高一数学下学期期中试题

合集下载

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题

江苏省徐州市2023-2024学年高一下学期期中学业水平质量监测数学试题一、单选题1.cos14cos16cos76sin16︒︒-︒︒=( )A .12B C .12- D .2.已知(1,2),5a a b =⋅=rr r ,若(2)b a b ⊥-r r r ,则向量a r 与向量b r 的夹角为( )A .π6B .π4C .π3D .3π43.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .向量(),p a c b =+r ,(),q b a c a =--r.若//p q r r,则角C 的大小为( )A .π6B .π3C .π2D .2π34.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =u u u r( )A .3144AB AD +u u ur u u u rB .1344AB AD +u u ur u u u rC .12AB AD +u u ur u u u rD .3142AB AD +u u ur u u u r5.函数1()sin 23f x x ⎛⎫=+ ⎪⎝⎭在区间(0,2π)内的零点个数为( )A .2B .3C .4D .56.已知π1cos 63α⎛⎫-=- ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭( )A .79- B .79 C .23-D .237.在ABC V 中,若1cos21cos2cos cos C Bc B b C--=⋅⋅,则ABC V 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,已知正方形ABCD 的边长为2,若动点P 在以AB 为直径的半圆上(正方形ABCD内部,含边界),则PC PD ⋅u u u r u u u r的取值范围为( )A .()0,4B .[]0,4C .()0,2D .[]0,2二、多选题9.下列关于平面向量的说法中正确的是( )A .O 为点A ,B ,C 所在直线外一点,且0.4OC xOA OB =+u u u r u u u r u u u r,则0.6x =B .已知非零向量(1,2),(1,1)a b ==r r,且a r 与a b λ+r r 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .已知向量(1,AB AC ==-u u u r u u u r ,则AB u u u r在AC u u u r 上的投影向量的坐标为D .若点G 为ABC V 中线的交点,则0GA GB GC ++=u u u r u u u r u u u r r10.已知tan 2tan αβ=,则( )A .π,0,2αβ⎛⎫∃∈ ⎪⎝⎭,使得2αβ=B .若2sin cos 5αβ=,则()1sin 5αβ-=C .若2sin cos 5αβ=,则()7cos 2225αβ+=-D .若α,π0,2β⎛⎫∈ ⎪⎝⎭,则()tan αβ-11.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC V 的面积,且2,a AB AC =⋅=u u u r u u u r,下列选项正确的是( )A .π6A =B.若b =ABC V 只有一解C .若ABC V 为锐角三角形,则b的取值范围是 D .若D 为BC 边上的中点,则AD的最大值为2三、填空题12.已知πsin 2sin(π)2αα⎛⎫+=- ⎪⎝⎭,则πtan 4α⎛⎫-= ⎪⎝⎭.13.圣·索菲亚教堂是哈尔滨的标志性建筑,其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.为了估算圣·索菲亚教堂的高度,某人在教堂的正东方向找到一座建筑物AB ,高约为36m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得建筑物顶A 、教堂顶C 的仰角分别是45︒和60︒,在建筑物顶A 处测得教堂顶C 的仰角为15︒,则可估算圣·索菲亚教堂的高度CD 约为.14.ABC V 中,角A ,B ,C 对边分别为a ,b ,c ,点P 是ABC V 所在平面内的动点,满足(0)||||λλ⎛⎫=++> ⎪ ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r u u u r BC BA OP OB BC BA .射线BP 与边AC 交于点D .若sin sin sin sin a A c C b B a C +-=,2BD =,则角B 的值为 ,ABC V 面积的最小值为 .四、解答题15.如图所示,在ABCD Y 中,已知=3AB ,=2AD ,=120BAD ∠︒. (1)求AC u u u v的模;(2)若13AE AB =u u u v u u u v ,12BF BC =u u u v u u u v ,求AF DE ⋅u u u v u u u v的值.16.已知向量2sin cos sin ,cos ,sin cos 222222x x x x x x m n ⎛⎫⎫⎛⎫=+=-⎪ ⎪ ⎪⎭⎝⎭⎝⎭r r ,且函数()f x m n =⋅r r .(1)若π0,2x ⎡⎤∈⎢⎥⎣⎦,且2()3f x =,求sin x 的值;(2)若将函数()f x 的图像上的点的纵坐标不变,横坐标缩小为原来的12,再将所得图像向左平移π4个单位,得到()g x 的图像,求函数()g x 单调增区间.17.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos b A B =. (1)求A ; (2)求2b ca+的最大值. 18.在直角梯形ABCD 中,已知AB DC P ,AD AB ⊥,1CD =,2AD =,3AB =,动点E 、F 分别在线段BC 和DC 上,AE 和BD 交于点M ,且B E B Cλ=u u u r u u ur ,()1DF DC λ=-u u u r u u u r ,R λ∈.(1)当0AE BC ⋅=u u u r u u u r时,求λ的值; (2)当23λ=时,求DM MB 的值; (3)求12AF AE +u u u r u u u r 的取值范围.19.定义函数()sin cos f x m x n x =+的“源向量”为(),OM m n =u u u u r ,非零向量(),OM m n =u u u u r的“伴随函数”为()sin cos f x m x n x =+,其中O 为坐标原点.(1)若向量(OM =u u u u r的“伴随函数”为()f x ,求()f x 在[]0,πx ∈的值域;(2)若函数()()g x x α=+的“源向量”为OM u u u u r,且以O 为圆心,OM u u u u r 为半径的圆内切于正ABC V (顶点C 恰好在y 轴的正半轴上),求证:222MA MB MC ++u u u r u u u r u u u u r 为定值;(3)在ABC V 中,角,,A B C 的对边分别为,,a b c ,若函数()h x 的“源向量”为()0,1OM =u u u u r,且已知()38,5a h A ==,求AB AC AB AC +-⋅u u u r u u u r u u u r u u u r 的取值范围.。

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。

山东省烟台市2023-2024学年高一下学期期中学业水平诊断数学试题

山东省烟台市2023-2024学年高一下学期期中学业水平诊断数学试题

山东省烟台市2023-2024学年高一下学期期中学业水平诊断数学试题一、单选题1.下列说法正确的是( )A .若a b =r r ,则a b =r r 或a b =-r rB .若a c b c ⋅=⋅r r r r ,则a b =r rC .若a b =r r ,则a c b c ⋅=⋅r r r rD .若0a b ⋅>r r ,则a r ,b r 夹角为锐角 2.若复数z 满足()i 23i z ⋅+=-,则z =( )A .33i --B .33i -+C .33i -D .33i + 3.在高为6的三棱柱111ABC A B C -中,A B C '''V 是底面ABC V 的水平放置的直观图,如图,2O A O B ''''==,O C ''=111ABC A B C -的体积为( )A .B .C .D .4.在边长为2的正三角形ABC 中,点M 满足2CM MA =u u u u r u u u r ,则AC BM ⋅=u u u r u u u u r ( )A .23- B .23 C .43- D .435.若1a =r ,(b =r ,且a r 在b r 上的投影向量为14b r ,则a r 与b r 的夹角为( ) A .π6 B .π4 C .π3 D .2π3 6.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且()cos 2cos a B c b A c +-=,则ABC V 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形7.已知正四棱台的上、下底面边长分别为7,9,体积为193,则该正四棱台的侧棱长为( )A B C D8.在锐角三角形ABC V 中,若()2c a a b =+,则11tan tan A C-的取值范围为( )A .(B .⎛ ⎝⎭C .D .⎝二、多选题9.已知复数1z ,2z 是关于x 的方程()2404,x bx b b -+=<∈R 的两根,则( )A .124z z =B .12z z =C .122z z ==D .1212z z z z +=+ 10.一圆锥的侧面展开图如图所示,2π3BAC ∠=,弧BC 长为2π,M 为线段AB 的中点,N 为弧BC 中点,则( )A B .在扇形ABC 中,94AN MC ⋅=-u u u r u u u u r C .该圆锥内半径最大的球的表面积为2πD .该圆锥内接正四棱柱表面积的最大值为16311.已知ABC V 为斜三角形,角A ,B ,C 的对边分别为a ,b ,c ,且2sin c a B =,则( )A .112tan tan A B+= B .b a a b +的最小值为2C .若π4C =,则22+=a bD .若b a a b +5π12C =三、填空题12.已知向量a r ,b r 的夹角为2π3,若2b =r,2a b -=r r a =r . 13.在直三棱柱ABC A B C '''-中,π2ABC ∠=,AB =1BC AA '==,则直三棱柱ABC A B C '''-外接球的体积为,在三棱锥B A BC ''-中,底面A BC '上的高长为. 14.南方由于雨水较多,三角形斜屋顶建筑在江浙一带随处可见.如图是一三角形木屋的建筑示意图.三角形斜屋顶PMN 在地面的投影为ABC V ,且45ABC ∠=o ,60ACB ∠=o .在M 点测得N 点的仰角为15o ,在N 点测得P 点的仰角为30o ,M 点到地面的距离为3m ,N 点到地面的距离为4m ,则P 点到地面的距离为m .四、解答题15.欧拉公式i e cos isin x x x =+(i 为虚数单位)是由瑞士著名数学家欧拉提出的,它将指数函数的定义域扩大到复数集.(1)若复数()20243π2i 3i11i 21i e z -=+-+,求z ; (2)在复平面内复数πi 41e z =,2z =对应的向量分别是OA u u u r ,OB u u u r ,其中O 是原点,求向量AB u u u r对应的复数z . 16.在平面直角坐标系中,O 为坐标原点,已知()3,2A ,()2,0B ,()1,OP t =u u u r .(1)若点A ,B ,P 不能构成三角形,求PB u u u r ;(2)当PA PB ⋅u u u r u u u r 取得最小值时,求ABP V 的面积.17.如图,ABCD 是圆台下底面圆的内接四边形,4AB AD ==,C 为底面圆周上一动点,π3BCD ∠=,P A 为圆台的母线,5PA =,圆台上底面的半径为1.(1)求该圆台的表面积;(2)求四棱锥P ABCD -的体积的最大值.18.请在①向量()cos ,2x C c a =-r ,(),cos y b B =u r ,且x y ⊥r u r ;②()()2222sin sin a b A b c C -=-这两个条件中任选一个,填入横线上并解答.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足_______.(1)求B 的大小:(2)若2b =,求ABC V 周长的取值范围;(3)若AC 边上的高为1,求ABC V 面积的最小值.19.近年来,民宿作为一种具有特色的住宿形式,逐渐受到人们的青睐.小李计划将旧居改造成田园农家民宿,民宿小院用栅栏围成如图所示的等腰梯形形状,BC 临街,长16米,75B ∠=︒,在BC 上选择一点G 开设大门,从大门出发铺两条鹅卵石小路GE ,GF ,小路终点E 、F 在墙AB 、CD 上,且60BGE CGF ∠=∠=︒,GEF 为庭院休闲区,为使小院更具田园气息,路面EF 用防腐木铺设.(1)GE GF +是否为定值?若是,求出该定值;若不是,请说明理由;(2)若鹅卵石路面平均每米需花费200元,防腐路面平均每米需花费400元,设修路总费用为S (单位:元),求S 最小值.(最终结果保留整数) 1.732)。

河北省石家庄二中2023-2024学年高一下学期期中数学试题

河北省石家庄二中2023-2024学年高一下学期期中数学试题

河北省石家庄二中2023-2024学年高一下学期期中数学试题一、单选题1.已知i 是虚数单位,复数1i z =+,则i z ⋅的虚部为( ) A .1B .2C .iD .2i2.若D 为ABC V 的边BC 的中点,则AC =u u u r( )A .2AB AD -u u u r u u u rB .2AD AB -u u u r u u u rC .2AD AB +u u u r u u u r D .2AB AD +u u u r u u u r3.在ABC V 中,内角,,A B C 满足2sin cos sin B C A =,则ABC V 的形状为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形4.下列命题中正确的是( )A .以直角三角形的一边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体为圆锥B .棱柱的面中,至少有两个面互相平行C .有两个面互相平行,其余四个面都是等腰梯形的六面体为棱台D .各侧面都是全等的等腰三角形的棱锥为正棱锥 5.当复数z 满足()34i 1z -+=时,则z 的最小值是( ) A .3B .4C .5D .66.已知三棱锥-P ABC 的所有顶点都在球O 的球面上,ABC V 满足4AB =,90ACB ∠=︒,P A 为球O 的直径,且PA =P 到底面ABC 的距离为( )A .4B .C .D .7.已知向量a r 与b r夹角为锐角,且2a b ==r r ,任意R λ∈,a b λ-⋅r r 量c r满足()()0c a c b -⋅-=r r r r ,则c r 的取值范围为( )A .1,1⎤⎦B .1⎡⎤⎣⎦C .1⎤⎦D .1⎤⎦8.已知ABC V 的三个内角A 、B 、C 满足222sin 3sin 2sin B A C =-,当s i nA 的值最大时,22sin sin BC的值为( )A .2B .1C .12D .14二、多选题9.已知i 为虚数单位,以下说法正确的是( ) A .复数()21i =+z 在复平面对应的点在第一象限 B .若复数1z ,2z 满足12=z z ,则12z z =C .()22232i z a a a a =+-+-+为纯虚数,则实数2a =-D .复数z 满足()2024i22i z +=-,则i z =10.下列说法中正确的是( )A .向量()12,3e =-u r,213,24e ⎛⎫=- ⎪⎝⎭u u r 不能作为平面内所有向量的一组基底B .若平面向量()1,2a =r ,()2,1b =r ,则a r 在b r 上的投影向量是84,55⎛⎫⎪⎝⎭C .两个非零向量a r ,b r ,若-=+r r r r a b a b ,则a r 与b r 垂直 D .已知向量()4,2a =r ,(),1b λ=r ,若a r 与b r的夹角是锐角,则实数λ的取值范围为12λ>-11.已知ABC V 三个内角A ,B ,C 的对边分别是a ,b ,c ,若))2sin sin sin sin a B C b B a A -=-,则下列选项正确的是( )A .cos cos A C 的取值范围是11,24⎛⎤- ⎥⎝⎦B .若D 是AC 边上的一点,且2CD DA =u u u r u u u r ,2BD =,则ABC V C .若三角形是锐角三角形,则c a的取值范围是1,12⎛⎫⎪⎝⎭D .若三角形是锐角三角形,BD 平分ABC ∠交AC 于点D ,且1BD =,则4a c +的最小值为三、填空题12.向量()2,3a =r ,(),5b x =r ,且()2//a b b +r rr ,则x =.13.如图,在正四棱锥P ABCD -中,PA =4AB =.从A 拉一条细绳绕过侧棱PB到达C 点,则细绳的最短长度为.14.已知点P 在ABC V 所在的平面内,则下列各结论正确的个数是.①若P 为ABC V 的垂心,2AB AC ⋅=u u u r u u u r .则2AP AB ⋅=u u u r u u u r②若ABC V 为边长为2的正三角形,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值为1-③若1112co 2s AP AB AC AC C ⎛⎫⎛⎫⎪ ⎪=+++⎪ ⎪⎪⎝⎭⎭u u u r u u u r u u u r u u u r ,则动点P 的轨迹经ABC V 的外心 ④若P 为ABC V 的重心,过点P 的直线l 分别与AB 、AC 交于E 、F 两点,若AE AB λ=u u u r u u u r,AF AC μ=u u u r u u u r ,则113λμ+=四、解答题15.已知向量a r ,b r满足2=r a ,3b =r ,,60a b =︒r r . (1)求()2a b b +⋅r rr 的值;(2)求向量2a b +r r 与b r的夹角θ的余弦值.16.如图,正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点.(1)证明:1//AC 平面BDE ;(2)设1AC 与1BD 交点为O ,求三棱锥O BDE -的体积. 17.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++.(1)求角C ;(2)若c =π4B =,求ABC V 的周长. 18.(1)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡角为15︒的观礼台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部B 的仰角分别为60︒和30︒,第一排和最后一排的距离为(如图所示),旗杆底部与第一排在同一水平面上,若国歌播放的时间约为50秒,升旗手应以约多大的速度匀速升旗?(2)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内.海底探测仪测得30BAC ∠=︒,45DAC ∠=︒,45ABD ∠=︒,75DBC ∠=︒,同时测得AB =C ,D 之间的距离.19.如图,直角ABC ∆中,点M ,N 在斜边BC 上(M ,N 异于B ,C ,且N 在M ,C 之间).(1)若AM 是角A 的平分线,3AM =,且2CM MB =,求三角形ABC 的面积;(2)已知3AB =,AC =6MAN π∠=,设BAM θ∠=.①若sin θ=MN 的长; ②求AMN ∆面积的最小值.。

河南省焦作市第一中学2023-2024学年高一下学期期中考试数学试题

河南省焦作市第一中学2023-2024学年高一下学期期中考试数学试题

河南省焦作市第一中学2023-2024学年高一下学期期中考试数学试题一、单选题1.设21i (i i i z +=+为虚数单位),则z =( ) A .i B .i - C .1i + D .1i -- 2.下列命题正确的是( )A .若直线//a b ,则a 平行于经过b 的任何平面B .若直线a ,b 和平面α,β,满足a αβ⋂=,//b α,//b β,则//a bC .若直线a ,b 和平面α满足//a α,//b α,则//a bD .若直线a 和平面α满足//a α,则a 与α内任何直线平行3.如图,四边形ABCD 的斜二测画法直观图为等腰梯形A B C D ''''.已知4A B ''=,2C D ''=,则下列说法正确的是( )A .2AB = B .A D ''=C.四边形ABCD 的周长为4+D .四边形ABCD 的面积为4.已知直角ABC V 斜边BC 的中点为O ,且OA AB =u u u r u u u r ,则向量CA u u u r 在向量CB u u u r 上的投影向量为( )A .14CB u u u r B .34CB u u u rC .14CB -u u u rD .34CB -u u u r 5.已知e r 为单位向量,向量a r 满足2a e ⋅=r r ,1a e λ-=r r ,则a r 的最大值为( )A .4B .2CD .56.ABC V 中,a 、b 、c 分别是内角A 、B 、C 的对边,若222ABC a b c =+-V ,且()0||||AB AC BC AB AC +⋅=u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状是( ) A .等腰非直角三角形 B .三边均不相等的直角三角形C .等边三角形D .等腰直角三角形7.已知直三棱柱111ABC A B C -的6个顶点都在球O 的表面上,若11,4AB AC AA ===,2π3BAC ∠=,则球O 的表面积为( ) A .16πB .20πC .28πD .32π 8.在锐角ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos a b B =,且b c ≠,则下列命题正确的有( )个①2A B = ②角B 的取值范围是0,4π⎛⎫ ⎪⎝⎭③cos A 的取值范围是10,2⎛⎫ ⎪⎝⎭④a b 的取值范围是 A .1 B .2 C .3 D .4二、多选题9.已知复数z 满足11z z =-=,且复数z 对应的点在第一象限,则下列结论正确的是( )A .复数z 的虚部为32B .11z 2=C .21z z =-D .复数z 的共轭复数为12- 10.下列说法中正确的有( )A .与()2,1a =-r 垂直的单位向量为⎝⎭B .已知a r 在b r 上的投影向量为12b r 且5b =r ,则252a b ⋅=r r C .若非零向量a r ,b r 满足a b a b ==-r r r r ,则a r 与a b +r r 的夹角是30︒D .已知()1,2a =r ,()1,1b =r ,且a r 与a b λ+r r 夹角为锐角,则λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭11.如图,在棱长为2的正方体1111ABCD A B C D -中,已知M ,N ,P 分别是棱11C D ,1AA ,BC 的中点,点Q 满足1CQ CC λ=u u u r u u u u r ,[]0,1λ∈,下列说法正确的是( )A .//PQ 平面11ADD AB .若Q ,M ,N ,P 四点共面,则14λ=C .若13λ=,点F 在侧面11BB C C 内,且1//A F 平面APQ ,则点FD .若12λ=,由平面MNQ 分割该正方体所成的两个空间几何体为1Ω和2Ω,某球能够被整体放入1Ω或2Ω,则该球的表面积最大值为(12π-三、填空题12.如图,在平面五边形ABCDE 中, 1,2,AB DE BC CD AE =====90ABC BCD CDE ∠=∠=∠=︒,则五边形ABCDE 绕直线AB 旋转一周所成的几何体的体积为13.在ABC V 中,ABC ∠的平分线交AC 于点D ,2π,43ABC BD ∠==,则ABC V 周长的最小值为. 14.已知非零向量a b r r 、,满足π2,1,,3a b a b ===r r r r ,且()()0c a c b -⋅-=r r r r ,则c r 的最大值为.四、解答题15.已知,,a b c r r r 是同一平面内的三个向量,其中()1,2a =r .(1)若c =r //c a r r ,求c r 向量;(2)若b =r 2a b +r r 与2a b -r r 垂直,求a r 与b r 的夹角的余弦值. 16.记ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,且sin 2sin cos 2sin c A B A a A+=. (1)求B 的大小;(2)若b =ABC V 的面积为ABC V 的周长.17.如图,在几何体ABCDFE 中,四边形ABCD 为直角梯形,2,2DC AB GC FG ==,平面ABEF ⋂平面CDEF EF =(1)证明:AF //平面BDG(2)证明://AB EF18.在ABC V 中,已知4AB =,10AC =,60BAC ∠=︒,BC 、AC 边上的两条中线AM 、BN 相交于点G.(1)求BN u u u r 、AM u u u u r ;(2)求CN u u u r 与GM u u u u r 夹角的余弦值.19.“但有一枝堪比玉,何须九畹始征兰”,盛开的白玉兰是上海的春天最亮丽的风景线,除白玉兰外,上海还种植木兰科的其他栽培种,如黄玉兰和紫玉兰等.某种植园准备将如图扇形空地AOB 分成三部分,分别种植白玉兰、黄玉兰和紫玉兰;已知扇形的半径为70米,圆心角为2π3,动点P 在扇形的弧上,点Q 在OB 上,且//PQ OA .(1)求扇形空地AOB 的周长和面积;(2)当50OQ =米时,求PQ 的长;(3)综合考虑到成本和美观原因,要使白玉兰种植区OPQ △的面积尽可能的大.设AOP θ∠=,求OPQ △面积的最大值.。

湖南省常德市德善高级中学2023-2024学年高一下学期期中考试数学试题(含简单答案)

湖南省常德市德善高级中学2023-2024学年高一下学期期中考试数学试题(含简单答案)

德善高级中学2023-2024学年高一下学期期中考试数学试卷时量120分钟满分150分一、单选题(本大题8小题,共40分)1. 已知向量,,则( )A. B. C. D. 52. 设,则( )A. B. C. D. 3. 在△ABC 中,角对边分别是,若,,则A. B. C. D. 4 中若( )A. B. C.或 D. 或5. 表示点,,表示线,表示平面,下列命题中是真命题的为( )A 若点平面,点平面,则与平面相交B. 若.则与必异面C. 若平面平面,则平面D. 若平面平面,则6. 圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的表面积为( )A. B. C. D. 7. 中,若,则的周长为( )A. B. 12 C. D. 8. 在中已知,且则为( )的..()2,0a = 1,12b ⎛⎫=- ⎪⎝⎭ 2a b += 1i 1i -=+z z z +=1i --1i +1i -1i -+,,A B C ,,a b c a =2A B =cos B =ABC V ()222tan ,a c b B B +-=∠=π6π3π65π6π32π3,A B a b αA ∈αB ∉αAB α,a b αα⊂⊂/a b A ∈,a B ∉a //AB a//a ,b α⊂αa bP 81π100π14π168πABC V 60A ∠=︒=V ABC S 2sin 3sin B C =ABC V 10+55+ABC V 0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭12||||AB AC AB AC ⋅= VA. 等腰B. 直角C. 等边D. 三边均不相等的二.多选题(本大题3小题,共18分)9. 下列关于点、线、面的位置关系的说法中不正确的是( )A. 若两个平面有三个公共点,则它们一定重合B. 空间中,相交于同一点的三条直线在同一平面内C. 直线a ,b 分别和异面直线c ,d 都相交,则直线 a ,b 是异面直线D. 正方体中,点是的中点,直线交平面于点,则A ,M ,O 三点共线,且A ,M ,O ,C 四点共面10. 已知向量,,,其中均为正数,且,下列说法正确的是( )A. 与的夹角为钝角B. 向量在方向上的投影向量为C.D. 最大值为211. 已知,,三点均在球的表面上,,且球心到平面的距离等于球半径的,则下列结论正确的是( )A. 球的表面积为B. 球的内接正方体的棱长为1C. 球的外切正方体的棱长为D. 球的内接正四面体的棱长为2三.填空题(本大题共3小题共15分)12. 已知是实数,是纯虚数,则 ___________.13. 若向量满足,的夹角为___________.14. 中有,则______.四、解答题(本大题共5道题,共77分)15. 已知复数,是纯虚数(1)求复数的共轭复数的V V V V 1111ABCD A B C D -O 11B D 1AC 11AB D M (2,1)a = (1,1)=- b (2,)cm n =-- ,m n ()//a b c - a ba b 2b 24m n +=mn A B C O 2AB BC CA ===O ABC 13O 6πO O 43O a i 2i a -+=a ,a b a b = 2a b += ,a b ABC V 222,b ac a bc c ac =+=+sin c b B=i(R)z b b =∈21iz -+z z(2)若复数所对应的点在第二象限,求实数的取值范围.16. 已知且(1)若为中点,求证:;(2)若为的中点,连接延长交于,用表示,并求.17. 如图所示正方体中棱长为,连得到三棱锥(1)求三棱锥表面积与正方体表面积之比(2)求三棱锥的体积18. 的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求;(Ⅱ)若求的面积.19. 如图,在平面四边形ABCD 中,∠ABC =,AB ⊥AD ,AB =1.的2()m z +m ||,||CB n CA m == 0(0,0)CB CA m n ⋅=>> D AB 12CD AB = E CD AE BC F ,CB CA AF ||AF 1111ABCD A B C D -a 111111,,,,,A C A D A B BD BC C D 11A BC D-11A BC D -11A BC D -C ∆AB A B C a b c ()m a = ()cos ,sin n =A B A a =2b =C ∆AB 34π(1)若AC,求的面积;(2)若∠ADC =,CD =4,求sin ∠CAD .ABC V 6德善高级中学2023-2024学年高一下学期期中考试数学试卷 简要答案一、单选题(本大题8小题,共40分)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】C二.多选题(本大题3小题,共18分)【9题答案】【答案】ABC【10题答案】【答案】BCD【11题答案】【答案】AD三.填空题(本大题共3小题共15分)【12题答案】【答案】##0.5【13题答案】12【答案】【14题答案】四、解答题(本大题共5道题,共77分)【15题答案】【答案】(1)(2)【16题答案】【答案】(1)证明略(2)【17题答案】【答案】(1(2)【18题答案】【答案】(Ⅰ);(Ⅱ【19题答案】【答案】(1);(2.23π2i -()0,213AF CB CA =- 33a 3π12。

【必考题】高一数学下期中试卷带答案

【必考题】高一数学下期中试卷带答案
四个结论:
①直线 AM 与 CC1 是相交直线; ②直线 AM 与 BN 是平行直线;
③直线 BN 与 MB1 是异面直线;
④直线 AM 与 DD1 是异面直线.
其中正确的结论的序号为________.
14.如图,在长方形 ABCD 中, AB 2 , BC 1, E 为 DC 的中点, F 为线段 EC (端 点除外)上一动点,现将 AFD 沿 AF 折起,使平面 ABD 平面 ABC ,在平面 ABD 内 过点 D 作 DK AB, K 为垂足,设 AK t ,则 t 的取值范围是__________.
B.若 a / /b,b ,则 a / /
C.若 / /, a, b, 则 a / /b
D.若 a ,b , a //,b // ,则 / /
4.已知平面 / / 平面 ,直线 m ,直线 n ,点 Am ,点 B n ,记点 A、B 之
间的距离为 a ,点 A 到直线 n 的距离为 b,直线 m 和 n 的距离为 c,则
A. 7 2
B. 56
C.14
D. 64
10.设直线 a, b 是空间中两条不同的直线,平面, 是空间中两个不同的平面,则下列说
法正确的是( )
A.若 a ∥ , b ∥ ,则 a ∥ b
B.若 a ∥ b , b ∥ ,则 a ∥
C.若 a ∥ , ∥ ,则 a ∥
D.若 ∥ , a ,则 a ∥
A. 8π
B.12π
C. 20π
D. 24π
6.如图是某四面体 ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为 1,则四
面体 ABCD 外接球的表面积为
A. 20
B. 125 6
C. 25

河南省郑州外国语学校2023-2024学年高一下学期期中考试数学试题(解析版)

河南省郑州外国语学校2023-2024学年高一下学期期中考试数学试题(解析版)

郑州外国语学校2023-2024学年高一下期期中试卷数 学(120分钟 150分)一、单选题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数(为虚数单位),则在复平面内对应的点位于( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据给定条件,利用复数乘法运算求出即可得解.【详解】复数,在复平面内对应的点位于第二象限.故选:B2. 下列说法正确的是( )A. 底面是正多边形的棱锥是正棱锥B. 长方体是平行六面体C. 用一个平面去截圆柱,所得截面一定是圆形或矩形D. 用一个平面去截圆锥,截面与底面之间的部分是圆台【答案】B 【解析】【分析】根据棱柱、棱锥、圆柱和圆锥的定义对选项一一判断即可得出答案.【详解】对于A , 底面是正多边形,侧棱均相等的棱锥是正棱锥,故A 错误;对于B ,平行六面体是各个面都为平行四边形的棱柱,而长方体是各面为矩形的棱柱,所以长方体是平行六面体,故B 正确;对于C ,用一个平面去截圆柱,所得截面可能为椭圆,故C 错误;对于D ,用一个平行于底面的平面截圆锥,底面与截面之间的部分叫做圆台,故D 错误.故选:B .3. 在中,角所对边分别为,若,则( )A.B. 2C. 1或2D. 2的()i 1i z =+i z z 1i z =-+z (1,1)-ABC ,,A B C ,,a b c π1,6a b B ===c =【解析】【分析】由余弦定理即可求.【详解】由余弦定理得,化简得,解出或2.故选:C.4. 已知直线、,平面、,满足且,则“”是“”的( )条件A. 充分非必要 B. 必要非充分条C. 充要D. 既非充分又非必要【答案】A 【解析】【分析】利用空间中的垂直关系和充分条件、必要条件的定义进行判定.【详解】因为,所以,又因为,所以,即“”是“”的充分条件;如图,在长方体中,设面为面、面为面,则,且与面不垂直,即“”不是“”的必要条件;所以“”是“”的充分不必要条件.故选:A.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为222cos 2a c b B ac +-==2320c c -+=1c =m n αβn αβ= αβ⊥m β⊥m n ⊥n αβ= n β⊂m β⊥m n ⊥m β⊥m n ⊥ABCD αBCEF βm n ⊥m βm β⊥m n ⊥m β⊥m n ⊥A.B.C.D.【答案】C 【解析】【分析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得.故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6. 已知直角三角形ABC 中,,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则的最大值为( ),CD a PE b ==212PO CD PE =⋅,a b ,CD a PE b ==PO ==212PO ab =22142a b ab -=24()210b b a a -⋅-=b a =90A ∠=︒PB PC ⋅A.B.C.D.【答案】D 【解析】【分析】建立如图所示的坐标系,根据可求其最大值.【详解】以为原点建系,,,即,故圆的半径为,∴圆,设中点为,,,∴,故选:D.16556525PB PC PD =- A ()()0,2,4,0BC :142x yBC +=240x y +-=r 2216:5A x y +=BC ()2,1D 22221120544PB PC PD BC PD PD =-=-⨯=- max PD AD r =+==()max8156555PB PC =-=7. 在中,内角A ,B ,C 所对的边分别为,,,将该三角形绕AC 边旋转得一个旋转体,则该旋转体体积为()A. B. C. D.【答案】B 【解析】【分析】根据题意利用余弦定理可得,进而可得该旋转体为大圆锥去掉小圆锥,结合圆锥的体积公式运算求解.【详解】因为,即,由余弦定理可得,且,可得,又因为,,即,解得或(舍去),如图,将该三角形绕AC 边旋转得一个旋转体,则该旋转体为大圆锥去掉小圆锥,可得,则,大圆锥的底面半径为3,高为,小圆锥的底面半径为3,所以该旋转体体积为.故选:B.8. 如图,透明塑料制成的长方体容器内灌进一些水,固定容器底面一边于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:①有水的部分始终呈棱柱形;ABC ,,a b c 222bc a b c =--a=b =360︒2π,3A c ==CO AO 222bc a b c =--222b c a bc +-=-2221cos 222b c a bc A bc bc +--===-()0,πA ∈2π3A =a =b =2213c =--2180c -=c =c =-360︒CO AO cos 60sin 603AO AB BO AB =︒==︒=CO CA AO =+=CO 119π3V =⨯⨯=AO 219π3V =⨯=12V V V =-=-=1111ABCD A B C D -BC②没有水的部分始终呈棱柱形;③水面所在四边形的面积为定值;④棱始终与水面所平面平行;⑤当容器倾斜如图3所示时,是定值.其中正确命题的个数为( )A. 2B. 3C. 4D. 5【答案】C 【解析】【分析】根据棱柱的定义判定①②,利用线面垂直的性质定理可得水面是矩形判定③,利用线面平行的判定定理判断④,利用等体积法判断⑤即可.【详解】根据棱柱的定义:有两个面是相互平行且是全等的多边形,其余没相邻两个面的交线也相互平行,而这些面都是平行四边形可知,由于边固定,所以在倾斜的过程中,始终有,且平面平面,所以在倾斜的过程中有水的部分始终呈棱柱形,同理没有水的部分始终呈棱柱形,①②正确;在倾斜的过程中,,长度不变,不断变化,又因为,所以始终垂直于平面,又平面,所以水面是矩形,所以水面所在四边形的面积不是定值,③说法错误;因为在倾斜的过程中,始终与平行,且水面,水面,所以棱始终与水面所在平面平行,④说法正确;因为水的体积是不变的,正三棱柱的高始终是也不变,所以底面面积也不会变,即是定值,⑤说法正确;综上正确的是:①②④⑤,在EFGH 11A D ·BE BF EFGH BC AD EH FG BC ∥∥∥AEFB DHGC ,EH FG ,EF HG FG BC ∥FG 11ABB A EF ⊆11ABB A EFGH EFGH 11A D FG 11A D ⊄FG ⊆11A D BEF CHG -BC ·BE BF故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知,,则下列结论正确的是( )A B. C. 与的夹角为D. 在【答案】AC 【解析】【分析】已知向量的坐标,证明向量垂直,求向量的模长、夹角、投影等都比较简单,根据公式求解即可.【详解】因为,,所以,则,所以,故A 正确;因为,所以,故B 错误;,所以,故C 正确;在方向上的投影向量是,故D 错误.故选:AC.10. 下列说法正确的是( )A. 若、互为共轭复数,则为实数B. 若为虚数单位,为正整数,则C. 已知是关于的方程的一个根,则D. 复数满足,则的最大值为【答案】ACD 【解析】【分析】利用复数乘法可判断A 选项;利用复数的乘方可判断B 选项;分析可知为方程.的(3,1)a =- (2,1)b =()a b b-⊥ 2a b +=a b4πa b()3,1a =- ()2,1b = ()1,2a b -=-()12(2)10a b b -⋅=⨯+-⨯= ()a b b -⊥2(71)a b +=,|2|a b +==cos ,||||a b a b a b ⋅==⋅<>,[π]a b ∈ <>0,π,4a b = <>a b cos ,a a b = 1z 2z 12z z i n 43i in +=1i +x ()220,ax bx a b ++=∈R 1a b +=-z 1z =1i z --11i ±的两根,利用韦达定理可求出、的值,可判断C 选项的正误;利用复数模的三角不等式可判断D 选项.【详解】对于A 选项,设,则,所以,为实数,A 对;对于B 选项,,B 错;对于C 选项,实系数的一元二次方程虚根成对(互为共轭复数),所以为方程的两根,则,所以,,解得,所以,,C 对;对于D 选项,利用复数模的三角不等式可得,当且仅当时,等号成立,D 对.故选:ACD.11.在三棱锥中,已知,点M ,N 分别是AD ,BC 的中点,则( )A.B. 异面直线AN ,CM所成的角的余弦值是C. 三棱锥D. 三棱锥的外接球的表面积为【答案】ABD 【解析】【分析】将三棱锥补形为长方体,向量法求直线的夹角判断A ,B ;利用体积公式求三棱锥的体积判断C ;确定三棱锥的外接球的半径,求表面积判断D.【详解】三棱锥中,已知,三棱锥补形为长方体,如图所示,()220,ax bx a b ++=∈R a b ()1i ,z a b a b =+∈R 2i z a b =-()()2212i i z z a b a b a b =+-=+433i i i n +==-1i ±()220,ax bx a b ++=∈R 0a ≠()()()()21i 1i 1i 1i ab a ⎧+-=⎪⎪⎨⎪++-=-⎪⎩12a b =⎧⎨=-⎩1a b +=-1i 1i 1z z --≤++=+z =A BCD -3,2AB AC BD CD AD BC ======MNAD ⊥78A BCD -A BCD -11πA BCD -3,2AB AC BD CD AD BC ======AHDG FCEB -则有,解得,以为原点,的方向为轴,轴,轴正方向,建立如图所示的空间直角坐标系,点M ,N 分别是AD ,BC 的中点,则有,,,,,,所以,A 选项正确;,,,所以异面直线AN ,CM 所成的角的余弦值是,B 选项正确; 三棱锥,三棱锥,三棱锥,三棱锥,体积都为三棱锥,C 选项错误;222222222949BF BG AB BFBE BC BG BE BD ⎧+==⎪+==⎨⎪+==⎩BF BE BG ===B ,,BF BE BGx y z ())(0,0,0,,,B CAD M N ⎫⎪⎪⎭(0,0,MN = ()AD = 0MN AD ⋅=MN AD ⊥AN ⎛= ⎝ CM ⎛= ⎝ 7cos ,8AN CM AN CM AN CM ⎛⎛++ ⋅-===⋅ 78E BCD -G ABD -F ABC -H ACD -1132⨯=A BCD -4-=的外接球,其表面积为,D 选项正确.故选:ABD.12. 在锐角中,角的对边分别为,且满足,,则下列说法正确的有( )A. 外接圆面积是 B. 面积最大值是C. 周长的取值可以是 D. 内切圆半径的取值范围是【答案】ABD 【解析】【分析】根据,结合正弦定理,可求,结合,可求角.根据三角形外接圆半径满足,可判断A 的真假;结合余弦定理和基本(均值)不等式,可判断B 的真假;利用为锐角三角形,求出角的取值范围,利用正弦定理表示出,可求周长的取值范围,判断C 的真假;根据BC 的结论,结合三角形的面积、三角形周长、三角形内切圆半径之间的关系,判断D 的真假.【详解】由,结合正弦定理,可得:.因为在锐角三角形中,,所以.由,又为锐角,所以.对A :设的外接圆半径为,由,所以,所以外接圆的=A BCD -24π11π⨯=ABC 、、A B C a b c 、、2cos cos )a b C c B =+cos 2)1A B C ++=ABC 4πABC ABC 9ABC 1,1]-2cos cos )a b C c B =+a cos 2)1A B C ++=A 2sin aR A=ABC B b c +)2cos cos a b C c B =+)sin sin cos cos sin a A B C B C =+()B C =+A =sin 0A ≠a =()cos 21A B C ++=⇒()1cos 2B C A +=-⇒22sin A A =⇒sin A =A π3A =ABC R 2sin a R A=⇒24R ==2R =ABC面积为:.故A 正确.对B :由余弦定理(当且仅当时取“”).所以.故B 正确;对C :因为为锐角三角形,所以,,,所以.由正弦定理:,所以,,所以,因为,所以,所以,所以周长的取值范围为.因为,故C 错误;对D :设内切圆半径为,则.又, ,,所以,由.故D 正确.故选:ABD 【点睛】思路点睛:(1)涉及三角形周长或面积的取值范围,可将问题转化为利用基本(均值)不等式求最值或转化为三角函数求值域的问题解决.(2)本题的关键是三角形式锐角三角形,由此确定三角形角的取值范围,是该题的一个关键点.2π4πR =2222cos a b c bc A =+-⇒2212b c bc bc +-=≥b c ==11sin 1222ABC S bc A =£´´=ABC π02B <<π02C <<2π3B C +>ππ62B <<4sin sin sin b c aB C A===4sin b B =4sin c C =()4sin sin b c B C +=+2π4sin sin 3B B ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦2π4sin sin 3B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦π6B ⎛⎫=+ ⎪⎝⎭ππ2π,633B ⎛⎫+∈ ⎪⎝⎭πsin 6B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦(6,b c +∈ABC (6+(96∉+ABC r ()12ABC S a b c r =++△⇒2ABC S r a b c =++△a =()2312b c bc +-=1sin 2ABC S bc A =r ===6b c <+≤11r -<≤三、填空题:本题共4小题,每小题5分,共20分.13. 圆锥的底面半径为1,其侧面展开图是一个圆心角为的扇形,则此圆锥的母线长为______.【答案】3【解析】【分析】根据圆锥底面圆的半径为1得到侧面展开图扇形的弧长为,然后根据侧面展开图扇形的圆心角为列方程,解方程即可得到圆锥的母线长.【详解】因为圆锥底面圆的半径为1,所以侧面展开图扇形的弧长为,设圆锥的母线长为,因为侧面展开图扇形的圆心角为,所以,解得,所以此圆锥的母线长为3.故答案为:3.14. 已知向量和满足:,,与向量的夹角为______.【答案】【解析】【分析】设向量与向量的夹角为,根据得到,再利用向量的夹角公式计算得到答案.【详解】设向量与向量的夹角为,,故,故,,故.故答案为:15. 四棱锥的底面是边长为1的正方形,如图所示,点是棱上一点,,若且满足平面,则_________23π2π23π2πl 23π23222l ππππ=⨯3l =a b 1a = 2b = 2a b -= ab 2π3abθ()2212a b -=1a b ⋅=-abθ2a b -= ()22224444412a b a a b b a b -=-⋅+=-⋅+= 1a b ⋅=- 11cos 212a b a b θ⋅-===-⨯⋅ []0,πθ∈2π3θ=2π3P ABCD -E PD 35PE PD =PF PC λ=//BF ACE λ=【答案】【解析】【分析】连接BD ,交AC 于点O ,连接OE ,利用中位线性质和线面平行的判定证明平面ACE ,结合平面ACE ,则证明平面平面ACE ,再利用利用面面平行的性质则有,即可得到答案.【详解】如图,连接BD ,交AC 于点O ,连接OE ,由是正方形,得,在线段PE 取点G ,使得,由,得,连接BG ,FG ,则,由平面,平面,得平面,而平面,,平面,因此平面平面,又平面平面,平面平面,则,所以.故答案为:16. 在锐角中,角A ,B ,C 的对边分别为a ,b ,c ,S 为的面积,且,则的取值范围为______.13//BG //BF //BGF //GF EC ABCD BO OD =GE ED =35PE PD =13PG PE =//BG OE OE ⊂ACE BG ⊄ACE //BG ACE //BF ACE BG BF B ⋂=,BG BF ⊂BGF //BGF ACE PCD ACE EC =PCD BGF GF =//GF EC 13PF PG PC PE λ===13ABC ABC ()222S a b c =--22b c bc+【答案】【解析】【分析】利用三角形面积公式与余弦定理,可得,再根据同角关系式可得,然后利用正弦定理与三角恒等变换公式化简可得,结合条件可得取值范围,进而求得的取值范围,令,则,然后由对勾函数的单调性即可求出.【详解】在中,由余弦定理得,且的面积,由,得,化简得,又,,联立得,解得或(舍去),所以,因为为锐角三角形,所以,,所以,所以,所以,所以,设,其中,所以,由对勾函数单调性知在上单调递减,在上单调递增,当时,;当时,;当时,,所以,即的取值范围是.故答案为:.342,15⎡⎫⎪⎢⎣⎭sin 2cos 2A A +=sin A 435tan 5b c C =+tan C b cb tc =221b c t bc t+=+ABC 2222cos a b c bc A =+-ABC 1sin 2S bc A =()222S a b c =--sin 22cos bc A bc bc A =-sin 2cos 2A A +=0,2A π⎛⎫∈ ⎪⎝⎭22sin cos 1A A +=25sin 4sin 0A A -=4sin 5A =sin 0A =()sin sin sin cos cos sin 43sin sin sin 5tan 5A C bB AC A C c C C C C ++====+ABC 02C π<<2B AC ππ=--<22A C ππ-<<13tan tan 2tan 4C A A π⎛⎫>-== ⎪⎝⎭140,tan 3C ⎛⎫∈ ⎪⎝⎭35,53b c ⎛⎫∈ ⎪⎝⎭b t c=35,53t ⎛⎫∈ ⎪⎝⎭221b c b c t bc c b t +=+=+1y t t =+3,15⎛⎫ ⎪⎝⎭51,3⎛⎫ ⎪⎝⎭1t =2y =35t =3415y =53t =3415y =342,15y ∈⎡⎫⎪⎢⎣⎭22b c bc+342,15⎡⎫⎪⎢⎣⎭342,15⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:本题关键在于利用正弦定理与三角恒等变换公式化简可得,进而可以求解.四、解答题:本题共5小题,共70分.其中第17题12分,第18, 19题每题13分,第20题15分,第21题17分,解答应写出文字说明、证明过程或演算步骤.17. 已知复数,,其中.(1)若,求的值;(2)若是纯虚数,求的值.【答案】(1)2 (2)或.【解析】【分析】(1)利用复数相等几何复数运算即可求出结果;(2)利用纯虚数定义即可求出结果.【小问1详解】∵,,,∴,从而,解得,所以的值为2.【小问2详解】依题意得:,因为是纯虚数,所以,解得或.435tan 5b c C =+()21i z a =+243i z =-R a ∈12i z z =a 12z z a 2a =12a =-()21i z a =+243i z =-12i z z =()22i 12i 34i a a a +=-+=+21324a a ⎧-=⎨=⎩2a =a ()()()()()2222122i 143i 464383i i 43i 2525a a a a a a a z z +-+--++-+===-12z z 2246403830a a a a ⎧--=⎨+-≠⎩2a =12a =-18. (1)已知向量,点,若向量,且的坐标;(2)已知向量,若与夹角为钝角,求的取值范围.【答案】(1)或;(2)且.【解析】【分析】(1)设,根据向量垂直和向量的模得到方程组,解出即可;(2)计算出与坐标形式,根据向量点乘小于0,并结合向量反向共线即可得到答案.【详解】(1)设,则因为向量,所以又,所以解得或,所以的坐标为或(2)因为,所以,因为与夹角为钝角,所以,即,解得又不反向共线,所以,解得综上,且.19. 如图,在三棱柱中,侧棱底面,,为的中点,,.(1)求三棱柱的表面积;()2,1a =()2,1A -AB a ⊥ AB = B ()()2,1,4,3a b ==- 2a b - a b λ+ λ()3,3-()1,19λ>-12λ≠-(),B m n 2a b -a b λ+(),B m n ()2,1AB m n =-+AB a ⊥()()2210m n -++=AB =22(2)(1)5m n -++=33m n =⎧⎨=-⎩11m n =⎧⎨=⎩B ()3,3-()1,1()()2,1,4,3a b ==-()()26,7,24,3a b a b λλλ-=-+=+-2a b -a b λ+()()20a b a b λ-⋅+<()()624730λλ-++-<9λ>-,a b()()63724,0λλλ--≠+<12λ≠-9λ>-12λ≠-111ABC A B C -1AA ⊥ABC AB BC ⊥D AC 12AA AB ==3BC =111ABC A B C -(2)求证:平面.【答案】(1) (2)证明见解析【解析】【分析】(1)分别求三棱柱每个面的面积相加即可;(2)利用线面平行的判定定理证明即可.【小问1详解】因为侧棱底面,所以三棱柱为直三棱柱,所以侧面,,均为矩形.因为,所以底面,均为直角三角形.因为,,所以.所以三棱柱的表面积为.【小问2详解】连接交于点,连接,因为四边形为矩形,所以为的中点.因为为的中点,所以.因为平面,平面,所以平面.20. 已知的内角的对边分别为,且,______(1)求的面积;(2)求角的平分线的长.1AB ∥1BCD 16+1AA ⊥ABC 111ABC A B C -11BCC B 11BAA B 11CAA C AB BC ⊥ABC 111A B C 12AA AB ==3BC=AC ===111ABC A B C -()(11122322231622AB BC AC AA AB BC ++⋅+⨯⋅=++⨯+⨯⨯⨯=+1B C 1BC O OD 11BCC B O 1B C D AC 1OD AB ∥1AB ⊄1BC D OD ⊂1BC D 1AB ∥1BC D ABC ,,A B C ,,a b c 7,3a b ==ABC S A AD在①;②;③.这三个条件中任选一个,补充在上面问题的横线中,并作答.【答案】(1(2)【解析】【分析】(1)选①:根据,求得角C ,再利用三角形面积公式求解;选②:利用正弦定理得到,化简求得边c ,再利用余弦定理求得角A ,再利用三角形面积公式求解;选③:根据,根据二倍角公式求得角A ,再利用余弦定理求得边c ,再利用三角形面积公式求解;(2)选①:先利用余弦定理求得边c 和角A ,再由解;选②:由(1)得到结论利用1)得到结论利用【小问1详解】解:选①:因为,所以,又,所以,所以,所以选②:因为,所以由正弦定理可得,所以,即,由正弦定理可得,所以,332AC CB ⋅=- 12cos 72cos 13A B -=-2sin 2A A =158332AC CB ⋅=- 12cos 7sin 2cos 13sin A a AB b B-===-2sin 2A A =11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=332AC CB ⋅=- ()33cos 2ab C π-=-7,3a b ==11cos 14C =sin C =1sin 2ABC S ab C ==7,3a b ==12cos 7sin 2cos 13sin A a AB b B-===-sin 2sin cos 2sin cos sin -=-B B A A B A sin sin 2sin cos 2sin cos 2sin +=+=A B B A A B C 2a b c +=5c =由余弦定理可得,,由,所以,所以选③:因为,所以,由,所以,由余弦定理可得,,所以,所以【小问2详解】选①:由余弦定理可得,,所以.所以,由,所以,因为所以.选②:由(1)知:,,所以解得.选③:由(1)知:,,2221cos 22b c a A bc +-==-()0,A π∈23A π=1sin 2ABC S bc A ==2sin 2AA =22sin cos 222A A A =()0,,cos 02A A π∈>2tan 23A A π==2221cos 22b c a A bc +-==-5c =1sin 2ABC S bc A ==2222cos 25c b a ab C =+-=5c =2221cos 22b c a A bc +-==-()0,A π∈23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=所以解得.21. 如图,在三棱柱中,已知侧面,,(1)求证:平面;(2)是线段上的动点,当平面 平面时,求线段的长;(3)若为的中点,求二面角平面角的余弦值.【答案】(1)证明见解析; (2); (3.【解析】【分析】(1)由,,根据线面垂直的判定定理即可证结论;(2)先证面面,因此过作交线的垂线,可得到平面,即可求得=;(3)由上一问面,故过作交所在直线为点,则为所求平面的二面角,利用三角函数即可求值.【小问1详解】证明:侧面,侧面,得,由,知,即,11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =111ABC A B C -AB ⊥11BB C C 11π1,2,3BC AB BB BCC ===∠=1C B ⊥ABC P 1BB 1C AP ⊥11AA B B 1B P E 1BB 11C AE A --12AB ⊥1C B 1C B CB ⊥11ABB A ⊥11BB C C 1C 1C P 1C AP ⊥11AA B B 1B P 121C P ⊥11AA B B P PH AE ⊥AE H 1C HP ∠AB ⊥11BB C C 1C B ⊂11BB C C AB ⊥1C B 111π1,2,3BC CC BB BCC ===∠=190C CB ∠=︒1C B CB ⊥又交于点A ,且都在面内,故平面.【小问2详解】由已知侧面,面,知面面,过作于,面,面面,则面,因面,故平面平面,此时.【小问3详解】由(2):面,面,则过P 作交于,且都在面内,所以面,则二面角平面角为或其补角,由,则,且,所以, ,故.,CB BAABC 1C B ⊥ABC AB ⊥11BB C C AB ⊂11ABB A 11ABB A ⊥11BB C C 1C 11C P BB ⊥P 1C P ⊂11BB C C 11ABB A 111BB C C BB =1C P ⊥11AA B B 1C P ⊂1C AP 1C AP ⊥11AA B B 111ππcoscos 33B P B C BC ===121C P ⊥11AA B B AE ⊂11AA B B 1C P AE ⊥PH AE ⊥AE H 1C P PH P = 1C PH ⊥AE 1C PH 11C AE A --1C HP ∠PHE ABE PH PE AB AE =12,,2AB PE AE ===PH =1C P =11tan C P C HP PH ∠===1cos C HP ∠=。

2023-2024学年厦门市高一数学第二学期期中考试卷附答案解析

2023-2024学年厦门市高一数学第二学期期中考试卷附答案解析

2023-2024学年厦门市高一数学第二学期期中考试卷(考试时间120分钟,满分150分)考试时间:2024年4月28日考试时长120分钟一、单选题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i i z =-,则z 对应的点Z 在复平面的()A .第一象限B .第二象限C .第三象限D .第四象限2.已知向量(2,1),(1,4)a b ==- ,则23a b -=()A .(7,10)-B .(1,14)C .(7,10)-D .(7,6)3.下列命题中正确的是()A .有两个面互相平行,其余各面都是四边形的几何体叫棱柱B .棱柱中互相平行的两个面叫棱柱的底面C .棱柱的侧面都是平行四边形,而底面不是平行四边形D .棱柱的侧棱都相等,侧面是平行四边形4.在空间四边形ABCD 中,AC=BD ,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接各边中点E ,F ,G ,H ,所得四边形EFGH 的形状是()A .梯形B .矩形C .正方形D .菱形5.某校运动会开幕式上举行升旗仪式,在坡度为15︒的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30︒,第一排和最后一排的距离为(如图所示),则旗杆的高度为()A .10mB .30mC .D .6.在ABC 中,若sin 2sin cos C B B =,且64ππ,B ⎛⎫∈ ⎪⎝⎭,则c b 的范围为()A .B .)2C .()0,2D .)27.如图,点A ,B ,C ,M ,N 为正方体的顶点或所在棱的中点,则下列各图中,不满足直线//MN 平面ABC 的是()A .B .C .D .8.已知AB AC ⊥ ,||AB t = ,1||AC t= .若点P 是△ABC 所在平面内一点,且2||||AB ACAP AB AC =+,则PB PC ⋅ 的最大值为()A .13B .5-C .5-D .10+二、多选题:本小题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设复数12i1i z +=+,则()A .z 的实部为32B .31i 22z =-C .z 的虚部为1i2D .1z =10.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,下列说法正确的是()A .若sin :sin :sin 2:3:4ABC =,则ABC 是钝角三角形B .若sin sin A B >,则a b>C .若0AC AB ⋅>,则ABC 是锐角三角形D .若45A =o ,2a =,b =,则ABC 只有一解11.“奔驰定理”因其几何表示酷似奔驰的标志得来,是平面向量中一个非常优美的结论.奔驰定理与三角形四心(重心、内心、外心、垂心)有着神秘的关联.它的具体内容是:已知M 是ABC 内一点,BMC △,AMC ,AMB 的面积分别为A S ,B S ,C S ,且0A B C S MA S MB S MC ⋅+⋅+⋅=.以下命题正确的有()A .若::1:1:1ABC S S S =,则M 为AMC 的重心B .若M 为ABC 的内心,则0BC MA AC MB AB MC ⋅+⋅+⋅=C .若45BAC ∠=︒,60ABC ∠=︒,M 为ABC 的外心,则::2:1A B C S S S =D .若M 为ABC 的垂心,3450MA MB MC ++= ,则cos AMB ∠=三、填空题:本题共3小题,每小题5分,共15分.12.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为.13.将边长为2的正方形卷成一个圆柱的侧面,所得圆柱的体积为.14.在ABC 中,角,,A B C 所对的边分别为,,a b c .若a c =,sin 3,26sin 2A aB =≤≤,则ABC S - 的最大值为.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin a B .(1)若2b =,3c =,求a 的值:(2)若2a bc =,判断ABC 的形状.16.如图,在平行四边形ABCD 中,4AB =,2AD =,60BAD ︒∠=,E ,F 分别为AB ,BC 上的点,且2AE EB =,2=CF FB .(1)若DE x AB y AD =+,求x ,y 的值;(2)求AB DE ⋅的值;(3)求cos BEF ∠.17.如右图所示,ABCD -A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(1)求证:BD 1∥平面C 1DE ;(2)求三棱锥D -D 1BC 的体积18.已知ABC 的内角A ,B ,C 的对边为a ,b ,c ,且()3sin sin 32sin A B c bC a b--=+.(1)求sin A ;(2)若ABC①已知E 为BC 的中点,求ABC 底边BC 上中线AE 长的最小值;②求内角A 的角平分线AD 长的最大值.19.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当ABC 的三个内角均小于120︒时,使得120AOB BOC COA ∠=∠=∠=︒的点O 即为费马点;当ABC 有一个内角大于或等于120︒时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且cos2cos2cos21B C A +-=(1)求A ;(2)若2bc =,设点P 为ABC 的费马点,求PA PB PB PC PC PA ⋅+⋅+⋅;(3)设点P 为ABC 的费马点,PB PC t PA +=,求实数t 的最小值.1.C【分析】根据虚数单位的性质化简,再由实部、虚部符号确定复数对应点所在象限.【详解】因为2i i=1i z =---,所以z 对应的点Z 在复平面的第三象限,故选:C 2.A【分析】根据向量线性运算的坐标表示计算可得;【详解】解:因为(2,1),(1,4)a b ==-,所以()()()2322,131,47,10a b -=--=- ;故选:A 3.D【分析】根据题意,结合棱柱的几何结构特征,逐项判定,即可求解.【详解】对于A 中,如图所示满足有两个面互相平行,其余各面都是四边形,但该几何体不是棱柱,故A 不正确;对于B 中,正六棱柱中有四对互相平行的面,但只有一对面为底面,所以B 不正确;对于C 中,长方体、正方体的底面都是平行四边形,故C 不正确;对于D 中,根据棱柱的几何结构特征,可得棱柱的侧棱都相等,且侧面都是平行四边形,所以D 正确.故选:D.4.D【分析】根据空间四边形中各点的位置,结合中位线的性质可得EFGH 是平行四边形,再由AC=BD 即可判断四边形EFGH 的形状.【详解】如图所示,空间四边形ABCD 中,连接AC ,BD 可得一个三棱锥,将四个中点连接,得到四边形EFGH ,由中位线的性质及基本性质4知,EH ∥FG ,EF ∥HG ;∴四边形EFGH 是平行四边形,又AC=BD ,∴HG=12AC=12BD=EH ,∴四边形EFGH 是菱形.故选:D 5.B【分析】先根据正弦定理求出BC ,再根据直角三角形三角函数关系即可求解.【详解】如图,由题可知:在ABC 中,45A =︒,105ABC ∠=︒,所以30ACB ∠=︒.sin 45BC=︒,所以22BC ==,在Rt CBD △中,3sin 6030(m)2CD BC ︒==⨯=.故选:B 6.A【分析】根据题意,利用正弦定理化简得到2cos c B b =,结合64ππ,B ⎛⎫∈ ⎪⎝⎭和余弦函数的性质,即可求解.【详解】因为sin 2sin cos C B B =,由正弦定理得2cos c b B =,则2cos cB b=,又因为64ππ,B ⎛⎫∈ ⎪⎝⎭cos B <<2cos B <所以cb的范围为.故选:A.7.D【分析】对于A ,根据//MN AC 结合线面平行的判断定理即可判断;对于B,根据//MN BE 结合线面平行的判断定理即可判断;对于C ,根据//MN BD ,结合线面平行的判断定理即可判断;对于D ,根据四边形AMNB 是等腰梯形,AB 与MN 所在的直线相交,即可判断.【详解】对于A,如下图所示,易得//,//AC EF MN EF ,则//MN AC ,又MN ⊄平面ABC ,AC ⊂平面ABC ,则//MN 平面ABC ,故A 满足;对于B ,如下图所示,E 为所在棱的中点,连接,,EA EC EB ,易得,//AE BC AE BC =,则四边形ABCE 为平行四边形,,,,A B C E 四点共面,又易知//MN BE ,又MN ⊄平面ABC ,BE ⊂平面ABC ,则//MN 平面ABC ,故B 满足;对于C,如下图所示,点D 为所在棱的中点,连接,,DA DC DB ,易得四边形ABCD 为平行四边形,,,,A B C D 四点共面,且//MN BD ,又MN ⊄平面ABC ,BD ⊂平面ABC ,则//MN 平面ABC ,故C 满足;对于D ,连接,AM BN ,由条件及正方体的性质可知四边形AMNB 是等腰梯形,所以AB 与MN 所在的直线相交,故不能推出MN 与平面ABC 不平行,故D 不满足,故选:D.8.B【分析】以A 为原点,建立直角坐标系,利用向量的数量积的坐标运算,以及二次函数的性质,即可求解.【详解】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则1(,0),(0,0)B t C t t >,可得(1,0)AB AB = ,2(0,2)||AC AC = ,所以(1,2)AP = ,即(1,2)P ,故(1,2)PB t =-- ,11,2PC t ⎛⎫=-- ⎪⎝⎭,所以221455PB PC t t t t ⎛⎫⋅=-+-=-+≤- ⎪⎝⎭ 2t t =即t 时等号成立.故选:B.9.AB【分析】根据复数除法求出z ,由复数的概念判断AC ,根据共轭复数判断B ,根据模的定义判断D.【详解】因为()()()()12i 1i 12i 122i i 31i 1i 1i 1i 222z +-+++-====+++-,所以z 的实部为32,虚部为12,31i 22z =-,102z =,故选:AB 10.ABD【分析】对于A ,利用正弦定理及大边对大角,结合余弦定理的推论即可求解;对于B ,利用正弦定理的角化边即可求解;对于C ,利用向量的数量积的定义即可求解;对于D ,利用正弦定理及三角函数的特殊值对应特殊角即可求解.【详解】对于A ,因为ABC 的三个角满足sin :sin :sin 2:3:4A B C =,所以由正弦定理化简得::2:3:4a b c =,设2,3,4a k b k c k ===,c 为最大边,由余弦定理得222222249163cos 02124a b c k k k C ab k +-+-===-<,所以C 为钝角,所以ABC 是钝角三角形,故A 正确;对于B ,由sin sin A B >及正弦定理,得22a b R R>,解得a b >,故B 正确;对于C ,因为0AC AB ⋅>,所以cos cos 0AC AB AC AB A bc A ⋅⋅==> ,所以cos 0A >,所以A 为锐角,但无法确定B 和C 是否为锐角,故C 错误;对于D ,由正弦定理得222sin 45sin B=,解得sin 1B =,因为0180B << ,所以90B = ,所以ABC 只有一解,故D 正确.故选:ABD.11.ABD【分析】A 选项,0MA MB MC ++=,作出辅助线,得到A ,M ,D 三点共线,同理可得M 为ABC 的重心;B 选项,设内切圆半径为r ,将面积公式代入得到0BC MA AC MB AB MC ⋅+⋅+⋅=;C 选项,设外接圆半径,由三角形面积公式求出三个三角形的面积,得到比值;D 选项,得到::3:4:5A B C S S S =,作出辅助线,由面积关系得到线段比,设MD m =,MF n =,5ME t =,表示出AM ,BM ,MC ,结合三角函数得到m ,m =,进而求出余弦值;【详解】对A 选项,因为::1:1:1A B C S S S =,所以0MA MB MC ++=,取BC 的中点D ,则2MB MC MD += ,所以2MD MA =-,故A ,M ,D 三点共线,且2MA MD =,同理,取AB 中点E ,AC 中点F ,可得B ,M ,F 三点共线,C ,M ,E 三点共线,所以M 为ABC 的重心,A 正确;对B 选项,若M 为ABC 的内心,可设内切圆半径为r ,则12A S BC r =⋅,12B S AC r =⋅,12C S AB r =⋅,所以1110222BC r MA AC r MB AB r MC ⋅⋅+⋅⋅+⋅⋅= ,即0BC MA AC MB AB MC ⋅+⋅+⋅=,B 正确;对C 选项,若45BAC ∠=︒,60ABC ∠=︒,M 为ABC 的外心,则75ACB ∠=︒,设ABC 的外接圆半径为R ,故290BMC BAC ∠=∠=︒,2120AMC ABC ∠=∠=︒,2150AMB ACB ∠=∠=︒,故2211sin 9022A S R R =︒=,221sin1202B S R R =︒,2211sin15024C S R R =︒=,所以::2A B C S S S =,C错误;对D 选项,若M 为ABC 的垂心,3450MA MB MC ++=,则::3:4:5A B C S S S =,如图,AD BC ⊥,CE AB ⊥,BF AC ⊥,相交于点M ,又ABC A B C S S S S =++ ,31124AABC S S == ,即:3:1AM MD =,41123BABC S S == ,即:1:2MF BM =,512CABC S S =,即:5:7ME MC =,设MD m =,MF n =,5ME t =,则3AM m =,2BM n =,7MC t =,因为CAD CBF ∠=∠,sin ,sin 32n mCAD CBF m n∠=∠=,所以32n m m n =,即3m =,3cos 22m BMD n n ∠===,则()cos cos πAMB BMD ∠=-∠=D 正确;故选:ABD.【点睛】关键点点睛:本题考查向量与四心关系应用,关键是利用三角形的几何关系及向量数量积及向量线性表示逐项判断.12.【详解】解:利用正弦定理可知,B 角对的边最大,因为05sin 230,51sin sin sin 2a b aBA b AB A =∴=∴===故答案为:13.2π【分析】先计算底面积,再计算体积.【详解】122R R ππ=∴=22122V R h ππππ=⨯=⨯⨯=故答案为2π【点睛】本题考查了圆柱的体积,意在考查学生的空间想象能力和计算能力.14【分析】由正弦定理和余弦定理以及三角形面积公式化简计算可得.【详解】222sin 37,23,,cos sin 229A a c b a b a c B B ac +-=∴==∴==,则sin B =2221922ABC S a a ⎫∴-=-⋅=+=-+⎪⎝⎭ []2,6,ABC a S ∈∴-V Q故答案为:922.15.(1)a =(2)等边三角形.【分析】(1)由正弦定理边化角,求出π3A =,再利用余弦定理可得答案;(2)由余弦定理得结合2a bc =得2220b c bc +-=,进而b c =,从而可得答案.【详解】(1)由正弦定理,33sin sin sin sin ,sin 022a B b A B B B =⇒≠ ,故ππsin 0,223A A A ⎛⎫=∈⇒= ⎪⎝⎭,再由余弦定理得,2222212cos 2322372a b c bc A =+-=+-⨯⨯⨯=,从而a =(2)因为π3A =,所以由余弦定理得222a b c bc=+-结合2a bc =得2220b c bc +-=,进而22,b c a b a b c =⇒===,所以ABC 是等边三角形.16.(1)2,13x y ==-(2)203【分析】(1)由向量的运算法则求解(2)分解后由数量积的运算求解(3)由数量积的定义求夹角【详解】(1)23DE DA AE AB AD =+=- ,故2,13x y ==-(2)2220()1642cos 60333AB DE AB AB AD ⋅=⋅-=⨯-⨯⨯︒=(3)111,,333EB AB EF AB AD ==+4||3EB =,27||3EF =16499cos 14||||EB EFBEF EB EF +⋅∠==17.(1)见解析;(2)23.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)利用等体积11D D BC D DBC V V --=,即可求得三棱锥D ﹣D 1BC 的体积.【详解】(1)证明:连接D 1C 交DC 1于F ,连接EF ,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,底面四边形DCC 1D 1为矩形,∴F 为D 1C 的中点.又E 为BC 的中点,∴EF ∥D 1B .∴BD 1∥平面C 1DE .(2)解:连接BD ,11D D BC D DBCV V --=又△BCD 的面积为12222S =⨯⨯=.故三棱锥D ﹣D 1BC 的体积1111221333D DBC BCD V S D D -∆==⨯⨯=.【点睛】本题考查线面平行,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.18.(1)sin A =(2)AE,AD【分析】(1)由正弦定理和余弦定理得到1cos 3A =,进而求出sin A ;(2)由面积公式求出16bc =,进而根据向量的模长公式结合不等式即可求解AE 的最值,根据三角形面积公式,结合等面积法,利用基本不等式可求解AD 的最值.【详解】(1)由正弦定理,得3()32a b c b a b c --=+,即22223c b a bc +-=,故2221cos 23232bc c b a A bc bc +-===,因为cos 0A >,所以π(0,)2A ∈,所以22sin 3A ==;(2)①由(1)知sin 3A =,因为ABC1n si 2bc A =,解得16bc =,由于()12AE AB AC =+ ,所以()()2222222111212183222cos 2444343433AE AB AC AB AC c b bc A c b bc bc bc bc ⎛⎫⎛⎫=++⋅=++=++≥+=⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当b c =时,等号取得到,所以2323AE AE ≥⇒ ②因为AD 为角A 的角平分线,所以1sin sin 2BAD CAD A ∠=∠=,由于ADB ADC ABC S S S += ,所以111sin sin sin sin cos 2222222A A A A AD c AD b bc A bc +==,由于sin02A ≠,所以()2cos 2A AD c b bc +=,由于2212cos 2cos 1cos cos 23232A A A A =-=⇒=⇒,又16bc =,所以()63262cos216233A AD c b bc +==⨯⨯由于8b c +≥,当且仅当b c =时,等号取得到,故()83AD c b AD =+≥=,故3AD ≤,19.(1)π2A =(2)(3)2+【分析】(1)根据二倍角公式结合正弦定理角化边化简cos2cos2cos21B C A +-=可得222a b c =+,即可求得答案;(2)利用等面积法列方程,结合向量数量积运算求得正确答案.(3)由(1)结论可得2π3APB BPC CPA ∠=∠=∠=,设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,利用余弦定理以及勾股定理即可推出2m n mn ++=,再结合基本不等式即可求得答案.【详解】(1)由已知ABC 中cos2cos2cos21B C A +-=,即22212sin 12sin 12sin 1B C A -+--+=,故222sin sin sin A B C =+,由正弦定理可得222a b c =+,故ABC 直角三角形,即π2A =.(2)由(1)π2A =,所以三角形ABC 的三个角都小于120︒,则由费马点定义可知:120APB BPC APC ∠=∠=∠=︒,设,,PA x PB y PC z === ,由APB BPC APC ABC S S S S ++= 得:111122222xy yz xz +=⨯,整理得xy yz xz ++=,则PA PB PB PC PA PC⋅+⋅+⋅111142222233xy yz xz ⎛⎫⎛⎫⎛⎫=⋅-+⋅-+⋅-=-⨯=- ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)点P 为ABC 的费马点,则2π3APB BPC CPA ∠=∠=∠=,设||||||||,||,00,,0,PB m PA PC n PA PA x m n x ===>>>,则由PB PC t PA +=得m n t +=;由余弦定理得()22222222π||2cos 13AB x m x mx m m x =+-=++,()22222222π||2cos 13AC x n x nx n n x =+-=++,()2222222222π||2cos 3BC m x n x mnx m n mn x =+-=++,故由222||||||AC AB BC +=得()()()222222211n n x m m x m n mn x +++++=++,即2m n mn ++=,而0,0m n >>,故22()2m n m n mn +++=≤,当且仅当m n =,结合2m n mn ++=,解得1m n ==又m n t +=,即有2480t t --≥,解得2t ≥+2t ≤-故实数t 的最小值为2+【点睛】关键点睛:解答本题首先要理解费马点的含义,从而结合(1)的结论可解答第二问,解答第二问的关键在于设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,结合费马点含义,利用余弦定理推出2m n mn ++=,然后利用基本不等式即可求解.。

2022-2023学年安徽省合肥市高一下学期期中检测数学试题【含答案】

2022-2023学年安徽省合肥市高一下学期期中检测数学试题【含答案】

2022-2023学年安徽省合肥市高一下学期期中检测数学试题一、单选题1.已知集合,,则( ){}14A x x =-≤≤(){}2ln 4B x y x==-A B ⋃=A .B .[)1,2-[]1,4-C .D .(]2,4-(][),12,-∞-⋃+∞【答案】C【分析】先化简集合B ,再去求即可解决.A B ⋃【详解】因为,(){}{}2ln 422B x y x x x ==-=-<<则,{}{}{}142224A B x x x x x x ⋃==-≤≤⋃-<<=-<≤故选:C2.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【分析】根据圆锥的结构特征即可判断A 选项;根据棱台的定义即可判断选项B;结合圆柱、圆锥、圆台的旋转特征,举出反例即可判断选项C ;由棱柱的定义即可判断选项D.【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.【点睛】解决空间几何体结构特征问题的3个策略(1)把握几何体的结构特征,提高空间想象力.(2)构建几何模型、变换模型中的线面关系.(3)通过反例对结构特征进行辨析.3.在边长为2的正方形ABCD 中,( )()AB AD CD -⋅=A .-4B .-2C .2D .4【答案】A【分析】作出图形,利用向量的三角形法则与数量积运算即可求得结果.【详解】根据题意,如图可知,,2DC = =45BDC ∠=︒.()AB AD CD DB CD DB DC -⋅=⋅=-⋅cos 2cos 454DB DC BDC =-⋅∠=-︒=-故选:A .【点睛】4.在中,,,.则ABC π3B =8AB =5BC =外接圆的面积为( )ABC A .B .C .D .49π316π47π315π【答案】A【分析】设外接圆的半径为,由余弦定理可得,再由正弦定理得可得答案.ABC R AC R 【详解】设外接圆的半径为,ABC R 由余弦定理可得,2222cos AC AB BC AB BC B =+-⨯即,所以,216425285492=+-⨯⨯⨯=AC 7AC =由正弦定理得,所以2sin ===AC RB R =则外接圆的面积为.ABC 249ππ3=R 故选:A.5.刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆,径二寸,高二寸,又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方盖”平均分为八份,取它的八分之一(如图一).记正方形OABC 的边长为r ,设,过P 点作平面OP h =PQRS 平行于平面OABC .,由勾股定理有PQRS 面OS OQ r ==PS PQ ==积是.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等22r h -高处阴影部分的面积等于.(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现2h 对于任何高度h ,此截面面积必为,根据祖暅原理计算牟合方盖体积( )2h 注:祖暅原理:“幂势既同,则积不容异”、意思是两个同高的立体图形,如在等高处的截面积相等,则体积相等.A .B .C .D .383r 38π3r 3163r 316π3r 【答案】C【分析】计算出正方体的体积,四棱锥的体积,根据祖暅原理可得图一中几何体体积,从而得结论.【详解】棱锥,V 23111333Sh r r r ==⨯⨯=由祖暅原理图二中牟合方盖外部的体积等于棱锥V 313r =所以图1中几何体体积为,3331233V r r r =-=所以牟合方盖体积为.31683V r =故选:C .6.已知函数,若函数在有且仅有两个零()()π12sin sin cos 2032f x x x x ωωωω⎛⎫=++-> ⎪⎝⎭()f x []0,π点,则实数的取值范围是( )ωA .B .1117,66⎛⎫ ⎪⎝⎭1117,66⎡⎫⎪⎢⎣⎭C .D .1117,1212⎛⎫ ⎪⎝⎭1117,1212⎡⎫⎪⎢⎣⎭【答案】D【分析】由三角恒等变换化简函数解析式为,由可计算出的()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭0πx ≤≤π26x ω+取值范围,再根据已知条件可得出关于的不等式,解之即可.ω【详解】因为()112sin sin cos 222f x x x x x ωωωω⎛⎫=++- ⎪ ⎪⎝⎭211cos 21cos sin cos 22cos 2222x x x x x x x ωωωωωωω-=++-=++-,1π2cos 2sin 226x x x ωωω⎛⎫=+=+ ⎪⎝⎭当时,,0πx ≤≤πππ22π666x ωω≤+≤+因为函数函数在有且仅有两个零点,则,解得.()f x []0,ππ2π2π3π6ω≤+<11171212ω≤<故选:D.7.已知O 为的外心,,则的值为( )ABC 3450++=OA OB OC cos ABC ∠A B C D 【答案】A【分析】设的外接圆的半径为R ,将平方后求出,找到ABC 3450++= OA OB OC 3cos 5AOC ∠=-,利用二倍角公式求出2AOC ABC =∠∠cos ABC∠【详解】设的外接圆的半径为R ,ABC ∵,3450++=OA OB OC ∴,且圆心在三角形内部,354OA OC OB +=-∴()()22354OA OCOB+=- ∴,()()()2229253016OA OCOA OC OB++⋅= ∴222292530cos 16R R R AOC R++∠=3cos 5AOC ∴∠=-根据圆心角等于同弧对应的圆周角的两倍得: 2AOC ABC =∠∠∴232cos 1cos 5ABC AOC ∠-=∠=-解得cos ABC ∠故选:A【点睛】方法点睛:(1)树立“基底”意识,利用基向量进行线性运算;(2)求向量夹角通常用,还要注意角的范围.cos ,||||a ba b a b ⋅=⨯8.若函数的定义域为,是偶函数,且.则下列说法正确的()f x R ()21f x +()()226f x f x -++=个数为( )①的一个周期为2;()f x ②;()223f =③的一条对称轴为;()f x 5x =④.()()()121957f f f +++= A .1B .2C .3D .4【答案】C【分析】根据给定条件,结合奇偶函数的定义,可得,,由(2)()f x f x -=(2)(2)0f x f x -+++=此推理计算即可判断各命题作答.【详解】对于①:是偶函数,设,得,()21f x +2t x =()()11f t f t +=-+因,所以,故,()()226f x f x -++=()()46f x f x +-=()()136f t f t ++-=故,即,故,()()136f t f t -++-=()()26f x f x ++=()()246f x f x +++=所以,所以的一个周期为4,故①错误.()()4f x f x =+()f x 对于②:由于,令,得.()()226f x f x -++=0x =()23f =.故②正确.()()()2245223f f f =⨯+==对于③:由知函数的一条对称轴为,因为的一个周期为4,所以也(2)()f x f x -=1x =()f x 5x =是函数的一条对称轴,故③正确.()f x 对于④:因,得,即.()23f =(2)()f x f x -=()03f =()43f =因,所以,()()226f x f x -++=()()136f f +=,故④正确()()()()()()()()()12195123420512457f f f f f f f f f +++=+++-=⨯-=⎡⎤⎣⎦ 故选:C.二、多选题9.设向量,,则( )(2,0)a = (1,1)b = A .B .与的夹角是=a ba b 4πC .D .与同向的单位向量是()a b b-⊥ b 11,22⎛⎫ ⎪⎝⎭【答案】BC 【分析】由条件算出,,即可判断A ,算出的值可判断B ,算出的值可判断abcos ,a b()a b b -⋅C ,与同向的单位向量是,可判断D.b 【详解】因为,,(2,0)a = (1,1)b =所以A 错误2a =因为,所以与的夹角是,故B 正确cos ,a b a b a b ⋅===⋅a b4π因为,所以,故C正确()()()1,11,1110a b b -⋅=-⋅=-=()a b b -⊥ 与同向的单位向量是,故D 错误b故选:BC10.已知复数,为的共轭复数,则下列结论正确的是( )z =z z A .B .z ||1z =C .为纯虚数D .在复平面上对应的点在第四象限.3z z 【答案】BD【分析】先利用复数的除法得到,再利用复数的虚部概念判定选项A错误,利用模长12z =公式判定选项B 正确,利用复数的乘方运算得到,再利用复数的分类判定选项C 错误,利用共3z 轭复数的概念、复数的几何意义判定选项D 正确.【详解】因为,12z ====则A 错误;z,即选项B 正确;||1z ==因为,所以12z =3323119(i 288z ==+,即为实数,19188=-=-3z 即选项C 错误;因为,所以,12z =12z =则在复平面上对应的点 在第四象限,z 1(,2即选项D 正确.故选:BD.11.已知函数,下列说法正确的是( )()()sin cos sin cos f x x x x x=+⋅-A .的最正周期为()f x 2πB .若,则()()122f x f x +=()12πZ 2k x x k +=∈C .在区间上是增函数()f x ππ,22⎡⎤-⎢⎥⎣⎦D .的对称轴是()y f x =()ππZ 4x k k =+∈【答案】ABD【分析】把函数化成分段函数,作出函数图象,根据图象判断AC ,由余弦函数的性质判断()f xC ,再结合图象利用函数对称性的性质判断D.【详解】依题意,,函数部分图象如图,3ππcos 2,2π2π44()(Z)π5πcos 2,2π2π44x k x k f x k x k x k ⎧-+<<+⎪⎪=∈⎨⎪-+≤≤+⎪⎩()fx 由图象知函数是周期函数,周期为,故A 正确;()f x 2π因且,则当时,且,()11f x ≤()21f x ≤()()122f x f x +=1|cos 2|1x =2|cos 2|1x =则且,,因此,,,B 正确;11π2k x =22π2k x =12,Z k k ∈1212()ππ22k k k x x ++==12Z k k k +=∈观察图象知,在区间上不单调,所以在区间上不是增函数,故C 不正确;()f x ππ,22⎡⎤-⎢⎥⎣⎦()f x ππ,22⎡⎤-⎢⎥⎣⎦观察图象知,,是函数图象的相邻两条对称轴,且相距半个周期长,π4x =3π4x =-()y f x =事实上,即图象关于ππππ()[sin()cos()]|sin()cos()|()22222f x x x x x f x π-=-+-⋅---=()y f x =对称,π4x =同理有图象关于对称,而函数的周期是,所以函数图象对称轴()y f x =3π4x =-()f x 2π()y f x =,D 正确.ππ,Z4x k k =+∈故选:ABD 12.在中,若,角的平分线交于,且,则下列说法正确的是( )ABC 3B π=B BD ACD 2BD =A .若,则B .若,则的外接圆半径是BD BC =ABC BD BC =ABC C .若,则D .BD BC =AD DCAB BC +【答案】ACD【分析】A 、B 、C 选项由已知结合正弦定理和差角公式及同角的基本关系进行变形即可判断,D 选项用角表示出结合三角恒等变换以及均值不等式即可判断.θAB BC +【详解】因为,角的平分线交于,所以,,所3B π=B BD ACD 6ABD CBD π∠=∠=2BD BC ==以,,56212C BDC πππ-∠=∠==51234A ∠=--=ππππ由正弦定理得,sin sinBC ABA C ==所以,5sin cos cos sin 112646464AB ⎛⎫⎫==+=+= ⎪⎪⎝⎭⎭πππππππ所以A 正确;)11sin 1222ABC S AB BC ABC =⋅⋅∠=⨯+⨯= 因为,所以,设的外接圆半径是,由正弦定理,,所以BD BC =4A π=ABCR 2sin BCR A ==B 错误;R =因为,由正弦定理,因为和互补,所BD BC =,sin sin sinsin 66ADAB CD BCADB BDC==∠∠ππADB∠BDC ∠以,所以C 正确;si n si n ADB BDC ∠=∠AD AB DC BC ==设,则,A θ∠=2,36C BDC ∠=-∠=+ππθθ因为,,sin sin sinsin BD AB BD BCA ADBC BDC ==∠∠所以2sin 2sin 662sin sin 3AB BC ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+=+=⎛⎫- ⎪⎝⎭ππθθπθθ若,则,90θ=AB BC +==若,则()()0,9090,180∈ θ,,1tanAB BC +=θ1tan =tθ()0,t ⎛⎫∈+∞⎪ ⎪⎝⎭)1AB BC t t +===+时,≥)1+=t =t =则或或(舍去),tan θ=tan θ=3πθ=56πθ=综上:当为等边三角形时,D 正确.ABC AB BC +故选:ACD.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.三、填空题13.在中,角,,所对的边分别为,,,已知,则______.ABC A B C a b c sin cos c A C C =【答案】/3π60︒【分析】根据正弦定理,结合同角三角函数的关系求解即可【详解】由正弦定理可得,,又,故,又显然sin sin cos C A A C =sin 0A ≠sin C C =,故,故cos 0C ≠tan C =()0,C π∈3C π=故答案为:3π14.设为复数,若为实数(为虚数单位),则的最小值为___________.z (1i)z +i |2|z +【分析】设,根据为实数(为虚数单位),得到,再利用复数的模()i ,z a b a b R =+∈(1i)z +i =-b a 求解.【详解】解:设,()i ,z a b a b R =+∈则,()()(1i ,)i +=-++∈a z a b b b a R 因为为实数(为虚数单位),(1i)z +i 所以,即,0a b +==-b a所以|2|+z当时,1a =-min |2|+=z15.半径为的球的球面上有四点,已知为等边三角形且其面积为,则三棱锥4,,,A B C D ABC体积的最大值为________.D ABC -【答案】【分析】根据题意,设的中心为,三棱锥外接球的球心为,进而得当体积最ABC O 'D ABC -O 大时,点,,在同一直线上,且垂直于底面,再结合几何关系计算即可求解.D O 'O ABC 【详解】设的中心为,三棱锥外接球的球心为,ABC O 'D ABC -O 则当体积最大时,点,,在同一直线上,且垂直于底面,如图,D 'O OABC 因为为等边三角形且其面积为的边长,故,所以ABCABCx 2x =6x =,,故,'AO =4DO AO =='2OO===故三棱锥的高,所以6DO DO OO ''=+=163V =⨯=故答案为:16.已知平面向量,,满足,,,,则的最小值a b c 1a = 2b = 2aa b =⋅ 22c b c =⋅ 22c a c b -+- 为________.【答案】72【分析】令,,,OB 的中点为D ,AB 的中点为E ,OD 的中点为F ,与OA a = OB b = OC c = a的夹角为,由题意,计算C 的轨迹为以OD 为直径的圆,利用向b θπ3θ=量基底表示,将转化为,然后转()()222222+=+-- c b BCa AC c ()222243-+-=+ c b CE c a化为圆上任意一点到定点距离的最小值进而求解最小值.()222+-- c a bc 【详解】令,,,OB 的中点为D ,AB 的中点为E ,OD 的中点为F ,OA a = OB b = OC c =与的夹角为,连接CA 、CB 、CD 、CO 、EF .a bθ由,,,得,,1a = 2b = 2a a b =⋅ 112cos θ=⨯⨯1cos 2θ=因为,所以,在[]0,πθ∈π3θ=OAB 又由,得,即,22c b c =⋅ 02⎛⎫⋅-= ⎪⎝⎭b c c ()0OC OC OD OC DC ⋅-=⋅= 所以点C 的轨迹为以OD 为直径的圆.因为()()222222+=+-- c b BC a AC c 2222112422EC AB EC AB CE AB⎡⎤⎛⎫⎛⎫=++-=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,22211434343722CE EF ⎫⎛⎫=+≥-+≥+=-⎪ ⎪⎪⎝⎭⎭当且仅当点C 、E 、F 共线,且点C 在点E 、F 之间时,等号成立.所以的最小值为22c a c b-+-72故答案为:72【点睛】本题解题关键是通过平面向量的几何表示,将问题转化为圆上任意一点到定点距离的最值从而根据几何知识得解.四、解答题17.已知向量,.1,2m ⎛= ⎝ (),cos sin x n x = (1)若∥,求的值;m ntan x (2)若且,求的值.13m n ⋅= π0,2x ⎛⎫∈ ⎪⎝⎭cos x 【答案】(1)【分析】(1)由两向量平行可得,即可得的值;1sin 2x x =tan x (2)由可得,进而可得求13m n ⋅=π1cos()33x +=πsin(3x +=ππcos cos[(]33x x =+-解即可.【详解】(1)解:因为∥,所以,m n 1sin 2x x= 即,sin x x =所以;tan x =(2)解:因为,13m n ⋅=即,所以,11cos 23x x =π1cos(33x +=又因为,所以,π0,2x ⎛⎫∈ ⎪⎝⎭ππ5π,336x ⎛⎫+∈ ⎪⎝⎭所以πsin(3x +=所以ππππππcos cos[(]cos()cos sin()sin 333333x x x x =+-=+++=18.如图所示,现有一张边长为的正三角形纸片ABC ,在三角形的三个角沿图中虚线剪去三10cm 个全等的四边形,,(剪去的四边形均有一组对角为直角),然后把三个矩11ADA F 11BD B E 11CE C F 形,,折起,构成一个以为底面的无盖正三棱柱.111A B D D111B C E E 111A C FF 111A B C(1)若所折成的正三棱柱的底面边长与高之比为3,求该三棱柱的高;(2)求所折成的正三棱柱的表面积为【答案】m(2)12 3cm【分析】(1)设出,表达出,利用正三棱柱的底面边长与高之比求出的长,即为该三棱1A D 11A B 1A D 柱的高;(2)设出,表达出,表达出所折成的正三棱柱的表面积,求出的长,进而求出该三棱柱1A D 11A B 1A D 的体积.【详解】(1)由题意及几何知识得,设, 则,.1A D x=AD=1110A B =-因为,1113A B A D ==所以x =∴.m(2)由题意,(1)及几何知识得,正三棱柱的表面积为设, 则,,1A D x=AD =1110A B=-∴表面积())221111331010S A D DDA B x =⋅=⋅--=解得:x =∴,,1A D =3AD ==11104A B =-=∴该三棱柱的体积为:22111412V A B A D =⋅==3cm 19.已知为三角形的一个内角,复数,且满足.θcos isin z θθ=+11z +=(1)求;21z z ++(2)设z ,,在复平面上对应的点分别为A ,B ,C ,求的面积.2z -21z z ++ABC 【答案】(1)0【分析】(1)由求出,得出,再由复数的四则运算求;11z +=cos θz 21z z ++(2)求出复数对应复平面上点的坐标,计算三角形的边长,利用三角形面积公式求解.【详解】(1)且,1(cos 1)isin z θθ+=++ 11z +=,22(cos 1)sin 22cos 1θθθ∴++=+=且,1cos 2θ∴=-(0,π)θ∈1sin 2z θ∴==-,2131442z ∴=-=-.21111022z z ∴++=--=(2)复数,,,12z =-122(12z -=--=210z z ++=在复平面上对应的点分别为,1((0,0)2A B C -,,1CA ∴=2CB =AB =由余弦定理可得,2221431cos 2222CA CB AB ACB CA CB +-+-∠===⋅⨯且,(0,π)ACB ∠∈sin ACB ∴∠=.11sin 1222ABC S CA CB ACB ∴=⋅⋅∠=⨯⨯=△20.已知函数(,且).()x xk f x a ka -=+Z k ∈0a >1a ≠(1)若,求的值;11()32f =1(2)f (2)若为定义在上的奇函数,且,是否存在实数,使得()k f x R 01a <<m 0对任意的恒成立,若存在,请写出实数的取值范围;若不()21(5)k k f mx mx f m --+->[1,3]x ∈m 存在,请说明理由.【答案】(1)47;(2)存在,.6(,)7-∞【分析】(1),由此计算即可计算的值.3=1a a +1(2)f (2)由给定条件求出,再探求函数的单调性,然后脱去函数对应法则,分离参数并求出函数k ()k f x 最值作答.【详解】(1)依题意,,由,两边平方得,解1()xxf x a a -=+11(32f =3=129a a ++=得,17a a +=所以.22211(2)()247f a a a a -=+=+-=(2)因为定义在上的奇函数,则,,即,()k f x R R x ∀∈()()0k k f x f x -+=0x x x xa ka a ka --+++=则,而,解得,因此,,(01)()x x k a a -++=0x x a a -+>1k =-()1x x f x a a --=-因,则在上单调递减,在上单调递增,从而得在上单调递减,01a <<x a R xa -R ()1x xf x a a --=-R ()()()()()2211111150155f mx mx f m f mx mx f m f m -------+->⇔-->--=-,而,则,2215(1)6mx mx m x x m --<-⇔-+<⇔22131()024x x x -+=-+>261m x x <-+依题意,,成立,显然在上单调递增,在上单调[1,3]x ∀∈261m x x <-+21x x -+[1,3]261x x -+[1,3]递减,则当时,,于是得,3x =min 2166()7x x =-+67m <所以存在实数满足条件,的取值范围是.m m 6(,7-∞21.已知满足.ABC ()22sin sin 2sin sin sin C B A A C B -=-(1)试问:角是否可能为直角?请说明理由;B (2)若为锐角三角形,求的取值范围.ABC sin sin CA 【答案】(1)角不可能为直角,理由见解析B (2)15,33⎛⎫ ⎪⎝⎭【分析】(1)使用反证法,假设角为直角,根据题目条件证明假设不成立,得到角不可能为直B B 角;(2)将的取值范围转化为的取值范围,通过为锐角三角形,列出关sin sin CA sin (0)sin C c t t A a ==>ABC 于的不等式,进而求得结果.t 【详解】(1)假设角为直角,则,B π2A C +=所以,sin cos ,sin cos A C C A ==因为,()22sin sin 2sin sin sin C B A A C B-=-所以,2cos cos 2sin cos 1A A A A =-所以,所以,1cos2sin21A A +=-πsin 24A ⎛⎫-= ⎪⎝⎭显然,所以矛盾,故假设不成立,πsin 214A ⎛⎫-≤ ⎪⎝⎭所以角不可能为直角.B (2)因为,()22sin sin 2sin sin sin C B A A C B-=-所以,22sin sin cos 2sin cos sin 2sin sin sin C B A C B A A C B -=-由正弦定理,得,22cos 2cos 2bc A ac B ac b -=-由余弦定理化简,得,22322b ac a =+因为为锐角三角形,ABC 所以π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩222222222cos 00cos 00,cos 00A b c a B a c b C a b c ⎧⎧>+->⎪⎪⇒>⇒+->⎨⎨⎪⎪>+->⎩⎩令,则有,sin (0)sin C c t t A a ==>222321032103250t t t t t t ⎧+->⎪-+>⇒⎨⎪-++>⎩113R 513t t t t ⎧><-⎪⎪∈⎨⎪⎪-<<⎩或1533t ⇒<<所以的取值范围为.sin sin CA 15,33⎛⎫ ⎪⎝⎭22.如图所示的两边,,设是的重心,边上的高为,过的ABC 1BC =2AC =G ABC BC AH G 直线与,分别交于,,已知,;AB AC E F AE AB λ= AF AC μ=(1)求的值;11λμ+(2)若,,,求的值;1cos 4C =920AEFABCS S =△△λμ>()()EH AF HF EA+⋅+(3)若的最大值为,求边的长.BF CE ⋅ 518-AB 【答案】(1)3(2)321100-(3)2【分析】(1)利用重心的性质以及三点共线的充要条件即可求解(2)先解出与,λμ再利用解三角形的知识求出和,最后将化简即可求解(3)以和EF AH ()()EH AF HF EA+⋅+AB 为基底表示,引入参数,通过分类讨论求解ACBF CE ⋅ 1,22t λη⎡⎤=∈⎢⎥⎣⎦【详解】(1),1AE AB AB AEλλ=⇒= 1AF AC AC AB μμ=⇒= 如图所示,连接并延长交于点,则为中点AG BC D D BC 因为为重心G ABC 所以()22111113323333AG AD AB AC AB AC AE AFλμ⎡⎤==+=+=+⎢⎥⎣⎦ 因为,,起点相同,终点共线AG AEAF 所以,所以11133λμ+=113λμ+=(2)设角,,所对的边分别为,,,,A B C a b c ∴1a =2b =22212cos 1421244c a b ab C =+-=+-⨯⨯⨯=2c ∴=()11sin sin 22AEF S AE AF EAF AB AC EAF λμ=⨯⨯∠=⨯⨯∠△1sin 2ABC S AB AC BAC =⨯⨯∠△所以,920AEF ABCS S λμ∆==△由解之得113920λμλμ⎧+=⎪⎪⎨⎪=⎪⎩3435λμ⎧=⎪⎪⎨⎪=⎪⎩33362,24255AE AF ∴=⨯==⨯=在中ABC 2227cos 28b c a A bc +-==在,,AEF △222272cos 50EF AE AF AE AF A =+-⨯⨯=在,中Rt AHC sin AH AC C =⨯=EH AF AH AE AF AH EF+=-+=+HF EA AF AH AE EF AH+=--=- ==()()()()22EH AF HF EA EF AH EF AH EF AH∴+⋅+=+⋅-=- 2715504-321100-(3)()()()221cos BF CE AC AB AB AC bc A c b μλλμλμ⋅=-⋅-=+--==2231432c c λμλμ++⎛⎫+⋅-- ⎪⎝⎭22235321266c c c λμ⎛⎫+---+ ⎪⎝⎭=222353211112663c c c λμλη⎛⎫⎛⎫+--=-++⨯⎪ ⎪⎝⎭⎝⎭()()222532115121818c c c λμμλ⎡⎤--⎢⎥=+-+⎢⎥⎣⎦令, 1,22t λη⎡⎤=∈⎢⎥⎣⎦BF CE ∴⋅=()()2221511532121818c c t c t ⎡⎤+--+-⎢⎥⎣⎦①,3c ≤<1,22⎡⎤⎢⎥⎣⎦,得:()2max15218c BFCE⋅=+185=-42452924480c c -+=解得:2c =②若1c <2>==,()222max 15121253218182c cBF CE c ⎡⎤-⋅=+-+-⎢⎥⎣⎦ 219436c -518-解得:(舍去)2199c =综上可得:2c =。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。

高一下学期期中数学试卷-(解析版)

高一下学期期中数学试卷-(解析版)

高一下学期期中数学试卷一、填空题(共12小题).1.2021°角是第象限角.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为.3.已知tanθ=2,则=.4.函数y=arcsin(2x﹣1)的定义域为.5.S n为数列{a n}的前n项的和,,则a n=.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.7.已知,若,则sinα=.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是米.(精确到0.1米)9.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为.11.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是.12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.参考答案一.填空题1.2021°角是第三象限角.解:2021°=360°×5+221°,是第三象限角.故答案为:三.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为2.解:设扇形的半径为r,则×2×r8=2,∴扇形的弧长=2×=4.故答案为:2.3.已知tanθ=2,则=.解:∵tanθ=2,∴==.故答案为:.4.函数y=arcsin(2x﹣1)的定义域为[0,1] .解:设t=2x﹣1,∵反正弦函数y=arcsin t的定义域为[﹣1,1],所以函数的定义域为:[0,7].故答案为:[0,1].5.S n为数列{a n}的前n项的和,,则a n=.解:因为,所以a3=S1=2﹣3+1=0,当n≥7时a n=S n﹣S n﹣1=(2n6﹣3n+1)﹣[2(n﹣1)2﹣3(n﹣5)+1]=4n﹣5,∴a n=.故答案为:.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.解:由题意可得cosα=,则sin()=cosα=.故答案为:﹣7.已知,若,则sinα=.解:,所以α+∈(,),又,所以sin(α+)==;=sin(α+)cos﹣cos(α+)sin=.故答案为:.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是236.6 米.(精确到0.1米)解:设电视塔的高度为x,则在Rt△BCD中,∠CBD=60°,则,解得.由于,整理得,解得x≈236.5.故答案为:236.69.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于1925 .解:∵等差数列{a n}、{b n}满足a1=1,b6=4,a25+b25=149,∴数列{a n+b n}的前25项和=+=+(a25+b25)=+×149=1925.故答案为:1925.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134 .解:由能被3除余1且被5除余1的数就是能被15整除余7的数,故a n=15n﹣14.得n≤135,故此数列的项数为135﹣1=134.故答案为:13411.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是[﹣3,﹣2] .解:设x=cosθ,.则f(x)=4x4﹣3x﹣2=4cos6θ﹣3cosθ﹣2=cos3θ﹣2.∴cos3θ﹣5.∈[﹣3,﹣2]故答案为:[﹣3,﹣2]12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.解:根据题意作出图象如下,设f(x)=sin(ωx)的最小正周期为,所以,即,解得;若A1A4A5A7为菱形,则若A1A k﹣1A k A m为菱形,则,解得,故答案为:.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要解:tan x=1⇔x=kπ+,k∈Z.∴“tan x=1”是“”成立的必要不充分条件.故选:B.14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位解:只需要将函数y=2sin(2x﹣)的图象向左平移个长度单位,可得函数y=3sin[2(x+)﹣]=2sin(2x+)的图象,故选:D.15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.解:∵等差数列前n项和S n=•n2+(a1﹣)n,由S15=15a8>0,S16=16×<0可得:故Sn最大值为S8.故S n最大且a n取最小正值时,有最大值,故选:D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11解:设==…==k,则条件等价为f(x)=kx,的根的个数,由图象可知y=kx与函数f(x)最多有10个交点,故选:C.三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.解:(1)∵,,∴cosα=﹣=﹣,∵,∴.∴tan(α﹣2β)===.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.解:(1)当n=1时,f(x)=sin x+cos x=(sin x+cos x)=cos(x).∴f(x)≠f(﹣x)≠﹣f(﹣x),∴f(x)为非奇非偶函数;当时,,此时x的取值集合是;当cos x=﹣1时,f(x)min=﹣1,此时x的取值集合是{x|x=2kπ+π,k∈Z}.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.解:(1)由4sin B•sin2(+)+cos2B=1+,得:2sin B•[7﹣cos(+B)]+1﹣2sin2B=1+,可得sin B=,∴B=,或B=;∴ac sin B=×4×c×=5,解之得c=6,∴当B=时,b==;即边b的值等于或.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.解:(1)设等差数列{a n}的公差为d,∵a3+a4=﹣2,a5+a7=8.∴2a1+5d=﹣2,2a1+10d=8,∴a n=﹣6+2(n﹣1)=2n﹣8.∴当n=2或4时,S n取得最小值,(3),∴数列{b n}的前10项和=﹣2﹣1﹣1+8+0+0+0+1+2+8=2.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.解:(1)函数f(x)=cos2x+2sin x cos x+l=cos2x+sin2x+1=2sin(2x+)+6,x∈R;∴f(x)的最小正周期为T==π,值域为[﹣1,3];解得﹣+kπ≤x≤+kπ,k∈Z,(3)若对于任意x1∈R,总存在x2∈R,使得g(x2)=f(x2)恒成立,由g(x)的值域为[﹣a,a],f(x)的值域为[﹣1,8],解得0<a≤;所以实数a的取值范围是(0,].。

浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案

浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案

余姚2023学年第二学期期中检测高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i22i z -=+,则z z -=()A .i- B.iC.0D.1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O A B C '''',且//O A B C '''',242O A B C A B '''''='==,,则该平面图形的高为()A. B.2C.D.【答案】C 【解析】【分析】由题意计算可得O C '',还原图形后可得原图形中各边长,即可得其高.【详解】在直角梯形O A B C ''''中,//O A B C '''',24,2O A B C A B ''''='==',则O C ==''直角梯形O A B C ''''对应的原平面图形为如图中直角梯形OABC ,则有//,,24,242BC OA OC OA OA BC OC O C ''⊥====,所以该平面图形的高为42.故选:C.3.在平行四边形ABCD 中,,AC BD 相交于点O ,点E 在线段BD 上,且3BE ED = ,则AE =()A.1142AD AC + B.1124AD AC +C.3144AD AC +D.1344AD AC +【答案】B 【解析】【分析】利用平面向量基本定理即可得到答案.【详解】因为O 是AC 的中点,12AO AC ∴= ,又由3BE ED =可得E 是DO 的中点,11112224AE AD AO AD AC ∴=+=+ .故选:B.4.某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和至多有1名男生【答案】A 【解析】【分析】根据互斥事件的定义判断即可.【详解】依题意可能出现2名男生、1名男生1名女生、2名女生;对于A :恰有1名女生即选出的两名学生中有一名男生一名女生和恰有2名女生,他们不可能同时发生,故是互斥事件,故A 正确;对于B :当选出的两名学生中有一名男生一名女生,则至少有1名男生和至少有1名女生都发生了,故不是互斥事件,故B 错误;对于C :至少有1名女生包含有一名男生一名女生与全是女生,所以当全是女生时,至少有1名女生和全是女生都发生了,故不是互斥事件,故C 错误;对于D :至少有1名女生包含有一名男生一名女生与全是女生,至多有1名男生包含有一名男生一名女生与全是女生,故至少有1名女生和至多有1名男生是相等事件,故D 错误.故选:A5.已知点()1,1A ,()0,2B ,()1,1C --.则AB 在BC上的投影向量为()A.10310,55⎛ ⎝⎭B.10310,55⎛⎫-- ⎪ ⎪⎝⎭C.13,55⎛⎫⎪⎝⎭ D.13,55⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】根据向量的坐标公式,结合投影向量的定义进行求解即可.【详解】因为()1,1A ,()0,2B ,()1,1C --.所以()1,1AB =-uu u r,()1,3BC =--,5cos ,5AB BC AB BC AB BC⋅〈〉==-⋅,所以向量AB 与BC的夹角为钝角,因此量AB 在BC上的投影向量与BC 方向相反,而cos ,55AB AB BC ⋅〈〉==,155BC == ,所以AB 在BC 上的投影向量为()11131,3,5555BC ⎛⎫-⋅=-⋅--= ⎪⎝⎭,故选:C6.秦九韶是我国南宋时期的著名数学家,他在著作《数书九章》中提出,已知三角形三边长计算三角形面积的一种方法“三斜求积术”,即在ABC 中,,,a b c 分别为内角,,A B C 所对应的边,其公式为:ABCS ==若22sin sin C c A =,3cos 5B =,a b c >>,则利用“三斜求积术”求ABC 的面积为()A.54B.34 C.35D.45【答案】D 【解析】【分析】由正弦定理可得2ac =,由余弦定理可得222625a cb +-=,在结合已知“三斜求积术”即可求ABC 的面积.【详解】解:因为22sin sin C c A =,由正弦定理sin sin a c A C=得:22c c a =,则2ac =又由余弦定理2223cos 25a cb B ac +-==得:22236255a c b ac +-==则由“三斜求积术”得45ABC S == .故选:D.7.已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A.236,48s x =<B.236,48s x =>C.236,48s x ><D.236,48s x <>【答案】B 【解析】【分析】根据数据总和不变,则平均数不变,根据方差的定义得()()()2221248148363636850x x x ⎡⎤=-+-++-+⎣⎦ ,而()()()4221222813628843668035s x x x +⎡-⎤=-+>⎣⎦-+ .【详解】设收集的48个准确数据为1248,,x x x ,所以124834383650x x x +++++= ,所以12481728x x x +++= ,所以124824483650x x x x +++++== ,又()()()222221248148363636(3436)(3836)50x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()22212481363636850x x x ⎡⎤=-+-++-+⎣⎦ ,()()()42222222183636(2436)(48136536)0s x x x ⎡⎤=-+⎣⎦-++-+-+- ()()()222281413628848365360x x x ⎡⎤=+-+-+->⎣⎦ ,故选:B.8.在ABC 中,π6A =,π2B =,1BC =,D 为AC 中点,若将BCD △沿着直线BD 翻折至BC D '△,使得四面体C ABD '-的外接球半径为1,则直线BC '与平面ABD 所成角的正弦值是()A.3B.23C.3D.3【答案】D 【解析】【分析】由直角三角形性质和翻折关系可确定BC D '△为等边三角形,利用正弦定理可确定ABD △外接圆半径,由此可知ABD △外接圆圆心O 即为四面体C ABD '-外接球球心,由球的性质可知OG ⊥平面BC D ',利用C OBD O C BD V V ''--=可求得点C '到平面ABD 的距离,由此可求得线面角的正弦值.【详解】π6A =,π2B =,1BC =,2AC ∴=,又D 为AC 中点,1AD CD BD ∴===,则1BC C D BD ''===,即BC D '△为等边三角形,设BC D '△的外接圆圆心为G ,ABD △的外接圆圆心为O ,取BD 中点H ,连接,,,,,C H OH OG OB OC OD '',π6A =,1BD =,112sin BDOB A∴=⋅=,即ABD △外接圆半径为1,又四面体C ABD '-的外接球半径为1,O ∴为四面体C ABD '-外接球的球心,由球的性质可知:OG ⊥平面BC D ',又C H '⊂平面BC D ',OG C H '∴⊥,22333C G CH '===,1OC '=,3OG ∴=;设点C '到平面ABD 的距离为d ,由C OBD O C BD V V ''--=得:1133OBD C BD S d S OG '⋅=⋅ ,又OBD 与C BD ' 均为边长为1的等边三角形,3d OG ∴==,直线BC '与平面ABD 所成角的正弦值为3d BC ='.故选:D.【点睛】关键点点睛;本题考查几何体的外接球、线面角问题的求解;本题求解线面角的关键是能够确定外接球球心的位置,结合球的性质,利用体积桥的方式构造方程求得点到面的距离,进而得到线面角的正弦值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据1,2,3,3,4,5的平均数和中位数相同B.数据6,5,4,3,3,3,2,2,1的众数为3C.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30D.甲组数据的方差为4,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙组【答案】AB 【解析】【分析】根据已知条件,结合平均数、方差公式,众数、中位数的定义,以及分层抽样的定义,即可求解.【详解】对于A ,平均数为12334536+++++=,将数据从小到大排列为1,2,3,3,4,5,所以中位数为3332+=,A 正确;对于B ,数据6,5,4,3,3,3,2,2,1的众数为3,B 正确;对于C ,根据样本的抽样比等于各层的抽样比知,样本容量为3918312÷=++,C 错误;对于D ,乙数据的平均数为56910575++++=,乙数据的方差为()()()()()22222157679710757 4.445⎡⎤-+-+-+-+-=>⎣⎦,所以这两组数据中较稳定的是甲组,D 错误.故选:AB.10.在ABC 中,内角A 、B 、C 所对的边分别a 、b 、c ,22sin a bc A =,下列说法正确的是()A.若1a =,则14ABC S =△B.ABC 外接圆的半径为bc aC.c b b c+取得最小值时,π3A =D.π4A =时,c b b c+值为【答案】ABD 【解析】【分析】对A ,由正弦定理化简2sin a b C =可得1sin 2C b=,再根据三角形面积公式判断即可;对B ,根据2sin a b C =结合正弦定理判断即可;对C ,根据正弦定理与余弦定理化简sin 2sin sin A B C =可得π4b c A c b ⎛⎫+=+ ⎪⎝⎭,再根据基本不等式与三角函数性质判断即可;对D ,根据三角函数值域求解即可.【详解】对A ,因为22sin a bc A =,由正弦定理可得sin 2sin sin a A b A C =,因为()0,πA ∈,则sin 0A >,则2sin a b C =,又因为1a =,故1sin 2C b =,故三角形面积为1111sin 12224ABC S ab C b b ==⨯⨯⨯=△,故A 正确;对B ,2sin a b C =,则sin 2aC b=,设ABC 外接圆的半径为R ,则2sin cR C=,故22c bc R a a b==⨯,故B 正确;对C ,因为22sin a bc A =,由余弦定理222sin 2cos b c c A b bc A =+-,即()222sin cos bc A A b c +=+,化简可得π4b c A c b⎛⎫+=+ ⎪⎝⎭,由基本不等式得2b c c b +≥=,当且仅当b c =时取等号,此时πsin 42A ⎛⎫+= ⎪⎝⎭,故当π2A =,π4B C ==时,b c c b +取得最小值2,故C 错误;对D ,由C,π4b c A c b ⎛⎫+=+ ⎪⎝⎭,当π4A =时,b c c b+的值为,故D 正确;故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C:由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B FB D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则三人恰好参加同一个社团的概率为______.【答案】19【解析】【分析】根据题意,得到基本事件的总数为27n =,以及所求事件中包含的基本事件个数为3m =,结合古典摡型的概率计算公式,即可求解.【详解】由人文社科类、文学类、自然科学类三个读书社团,甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,基本事件的总数为3327n ==,三人恰好参加同一个社团包含的基本事件个数为3m =,则三人恰好参加同一个社团的概率为31279m P n ===.故答案为:19.13.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()12AP mAC AB m =+∈R ,若2AC =,4AB =,则AP CD ⋅的值为______.【答案】3【解析】【分析】利用//CP CD ,结合已知条件可把m 求出,由平面向量基本定理把AP 、CD 用已知向量AB 、AC表示,再利用数量积的运算法则可求数量积.【详解】 2AD DB =,∴23AD AB = ,//CP CD,∴存在实数k ,使得CP kCD = ,即()AP AC k AD AC -=- ,又 12AP mAC AB =+ ,则()12123m AC AB k AB AC ⎛⎫-+=- ⎪⎝⎭,∴11223m kk -=-⎧⎪⎨=⎪⎩,34k ∴=,14m =,则()112423AP CD AP AD AC AC AB AB AC ⎛⎫⎛⎫⋅=⋅-=+⋅- ⎪⎪⎝⎭⎝⎭2221111611π242cos 33433433AB AC AB AC =--⋅=--⨯⨯ ,故答案为:3.14.已知正方体1111ABCD A B C D -的棱长为3,动点P 在1AB C V 内,满足1D P =,则点P 的轨迹长度为______.【解析】【分析】确定正方体1111ABCD A B C D -对角线1BD 与1AB C V 的交点E ,求出EP 确定轨迹形状,再求出轨迹长度作答.【详解】在正方体1111ABCD A B C D -中,如图,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥,而BD AC ⊥,1DD BD D =I ,1DD ,BD ⊂平面1BDD ,于是AC ⊥平面1BDD ,又1BD ⊂平面1BDD ,则1AC BD ⊥,同理11⊥AB BD ,而1AC AB A ⋂=,AC ,1AB ⊂平面1AB C ,因此1BD ⊥平面1AB C ,令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得111133AB C ABC S BE S BB ⋅=⋅ ,即)23142BE AB ⋅⋅=,解得BE AB ==而1BD ==1D E =,因为点P 在1AB C V 内,满足1D P =,则EP ==因此点P 的轨迹是以点E 为半径的圆在1AB C V 内的圆弧,而1AB C V 为正三角形,则三棱锥1B AB C -必为正三棱锥,E 为正1AB C V 的中心,于是正1AB C V 的内切圆半径111323232EH AB =⨯⨯=⨯=,则cos 2HEF ∠=,即π6HEF ∠=,π3FEG ∠=,所以圆在1AB C V 内的圆弧为圆周长的12,即点P 的轨迹长度为12π2⋅=【点睛】方法点睛:涉及立体图形中的轨迹问题,若动点在某个平面内,利用给定条件,借助线面、面面平行、垂直等性质,确定动点与所在平面内的定点或定直线关系,结合有关平面轨迹定义判断求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知z 为复数,2i z +为实数,且(12i)z -为纯虚数,其中i 是虚数单位.(1)求||z ;(2)若复数2(i)z m +在复平面上对应的点在第一象限,求实数m 的取值范围.【答案】(1)(2)()2,2-【解析】【分析】(1)设=+i ,R z a b a b ∈,,根据复数代数形式的乘法法则化简2i z +与(12i)z -,根据复数为实数和纯虚数的条件,即可求出a b ,,利用复数模长公式,即可求得到复数的模长;(2)由(1)知,求出复数的共轭复数,再根据复数代数形式的除法与乘方运算化简复数,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】设=+i ,R z a b a b ∈,,()2i=2i z a b +++,因为2i z +为实数,所以20b +=,即2b =-所以(12i)(2i)(12i)42(1)i z a a a -=--=--+,又因为(12i)z -为纯虚数,所以40a -=即4a =,所以42z i =-,所以z ==.【小问2详解】由(1)知,42iz =+所以222(i)(42i i)16(2)8(2)i m m z m m +=++=-+++,又因为2(i)z m +在复平面上所对应的点在第一象限,所以216(2)08(2)0m m ⎧-+>⎨+>⎩,解得:22m -<<所以,实数m 的取值范围为()2,2-.16.某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计.所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[)60,70,第二组[)70,80,第三组[)80,90,第四组[]90,100(单位:分),得到如下的频率分布直方图.(1)求图中m 的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点作为该组数据的代表)【答案】(1)0.01m =,中位数为82.5.(2)82x =,有520名学生获奖.【解析】【分析】(1)利用频率分布直方图中所有频率之和等于1和中位数左边和右边的直方图的面积应该相等即可求解;(2)利用频率分布直方图中平均数等于每个小矩形底边的中点的横坐标与小矩形的面积的乘积之和及不低于平均值的学生人数为总数500乘以不低于平均值的频率即可.【小问1详解】由频率分布直方图知:()0.030.040.02101m ++++⨯=,解得0.01m =,设此次竞赛活动学生得分的中位数为0x ,因数据落在[)60,80内的频率为0.4,落在[)60,90内的频率为0.8,从而可得08090x <<,由()0800.040.1x -⨯=,得082.5x =,所以估计此次竞赛活动学生得分的中位数为82.5.【小问2详解】由频率分布直方图及(1)知:数据落在[)60,70,[)70,80,[)80,90,[]90,100的频率分别为0.1,0.3,0.4,0.2,650.1750.3850.4950.282x =⨯+⨯+⨯+⨯=,此次竞赛活动学生得分不低于82的频率为90820.20.40.5210-+⨯=,则10000.52520⨯=,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖17.在①()(sin sin )(sin sin )a c A C b A B +-=-;②2cos 0cos b a A c C--=;③向量()m c = 与(cos ,sin )n C B = 平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知ABC 内角,,A B C 的对边分别为,,a b c ,且满足______.(1)求角C ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围;(3)在(2)条件下,若AB 边中点为D ,求中线CD 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)【答案】(1)条件选择见解析,3π(2)2,6]+(3)3CD <≤【解析】【分析】(1)选①根据正弦定理化简,然后转化成余弦值即可;选②根据正弦定理化简即可求到余弦值,然后求出角度;选③先根据向量条件得到等式,然后根据正弦定理即可求到正切值,最后求出角度.(2)根据(1)中结果和2c =,把ABC 周长转化成π4sin 26A ⎛⎫++ ⎪⎝⎭,然后再求解范围.(3)根据中线公式和正弦定理,把CD 转化成三角函数求解即可.【小问1详解】选①:因为()(sin sin )(sin sin )a c A C b A B +-=-,()()()a c a c b a b ∴+-=-,即222c a b ab =+-,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选②:2cos 0cos b a A c C--=,2sin sin cos sin cos B A A C C-∴=,2sin cos sin cos sin cos B C A C C A ∴-=,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选③:向量()m c = 与(cos ,sin )n C B =平行,sin cos c B C ∴=,sin sin cos C B B C ∴=,tan C ∴=()0,πC ∈ ,π3C ∴=.【小问2详解】π,23C c == ,sin sin sin a b c A B C==,23sin )2sin())2sin )232a b c A B A A A A π∴++=++=+-+=+4sin(26A π=++. ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,πsin ,162A ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.ABC ∴周长的取值范围为2,6]+.【小问3详解】224a b ab =+- ,又由中线公式可得222(2)42()2(4)CD a b ab +=+=+,21624442·sin sin 33CD B A A π⎛⎫∴=+=+- ⎪⎝⎭2161161142·sin cos sin 42·sin 23223426A A A A π⎛⎫⎡⎤⎛⎫=++=++- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.即254πsin 2336CD A ⎛⎫=+- ⎪⎝⎭, ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,ππ5π2666A ∴<-<.3CD <≤.18.三棱台111ABC A B C -中,若1A A ⊥面ABC ,ABAC ⊥,12AB AC AA ===,111A C =,M ,N 分别是BC ,BA 中点.(1)求1A N 与1CC 所成角的余弦值;(2)求平面1C MA 与平面11ACC A 所成成角的余弦值;(3)求1CC 与平面1C MA 所成角的正弦值.【答案】(1)45(2)23(3)15【解析】【分析】(1)根据题意,证得11//MN A C 和11//A N MC ,得到1CC M ∠为1A N 与1CC 所成角,在1CC M △中,利用余弦定理,即可求解;(2)过M 作ME AC ⊥,过E 作1EF AC ⊥,连接1,MF C E ,证得ME ⊥平面11ACC A ,进而证得1AC ⊥平面MEF ,得到平面1C MA 与11ACC A 所成角即MFE ∠,在直角MEF 中,即可求解;(3)过1C 作1C P AC ⊥,作1C Q AM ⊥,连接,PQ PM ,由1C P ⊥平面AMC ,得到1C P AM ⊥和1C Q AM ⊥,得到AM ⊥平面1C PQ 和PR ⊥平面1C MA ,在直角1C PQ 中,求得23PR =,求得C 到平面1C MA 的距离是43,进而求得1CC 与平面1C MA 所成角.【小问1详解】解:连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,得//MN AC ,且12AC MN ==,在三棱台111ABC A B C -中,可得11//A C AC ,所以11//MN A C ,由111MN A C ==,可得四边形11MNAC 是平行四边形,则11//A N MC ,所以1CC M ∠为1A N 与1CC 所成角,在1CC M △中,由111CC A N C M CM ====,可得14cos5CC M ∠=.【小问2详解】解:过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E .由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又因为ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则ME ⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,因为1EF AC ⊥,ME EF E ⋂=,且,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,可得1AC MF ⊥,所以平面1C MA 与平面11ACC A 所成角即MFE ∠,又因为12AB ME ==,1cos CAC ∠=,则1sin CAC ∠=所以11sin EF CAC =⨯∠=,在直角MEF 中,90MEF ∠=,则MF ==2cos 3EF MFE MF ∠==.【小问3详解】解:过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R ,由11C A C C ==,1C M ==12C Q ==,由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,因为1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ ,又因为PR ⊂平面1C PQ ,则PR AM ⊥,因为1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,所以PR ⊥平面1C MA ,在直角1C PQ 中,1122223322PC PQ PR QC ⋅⋅==,因为2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍,即点C 到平面1C MA 的距离是43,设所求角为θ,则43sin 15θ==.19.如图①,在矩形ABCD 中,2AB AD ==E 为CD 的中点,如图②,将AED △沿AE 折起,点M 在线段CD 上.(1)若2DM MC =,求证AD ∥平面MEB ;(2)若平面AED ⊥平面BCEA ,是否存在点M ,使得平面DEB 与平面MEB 垂直?若存在,求此时三棱锥B DEM -的体积,若不存在,说明理由.【答案】(1)证明见解析(2)存在,169【解析】【分析】(1)根据已知条件及平行线分线段成比例定理,结合线面平行的判定定理即可求解;(2)根据(1)的结论及矩形的性质,利用面面垂直的性质定理及线面垂直的性质定理,结合线面垂直的判定定理及面面垂直的判定定理,再利用等体积法及棱锥的体积公式即可求解.【小问1详解】如图,连AC ,交EB 于G ,在矩形ABCD 中,E 为DC 中点,AB EC ∴∥,且2AB EC =,2AG GC ∴=,又2DM MC =,AD MG ∴∥,又MG ⊂平面MEB ,AD ⊄平面MEB ,AD ∴∥平面MEB .【小问2详解】存在点M ,使得平面DEB 与平面MEB 垂直.在矩形ABCD 中,12DE DA AB ==,45DEA BEC ∴∠=∠=︒,90AEB ∴∠=︒,即AE EB ⊥,已知平面AED ⊥平面BCEA ,又平面AED 平面BCEA AE =,BE ∴⊥平面AED ,DE ⊂平面AED ,BE DE ∴⊥.①取AE 中点O ,则DO AE ⊥,平面AED ⊥平面BCEA ,平面AED 平面BCEA AE =,DO ∴⊥平面BCEA ,由(1)知当2DM MC =时,AD MG ∥,AD DE ⊥ ,MG DE ∴⊥.②而BE MG G ⋂=,,⊂BE MG 平面MEB ,DE ∴⊥平面MEB ,又DE ⊂平面DEB ,∴平面DEB ⊥平面MEB .即当2DM MC =时,平面DEB 与平面MEB 垂直.依题意有DE AD ==4AE =,2DO =,(2222121116233333329B DEM B DEC D BEC BEC V V V DO S ---∴===⨯⨯⨯=⨯⨯⨯⨯=△.。

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。

泰安第一中学2022-2023学年高一下学期期中考试数学试题(含答案)

泰安第一中学2022-2023学年高一下学期期中考试数学试题(含答案)

泰安一中新校区2022-2023学年高一下学期期中考试数学试题2023.5一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数()1i 1i z -=+,则z = A.22B.1C.D.22.若,m n 表示两条不重合的直线,,,αβγ表示三个不重合的平面,下列命题正确的是A .若m αγ⋂=,n βγ= ,且//m n ,则//αβB .若,m n 相交且都在,αβ外,//m α,//n α,//m β,//n β,则//αβC .若//m n ,n α⊂,则//m αD .若//m α,//n α,则//m n4.已知2a =,3b =.若a b a b +=-,则23a b +=425.某景区为提升游客观赏体验,搭建一批圆锥形屋顶的小屋(如图1).现测量其中一个屋顶,得到圆锥SO 的底面直径AB 长为12m ,母线SA 长为18m (如图2).若C 是母线SA 的一个三等分点(靠近点S ),从点A 到点C 绕屋顶侧面一周安装灯光带,则灯光带的最小长度为A. B.16mC. D.12m6.如图所示,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB mAM = ,(,0)AC nAN m n =>,则m n +的值为A .2B .3C .92D .57.已知4sin 45πα⎛⎫+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,则cos α=A.210 B.3210C.22D.72108.函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,将该函数图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移()0θθ>个单位长度后,所得到的图象关于原点对称,则θ的最小值为A.3πB.6πC.12π D.724π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列有关复数的说法中(其中i 为虚数单位),正确的是A .22i 1=B .复数32i z =-的共轭复数的虚部为2C .若13i -是关于x 的方程()20,x px q p q ++=∈R 的一个根,则8q =-D .若复数z 满足i 1z -=,则z 的最大值为210.下列说法正确的是A .已知向量()1,3a = ,()cos ,sin b θθ= ,若a b ⊥ ,则3tan 3θ=-B .已知向量()2,3a = ,(),2b x = ,则“a ,b的夹角为锐角”是“3x >-”的充要条件C .若向量()()4,31,3a b =- = ,,则a 在b 方向上的投影向量坐标为13,22⎛⎫ ⎪⎝⎭三、填空题:本题共4小题,每小题5分,共20分.13.已知复数2(4)(2)i m m +-+ (R)m ∈是纯虚数,则m =___________.14.需要测量某塔的高度,选取与塔底D 在同一个水平面内的两个测量基点A 与B ,现测得75DAB ∠= ,45ABD ∠= ,96AB =米,在点A 处测得塔顶C 的仰角为30 ,则塔高CD 为__________米.15.公元前6世纪,毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值,这一数值近似可以表示为2sin18m =︒,若24m n +=,则cos 27m =︒______.四、解答题:本题6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知,,a b c是同一平面内的三个向量,()1,2a = .(1)若c = ,且//c a ,求c的坐标;(2)若52b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角θ..19.(12分)已知ABC 中,D 是AC 边的中点.3BA =,7BC =,7BD =(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.20.(12分)已知函数()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间;(2)若函数()y f x k =-在11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求实数k 的取值范围.泰安一中新校区2022-2023学年高一下学期期中考试数学试题解析2023.5一、单项选择题:1.B2.B3.D4.A5.C6.A7.A8.C二、多项选择题:9.BD 10.ACD 11.ACD 12.ACD11.【详解】对于A ,由正弦定理可得sin cos sin cos sin sin C B B C A a A +==,因为0πA <<,所以sin 0A ≠,所以1a =,若2B C A +=,且πB C A ++=,所以π3A =,由余弦定理得22222π1cos cos 322b c a b c A bc bc+-+-===,由0,0b c >>,可得2212b c bc bc +=+³,即1bc ≤,则ABC面积11sin 22bc A ≤=ABC,故A 正确;对于B ,若π4A =,且1a =,由正弦定理得1πsin sin 4b B=,所以πsin sin4B b b =,当sin 1B =1=,所以b =时有一解,故B 错误;对于C ,若C =2A ,所以π2π3B A A A =--=-,且ABC 为锐角三角形,所以π02π022π0π32A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得ππ64A <<,所以2cos 2A ⎛∈ ⎝⎭,由正弦定理sin sin a cA C =得1sin sin 22cos sin sin C A c A A A⨯===∈,故C 正确;对于D ,做OD BC ⊥交BC 于点D 点,则D 点为BC 的中点,且1BC =,设OBD αÐ=,所以cos BDBOα=,所以211cos 22BD BC BO BC BO BC BO BC BD BC BOα⋅=⋅=⋅⨯=⋅==,故D 正确.12.【详解】由题意,PC 的中点O 即为-P ABC 的外接球的球心,设外接球的半径为R ,则34108π33R π=,得3R =,在Rt PAB 中,222PA AB PB +=,故222PB BC PC +=,即222224PA AB BC PC R ++==,而2AB =,所以2232PA BC +=,鳖臑-P ABC 的体积()()22111116232663P ABC V AB BC PA BC PA BC PA -=⨯⋅⋅=⋅⋅≤⋅+=,当且仅当4BC PA ==时,取得等号,故max 16()3P ABC V -=,故A 项正确,B 项错误;而1823C ABO O ABC V V V --===,故C 项正确;设-P ABC 的内切球半径为r ,由题意知三棱锥-P ABC 的四个侧面皆为直角三角形,由等体积法1111116322223P ABC V AB BC PA AC PA PB BC r -⎛⎫=⨯⋅+⋅+⋅+⋅⋅= ⎪⎝⎭,而2AC ==6PC =,得(1632r +⋅=,所以r =,故D 项正确,三、填空题:13.214.15.16.216【详解】以ABC 外接圆圆心为原点建立平面直角坐标系,如图,因为等边ABC21sin BCr r A=⇒=,设11(1,0),(,(,),(cos ,sin )2222A B C P αα---,则1(1cos ,sin ),(cos sin )2PA PB αααα=--=---,1(cos ,sin )2PC αα=--,所以(12cos ,2sin )PC PB αα+=---,所以()1cos PA PB PC α⋅+=-,因为1cos 1α-≤≤,所以01cosα2£-£,所以()PA PB PC ⋅+的最大值为2.四、解答题:17.【详解】(1)设向量(),c x y = ,因为()1,2a = ,c =r ,c a ∥,所以2x y==⎪⎩,解得24x y =⎧⎨=⎩,或24x y =-⎧⎨=-⎩,所以()2,4c =r 或()2,4c =-- ;(2)因为2a b + 与2a b -垂直,所以()()220a b a b +⋅-=r r r r ,所以222420a a b a b b -⋅+⋅-= 而52b =,a == ,所以5253204a b ⨯+⋅-⨯= ,得52a b ⋅=- ,a 与b的夹角为θ,所以52cos 12a b a bθ-⋅===-⋅,因为[]0,θπ∈,所以θπ=.18.【详解】(1)设圆锥的底面半径为r ,高为h.由题意,得:2r π=,∴r =,∴3h =∴圆锥的侧面积16S rl ππ===,底面积223S r ππ==,∴表面积129S S S π=+=.(2)由(1)可得:圆锥的体积为211133333V r h πππ==⨯⨯=.又圆柱的底面半径为2r =322h =,∴圆柱的体积为2233922428r hV πππ⎛⎫==⨯⨯= ⎪⎝⎭.∴剩下几何体的体积为12915388V VV πππ=-=-=.19.【详解】(1)设AD DC x ==,由余弦定理可得22cosADB CDB∠=∠==又cos cos ADB CDB ∠∠=- 2=1x ∴=,即2AC =.(2)由(1)知223271cos 2322A +-==⨯⨯,因为0A π<<,所以3A π=,由ABE ACE ABC S S S += 可得,1113sin 302sin 3032sin 60222AE AE ︒︒︒⨯⨯+⨯⨯=⨯⨯⨯,即5AE =,解得5AE =.20.【详解】(1)()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 2coscos 2sin 2cos sin 6644x x x x ππππ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭11sin 2cos 2sin 2sin 2cos 2cos 222222x x x x x x π⎛⎫=-++=-+ ⎪⎝⎭1sin 2cos 2sin 2+226x x x π⎛⎫=+= ⎪⎝⎭,令222,Z 262k x k k πππππ-+≤+≤+∈,所以,Z 36k x k k ππππ-+≤≤+∈,所以函数()f x 的单调递增区间为:,,Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(2)函数()y f x k =-在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,即曲线sin 26y x π⎛⎫=+ ⎪⎝⎭与直线y k =在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个交点.设26t x π=+,则sin ,y t =且,26t ππ⎡⎤∈-⎢⎥⎣⎦,又因为1sin 62π⎛⎫-=- ⎪⎝⎭,由图象可知,若要使sin y t =与y k =区间,26t ππ⎡⎤∈-⎢⎥⎣⎦上有且仅有两个交点,则()11,0,12k ⎛⎫∈--⋃ ⎪⎝⎭.21.【详解】(1)选择①,在ABC 中,由余弦定理得222222222a c b a c b a b c b ac a+-+-=+⋅=+,整理得222a b c ab +-=,则2221cos 22a b c C ab +-==,又()0,πC ∈,所以π3C =.选择②,可得sin cos sin cos cos a A B b A A C +=,在ABC中,由正弦定理得,2sin cos sin sin cos cos A B A B A A C +=,因为sin 0A ≠,则sin cos sin cos A B B A C +=,即()sin A B C +=,因为πA B C ++=,因此sin cos C C =,即tan C =又()0,πC ∈,所以3C π=.选择③,在ABC22(2cos1)2cos 2CC C =--=-,cos 2C C +=,即πsin 16C ⎛⎫+= ⎪⎝⎭,又()0,πC ∈,所以ππ7π,666C ⎛⎫+∈ ⎪⎝⎭,所以ππ62C +=,从而π3C =.(2)由(1)知,π3C =,有2π3ABC BAC ∠+∠=,而BAC ∠与ABC ∠的平分线交于点I ,即有π3ABI BAI ∠+∠=,于是2π3AIB ∠=,设ABI θ∠=,则π3BAI θ∠=-,且π03θ<<,在ABI △中,由正弦定理得,4π2πsin sin sin()sin33BI AI AB AIB θθ====∠-,所以)4sin π3(BI θ=-,4sin AI θ=,所以ABI △的周长为3234sin(4si π)n θθ-+3123cos sin )4sin 22θθθ=-+π23232sin 4sin()233θθθ=++=++由π03θ<<,得ππ2π333θ<+<,所以当ππ32θ+=,即π6θ=时,ABI △的周长取得最大值423+22.【详解】(1)记F 为AB 的中点,连接,DF MF ,如图1,因为,F M 分别为,AB AE 的中点,故//MF EB ,因为MF ⊄平面,EBC EB ⊂平面,EBC 所以//MF 平面EBC ,又因为ADB 为正三角形,所以60DBA ∠=︒,DF AB ⊥,又BCD △为等腰三角形,120BCD ∠=︒,所以30DBC ∠=︒,所以90ABC ∠=︒,即BC AB ⊥,所以//DF BC ,又DF ⊄平面,EBC BC ⊂平面,EBC 所以//DF 平面EBC ,又DF MF F ⋂=,,DF MF ⊂平面DMF ,故平面//DMF 平面EBC ,又因为DM ⊂平面DMF ,故//DM 平面BEC .(2)延长,CD AB 相交于点P ,连接PM 交BE 于点N ,连接CN ,过点N 作//NQ AE 交AB 于点Q ,如图2,因为//DM 平面ECB ,DM ⊂平面PDM ,平面PDM 平面ECB CN =,所以//DM CN ,此时,,,D M N C 四点共面,由(1)可知,2,60,BC CD PCB CB BP ==∠=︒⊥,得30,4CPB PC ∠=︒=,故4263PN CP PM DP ===,又因为//NQ AE ,所以23NQ PN AM PM ==,则有3112223NQ NQ AE AM ==⨯=,故13BN NQ BE AE ==.N。

山东省聊城市聊城一中2023-2024学年下学期期中考试高一数学试题(含答案)

山东省聊城市聊城一中2023-2024学年下学期期中考试高一数学试题(含答案)

2023-2024学年第二学期期中考试高一数学试题时间:120分钟分值:150分第Ⅰ卷(58分)一、单选题本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中;只有一个选项符合题目要求.1.若复数是纯虚数,则的共轪复数( )A .B .C .D .12.如图所示的中,点是线段上犁近的三等分点,点是线段的中点,则()A .B .C .D .3.如下图;正方形的边长为.它是水平放罝的一个平面图形的直观图,则图形的周长是()A .B .C .D .4.已知是两个不共线的向量,.若与是共线向量,实数的值为( )A .B .C .D .5.在等腰中,平分且与相交于点,则向量在上的投影向量为()A.B .CD6.下列命题正确的是()A .若是两条直线,是两个平面,且,则是异面直线()i1ia z a -=∈+R z z =1-i-iABC △D AC A E AB DE =1136BA BC--1163BA BC--5163BA BC--5163BA BC-+O A B C ''''2cm 16cm 8cm 4+12,e e 12122,2e e b e e a k =-=+ a bk 6-5-4-3-ABC △120,BAC AD ∠=︒BAC ∠BC D BD BA32BA34BABA a b 、,αβ,a b αβ⊂⊂a b 、B .四边形可以确定一个甲面C .已知两条相交直线,且平面,则与的位置关系是相交D .两两相交且不共点的三条直线确定一个平面7.已知点在所在平面内,且,,则点依次是的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心8.如图,在中,已知边上的两条中线相交于点,求的余弦值.()二、多选题本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(多选)中,根据下列条件解三角形,其中有一解的是( )A .B .C .D .10.如图,透明望料制成的长方体内灌进一些水,固定容器底面一边于水平地面上,再将容器倾斜,随着倾斜度不同,其中正确的命题的是()A .没有水的部分始终呈棱柱形;B .水面所在四边形的面积为定值;C .棱始终与水面所在平面平行;D .当容器倾斜如图(3)所示时,是定值.11.《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边a b 、a ∥αb αO N P 、、ABC △,0OA OBOC NA NB NC ==++=PA PB PB PC PC PA ⋅=⋅=⋅O N P 、、ABC △ABC △2,5,60,,AB AC BAC BC AC ==∠=︒,AM BM P MPN ∠ABC △7,3,30b c c ===︒5,4,45b c B ===︒6,60a b B ===︒20,30,30a b A ===︒1111ABCD A B C D -BC EFGH 11A D BE BF ⋅,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实:一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有满足的面积)A .的周长为B .三个内角满足C .D .的中线的长为三、填空题本题共3小题,每小题5分,共15分.12.已知点,向旦,点是线段的三等分点,求点的坐标________.13.如图是一个正方体的展开图,如果将它还原为正方体,那么在这四条线段中,有________对异面直线?14.如下图,在中,点是的中点,过点的直线分别交直线于不同的两点M ,N .设,则________.四、解答题本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,圆锥的底面直径和高均是,过的中点作平行于底面的截面,以该截面为底面挖去一个圆柱,求剩下几何体的表面积和体积.,,a b c S =ABC △sin :sin :sin 2:3:A B C =ABC △S =ABC △10+ABC △,,A B C 2C A B=+ABC △ABC △CD ()0,0O ()()2,3,6,3O OA B ==-P AB P ,,,AB CD EF GH ABC △O BC O ,AB AC ,AB mAM AC nAN ==m n +=PO a PO O '16.(15分)在复平面内,点对应的复数分别是(其中是虚数单位),设向量对应的复数为.(1)求复数;(2)求;(3)若,且是纯虚数,求实数的值.17.(15分)如图,是海面上位于东西方向相距海里的两个观测点,现位于点北偏东点北偏西的点有一艘轮船发出求救信号,位于点南偏西且与点相距海里的点的救援船立即前往营救,其航行速度为30海里/小时,试求:(1)轮船D 与观测点B 的距离;(2)救援船到达D点所需要的时间.18.(17分)在等腰梯形中,,动点分别在线段和上(不包含端点),和交于点,且.(1)用向量,表示向量;(2)求的取值范围;(3)是否存在点,使得.若存在,求;若不存在,说明理由.19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当的,A B 23i,12i ++i BAz z 2z z z +⋅1i z m =+1z zm A B 、(53+A 45,B ︒60︒D B 60︒B C ABCD ,60,1,2,3AB DC DAB CD AD AB ∠=︒===∥,E F BC DC AE BD μ(),1BC D BE DC F λλ=⋅=- AB AD ,AE AF 2AE AF +E 8AM DM BM EM =λABC △三个内角均小于120°时,使得的点O 即为费马点,当有一个内角大于或等于时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知的内角所对的边分别为,且.(1)求;(2)若,设点为的费马点,求;(3)设点为的费马点,,求实数的最小值.2023-2024学年第二学期期中考试高一数学试题参考答案一、单选题1.C 2.B 3.A 4.C 5.B 6.D 7.C 8.B 二、多选题9.BC 10.ACD 11.ABC三、填空题12.或 13.3 14.2四、解答题15.解:(由于是的中点,所以圆杜的高,且圆柱的底面半径为圆锥的体积为,圆柱的体积为,所以剩下几何体的体积为.剩下部分的表面积等于圆锥的面积加上圆柱的侧面积,即.(3部分面积分值分别为2、2、3分)16.解:(1)因为点对应的复数分别是,所以,所以,故.(2)因为,所以.120AOB BOC COA ∠=∠=∠=︒ABC △120︒ABC △,,A B C ,,a b c cos2cos2cos21B C A +-=A2bc =P ABC △PA PB PB PC PC PA ⋅+⋅+⋅ P ABC △PB PC t PA +=t 14,13⎛⎫- ⎪⎝⎭10,13⎛⎫⎪⎝⎭O 'PO 12OO a '=4a231ππ3212a a a⎛⎫⨯⨯⨯=⎪⎝⎭231ππ4232a a a ⎛⎫⨯⨯= ⎪⎝⎭33ππ5π123296a a ⎛⎫-=⎪⎝⎭2ππ2π2242a a a a ⎛⎫⨯+⨯+⨯⨯= ⎪⎝⎭,A B 23i,12i ++()()2,3,1,2A B ()1,1BA =1i z =+1i z =+()()222(1i)1i 1i 2i 1i 22i z z z +⋅=+++-=+-=+==(3)因为,所以,由是纯虚数,可知且,解得.17.解:(1)由在的北偏东,在的北偏西,,由正弦定理得,又,代入上式得:,答:轮船与观测点的距离为海里;(2)中,海里,海里,,,,解得海里,(小时),答:救援船到达D 所需的时间为1小时.18.解(1)因为,所以.又.(2),因为,所以1i z m =+()()()()()1i 1i 11i i 11i 1i 1i 1i 222m m m z m m mz +-++-++-====+++-1z z 102m +=102m -≠1m =-D A 45︒B 60︒45,30,105DAB DBA ADB ∴∠=︒∠=︒∴∠=︒,sin sin sin 45AB BD BD ADB DAB ==∠∠︒()sin105sin 4560sin 45cos60cos45sin 660︒=︒+︒=︒︒+︒︒=BD =D B BCD △BD =BC =60DBC ∠=︒22212cos60300120022DC BD BC BD BC ∴=+-⨯⨯︒=+-⨯⨯2900DC ∴=30DC =30130t ∴==()1233BE BC BA A AD D DC AB AD AB AB λλλλλ⎛⎫==++=-++=-+ ⎪⎝⎭213AE AB BE AB AD λλ⎛⎫=+=-+ ⎪⎝⎭()113AF A AD DF AD DC AB D λλ-=+=+-=+()542233A AE F AB AD λλ⎛⎫+=-++ ⎪⎝⎭3,2,32cos603AB AD AB AD ==⋅=⨯⨯︒=()()22222254545422(2)22333333AE AF AB AB AD AD AB ADλλλλλλ⎡⎤⎛⎫⎛⎫⎛⎫+=-++=-+++-+⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.因为动点分别在线段和上゙且不包含端点,所以,所以所以的取值范围是.(3)设,其中,则,因为,由平面向量基本定理,得解得,由,得,故,所以,解得,或.因为,所以.19.解:(1)由已知中,即,故,由正弦定理可得,故直角三角形,即;(2)由(1)可得,所以三角形的三个角都小于,则由费马点定义可知:()2254549624(2)3333λλλλ⎛⎫⎛⎫=-+-+++ ⎪ ⎪⎝⎭⎝⎭2251691230611244λλλ⎛⎫=-+=-+ ⎪⎝⎭,E F BC DC 01λ<<24322AE AF AF <+<+<2A A E F +,tME B M D M M s A ==,0s t >()1111s s s s AB BM AB BD AB AD AB AB AD s s sM s A =+=+=+-=+++++ 21113t t AE AB AD t A t M λ⎡⎤⎛⎫==-+ ⎪⎢⎥++⎝⎭⎣⎦121,113.11t s t s t s tλλ⎧⎛⎫=- ⎪⎪⎪++⎝⎭⎨⎪=⎪++⎩3,323.s t λλλ⎧=⎪⎪-⎨⎪=⎪⎩8AM DM BM EM = 8AM DM t ME DM s MD EM ==8t s =33832λλλ=-12λ=34-01λ<<12λ=ABC △cos2cos2cos21B C A +-=22212sin 12sin 12sin 1B C A -+--+=222sin sin sin A B C =+222a b c =+ABC △π2A =π2A =ABC 120︒,设,由,得,整理得,则;(3)点为的费马点,则,设,则由,得:由余弦定理得,,,故由,得.即,而,故,当且仅当,结合,解得时,等号成立.又,即有,解得(舍去).故实数的最小值为120APB BPC APC∠=∠=∠=︒,,PA x PB y PC z===APB BPC APC ABCS S S S++=△△△△111122222xy yz xz++=⨯xy yz xz++=11112222PA PB PB PC PA PC xy yz xz⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅-=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P ABC△2π3APB BPC CPA∠=∠=∠=,,,0,0,0PB m PA PC n PA PA x m n x===>>>PB PC t PA+=m n t+=()22222222π||2cos13AB x m x mx m m x=+-=++()22222222π||2cos13AC x n x nx n n x=+-=++()2222222222π||2cos3BC m x n x mnx m n mn x=+-=++222AC AB BC+=()()()222222211n n x m m x m n mn x+++++=++2m n mn++=0,0m n>>222m nm n mn+⎛⎫++=≤ ⎪⎝⎭m n=2m n mn++=1m n==+m n t+=2480t t--≥2t≥+2t≤-t2。

重庆市2023-2024学年高一下学期期中考试数学试卷含答案

重庆市2023-2024学年高一下学期期中考试数学试卷含答案

重庆市2023-2024学年高一(下)期中数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.(5分)已知复数,则的虚部是()A.﹣i B.﹣1C.i D.12.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m⊂α,n⊂β,则m∥nC.若m∥n,m⊥α,则n⊥αD.若α⊥β,m⊂α,n⊂β,则m⊥n3.(5分)在△ABC中,b=6,c=3,A=60°,则此三角形外接圆面积为()A.9B.9πC.36D.36π4.(5分)已知向量满足,向量与的夹角为,则在方向上的投影向量为()A.B.C.D.5.(5分)如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现,我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为()A.B.2C.D.6.(5分)如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD的中点,G为EF中点,则=()A.B.C.D.7.(5分)嵩岳寺塔位于河南郑州登封市嵩岳寺内,历经1400多年风雨侵蚀,仍巍然屹立,是中国现存最早的砖塔.如图,为测量塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点C与D,现测得∠BCD=30°,∠BDC=45°,CD=32m,在C点测得塔顶A的仰角为60°,则塔的总高度为()A.B.C.D.8.(5分)在正四棱台ABCD﹣A1B1C1D1中,AB=2A1B1=4,侧棱,若P为B1C1的中点,则过B,D,P三点截面的面积为()A.B.C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

(多选)9.(3分)已知复数z=2﹣3i,其中i是虚数单位,则下列结论正确的是()A.z的模等于13B.z在复平面内对应的点位于第四象限C.z的共轭复数为﹣2﹣3iD.若z(m+4i)是纯虚数,则m=﹣6(多选)10.(3分)设向量,,则下列叙述错误的是()A.若与的夹角为钝角,则k<2且k≠﹣2B.的最小值为2C.与共线的单位向量只有一个为D.若,则或(多选)11.(3分)在长方体ABCD﹣A1B1C1D1中,BC=2AB=2BB1=6,点E为棱BC上靠近点C的三等分点,点F是长方形ADD1A1内一动点(含边界),且直线B1F,EF与平面ADD1A1所成角的大小相等,则()A.A1F∥平面BCC1B1B.三棱锥F﹣BB1E的体积为4C.存在点F,使得A1F∥B1ED.线段A1F的长度的取值范围为[,]三、填空题:本题共3小题,每小题5分,共15分。

2022-2023学年黑龙江省双鸭山市高一下学期期中数学试题【含答案】

2022-2023学年黑龙江省双鸭山市高一下学期期中数学试题【含答案】

2022-2023学年黑龙江省双鸭山市高一下学期期中数学试题一、单选题1.设,则复数的实部和虚部之和为( )()2i 1iz =-z A .3B .C .1D .3-1-【答案】B【分析】利用复数的乘法可得,从而可得其实部和虚部之和.z 【详解】,故其实部为,虚部为,两者的和为,()2i 1i 2iz =-=--2-1-3-故选:B.【点睛】本题考查复数的乘法以及复数的虚部和实部,注意复数的虚部为,本题i(,)a b a b +∈R b 属于基础题.2.中,角,,,的对边分别为,,,若,,则( )ABC A B C a b c 3a=c =6B π=b =A .B .C D【答案】C【解析】由余弦定理可直接求出.【详解】由余弦定理得,2222cos 93233b a c ac B =+-=+-⨯=b ∴=故选:C.3.向量在向量上的投影向量的坐标为( )()2,1a =()3,4b =A .B .()6,8()6,8--C .D .68,55⎛⎫ ⎪⎝⎭68,55⎛⎫-- ⎪⎝⎭【答案】C【分析】利用坐标求得与同向的单位向量,由可知所求向量为.b ecos ,2a b a a b b⋅<>==2e,与同向的单位向量,5=∴b 34,55b e b ⎛⎫== ⎪⎝⎭又,所求投影向量为.64cos ,25a b a a b b⋅+<>===∴682,55e ⎛⎫= ⎪⎝⎭ 故选:C.4.已知直线和平面,下列说法正确的是( ),a b αA .若,,则 B .若,,则//a b //b α//a α//a b b α⊂//a αC .若,,则D .若,,则a α⊥b α⊥//a b //a α//b α//a b【答案】C【分析】根据直线与直线、直线与平面的位置关系对四个选项逐一分析,即可判断.【详解】对A :若,,则或,故A 错误;//a b //b α//a αa α⊂对B :若,,则或,故B 错误;//a b b α⊂//a αa α⊂对C :根据垂直于同一平面的两条直线平行可知,C 正确;对D :若,,则与可能平行、可能相交、可能异面,故D 错误.//a α//b αa b 故选:C5.如图,在△ABC 中,,,设,,则( )3AB AD =CE ED =AB a = AC b = AE = A .B .1132a b +1142a b +C .D .1152a b + 1162a b + 【答案】D【分析】根据向量的加法法则,即可求解.【详解】解:由题意得:,11111112223262AE AD AC AB AC a b=+=⨯+=+故选:D.6.一个水平放置的三角形的斜二侧直观图是等腰直角三角形如图所示,若,那么原A B O '''1O B ''=的面积是( )ABOA B C .D .【答案】B【分析】根据斜二测画法可得原三角形的底边及高,进而可求原三角形的面积.【详解】因为三角形的斜二侧直观图是等腰直角三角形,A B O '''所以的底.斜边ABO 1OB O B ''==A O ''则为直角三角形,高ABO 三角形22OA A O ''==所以直角三角形的面积是ABO 112⨯⨯=故选:B .7.空间四边形中,,,分别是,的中点,ABCD 2AD BC ==E F AB CD EF =,所成的角为( )AD BCA .30°B .60°C .90°D .120°【答案】B【解析】取AC 中点G ,连接EG 、FG ,可知∠EGF 或其补角即为异面直线AD ,BC 所成的角,在△EFG 中,由余弦定理可得cos ∠EGF ,结合角的范围可得答案.【详解】取AC 中点G ,连接EG 、FG ,由三角形中位线的知识可知:EG BC ,FG AD ,12=12=∴∠EGF 或其补角即为异面直线AD ,BC 所成的角,在△EFG 中,cos ∠EGF,222122EG FG EF EG FG +-===-⨯⨯∴∠EGF =120°,由异面直线所成角的范围可知应取其补角60°,故选:B .【点睛】本题考查异面直线所成的角,涉及解三角形的应用,属中档题.8.如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得,,,在点C 测得塔顶A 的仰角为,则塔高BCD α∠=BDC β∠=CD s =θ( )AB =A .B .()tan sin sin s θβαβ⋅+()tan sin sin s θαββ⋅+C .D .()sin sin sin s θαββ⋅+()sin sin sin s θβαβ⋅+【答案】A【分析】运用正弦定理和锐角三角函数定义进行求解即可.【详解】在中,由正弦定理可知:BCD △,sin sin sin sin sin(π)sin()BC CD BC s s BC BDC CBD ββαβαβ⋅=⇒=⇒=∠∠--+在直角三角形中,ABC ,sin tan tan sin()BA s ACB BA BC βθαβ⋅∠=⇒=+故选:A二、多选题9.已知两点,,则与向量垂直的单位向量( )()1,2A ()4,2B -ABe = A .B .43,55⎛⎫ ⎪⎝⎭43,55⎛⎫-- ⎪⎝⎭C .D .34,55⎛⎫- ⎪⎝⎭34,55⎛⎫- ⎪⎝⎭【答案】AB【分析】设,根据单位向量的模长公式以及向量垂直的坐标表示列式可求出结果.(,)e x y = 【详解】因为,,所以,()1,2A ()4,2B -(3,4)AB =-设,则且,(,)e x y =||1e = 0AB e ⋅= 所以,解得或,221340x y x y ⎧+=⎨-=⎩4535x y ⎧=⎪⎪⎨⎪=⎪⎩4535x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以或.43(,)55e = 43(,)55e =-- 故选:AB10.,是三个平面,是两条直线,下列四个命题中错误的是( )αβ,γm n ,A .若,则B .若则//,,m n αβαγβγ== //m n ,,//,//,m n m n ααββ⊂⊂//αβC .若,则D .若,则//m αβα⊂,//m β//m n m n αβ⊂⊂,,//αβ【答案】BD【分析】根据空间直线与直线、直线与平面、平面与平面的位置关系逐个分析可得答案.【详解】对于A ,若,由平面与平面平行的性质可得,故选项A 正//,,m n αβαγβγ== //m n 确;对于B ,若,当与相交时,,故选项B 错误;,,//,//m n m n ααββ⊂⊂m n //αβ对于C ,若则与无公共点,因为,所以与无公共点,所以,故选项C//αβαβm α⊂m β//m β正确;对于D ,若,,则或与相交,故选项D 错误.//m n ,m n αβ⊂⊂//αβαβ故选:BD.11.在中,设所对的边分别为,则以下结论正确的是( )ABC ,,A B C ,,a b c A .若,则为等腰三角形.sin 2sin 2A B =ABC B .若,则sin sin A B >A B>C .若,则是锐角三角形.2220b c a +->ABC D .若,则一定是一个钝角三角形.():():()4:5:6b c c a a b +++=ABC 【答案】BD【分析】根据正弦函数的性质可判断A ,根据正弦定理及大边对大角的性质可判断B ,由余弦定理以及锐角三角形的定义判断C ,根据已知条件及余弦定理判断D.【详解】,,sin 2sin 2A B = 022π,022πA B <<<<或,即或,22A B ∴=22πA B +=A B =π2A B +=为等腰或直角三角形,故A 错误;ABC ∴△,由正弦定理可知,,故B 正确;sin sin A B > a b >A B ∴>因为,所以,所以,2220b c a +->222cos 02b c a A bc +-=>π02A <<而角、角不一定是锐角,所以不一定是锐角三角形,故C 错误;B C ABC 设,则解得,4,5,6b c k c a k a b k +=+=+=753,,222a k b k c k ===则,因为,222222222357152224cos 01515222k k k k b c a A k k bc⎛⎫⎛⎫⎛⎫+-- ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭===<0πA <<所以是钝角,故D 正确.A 故选:BD12.在正四面体中,若,为的中点,下列结论正确的是( )ABCD 2AB =M BC AB .正四面体外接球的表面积为6πC .如果点在线段上,则的最小值为P DM ()2AP CP +4+D .正四面体内接一个圆柱,使圆柱下底面在底面上,上底圆面与面、面、ABCD BCD ABD ABC面ACD 【答案】BCD【分析】由正四棱锥的结构特征,应用棱锥的体积公式求体积,并确定外接球的半径求表面积,展开侧面,要使最小,只需共线,结合余弦定理求其最小值,根据正四面体()2AP CP +,,A P C内接一个圆柱底面圆与其中截面正三角形关系求半径、体高,应用二次函数性质求侧面积最ABCD 大值.【详解】由正四面体各棱都相等,即各面都为正三角形,故棱长为2,如下图示,为底面中心,则共线,为体高,故,O ,,D O MAO 23BO BD =所以,故正四面体的体积为AO ===A 错误;1111sin 6043232AO BC BD ⋅⋅⋅⋅⋅︒=⨯=由题设,外接球球心在上,且半径,E AO r EA EB ==所以,则,222()r AO r BO =-+222AO BO r AO +==故外接球的表面积为,B 正确;234π4π6π2r =⨯=由题意知:将面与面沿翻折,使它们在同一个平面,如下图示,AMD CMD MD所以且2AD CD ==cos DO BO ADM AD AD ∠==sin AO ADM AD ∠==又,而,30CDM ∠=︒1cos cos()2ADC ADM CDM ∠=∠+∠==要使最小,只需共线,则,()2AP CP +,,A P C ()2222min 2cos AP CP AC AD CD AD CD ADC +==+-⋅∠所以C 正确;()2min 8(1AP CP +==如下图,棱锥中一个平行于底面的截面所成正三角形的内切圆为正四面体内接一个圆柱的上ABCD 底面,若截面所成正三角形边长为,则圆柱体的高(0,2)x ∈(12x h AO =⋅-=,13==r所以其侧面积,2π2πS rh ====故当时,,D 正确.1x =max S =故选:BCD三、填空题13.已知复数为纯虚数,则________.22(2)(1)i(R)z m m m m =+-+-∈m =【答案】2-【分析】根据纯虚数的定义即可求解.【详解】因为复数为纯虚数,22(2)(1)i(R)z m m m m =+-+-∈所以且,解得.220m m +-=210m -≠2m =-故答案为:2-14.若一个圆锥的侧面是半径为6的半圆围成,则这个圆锥的表面积为________.【答案】27π【分析】求出底面半径,代入公式即可.【详解】因为圆锥的侧面展开图是一个半径为的半圆,6所以圆锥的母线长为,6l =设圆锥的底面半径为,则,所以,r 26r ππ=⨯3r =所以圆锥的表面积为.227S r rl πππ=+=故答案为:.27π15.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为 .【答案】【详解】试题分析:设点A 到平面A1BC 的距离为h ,则三棱锥的体积为1A ABCV -即11A ABCA A BC V V --=111133ABCA BC S AA S h ∆∆⋅=⋅111233h h ∴=⋅⋅∴=【解析】点、线、面间的距离计算四、双空题16.已知锐角的内角所对的边分别,角.若是的平分线,ABC A B C 、、a b c 、、π=3A AM CAB ∠交于,且,则的最小值为________;若的外接圆的圆心是,半径B C M =2AM +3AC AB ABC O 是1,则的取值范围是________.()OA AB AC⋅+【答案】.4+53,2⎡⎫--⎪⎢⎣⎭【分析】(1)由已知利用,可得“”的代换,基本不等式ABC CAMBAM S SS =+△△△11b c+=1即可得出结果.(2)根据锐角三角形的角度范围,表示出,进而得出结果.()OA AB AC ⋅+ π=cos 223B ⎛⎫+- ⎪⎝⎭【详解】(1)由是的平分线,AM CAB ∠得,=30CAM BAM ∠=∠︒又,ABC CAMBAMS SS=+ △△△即,1π1π1πsin 2sin 2sin232626bc b c =⨯⨯⨯+⨯⨯⨯化简得,11b c+=()1133=+334c b AC AB b c b c b c b c ⎫⎫∴+=++++⎪⎪⎭⎭,+4≥=当且仅当,即时,取等号.3c b b c=23c =2b =(2),π2π=33A B C +=, ∴()()2=22OA AB AC OA OB OC OA OA OB OA OC OA ⋅+⋅+-=⋅+⋅- =cos cos 2=cos 2cos 22AOB AOC C B ∠+∠-+-2π=cos 2cos 223B B ⎛⎫-+- ⎪⎝⎭1=cos 2222B B -,π=cos 223B ⎛⎫+- ⎪⎝⎭是锐角三角形,ABC ,π022ππ032B C B ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩2π4π,2+62333πππB B ∴<<<<,π11cos 232B ⎛⎫∴-≤+<-⎪⎝⎭.()532OA AB AC ⎡⎫∴⋅+∈--⎪⎢⎣⎭,;.453,2⎡⎫--⎪⎢⎣⎭五、解答题17.如图为长方体与半球拼接的组合体,已知长方体的长、宽、高分别为10,8,15(单位:cm ),球的直径为5 cm ,(1)求该组合体的体积;(2)求该组合体的表面积.【答案】(1)(cm 3)125π120012+(2)(cm 2).25π7004+【分析】(1)根据长方体和球的体积公式可求出组合体的体积;(2)根据长方体和球的表面积公式可求出组合体的表面积;【详解】(1)根据该组合体是由一个长方体和一个半球组合而成.由已知可得,3108151200(cm )V =⨯⨯=长方体又,=V 半球3314π5125π(cm )23212⎛⎫⨯⨯= ⎪⎝⎭所以所求几何体体积为:,=V V V=+长方体半球125π120012+3(cm )(2)因为长方体的表面积,=2(1088151015)700S ⨯+⨯+⨯=长方体表2(cm )半球的底面积,球的表面积,2525=π()π24S ⋅=半球底2(cm )25=4π(25π2S ⋅=球2(cm )故所求几何体的表面积为.1252570025ππ700π244+⨯-=+2(cm )18.已知向量.(1,2),(3,)a b k ==-(1)若,求;a b∥||b (2)若向量与的夹角是钝角,求实数k 的取值范围.a b【答案】(1);(2)且.32k <6k ≠-【分析】(1)根据向量共线的坐标表示即可求出k ,根据向量模长公式即可计算;(2)若向量与的夹角是钝角,则<0且与不反向,根据数量积即可运算.a b a b ⋅ a b【详解】(1)∵,a b ∥∴,解得,12(3)0k ⨯-⨯-=6k =-∴.||b ==(2)∵与的夹角是钝角,a b ∴,且与不反向,0a b ⋅< a b即且,1(3)20k ⨯-+⨯<6k ≠-∴且.32k <6k ≠-19.如图,四边形ABCD 为长方形,平面ABCD ,,,点E 、F 分别为PD ⊥2PD AB ==4=AD AD 、PC 的中点.设平面平面.PDC PBE l =(1)证明:平面PBE ;//DF (2)证明:;//DF l 【答案】(1)证明见解析(2)证明见解析【分析】(1)取PB 中点,连接FG ,EG ,证明,根据鲜明平新的判定定理即可证明结G //DF GE 论;(2)利用线面平行的性质定理即可证明结论.【详解】(1)证明:取PB 中点,连接FG ,EG ,因为点E 、F 分别为AD 、PC 的中点,G所以,,//FG CB 12FG BC =因为四边形ABCD 为长方形,所以,且,//BC AD BC AD =所以,,所以四边形DEGF 为平行四边形,//DE FG DE FG =所以,因为平面PBE ,平面PBE ,//DF GE DF ⊄GE Ì故平面PBE.//DF (2)证明:由(1)知平面PBE ,又平面PDC ,平面平面,//DF DF ⊂PDC PBE l =所以.//DF l 20.已知的内角、、的对边分别是、、,且.ABC A B C a b c 2cos 2b A c a ⋅=+(1)求;B (2)若,求的面积的最大值.3b =ABC 【答案】(1);23B π=【分析】(1)利用正弦定理边化角,再利用和角的正弦化简求解作答.(2)利用余弦定理结合均值不等式求出的最大值,再由面积定理求解作答.ac 【详解】(1)在中,,由及正弦定理得:ABC A B C π++=2cos 2b A c a ⋅=+,2sin cos 2sin sin B A C A ⋅=+即,,2sin cos 2sin()sin B A A B A ⋅=++2sin cos 2sin cos 2cos sin sin B A A B A B A ⋅=⋅+⋅+于是得,又,即,则,因,2cos sin sin B A A ⋅=-0A π<<sin 0A >1cos 2B =-(0,)B π∈所以.23B π=(2),由余弦定理得:,当且仅当时取“=”,3b =222222cos 3b a c ac B a c ac ac =+-=++≥a c =因此,,于是得“=”,3ac ≤11sin 322ABC S ac B =≤⨯= a c ==所以ABC 21.如图,在三棱柱中,侧面,均为正方形,交于点,111ABC A B C -11ABB A 11ACC A 1AC 1A C O ,为中点.90BAC ∠= D BC(1)求证:平面;1C A ⊥11A B C (2)求直线与平面所成的角.11B C 11A B C 【答案】(1)证明见解析(2)30【分析】(1)利用已知条件结合线面平行的判定定理进行证明即可;(2)根据线面角的定义进行求解即可.【详解】(1)在正方形中,,11ACC A 11C A A C⊥因为,所以,90BAC ∠=AB AC ⊥又因为侧面是正方形,所以,11ABB A 1AB AA ⊥因为平面,11,,AC AA A AC AA ⋂=⊂11ACC A 所以平面,AB ⊥11ACC A 而平面,则,而,1C A ⊂11ACC A 1AB C A⊥11//A B AB∴,而,111A B C A⊥1111= A B A C A 又平面,111,A B CA ⊂11A B C ∴平面1C A ⊥11A B C(2)连接,如图所示:1OB ∵为正方形,,11ACC A 90BAC ∠=∴,11111,AC A C AC A B ⊥⊥而平面,1111111,,A B CA A A B CA =⊂11A B C ∴平面,1AC ⊥11A B C ∴为直线与平面所成的角,11C B O∠11B C 11A B C ∵,11111122C O C A C B ==∴,1130C B O ∠=所以直线与平面所成的角为.11B C 11A B C 3022.在中,角A ,B ,C 所对的边分别是a ,b ,c ,且.ABC 2sin sin sin A C CA CBC BA BC -⋅=⋅(1)求角B 的大小;(2)求的取值范围;22sin sin A C +(3)若D 是AC 边上的一点,且,,当取最大值时,求的面积.:1:2AD DC =1BD =3a c +ABC 【答案】(1);3B π=(2);33,42⎛⎤ ⎥⎝⎦【分析】(1)先由向量的数量积及余弦定理求得,再由正弦定理化简得222222sin sin sin 2a A C b c c C a b -+-=+-,即可求出,进而求出;222a c b ac +-=cos B B (2)直接由两角差的正弦、倍角公式及辅助角公式化简得,再由221sin(212sin 6sin A C A π=+-+的范围及正弦函数的单调性求解即可;A (3)先由结合余弦定理得,令,借助πADB CDB ∠+∠=()2239a c c ++=3cos 3sin a c θθ+==辅助角公式得,求出取最大值时的值,即可计算面积.()3a c θϕ+=+,a c 【详解】(1)由,222222cos 2a b c CA CB CA CB C ba a b c ab +-⋅=⋅=⋅=+- ,222222cos 2a c b BA BC BA BC B ca a c b ac +-⋅=⋅=⋅=+- 则,由正弦定理得,化简得2222222sin sin sin A C CA CB a b c C a c b BA BC -⋅+-==+-⋅2222222a c a b c c a c b -+-=+-,222a c b ac +-=故,又,故;2221cos 22a c b B ac +-==()0,B π∈3B π=(2)由(1)知,,故23A C π+=2222222231sinsin sin sin sin cos cos sin 344A C A A A A A A Aπ⎛⎫+=+-=++⎪⎝⎭213sin cos 24A A A =++11cos 23122cos 212244A A A A -=⋅+=-+,1sin(2126A π=-+又,则,,故;203A π<<72666A πππ-<-<1sin(2,162A π⎛⎤-∈- ⎥⎝⎦2233sin sin ,42A C ⎛⎤+∈ ⎥⎝⎦(3)易得,由,可得12,33AD b CD b==πADB CDB ∠+∠=,2222141199cos cos 02433b c b a ADB CDB b b +-+-∠+∠=+=整理得,又,整理可得,令2222233b a c =+-222a c b ac +-=()2239a c c ++=,3cos 3sin a c θθ+==则,其中,即()33cos a c θθθϕ+=++sin ϕϕ==()sin 1θϕ+=时,取最大值,2πθϕ+=3a c +此时,解得3cos 3sin 3sin 3cos a c θϕθϕ+======a c ==的面积为ABC 11sin 22ac B ==。

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题一、单选题1.在△ABC 中,已知8,30,105a B C ===o o ,则b 等于( )A .323B .4 3 C.D .4 22.若cos 21π2cos 4αα=⎛⎫+ ⎪⎝⎭,则cos sin αα+=( )AB . 22C .14D .123.复数2i1i z +=-,i是虚数单位,则下列结论正确的是( ) A.z B .z 的共轭复数为31i 22+C .z 的实部与虚部之和为1D .z 在平面内的对应点位于第一象限41cos20-︒的值为( ) A .8B .8-C .4D .−45.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,222,44a S b c ==+-,则△ABC 外接圆的面积为( ) A .4πB .8πC .πD .2π6.已知梯形ABCD 中,//,3,3AD BC BF FC AH HF ==u u u r u u u r u u u r u u u r,且BH BA BC λμ=+u u u r u u u r u u u r ,则λμ的值为( )A .364B .564C .764D .9647.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C -2c cos B =a ,且B=2C ,则△ABC 的形状是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等边三角形8.在菱形ABCD 中,120ABC ∠=︒,AC =2 3,102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( ) A .18B .17C .16D .15二、多选题9.计算下列几个式子,结果为 3的是( ) A.tan 25tan3525tan35+︒︒︒︒B .()2sin35cos 25sin55cos65︒︒+︒︒C .2πtan6π1tan 6- D .1tan151tan15+︒-︒10.已知向量()1,3a =r ,()2,4b =-r ,则下列结论正确的是( )A .()a b a +⊥r r rB.2a b +r rC .向量a 与向量b的夹角为34πD .b 在a 的投影向量是()1,311.中国南宋时期杰出数学家秦九韶在《数书九章》中提出了已知三角形三边求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =△ABC满足sin :sin :sin A B C =,且ABCS =△,请判断下列命题正确的是( )A .△ABC周长为5B .3C π=C .△ABCD .△ABC 中线CD的长为2三、填空题12.已知正方形ABCD 的边长为3,E 为CD 的中点,则AE BD ⋅=u u u r u u u r.13sin αα+,则cos 23πα⎛⎫-= ⎪⎝⎭.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,()s i n co s c o s s i n B C B C b c C+⎫+=⎪⎭,π3B =,则2a c +的最大值为.四、解答题15.已知a ,b ,c 是同一平面内的三个向量,其中(a =r(1)若4c =r ,且//c a r r,求c 的坐标;(2)若1b =r ,且()52a b a b ⎛⎫+⊥- ⎪⎝⎭r r r r ,求a与b 的夹角θ 16.m 为何实数时,复数()()()22i 3i 121i z m m =+-+--满足下列要求:(1)z 是纯虚数;(2)z 在复平面内对应的点在第二象限; 17.已知π1tan 43α⎛⎫-= ⎪⎝⎭,π0,4α⎛⎫∈ ⎪⎝⎭.(1)求2sin 22cos 1tan ααα++的值;(2)若π0,2β⎛⎫∈ ⎪⎝⎭,且sin β=αβ+的值.18.已知向量()cos ,sin a αα=r ,12b ⎫=-⎪⎪⎝⎭r ,π02α<<. (1)若a b ⊥r r 时,求sin 21cos 2αα+的值;(2)若a b -=r r 2πsin 23α⎛⎫- ⎪⎝⎭的值.19.请欣赏:上图所示的毕达格拉斯树画是由图(ⅰ)利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(ⅰ)中AEB ∠的大小,会得到更多不同的“树形”.(1)在图(ⅰ)中,AB =2,1AE =,且AE AB ⊥,求AQ ;(2)在图(ⅱ)中,AB =2,1AE =,设()0180EAB θθ∠=︒<<︒,求2AQ 的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省吉林市第五十五中学2017-2018学年高一数学下学期期中试题
考试时间:90 分钟满分:120 分
第Ⅰ卷客观题
一、单选题(共12题;共60分)
1.下列抽样实验中,适合用抽签法的有( )
A.从某厂生产的3 000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱15件)产品中取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3 000件产品中抽取10件进行质量检验
2.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是()
A. 46,45,56
B. 46,45,53
C. 47,45,56
D. 45,47,53
3.容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[10,40)的频率为( )分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数234542
A. 0.35
B. 0.45
C. 0.55
D. 0.65
4.在下列各散点图中,两个变量具有正相关关系的是()
A.
B.
C.
D.
5.已知研究x与y之间关系的一组数据如表所示:
x01234
y1 3.5 5.578
则y对x的回归直线方程=bx+a必过点()
A. (1,4)
B. (2,5)
C. (3,7)
D. (4,8)
6.利用输入语句可以给多个变量赋值,下面能实现这一功能的语句是( )
A. INPUT “A,B,C”a,b,c
B. INPUT “A,B,C=”;a,b,c
C. INPUT a,b,c;“A,B,C”
D. PRINT “A,B,C”;a,b,c
7.如图是一个算法的程序框图,已知a1=1,输出的b=3,则a2等于( )
A. 3
B. 5
C. 7
D. 9
8.抛掷一枚骰子,观察掷出骰子的点数,设事件A为“出现奇数点”,事件B为“出现2点”,已知P(A)=,P(B)=,“出现奇数点或出现2点”的概率为( )
A. B.
C. D.
9.如果事件A与B是互斥事件且事件A+B的概率是0.8,事件A的概率是事件B的概率的3倍,则事件A的概率是( )
A. 0.4
B. 0.6
C. 0.8
D. 0.2
10.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于的概率为()
A. B.
C. D.
11.将化为弧度为()
A. B.
C. D.
12.时钟的分针在1点到3点20分这段时间里转过的弧度数为()
A. B.
C. D.
第Ⅱ卷主观题
二、填空题(共4题;共20分)
13.已知tanθ=2,则=________.
14.在0°~180°范围内,与﹣950°终边相同的角是________.
15.把118化为六进制数为________.
16.一箱产品中有正品4件,次品3件,从中任取2件,事件:
①恰有1件次品和恰有2件次品;②至少有1件次品和全是次品;
③至少有1件正品和至少1件次品;④至少有1件次品和全是正品.
其中互斥事件为________.
三、解答题(共4题;共40分)
17.已知sinα+cosα=,求sinα•cosα
18. 某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件的概率.
19.对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)m p
[25,30]20.05
合计M1
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
20.(Ⅰ)求612,840的最大公约数;(Ⅱ)已知f(x)=3x6+5x5+6x4+79x3﹣8x2+35x+12,用秦九韶算法计算:当x=﹣4时v3的值.
答案
一、单选题
1.【答案】B
2.【答案】A
3.【答案】B
4.【答案】D
5.【答案】B
6.【答案】B
7.【答案】B
8.【答案】D 9.【答案】B 10.【答案】C 11.【答案】A 12.【答案】D
二、填空题
13.【答案】3
14.【答案】130°
15.【答案】314(6)
16.【答案】①④
三、解答题
17【答案】-
18(1)解:当x=1时,y=2,3,4;当x=2时,y=1,3,4;当x=3时,y=1,2,4;当x=4时,y=1,2,3.因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)
(2)解:记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}
19.【答案】(1)解:由分组[10,15)内的频数是10,频率是0.25,知=0.25,所以
M=40.因为频数之和为40,所以10+24+m+2=40,解得m=4,p==0.10.因为a 是对应分组[15,20)的频率与组距的商,所以a==0.12
(2)解:因为该校高三学生有240人,在[10,15)内的频率是0.25,
所以估计该校高三学生参加社区服务的次数在此区间内的人数为60
(3)解:估计这次学生参加社区服务人数的众数是=17.5.因为n==
0.6,所以样本中位数是15+≈17.1,估计这次学生参加社区服务人
数的中位数是17.1.样本平均人数是12.5×0.25+17.5×0.6+22.5×0.1+
27.5×0.05=17.25,估计这次学生参加社区服务人数的平均数是17.25
20.【答案】解:(Ⅰ)840=612+228,612=2×228+156,228=156+72,156+2×72+12,72=6×12,所以612,840的最大公约数为12;
(Ⅱ)∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6
=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,
当x=﹣4时,
∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档