x2 ) ,那么当 x1 < x2 时,有 y1 < y2 。 x 这时我们就说函数 y = f (x) = x2 在[0,+ )上是增函数。
图象在 y 轴的左侧部分是下降的,也就是说,
图2
当 x 在区间(- ,0)上取值时,随着 x 的增大, 相应的 y 值反而随着减小,即如果取 x1, x2 ∈(- ,0),得到 y1 = f (x1 )
在本节课中的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂
【教学过程】
利用函数的单调性的定义证明具体函数的单调性是对函数单调性概念的深层理解,且在 “作差、变形、定号”过程学生不易掌握
按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数, 所以对函数的单调性研究也只能限于这几种函数学生的现有认知结构中能根据函数的图象观 察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的 直观性、发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学
说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间
上是增函数,而在另一些区间上不是增函数。例如函数 y x2 (图 1),当 x ∈[0,+ )时是 增函数,当 x ∈(- ,0)时是减函数。
2.单调性与单调区间 若函数 y=f(x)在某个区间是增函数或减函数,则就说函数 f (x) 在这一区间具有(严格 的)单调性,这一区间叫做函数 f (x) 的单调区间。此时也说函数是这一区间上的单调函数。
y
f (x) ,
y2 = f (x2 ) ,那么当 x1 < x2 时,有 y1 > y2 。 这时我们就说函数 y = f (x) = x2 在(- ,0)上是减函数。
f (x1) f (x2 )
函数的这两个性质,就是今天我们要学习讨论的。
x1
x2 x
图3
y
f (x)
二、讲解新课:
f (x1) f (x2 )
中须加强 根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主;同时,本节课在教
学过程中对教材中的函数
y
x3
的图象进行了删除,教学中始终以
y
3x
2、
y
x2
、
y
1 x
等函数为例子进行讨论研究
【教学过程】
一、复习引入:
y y x2
1.复习:我们在初中已经学习了函数图象的画法。为了研究函数的性
x1
x2 x
图4
1.增函数与减函数 定义:对于函数 f (x) 的定义域 I 内某个区间上的任意两个自变量的值 x1, x2 ,(1)若当 x1 < x2 时,都有 f (x1 ) < f (x2 ) ,则说 f (x) 在这个区间上是增函数(如图 3);(2)若当 x1 < x2 时,都有 f (x1 ) > f (x2 ) ,则说 f (x) 在这个区间上是减函数(如图 4)。
y
f (x) 不
f (x1) f (x2 )
数; (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定
x1
x2 x
图5
义
,只要将上述定义中的“ f (x1 ) < f (x2 ) 或 f (x1 ) > f (x2 ) , ”改为“ f (x1 ) f (x2 ) 或 f (x1 ) ຫໍສະໝຸດ f (x2 ) ,”即可;
(4)定义的内涵与外延:
内涵是用自变量的大小变化来刻划函数值的变化情况;
外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函
数值的变化相对时是单调递减。
②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则
为减函数。
三、讲解例题:
例 1 如图 6 是定义在闭区间[-5,5]上的函数 y f (x)
的图象,根据图象说出 y f (x) 的单调区间,以及在每一
单调区间上,函数 y f (x) 是增函数还是减函数。
解:函数 y f (x) 的单调区间有[-5,-2),[-2,1),
[1,3),[3,5],其中 y f (x) 在区间[-5,-2),[1,
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
说明:(1)函数的单调区间是其定义域的子集;
(2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就 能保证函数是增函数(或减函数),例如,图 5 中,在 x1, x2 那样的特定位 置上,虽然使得 f (x1 ) > f (x2 ) ,但显然此图象表示的函数不是一个单调函