方程的解与函数的零点 答案
新教材2021高中人教A版数学必修第一册跟踪训练:4.5.1 函数的零点与方程的解
一、复习巩固1.已知函数y =f (x )有零点,下列说法不正确的是( ) A .f (0)=0B .方程f (x )=0有实根C .函数f (x )的图象与x 轴有交点D .函数f (x )的零点是方程f (x )=0的根 答案:A2.已知函数y =f (x )是定义在R 上的偶函数,当x >0时,f (x )=ln x ,那么函数y =f (x )的零点个数为( )A .一定是2B .一定是3C .可能是2也可能是3D .可能是0解析:x >0时,f (x )=ln x ,根据对数函数的性质知f (x )在(0,+∞)上有一个零点,因为f (x )是定义在R 上的偶函数,所以在(-∞,0)上也有一个零点,而f (0)可能为0也可能不为0,所以零点个数可能是2也可能是3.答案:C3.函数f (x )=2x 2-3x +1的零点是( ) A .-12,-1B.12,1C.12,-1 D .-12,1解析:方程2x 2-3x +1=0的两根为x 1=1,x 2=12,∴函数f (x )=2x 2-3x +1的零点是12,1.答案:B4.若y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若f (a )·f (b )<0,不存在实数c ∈(a ,b ),使得f (c )=0B .若f (a )·f (b )<0,存在且只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )·f (b )>0,不存在实数c ∈(a ,b ),使得f (c )=0D .若f (a )·f (b )>0,有可能存在实数c ∈(a ,b ),使得f (c )=0 解析:由零点存在性定理可知选项A 不正确;对于选项B ,可通过反例“f (x )=x (x -1)(x +1)在区间[-2,2]上满足f (-2)·f (2)<0,但其存在三个零点:-1,0,1”推翻;选项C可通过反例“f(x)=(x-1)·(x+1)在区间[-2,2]上满足f(-2)·f(2)>0,但其存在两个零点:-1,1”推翻.答案:D5.函数f(x)=e x+x-2的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)解析:因为函数f(x)的图象是连续不断的一条曲线,又f(-2)=e-2-4<0,f(-1)=e-1-3<0,f(0)=-1<0,f(1)=e-1>0,所以f(0)·f(1)<0.故函数的一个零点在(0,1).答案:C6.若函数y=f(x)在R上递增,则函数y=f(x)的零点()A.至少有一个B.至多有一个C.有且只有一个D.可能有无数个解析:在R上单调的函数最多有一个零点.答案:B7.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是() A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析:一元二次方程有两个不相等的实根,所以Δ=m2-4>0,解得m>2或m<-2.答案:C8.若函数f(x)在区间(0,2)内有零点,则()A.f(0)>0,f(2)<0B.f(0)·f(2)<0C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0D.以上说法都不正确解析:函数y=f(x)在区间(a,b)内存在零点,我们并不一定能找到x1,x2∈(a,b),满足f(x1)·f(x2)<0,故A、B、C都是错误的,故选D.答案:D9.函数f(x)=2-4-x2(x∈[-1,1])的零点个数为________.解析:令2-4-x2=0,解得x=0,所以函数仅有一个零点.答案:110.二次函数y=x2-2ax+a-1有一个零点大于1,一个零点小于1,则实数a的取值范围是________.解析:由函数的二次项系数大于0可得函数图象开口向上,要满足一个零点大于1,一个零点小于1,只需f(1)<0即可.答案:a>0二、综合应用11.已知函数f(x)为偶函数,其图象与x轴有交点,则该函数的所有零点之和是() A.0 B.1C.3 D.无法确定解析:∵f(x)为偶函数,∴当f(x)与x轴有一个交点(x n,0)时(x n≠0),必有另一个交点(-x n,0),显然所有零点之和为0.答案:A12.已知函数f(x)为奇函数,且该函数有三个零点,则三个零点之和等于()A.0 B.1C.-1 D.不能确定解析:∵奇函数的图象关于原点对称,∴若f(x)有三个零点,则其和必为0.答案:A13.下列说法正确的有________:①对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则函数f(x)在区间(a,b)内一定没有零点;②函数f(x)=2x-x2有两个零点;③若奇函数、偶函数有零点,其和为0;④当a=1时,函数f(x)=|x2-2x|-a有三个零点.解析:①错,如图.②错,应有三个零点.③对,奇、偶函数图象与x轴的交点关于原点对称,其和为0.④对,设u(x)=|x2-2x|=|(x-1)2-1|,如图向下平移1个单位,顶点与x轴相切,图象与x轴有三个交点.∴a=1.答案:③④14.求函数f(x)=2x+lg(x+1)-2的零点个数.解析:法一:∵f(0)=1+0-2=-1<0,f(2)=4+lg 3-2>0,由零点存在性定理,f(x)在(0,2)上存在实根又f(x)=2x+lg(x+1)-2在(0,+∞)为增函数,故f(x)有且只有一个零点.法二:(数形结合)在同一坐标系中作出g(x)=2-2x和h(x)=lg(x+1)的图象(如图所示),由图象可知有且只有一个交点,即函数f(x)有且只有一个零点.15.已知函数f(x)=4x+m·2x+1仅有一个零点,求m的取值范围,并求出零点.解析:令2x=t(t>0),则在方程t2+mt+1=0中,(1)Δ=0,即m2-4=0,m=±2时,t=1或t=-1(舍去).由2x=1,得x=0,满足题意,即m=-2时,有唯一的零点0.(2)Δ>0,即m>2或m<-2时,要使函数有一零点,则须满足方程t2+mt+1=0有一正一负两根.而t1·t2=1>0,故这一情况不会存在.综上所述,m=-2时,f(x)有唯一的零点0.。
函数的零点与方程的解的关系
函数的零点与方程的解的关系在数学中,函数的零点和方程的解是两个非常重要的概念。
函数的零点指的是函数取值为零的点,而方程的解则是使方程等号成立的数值。
在这篇文章中,我们将探讨函数的零点和方程的解之间的关系。
1. 函数的零点函数的零点是指函数在自变量取何值时,函数的取值等于零。
数学上常用符号表示函数的零点,如对于函数f(x),其零点通常表示为f(x) = 0。
求解函数的零点可以通过方程求解的方法来实现。
2. 方程的解方程的解是指使方程成立的数值。
方程是一个数学表达式,通常使用等号将两个表达式连接起来。
方程的解可以是实数或复数,取决于方程的类型和要求。
3. 函数的零点与方程的解的联系函数的零点与方程的解之间存在紧密的联系。
一方面,我们可以将函数的零点转化为方程,通过求解方程来确定函数的零点。
另一方面,方程的解也可以代入函数中,判断是否为函数的零点。
4. 使用函数的零点求解方程当我们要求解一个方程时,有时候可以将方程转化为函数的形式,并找到该函数的零点来得到方程的解。
例如,对于方程x^2 - 4 = 0,我们可以将其转化为函数f(x) = x^2 - 4,然后求解函数f(x) = 0的零点来得到方程的解。
5. 函数的零点与方程的解的示例让我们以一个简单的例子来说明函数的零点与方程的解之间的关系。
考虑方程x^2 - 9 = 0,我们将其转化为函数f(x) = x^2 - 9,然后求解函数f(x) = 0的零点。
首先,我们将函数的表达式设置为零:x^2 - 9 = 0。
然后解这个方程,我们可以得到x = 3或x = -3。
这两个数值就是方程的解,也是函数f(x) = x^2 - 9的零点。
6. 应用举例函数的零点和方程的解在许多领域都有广泛的应用。
例如,在物理学中,函数的零点可以表示系统的平衡点,而方程的解可以用来描述物理现象。
另一个例子是金融领域中的利息计算。
我们可以将某个金融问题建模为一个函数,并通过求解函数的零点来得到方程的解,从而计算出利率或其他相关的数值。
函数的零点与方程的解+课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
. . .
8
.
6
.
4
.
2
.
. 0 1 2 3 4 5 6 7 8 9 10 x
-2 .
-4
-6
f (2) ln 2 2 0,f (3) ln 3 0,即f (2) f (3) 0
又 f (x)在(0, )连续
由函数零点存在定理知,f (x)在(2,3)内至少有一个零点
易证f(x)=lnx+2x-6在(0,+∞)上是增函数, 所以函数在定义域(0,+∞)内仅有一个零点.
[例2]方程ex-x-2=0的根所在区间为( AD ). A.(-2,-1) B.(-1,0) C.(0,1) D(1,2)
(法1)令f(x)=ex-x-2,
(法2)ex-x-2=0的根
f(-2)=e-2+2-2=e-2>0,
⇔ex=x-2的根
f(-1)=e-1+1-2=e-1-1<0, ⇔y=ex和y=x-2的交点横坐标
f(0)=e0-0-2=-1<0, f(1)=e1-1-2=e-3<0, f(2)=e2-2-2=e2-4>0.
画图 检验f(-2)·f(-1)<0 及f(1)·f(2)<0
函数零点存在定理的运用2——确定零点个数
[例3]函数f(x)=ex+ln|x|的零点个数为___2___个.
函数零点存在定理的运用3——由零点个数求参数
记载了费拉里的四 次方程 一般解法
1802~1829·挪威 阿贝尔
证明了五次以上一般方程 没有求根公式
ln x 2x 6 0
y ln x 2x 6
超越方程
零点问题
不能用代数运算求解 一种判定函数有零点的方法
《函数的零点与方程的解》教案、导学案与同步练习
《第四章 指数函数与对数函数》 《4.5.1函数的零点与方程的解》教案【教材分析】本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。
【教学目标与核心素养】 课程目标1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数. 数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念. 【教学重难点】 【教学反思】重点:零点的概念,及零点与方程根的联系; 难点:零点的概念的形成.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】 一、情景导入①方程的解为,函数的图象与x 轴有个交点,坐标为.②方程的解为,函数的图象与x 轴有个交点,坐标为.2230x x --=223y x x =--2210x x -+=221y x x =-+③方程的解为,函数的图象与x 轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x 轴交点的.你能将结论进一步推广到吗?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本142-143页,思考并完成以下问题 1.函数零点的定义是什么?2.函数零点存在性定理要具备哪两个条件?3.方程的根、函数的图象与x 轴的交点、函数的零点三者之间的联系是什么? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.函数的零点对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. [点睛] 函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.2.方程、函数、图象之间的关系方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.3.函数零点的存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0.那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[点睛] 定理要求具备两条:①函数在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0.四、典例分析、举一反三 题型一求函数的零点2230x x -+=223y x x =-+20(0)ax bx c a ++=≠20(0)y ax bx c a =++=≠()y f x =例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x +3x;(2)f (x )=x 2+2x +4; (3)f (x )=2x -3;(4)f (x )=1-log 3x .【答案】(1)-3(2)不存在(3)log 23(4)3.【解析】(1)令x +3x =0,解得x =-3,所以函数f (x )=x +3x 的零点是-3.(2)令x 2+2x +4=0,由于Δ=22-4×1×4=-12<0, 所以方程x 2+2x +4=0无实数根,所以函数f (x )=x 2+2x +4不存在零点. (3)令2x -3=0,解得x =log 23. 所以函数f (x )=2x -3的零点是log 23. (4)令1-log 3x =0,解得x =3, 所以函数f (x )=1-log 3x 的零点是3. 解题技巧:(函数零点的求法)求函数的零点通常有两种方法:一是代数法,令f(x)=0,通过求方程f(x)=0的根求得函数的零点;二是几何法,画出函数y=f(x)的图象,图象与x 轴交点的横坐标即为函数的零点.跟踪训练一1.已知函数f (x )=⎩⎨⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12 D .0 【答案】D【解析】当x ≤1时,令2x -1=0,得x =0.当x >1时,令1+log 2x =0,得x =12,此时无解.综上所述,函数零点为0.题型二判断函数零点所在区间例2函数f (x )=ln x -2x的零点所在的大致区间是A.(1,2) B.(2,3) C.(3,4) D.(e,+∞)【答案】B【解析】∵f(1)=-2<0,f(2)=ln2-1<0,∴在(1,2)内f(x)无零点,A错;又f(3)=ln3-23>0,∴f(2)·f(3)<0,∴f(x)在(2,3)内有零点.解题技巧:(判断函数零点所在区间的3个步骤)(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练二1.若函数f(x)=x+ax(a∈R)在区间(1,2)上有零点,则a的值可能是( )A.-2 B.0 C.1 D.3 【答案】A【解析】f(x)=x+ax(a∈R)的图象在(1,2)上是连续不断的,逐个选项代入验证,当a=-2时,f(1)=1-2=-1<0,f(2)=2-1=1>0.故f(x)在区间(1,2)上有零点,同理,其他选项不符合,选A.题型三判断函数零点的个数例3判断函数f(x)=ln x+x2-3的零点的个数.【答案】有一个零点【解析】[法一图象法]函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x与y=3-x2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点,从而ln x+x2-3=0有一个根,即函数y=ln x+x2-3有一个零点.[法二 判定定理法]由于f (1)=ln1+12-3=-2<0,f (2)=ln2+22-3=ln2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个. 解题技巧:(判断函数存在零点的3种方法)(1)方程法:若方程f (x )=0的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判断零点的个数.(2)图象法:由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系内作出y 1=g (x )和y 2=h (x )的图象,根据两个图象交点的个数来判定函数零点的个数.(3)定理法:函数y =f (x )的图象在区间[a ,b ]上是一条连续不断的曲线,由f (a )·f (b )<0即可判断函数y =f (x )在区间(a ,b )内至少有一个零点.若函数y =f (x )在区间(a ,b )上是单调函数,则函数f (x )在区间(a ,b )内只有一个零点.跟踪训练三1.函数f (x )=⎩⎨⎧4x -4,x ≤1,x 2-4x +3,x >1的图象和函数g (x )=log 2x 的图象的交点个数是________.【答案】3【解析】作出g (x )与f (x )的图象如图,由图知f (x )与g (x )有3个交点.四、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本155页2、3、7、11.【教学反思】本节课结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;通过图像进一步掌握零点存在的判定定理.从而解决本节课的三种题型.《4.5.1 函数的零点与方程的解》导学案【学习目标】知识目标1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.核心素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.【重点与难点】重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.【学习过程】一、预习导入阅读课本142-143页,填写。
(必修第一册)函数的零点与方程的解(同步练习)(含解析)
4.5.1函数的零点与方程的解一、单选题1.以下函数在区间(0,12)上必有零点的是( ) A .y =12xB .y =143x -C .y =ln (x +45)D .y =2x +12.若曲线224,43,x x ay x x x a ⎧->=⎨-+≤⎩与x 轴有且只有2个交点,则实数a 的取值范围是( )A .12a ≤≤B .3a ≥C .12a ≤≤或3a ≥D .12a ≤<或3a ≥3.函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若f (a )=f (b )=f (c )且a ,b ,c 互不相等,则abc 的取值范围是( )A .(1,10)B .(10,12)C .(5,6)D .(20,24)4.设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1)B .(1,2)C .(2,e )D .(e ,3)5.定义在R 上的奇函数()f x 满足:当0x >时,()20212021log xf x x =+,则在R 上方程()0f x =的实根个数为( ) A .1B .3C .2D .2021二、多选题 6.在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是( ) A .y =﹣2xB .y =x ﹣6C .y =3xD .y =x 2﹣3x +47.已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x <D.1223+≥+x x 8.已知函数2ln ,0,()=4,0.x x f x x x x >⎧⎨--≤⎩关于x 的方程()0f x t -=的实数解个数,下列说法正确的是( )A .当0t ≤时,方程有两个实数解B .当4t >时,方程无实数解C .当04t <<时,方程有三个实数解D .当4t =时,方程有两个实数解 三、填空题9.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.10.已知函数()y f x =在区间[]16,上的图像是一段连续的曲线,且有如下的对应值表:设函数y f x =在区间16,上零点的个数为,则的最小值为________. 11.方程22x x +=的根为a ,方程2log 2x x +=的根为b ,则a b +=__________四、解答题12.已知函数()|1|||f x x x a =+-+.若方程()f x x =有三个不同的解,求实数a 的取值范围.13.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.14.若函数()221,1log ,1x x f x x x ⎧-+≤=⎨>⎩.(1)在所给的坐标系内画出函数()f x 图像;(2)求方程()f x m =恰有三个不同实根时的实数m 的取值范围.参考答案1.C 【分析】根据题意,依次分析选项中函数在区间(0,12)上有没有零点,综合即可得答案. 【详解】根据题意,依次分析选项:对于A :,y =12x 0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符对于B ,y =143x -x 0,12)单调递增,且有y >0恒成立,在区间(0,12)上没有零点,不符合题意;对于C ,y =ln (x +45),当x =15时,y =ln1=0,区间(0,12)上有零点,符合题意;对于D ,y =2x +1,在区间(0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符合题意. 故选:C . 2.D 【分析】作出函数24x y =-与243y x x =-+的图象,对参数分类讨论,得出结论.【详解】作出函数24x y =-与243y xx =-+的图象,令240x y =-=,即2x =,故()2,0B ,令2430y x x =-+=,即1x =或3x =,故1,0A 或()3,0C ,当1a <时,只有B 一个零点;当12a ≤<时,有A ,B 两个零点;当23a ≤<时, 有A 一个零点;当3a ≥时,有A,C 两个零点;综上,实数a 的取值范围是:12a ≤<或3a ≥, 故选:D.【分析】先画出分段函数的图象,根据图象确定字母a 、b 、c 的取值范围,再利用函数解析式证明ab =1,最后数形结合写出其取值范围即可 【详解】解:函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩的图象如图:∵f (a )=f (b )=f (c )且a ,b ,c 互不相等 ∵a ∵(0,1),b ∵(1,10),c ∵(10,12)∵由f (a )=f (b )得|lg a |=|lg b |,即﹣lg a =lg b ,即ab =1 ∵abc =c由函数图象得abc 的取值范围是(10,12) 故选:B .4.A 【分析】通过等价转化,把函数的零点转化为函数y =f (x )与y =g (x )图象交点的横坐标,然后画出函数的图象,通过图象即可判断出零点所在的区间. 【详解】函数h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象交点的横坐标, 画出函数y =f (x )与y =g (x )的图象,从图象可知它们仅有一个交点A ,且交点横坐标的范围为()0,1.故选:A.【分析】当0x >时,作出函数2021x y =,2021log y x =-的示意图,由图象交点个数得到方程根的个数,再根据奇函数图象的对称性以及(0)0f =,即可求出方程所有根的个数. 【详解】①当0x >时,令()0f x =,即20212021log xx =-,在同一坐标系中作出函数12021xy =,22021log y x =-的示意图,如下图:函数12021xy =为单调增函数,22021log y x =-为单调减函数,可知两个图象有且只有一个交点P ,横坐标记为0x . 即0x >时方程()0f x =有且只有一个实根0x , ②因为函数()f x 是定义在R 上的奇函数, 所以当0x <时,方程()0f x =也有一个实根0x -,③又∵()f x 是R 上的奇函数,(0)0f =,∵即0也是方程()0f x =的根, 综上所述,方程()0f x =有3个实根. 故选:B. 6.AC 【分析】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,依次计算即可. 【详解】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,对于A,2y x y x =⎧⎨=-⎩,解得00x y =⎧⎨=⎩,即存在完美点()0,0,对于B,6y x y x =⎧⎨=-⎩,无解,即不存在完美点,对于C,3y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩,(对于D,234y x y x x =⎧⎨=-+⎩, 24x x x -+=,即2240x x -+=,解得2(2)44120∆=--⨯=-<,即不存在完美点, 故选:AC. 7.ABD 【分析】函数2()log (1)(0)=-->f x x m m 即为函数函数2log (1)y x =-,y m =,交点的横坐标,作出函数图像,根据图像,易判断A ;根据()12()0f x f x ==,化简整理即可判断B ; 结合基本不等式将和化为积的形式即可判断C ; 利用整体代换结合基本不等式即可判断D. 【详解】解:令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=, 令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标,作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=, 所以12(1)(1)1x x --=,即()12120x x x x -+=, 所以12111x x +=,故B 正确;因为12x x +≥,所以()121212x x x x x x -+≤-120x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误; ()21121212122112233x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=当且仅当21122x x x x =,即21x 时,取等号,故D 正确. 故选:ABD. 8.CD 【分析】方程()0f x t -=即()f x t =,作出函数()f x 的简图,数形结合可得结果. 【详解】方程()0f x t -=即()f x t =,作出函数()f x 的简图,由图可知:当0t <时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解;当0t =时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故A 错误;当4t >时,函数()y f x =的图象与直线y t =有1个交点,即方程()0f x t -=有1个实数解,故B 错误; 当04t <<时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故C 正确; 当4t =时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解,故D 正确. 故选:CD.9.102,3⎡⎫⎪⎢⎣⎭【分析】通过参变分离,转化为1a x x =+在1(,3)2上有解,转化为求函数t =x +1x ,x ∵1(,3)2的值域. 【详解】由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∵1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.故答案为:102,3⎡⎫⎪⎢⎣⎭.10.3 【分析】根据函数零点存在定理,判断函数值的符号,即可判断函数零点个数. 【详解】解:由题意,因为()()230f f <,()()450f f <,()()560f f <,所以根据函数零点存在性定理,在区间(2,3)和(4,5)及(5,6)内至少有一个零点,故函数()y f x =在区间[]16,上的零点至少有3个,即n 的最小值为3, 故答案为:3. 11.2 【分析】利用方程的根于函数图象的交点之间的关系,结合指数函数和对数函数互为反函数的关系,作出图象即可求解【详解】a 是方程22x x +=的根,就是2x y =和2y x =-图象交点的横坐标;b 是方程2log 2x x +=的根,就是2log y x =和2y x =-图象交点的横坐标;在同一坐标系中画出函数2x y =,2log y x =,2y x =-的图象,如图所示:由图可知,a 是2x y =和2y x =-图象交点A 的横坐标,b 是2log y x =和2y x =-图象交点B 的横坐标,因为2x y =与2log y x =互为反函数, 所以图象关于直线y x =对称, 故点A ,B 也关于直线y x =对称, 所以点A ,B 为(),A a b ,(),B b a , 而点A ,B 又在2y x =-上, 所以2b a =-,2a b =-, 即2a b +=, 所以2a b +=, 故答案为:2 12.10a -<<. 【分析】用分离参数法变形方程为1a x x x =-++,引入函数()1g x x x x =-++,作出函数()g x 的图象,由图象与直线y a =有三个交点可得结论. 【详解】方程()f x x =可化为1a x x x =-++,设()1g x x x x =-++,则1,0()1,101,1x x g x x x x x -≥⎧⎪=---≤<⎨⎪+<-⎩,函数图象如下:由图象知()y g x =的图象与直线y a =有三个交点时,10a -<<. 13.(1)(0,2);(2)1. 【分析】(1)根据真数大于0即可. (2)令()0f x =即可. 【详解】(1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2).(2)()()()212log 20,2f x x x x =-+∈,,由()0f x =得221x x -+=,即2210x x -+=,解得1x =, ()f x ∴的零点是1.14.(1)图象见解析;(2)01m <<. 【分析】(1)结合二次函数的图象与性质,对数函数的图象与性质利用描点法作函数的图象,(2)观察()f x 图象,根据()y f x =的图象与y m =的图象有三个交点确定m 的范围.【详解】 (1)作图如下:11(2)方程()f x m =有3个解等价于函数()y f x =的图象与y m =的图象有三个交点, 观察图象可得01m <<.。
2022版新教材数学人教A版必修第一册基础训练-4.5.1-函数的零点与方程的解-含解析
课时评价作业基础达标练1.(2021安徽合肥高一期末)函数f(x)=lg|x| 的零点是( ) A.(1,0)B.(1,0)和(-1,0) C.1D.1和-1 答案: D2.已知函数f(x)={ln(x −1),x >1,2x−1−1,x ≤1, 则f(x) 的零点个数为( )A.0B.1C.2D.3 答案: C3.(2021广东广州高一期末)函数f(x)=(x 2−1)√x 2−4 的零点个数是( ) A.1B.2C.3D.4 答案: B4.(多选)下列关于方程x 3+x 2−2x −1=0 的说法正确的是( ) A.在(-2,-1)内有根 B.在(-1,0),0)内有根 C.在(1,2)内有根D.在(−∞,+∞) 内没有实数根 答案: A ; B ; C解析:设f(x)=x 3+x 2−2x −1 .分别计算f(−2),f(−1),f(0),f(1),f(2) 的值,再根据函数零点存在定理判断.5.已知0<a <1 ,则函数y =a |x|−|log a x| 的零点个数为( ) A.1B.2C.3D.4 答案: B解析:函数y =a |x|−|log a x|(0<a <1) 的零点的个数即方程a |x|=|log a x|(0<a <1) 的解的个数,也就是函数f(x)=a |x|(0<a <1) 与g(x)=|log a x|(0<a <1) 的图象的交点的个数.画出函数f(x)=a |x|(0<a <1) 与g(x)=|log a x|(0<a <1) 的图象(如图所示),观察得出结论.6.已知函数则函数f(x)={2x −1,x ≤1,log 12x +2,x >1, 则函数f(x) 的零点为 .答案: 0或47.若abc ≠0 且b 2=ac ,则函数f(x)=ax 2+bx +c 的零点个数是 . 答案: 08.已知y =x(x −1)(x +1) 的图象如图所示.令f(x)=x(x −1)⋅(x +1)+0.01 ,则下列关于f(x)=0 的叙述正确的是 (填序号).①有三个实根;②当x >1 时恰有一个实根; ③当0<x <1 时恰有一个实根; ④当−1<x <0 时恰有一个实根; ⑤当x <−1 时恰有一个实根. 答案: ①⑤解析: f(x) 的图象是将函数y =x(x −1)⋅(x +1) 的图象向上平移0.01个单位长度得到的,故f(x) 的图象与x 轴有三个交点,它们分别在区间(−∞,−1),(0,12) 和(12,1) 内,故只有①⑤正确.9.判断下列函数的零点个数: (1)f(x)=x 3−3x 2−2x +6 ; (2)f(x)=2x +lg(x +1)−2 .答案: (1)f(x)=x 3−3x 2−2x +6=x 2(x −3)−2(x −3)=(x 2−2)(x −3) ,令f(x)=0 ,则x =±√2 或x =3 ,所以函数有三个零点.(2)令ℎ(x)=2−2x ,g(x)=lg(x +1) ,在同一平面直角坐标系中作出ℎ(x)=2−2x 和g(x)=lg(x +1) 的图象.由图可知,g(x)=lg(x +1) 的图象和ℎ(x)=2−2x 的图象有且只有一个交点,即f(x)=2x +lg(x +1)−2 有且只有一个零点.10.关于x 的方程mx 2+2(m +3)x +2m +14=0 有两个实数根,且一个大于4,一个小于4,求m 的取值范围.答案: 令f(x)=mx 2+2(m +3)x +2m +14 ,依题意得{m >0,f(4)<0 或{m <0,f(4)>0,即{m >0,26m +38<0 或{m <0,26m +38>0, 解得−1913<m <0 ,所以m 的取值范围是(−1913,0) .素养提升练11.(2020山西忻州一中高一期中)已知函数f(x)={log 2(1−x),x ≤0,−x 2+4x,x >0, 则函数g(x)=f[f(x)]−1 的零点个数为( ) A.4B.7C.8D.9 答案: B解析:令g(x)=0,f(x)=t ,则f(t)=1 , 当t ≤0 时,log 2(1−t)=1 ,解得t =−1 ; 当t >0 时,−t 2+4t =1 ,解得t =2±√3 . 故f(x)=−1 或f(x)=2+√3 或f(x)=2−√3 . 当x ≤0 时,令log 2(1−x)=−1 ,解得x =12 ,舍去; 令log 2(1−x)=2+√3 ,解得x =1−22+√3 ; 令log 2(1−x)=2−√3 ,解得x =1−22−√3 .当x >0 时,令−x 2+4x =−1 ,解得x =2+√5 ,x =2−√5 (舍去); 令−x 2+4x =2+√3 ,整理得x 2−4x +2+√3=0 , 解得x =2+√6−√22或x =2−√6−√22;令−x 2+4x =2−√3 ,整理得x 2−4x +2−√3=0 ,解得x =2+√2+√62或x =2−√2+√62.综上所述,函数零点有1−22+√3,1−22−√3,2+√5,2±√6−√22,2±√2+√62,共7个.故选B.12.已知函数f(x)={−x 2+1,x ≤0,|x −2|,x >0, 若关于x 的方程[f(x)]2−af(x)=0 有且只有3个不同的实数根,则实数a 的取值范围是 . 答案: (−∞,0)∪[2,+∞) 解析: 由题意可知,f(x)={−x 2+1,x ≤0,|x −2|,x >0={−x 2+1,x ≤0,−(x −2),0<x <2x −2,x ≥2.,函数f(x) 的大致图象如图:∵ 关于x 的方程[f(x)]2−af(x)=0 有且只有3个不同的实数根, ∴f(x)⋅(f(x)−a)=0 有且只有3个不同的实数根, 即f(x)=0 与f(x)=a 一共有3个不同的实数根,∵ 当f(x)=0 时,有x =−1 与x =2 两个实数根,∴f(x)=a 有且只有1个实数根, ∴a <0 或a ≥2 .∴ 实数a 的取值范围是(−∞,0)∪[2,+∞) .13.已知二次函数f(x) 满足f(0)=3,f(x +1)=f(x)+2x . (1)求函数f(x) 的解析式;(2)令g(x)=f(|x|)+m(m ∈R) ,若函数g(x) 有4个零点,求实数m 的取值范围. 答案: (1)设f(x)=ax 2+bx +c(a ≠0) ,∵f(0)=3,∴c =3,∴f(x)=ax 2+bx +3 ,∴f(x +1)=a(x +1)2+b(x +1)+3=ax 2+(2a +b)x +a +b +3 , f(x)+2x =ax 2+(b +2)x +3 , ∵f(x +1)=f(x)+2x ,∴{2a +b =b +2,a +b +3=3, 解得a =1,b =−1 , ∴f(x)=x 2−x +3 .(2)由(1)得g(x)=x 2−|x|+3+m ,在平面直角坐标系中画出函数g(x) 的图象,如图所示,由于函数g(x) 有4个零点,故函数g(x) 的图象与x 轴有4个交点. 由图象得{3+m >0,114+m <0, 解得−3<m <−114 ,即实数m 的取值范围是(−3,−114) .创新拓展练14.(多选)对于函数f(x) 和g(x) ,设α∈{x|f(x)=0},β∈{x|g(x)=0} ,若存在α,β 使得|α−β|≤1 ,则称f(x) 与g(x) 互为“零点相邻函数”.若函数f(x)=e x−1+x −2 与g(x)=x 2−ax −a +3 互为“零点相邻函数”,则实数a 的取值可以是( )A.2B.73C.3D.4答案:A; B; C解析:易知函数f(x)=e x−1+x−2是R上的增函数,且f(1)=0,则α=1,结合“零点相邻函数”的定义可得|1−β|≤1,则0≤β≤2,故函数g(x)=x2−ax−a+3在区间[0,2]上存在零点,即方程x2−ax−a+3=0在区间[0,2]上存在实数根,整理可得a=x 2+3x+1=x2+2x+1−2x−2+4x+1=(x+1)+4x+1−2,令ℎ(x)=(x+1)+4x+1−2,根据对勾函数的性质知函数ℎ(x)在区间[0,1)上单调递减,在[1,2]上单调递增,又ℎ(0)=3,ℎ(2)=73,ℎ(1)=2,则函数ℎ(x)的值域为[2,3].故实数a的取值范围是[2,3],故选ABC.。
函数的零点与方程的解(经典导学案及练习答案详解)
§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。
高中数学必修一(人教版)4.5.1函数的零点与方程的解
方法归纳
1.确定函数零点个数的方法: ①结合零点存在定理和函数单调性; ②转化为两个函数图象的交点个数. 2.已知函数零点个数求参数范围的常用方法
跟踪训练 1 (1)函数 f(x)=12x-x3-2 在区间(-1,0)内的零点个数 是( )
A.0 B.1
C.2 D.3
4.函数 f(x)=log2x-1 的零点为________.
解析:令 f(x)=log2x-1=0,得 x=2,所以函数 f(x)的零点为 2. 答案:2
方法归纳
函数零点的求法 求函数 y=f(x)的零点通常有两种方法:其一是令 f(x)=0,根据解 方程 f(x)=0 的根求得函数的零点;其二是画出函数 y=f(x)的图象,图 象与 x 轴的交点的横坐标即为函数的零点.
第1课时 函数的零点与方程的解
[教材要点]
要点一 函数的零点 1.零点的定义 对于函数 y=f(x),把_f_(x_)_=__0_的__实__数___x__,叫做函数 y=f(x)的零点. 2.方程的根与函数零点的关系
交点的横坐标
零点
状元随笔 函数的零点不是一个点,而是一个实数,当自变量取 该值时,其函数值等于零.
又函数 f(x)=log3x-8+2x 的图象是连续的. ∴函数 f(x)的零点所在区间是(3,4).
答案:C
方法归纳
判断函数零点所在区间的三个步骤 (1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断. (3)结论:若符号为正且函数在该区间内是单调函数,则在该区间 内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.
状元随笔 利用数形结合讨论方程的解或图象的交点.讨论方程
函数的零点与方程的解
y
a
0
b
x
三、讨论探究,揭示定理
第四章 指数函数与对数函数
思考2:如果函数 y=f(x)在区间[a,b]上是连续不断的一条曲线,
那么函数 y=f(x)在区间 (a,b) 内是否一定有零点?
y
这说明
了什么?
0
a
b
x
“在给定区间[a,b]上连续”和“f(a) f(b)<0”这两个条件缺一不可
三、讨论探究,揭示定理
THANK
YOU 谢谢五、学以致用源自小试牛刀第四章 指数函数与对数函数
练习4 函数f(x) = ex-1+4x-4的零点所在区间为(
A.(-1,0)
B.(0,1)
)
C.(1,2)
D.(2,3)
【解析】因为f(-1) = e-2-4-4<0, f (0) = e-1-4<0,f (1) = e0+4-4>0,
二、晓以应用,理解概念
第四章 指数函数与对数函数
问题2:所有函数都存在零点吗?
问题3:什么条件下零点存在,存在一定唯一吗?
???
三、讨论探究,揭示定理
第四章 指数函数与对数函数
探究
y
给出二次函数 f (x)=x2-2x-3,观察它的图象,
它的两个零点所在大致区间分别是什么?
2
在零点所在区间内,函数图象与x轴有什么关
x
4
3
2
1
–4 –3 –2 –1O
–1
–2
1
x1=x2=-1
无实根
-1
无交点
2
3
x
一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫
人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题
3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。
方程的根与函数的零点经典练习及答案
[基础巩固]1.(多选)下列图象表示的函数有零点的是( )解析 观察图象可知A 选项中图象对应的函数没有零点.答案 BCD2.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( ) A .0B .1C .2D .3 解析 解法一 令f (x )=0,得⎩⎪⎨⎪⎧ x ≤0x 2+2x -3=0或⎩⎪⎨⎪⎧x >0ln x =2, ∴x =-3或x =e 2,应选C.解法二 画出函数f (x )的图象可得,图象与x 轴有两个交点,则函数f (x )有2个零点. 答案 C3.设x 0是方程ln x +x =4的解,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 设函数f (x )=ln x +x -4,则函数f (x )的图象是一条连续不断的曲线.f (1)=ln 1+1-4=-3<0,f (2)=ln 2-2<0,f (3)=ln 3-1>0,f (4)=ln 4>0,所以f (2)·f (3)<0,所以x 0∈(2,3).答案 C4.函数f (x )=ln x -x 2+2x +5的零点个数为________.解析 令ln x -x 2+2x +5=0得ln x =x 2-2x -5,画图可得函数y =ln x 与函数y =x 2-2x -5的图象有2个交点,即函数f (x )的零点个数为2.答案 25.若f (x )=x +b 的零点在区间(0,1)内,则b 的取值范围为________.解析 ∵f (x )=x +b 是增函数,又f (x )=x +b 的零点在区间(0,1)内,∴⎩⎪⎨⎪⎧ f (0)<0,f (1)>0.∴⎩⎪⎨⎪⎧b <0,1+b >0.∴-1<b <0. 答案 (-1,0)6.判断方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有没有实数根?为什么?解析 设f (x )=log 2x +x 2,先设该方程有实数根,∴f ⎝⎛⎭⎫12=log 212+⎝⎛⎭⎫122=-1+14=-34<0, f (1)=log 21+1=1>0,∴f ⎝⎛⎭⎫12·f (1)<0. ∵函数f (x )=log 2x +x 2的图象在区间⎣⎡⎦⎤12,1上是连续的,∴f (x )在区间⎣⎡⎦⎤12,1内有零点,即方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有实根.[能力提升]7.已知f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( )A .0B .1C .-1D .不能确定解析 因为奇函数的图象关于原点对称,所以若f (x )有三个零点,则其和必为0.答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≤0,-2+ln x ,x >0,若函数y =f (x )-k 有三个零点,则实数k 的取值范围为( )A .(-2,-1]B .[-2,-1]C .[1,2]D .[1,2)解析 函数y =f (x )-k 有三个零点,即y =f (x )与y =k 有三个交点,f (x )的图象如上,由图象可得-2<k ≤-1.故选A .答案 A9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析 函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数的图象只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),当直线y =x +a 与y 轴的交点(0,a )在(0,1)的上方时一定有两个交点.所以a >1.答案 (1,+∞)10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围.(1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内.解析 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ (-2a )2-16≥0,f (1)=5-2a >0,a >1,解得2≤a <52. (2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f (1)=5-2a <0,解得a >52. (3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得103<a <174. [探索创新]11.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示.由图可知,-a≤1,解得a≥-1,故选C. 答案 C。
高中数学函数零点问题必考点梳理+真题精练(附答案)
第 7 页 共 19 页
由图可知:当
0
m
1 2
时,两图象有两个不同的交点,
在区间 1,1 上方程 f x mx m 0 有两个不同的实根,故选:B
例 5.(2020·江苏宝应中学高三三模)已知函数 f x 2ln x2 3x 3 ,其中x 表示不大于 x 的
最大整数(如1.6 1,2.1 3),则函数 f x 的零点个数是( )
对函数
y
ln x
1, x
0 求导得
y
1 x 1
,
设切点为
x0, ln x0 1
,则
ln x0 1
x0 1
2 3
1 x0 1
m ,解得
x0
1
1
e3
,m
1
e3
,
数形结合可知,当
m
2 3
1
,e 3
时,直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,即函数
g
x
有四个零点.故选:B.
第 6 页 共 19 页
f |
(x) x|
有
2
个不同交点,不满足题意;
当 k 0 时,如图 2,此时 y | kx 2 |与 h(x)
f |
(x) x|
恒有
3
个不同交点,满足题意;
当 k 0 时,如图 3,当 y kx 2 与 y = x2 相切时,联立方程得 x2 kx 2 0 ,
令 0 得 k2 8 0 ,解得 k 2 2 (负值舍去),所以 k 2 2 . 综上, k 的取值范围为 (,0) (2 2, ) ,故选 D.
图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者
函数的零点与方程的解(基础知识+基本题型)(含解析)
4.5.1函数的零点与方程的解(基础知识+基本题型)知识点一 函数的零点1.函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.2.函数零点与方程的根之间的关系方程()0f x =有零点⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.由此可知,求()0f x =的实数根,就是确定函数()y f x =的零点,一般地,对于不能用公式求根的方程()0f x =来说,我们可以将它与函数()y f x =联系起来,利用函数的性质找出零点,从而求出方程的根. 提示:(1)并不是所有的函数都有零点,如函数1()f x x=就没有零点. (2)方程不同实数根的个数⇔函数图象与x 轴交点的个数⇔函数零点的个数.(3)函数的零点不是点:我们把使()0f x =的实数x 叫做函数()y f x =的零点,因此,函数的零点不是点,是函数()y f x =的图象与x 轴交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.知识点二 函数零点存在性定理1. 零点存在性定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也是方程()0f x =的根.2. 零点存在性定理的适用条件(1)判断零点是否存在是存在闭区间[,]a b 上进行的.(2)函数()y f x =在[,]a b 上的图象应是连续无间断的一条曲线.(3)()()0f a f b ⋅<是关键条件,即两端点的函数值必须异号.(4)如果函数()y f x =在两端点处的函数值(),()f a f b 异号,则函数()y f x =的图象至少穿过x 轴一次,即方程()0f x =在区间(,)a b 内至少有一个实根c .3. 零点存在性定理的使用范围(1)此定理只能判断出零点的存在性,而不能判断出零点的个数。
函数的零点与方程的解(高中数学)
指数函数与对数函数
2
学习目标
核心素养
1.理解函数零点的概念以及函数零 1.借助零点的求法培养数学运算和
点与方程根的关系.(易混点) 逻辑推理的素养.
2.会求函数的零点.(重点) 2.借助函数的零点同方程根的关系,
3.掌握函数零点存在定理并会判断 培养直观想象的数学素养.
25
2.若函数g(x)=f(x知方程 f(x)-a=0有解,即a=f(x)有解. 故a的范围为y=f(x)的值域. 法二:g(x)=f(x)-a有零点,等价于函数y=a与函数y=f(x)的图象有 交点,故可在同一坐标系中分别画出两函数的图象,观察交点情况即 可.
26
【例 3】 已知 0<a<1,则函数 y=a|x|-|logax|的零点的个数为( )
A.1
B.2
C.3
D.4
[思路点拨]
构造函数fx=a|x|0<a<1 与gx=|logax|0<a<1
→
画出fx与 gx的图象
→
观察图象得 零点的个数
27
B [函数y=a|x|-|logax|(0<a<1)的零点的个 数即方程a|x|=|logax|(0<a<1)的根的个数,也就是 函数f(x)=a|x|(0<a<1)与g(x)=|logax|(0<a<1)的图象 的交点的个数.
(4)若 f(x)在(a,b)内有且只有一个零点,则
f(a)·f(b)<0.( )
33
2.函数 f(x)=2x-3 的零点所在
B [∵f(1)=2-3=-1<0,f(2)
的区间是( )
方程的根与函数的零点练习题及答案解析
方程的根与函数的零点练习题及答案解析王学忠 山东省临沂市沂水县第一中学教材版本:《普通高中课程标准实验教科书·数学1·必修·A 版》,人民教育出版社,2007年1月第二版课 题:§3.1.1方程的根与函数的零点教学目标:【知识与技能】了解函数零点的概念,理解方程的根与函数的零点的关系;理解图象连续的函数存在零点的判定方法,并能进行简单的应用。
【过程与方法】在探究方程的根与函数的零点的关系,图象连续的函数存在零点的判定方法中体会数形结合、函数与方程的数学思想,从特殊到一般的归纳思想。
【情感态度与价值观】在函数与方程的联系中体验数学中的转化思想的意义和价值;在教学中让学生体验探究的过程、发现的乐趣,培养学生的辨证思维。
教学重点:方程的根与函数的零点的关系;图象连续的函数存在零点的判定方法及应用。
教学难点:图象连续的函数存在零点的判定方法的理解。
教具准备:直尺 Powerpoint 2003课件 几何画板4.07课件学具准备:计算器教学方法:问题探究法教学过程设计:一、创设情境:问题引入:求方程01532=-+x x 的实数根。
变式:求方程01535=-+x x 的实数根。
数学史上,人们曾希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果,1824年挪威年仅22岁的数学家阿贝尔(N.H.Abel ,1802-1829)成功地证明了五次以上一般方程没有根式解。
五次以上的高次方程不能用代数运算来求解,我们就必须寻求新的角度——函数来解决这个方程的问题。
设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。
通过对数学史的讲解,培养学生学习数学的兴趣,开门见山地提出利用函数思想解决方程根的问题。
二、新知探究:1.零点的概念:问题1:求方程0322=--x x 的实数根,并画出函数322--=x x y 的图象。
1-,3具有多重角色,它能够使这个方程成立,也能够使这个函数的函数值为0,它又是函数图象与x 轴两个交点的横坐标。
4.5.1函数的零点与方程的解(答案版)
一、函数的零点对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。
方程、函数、图象之间的关系:方程0)(=x f 有实数解⇔函数)(x f y =有零点⇔函数)(x f y =的图象与x 轴有交点。
二、函数的零点、方程的解、函数图象与x 轴的交点方程0)(=x f 有实数解⇔函数)(x f y =有零点⇔函数)(x f y =的图象与x 轴交点的横坐标。
三、函数零点存在定理如果函数)(x f y =在区间[]b a ,上的图象是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间)(b a ,内至少有一个零点,即存在()b a c ,∈,使得0)(=x f ,这个c 也就是方程0)(=x f 的解。
例1:函数x y +=1的零点是( )A. ()01-,B.-1C.1D.0【答案】B 【解析】由01=+x ,得1-=x 。
例2:函数x x x f lg -)(lg 2=)(的零点为 【答案】1和10【解析】由0lg -)(lg 2=x x ,得.1011lg 0lg 01-lg lg ==∴==∴=x x x x x x 或,或,)(例3:已知函数的零点为则函数,()(),12log 1,1,12)(x f x x x x x f >+≤-=( ) A.12B.0C.-2.0D.0函数的零点与方程的解知识讲解典型例题【答案】D 【解析】当1≤x 时,令01-2x=,得0=x 。
当1>x 时,令12,0log 12==+x x 得,此时无解。
综上所述,函数零点为0。
例4:若函数)0()(≠-=b b ax x f 有一个零点3,则函数ax bx x g 3)(2+=得零点是 。
【答案】-1和0【解析】因为)0()(≠-=b b ax x f 的零点是3,所以0)3(=f ,即a b b a 3,03==-即。
课时跟踪检测(二十九) 函数的零点与方程的解
课时跟踪检测(二十九) 函数的零点与方程的解层级(一) “四基”落实练1.若函数y =x 2-bx +1有一个零点,则b 的值为( ) A .2 B .-2 C .±2D .3解析:选C 因为函数有一个零点,所以Δ=b 2-4=0,所以b =±2.2.(多选)若方程x 2+2x +λ=0在区间(-1,0)上有实数根,则实数λ的取值可以是( ) A .-3 B.18 C.14D .1解析:选BC 方程x 2+2x +λ=0对应的二次函数为:f (x )=x 2+2x +λ,它的对称轴为:x =-1,所以函数在(-1,0)上是增函数,所以⎩⎪⎨⎪⎧ f (-1)<0,f (0)>0,可得⎩⎪⎨⎪⎧1-2+λ<0,λ>0,解得λ∈(0,1).结合选项知选B 、C.3.函数f (x )=x 3+3x -15的零点所在的区间为( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D 函数f (x )=x 3+3x -15是连续的单调递增函数, ∵f (1)=1+3-15=-11<0, f (2)=8+6-15=-1<0, f (3)=27+9-15=21>0, ∴f (2)f (3)<0,由函数零点存在定理可知函数的零点所在区间为(2,3).4.根据表格中的数据,可以判定方程e x -2x -5=0的一个根所在的区间是( )A.(0,1) C .(2,3)D .(3,4)解析:选C 设f (x )=e x -2x -5, 此函数的图象是连续不断的, 由表可知f (0)=1-5=-4<0, f (1)=2.72-7=-4.28<0, f (2)=7.39-9=-1.61<0, f (3)=20.09-11=9.09>0, f (4)=54.60-13=41.60>0, 所以f (2)·f (3)<0,所以函数f (x )的一个零点,即方程e x -2x -5=0的一个根所在的区间为(2,3).5.已知函数若关于x 的方程f (x )=k 有两个不等的实根,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(0,1]解析:选D 作出函数f (x )的图象,由图象知,当0<k ≤1时,y =k 与y =f (x )的图象有两个交点,此时方程f (x )=k 有两个不等实根,所以0<k ≤1,故选D.6.函数f (x )=(x -1)ln xx -3的零点是________.解析:令f (x )=0,即(x -1)ln xx -3=0,即x -1=0或ln x =0,∴x =1,故函数f (x )的零点为1.答案:17.若abc ≠0,且b 2=ac ,则函数f (x )=ax 2+bx +c 的零点的个数是________. 解析:∵ax 2+bx +c =0的根的判别式Δ=b 2-4ac ,b 2=ac ,且abc ≠0,∴Δ=-3b 2<0, ∴方程ax 2+bx +c =0无实根. ∴函数f (x )=ax 2+bx +c 无零点. 答案:08.已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x +1.(1)求f (x )的解析式;(2)讨论函数g (x )=f (x )-m (m ∈R )的零点个数.解:(1)当x <0时,-x >0,f (-x )=(-x )2-2(-x )+1=x 2+2x +1, ∵f (x )是R 上的偶函数,∴f (x )=x 2+2x +1,∴f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x <0,x 2-2x +1,x ≥0.(2)函数f (x )的图象如图所示. 当m <0时,g (x )没有零点;当m =0或m >1时,g (x )有2个零点; 当0<m <1时,g (x )有4个零点; 当m =1时,g (x )有3个零点. 层级(二) 能力提升练1.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.2.(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,-x 2-4x ,x ≤0,若函数g (x )=f (x )-m 有四个零点,则实数m 可取( )A .-1B .1C .3D .5解析:选BC 令g (x )=0得f (x )=m ,作出函数f (x )的图象如图所示.∵函数f (x )的图象与y =m 有四个交点, ∴m 的取值范围为(0,4),结合选项知选B 、C.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +4,x ≤0,2x -2,x >0,若函数y =f (f (x )+m )有四个零点,则实数m 的取值范围是________.解析:令f (x )=0⇒x =-2或1.令f (f (x )+m )=0得f (x )+m =-2或f (x )+m =1,∴f (x )=-2-m 或f (x )=1-m .作出y =f (x )的图象,如图所示. ∵y =f (f (x )+m )有四个零点,∴f (x )=-2-m ,f (x )=1-m 各有两个根,∴⎩⎪⎨⎪⎧-1<-2-m ≤4,-1<1-m ≤4,解得-3≤m <-1. 答案:[-3,-1)4.已知函数f (x )=x 2-(k -2)x +k 2+3k +5有两个零点. (1)若函数的两个零点是-1和-3,求k 的值; (2)若函数的两个零点是α和β,求α2+β2的取值范围. 解:(1)-1和-3是函数f (x )的两个零点,故-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两个实数根.则⎩⎪⎨⎪⎧-1-3=k -2,-1×(-3)=k 2+3k +5,解得k =-2.(2)函数的两个零点为α和β,则α和β是方程x 2-(k -2)x +k 2+3k +5=0的两根. ∴⎩⎪⎨⎪⎧α+β=k -2,αβ=k 2+3k +5,Δ=(k -2)2-4×(k 2+3k +5)≥0.则-4≤k ≤-43,且α2+β2=(α+β)2-2αβ=-k 2-10k -6在-4≤k ≤-43上单调递减,∴α2+β2在区间⎣⎡⎦⎤-4,-43上的最大值是18,最小值是509. 5.已知f (x )=log 3(3x +1)+12kx (x ∈R )是偶函数.(1)求k 的值;(2)若函数y =f (x )的图象与直线y =12x +a 有公共点,求a 的取值范围.解:(1)∵y =f (x )是偶函数,∴f (-x )=f (x ), ∴log 3(3-x +1)-12kx =log 3(3x +1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x +13x +1=kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx ,即(k +1)x =0对任意的x ∈R 都成立,∴k =-1. (2)由题意知,方程log 3(3x +1)-12x =12x +a 有解,亦即log 3(3x+1)-x =log 3⎝ ⎛⎭⎪⎫3x +13x =a 有解,∴log 3⎝⎛⎭⎫1+13x =a 有解. 由13x >0,得1+13x >1,∴log 3⎝⎛⎭⎫1+13x >0, 故a >0,即a 的取值范围是(0,+∞).层级(三) 素养培优练 已知函数f (x )=2x ,g (x )=log 2x .(1)若x 0是方程f (x )=32-x 的根,证明2x 0是方程g (x )=32-x 的根;(2)设方程f (x -1)=52-x ,g (x -1)=52-x 的根分别是x 1,x 2,求x 1+x 2的值.解:(1)证明:因为x 0是方程f (x )=32-x 的根,所以2x 0=32-x 0,即x 0=32-2x 0,则g (2x 0)=log 22x 0=x 0=32-2x 0.所以2x 0是方程g (x )=32-x 的根.(2)由题意知,方程2x -1=52-x ,log 2(x -1)=52-x 的根分别是x 1,x 2, 即方程2x -1=32-(x -1),log 2(x -1)=32-(x -1)的根分别为x 1,x 2,令t =x -1,则方程2t =32-t ,log 2t =32-t 的根分别为t 1=x 1-1,t 2=x 2-1.由(1)知t 1是方程2t =32-t 的根,则2t 1是方程log 2t =32-t 的根.令h (t )=log 2t +t -32,则2t 1是h (t )的零点,又因为h (t )是(0,+∞)上的增函数,所以2t 1是h (t )的唯一零点,即2t 1是方程log 2t =32-t 的唯一根.所以2t 1=t 2,所以t 1+t 2=t 1+2t 1=32,即(x 1-1)+(x 2-1)=32,所以x 1+x 2=32+2=72.。
函数的零点与方程的解
2
2
2
f(2)=e2-2- 3>0,f(e)=ee-e- 3>0,
2
2
可得f(x)在(0,1)内存在零点.
2.已知函数f(x)=ln x+x-6的零点x0∈(k,k+1),则整数k的值为________. 【解析】由函数的解析式可得函数在(0,+∞)上是增函数,且f(4)=ln 4+46<0,f(5)=ln 5+5-6>0,故有f(4)f(5)<0, 根据函数零点存在定理可得函数在区间(4,5)上存在零点.结合所给的条件可 得,k=4, 答案:4
4.5 函数的应用(二) 4.5.1 函数的零点与方程的解
必备知识·自主学习
1.函数的零点 (1)概念:使f(x)=0的_实__数__x_. 零点、图象与x轴交点、方程实数解的关系:
(2)本质:方程f(x)= 0的根、函数y= f(x)的图象与x轴的公共点的横坐标. (3)应用:利用零点、图象与x轴的交点、方程实数解的关系,实现三种问题的相 互转化.
2.已知定义在R上的函数f(x)的图象是连续的,且其中的四组对应值如表,那么 在下列区间中,函数f(x)不一定存在零点的是 ( )
x f(x)
A.(1,2)
1 3
B.[1,3]
2 -1C.[2,5)3 Nhomakorabea5
2
0
D.(3,5)
3.(教材二次开发:例题改编)函数f(x)=ln x-6的零点是________. 【解析】令f(x)=ln x-6=0,则ln x=6,解得x=e6. 答案:e6
()
A.(-3,0)
B.(-3,1)
C.(-1,3)
D.(-1,1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程的解与函数的零点
一、选择题
1 .已知函数f(x)是R 上的偶函数,且f(1-x)=f(1+x),当x ∈[0,1]时,f(x)=x 2,则函数
y=f(x)-log 5x 的零点个数是 ( )
A .3
B .4
C .5
D .6
【答案】B
2 .已知函数⎩⎨⎧>-≤-=0
,120
,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值范围是
( )
A .)1,(--∞
B .]1,(-∞
C .)0,1[-
D .]1,0(
【答案】D
3 .设函数f (x )=x |x |+bx +c ,给出下列四个命题:
①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根 其中正确的命题是 ( )
A .①④
B .①③
C .①②③
D .①②④ 【答案】C
4 .已知函数()ln 38f x x x =+-的零点0[,]x a b ∈,且1(,)b a a b N +-=∈,则a b +=
( )
A .5
B .4
C .3
D .2
【答案】A 5 .函数21
f ()lo
g 22
x x x =-
+的零点个数为 ( )
( )
A .0
B .1
C .3
D . 2
【答案】D
6 .函数
()22x f x x =-零点的个数为
( )
A .1
B .2
C .3
D .4
【答案】C
7 .函数12ln )(-+=x x x f 的零点的个数是
( )
A .0
B .1
C .2
D .3
【答案】B
8 .奇函数()f x ,偶函数()g x 的图像分别如图1、2所示,方程(())0,(())0f g x g f x ==的实根个数分别
为,a b ,则a b +=
( )
A .14
B .10
C .7
D .3
【答案】B
9 .实系数一元二次方程01)1(2
=+++++b a x a x
的两个实根为21,x x ,若有2110x x <<<,则
a
b
的取值范围是 ( )
A .)2
1,1(-
B .)2
1,2(-
C .)2
1,1(--
D .)2
1,2(--
【答案】D
10.已知函数()y f x =的周期为2,当[0,2]x ∈时,
2()(1)f x x =-,如果()()g x f x =-5log 1x -,则函
数()y g x =的所有零点之和为 ( )
A .4
B .6
C .8
D .10
【答案】C
11.已知0x 是x
x f x
1
)2
1()(+
=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )
A .0)(,0)(21<<x f x f
B .0)(,0)(21>>x f x f
C .0)(,0)(21<>x f x f
D .0)(,0)(21><x f x f
【答案】C
12.已知函数()()21,2,03
,2,1
x x f x f x a x x ⎧-⎪
=-=⎨≥⎪-⎩<若方程有三个不同的实数根,则实数a 的取值范围
( )
A .()0,1
B .()0,2
C .()0,3
D .()1,3
【答案】A 13.若关于x 的方程2
4||5x
x m -+=有四个不同的实数解,则实数m 的取值范围是
( )
A .(2,3)
B .[2,3]
C .(1,5)
D .[1,5]
【答案】C
14.已知函数y=f(x)的周期为2,当x ∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共
有
( )
A .10个
B .9个
C .8个
D .1个
【答案】.A 画出两个函数图象可看出交点有10个.
15.已知函数()()f x x ∈R 是偶函数,且()(4)f x f x =-+,当x ∈[0,2]时,()1f x x =-,则方程
1
()1||
f x x =
-在区间[-8,8]上的解的个数为
( )
A .6
B .7
C .8
D .9
【答案】B 16.函数()2
2x
f x a x
=-
-的一个零点在区间()1,2内,则实数a 的取值范围是 ( )
A .()1,3
B .()1,2
C .()0,3
D .()0,2
【答案】C 17.如图:二次函数
a bx x x f +-=2)(的部分图象,则函数)()(x f e x g x '+=的零点所在的区间是
( )
A .)0,1(-
B .()1,2
C .)1,0(
D .)3,2(
【答案】C 18.设函数2()2,()l n 3x f
x e x g x x x =+-=+-,若实数,a b 满足()0,()0f a g b ==
,则 ( ) A .0()()g a f b << B .()()0f b g a << C .()0()f b g a <<
D .()0()g a f b <<
【答案】D 19.函数
()ln x f x x e =+的零点所在的区间是
( )
A .(1
0,e
)
B .(1,1e
)
C .(1,e )
D .(,e ∞)
【答案】A 20.已知函数
||()e ||x f x x =+.若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是
( )
A .(0,1)
B .(1,)+∞
C .(1,0)-
D .(,1)-∞-
【答案】B 由()f x k =得
||()e ||x f x x k =+=,即||e ||x k x =-.令||e ,||x y y k x ==-,分别作出函数
||e ,||x y y k x ==-的图象,如图
,由图象可知要使两个函数的交点有2个,则
有1k >,即实数k 的取值范围是(1,)+∞,选
B .
21.已知()f x 是定义在(0,)+∞上的单调函数,且(0,),[()ln ]1x f f x x ∀∈+∞-=,则方程
2()2()7f x x f x '+=的解所在的区间为 ( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)
【答案】C
22.函数f(x)对任意x ∈R,满足f(x)=f(4-x).如果方程f(x)=0恰有2011个实根,则所有这些实根之和为
( )
A .0
B .2011
C .4022
D .8044
【答案】C
23.已知关于x 的方程2
6(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是
( )
A .3,6,9
B .6,9,12
C .9,12,15
D .6,12,15
【答案】B
24.函数0.5() 2 |log |1x f x x =⋅-的零点个数为
A . 1
B . 2
C . 3
D .4
【答案】B
25.函数
x
x x f 2
)1ln()(-
+= 的零点所在的大致区间是
( )
A .(3,4) B(1, 2) C .(2,e )
D .(0,1)
【答案】B
26.下列区间中,函数
()=+43x f x e x -的零点所在的区间为
( )
A .(1
-
4,0) B .(0,
14
) C .(
14,12) D .(
12,34
) 【答案】C 二、填空题
27.已知关于x 的方程2
20x x m -+=(0m ≤)的解集为M ,则集合M 中所有的
元素的和的最大值为______4______.。