《二元一次方程组的应用》典型例题
二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得:x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(注:获利= 售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息%;第二种,三年期整存整取,这种存款银行年利率为%.三年后同时取出共得利息元(不计利息税),问小敏的爸爸两种存款各存入了多少元解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * %* 3 + Y * %* 3 =解得:X = 1500,Y = 2500。
(完整版)二元一次方程组的运用1(行程问题)
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和
二元一次方程组应用题经典题型
二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。
求甲、乙两人的速度。
设甲的速度是x千米/小时,乙的速度是y千米/小时。
相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。
这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。
2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。
求x和y的值。
把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。
两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。
又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。
这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。
3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。
求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。
因为总共购进50件商品,所以x + y = 50。
甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。
这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。
4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。
如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。
求x和y的值。
根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。
二元一次方程组应用题经典题及答案
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
二元一次方程组的典型例题(五篇范文)
二元一次方程组的典型例题(五篇范文)第一篇:二元一次方程组的典型例题二元一次方程组的典型例题分析我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示.方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解.这种方法叫“代入消元法”.解:由(2),得 x=8-3y.(3)把(3)代入(1),得:2(8-3y)+5y=-21,16-6y+5y=-21,-y=-37,所以y=37.点评如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形.分析此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形.解:由(1),得2x=8+7y,(3)把(3)代入(2),得分析本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单了.解:(1)+(2),得100x+100y=200,所以x+y=2(3)解这个方程组.由(3),得x=2-y(4)把(4)代入(1),得53(2-y)+47y=112,106-53y+47y=112,-6y=6,所以y=-1.分析经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”.解:(1)-(2),得12y=-36,所以y=-3.把y=-3代入(2),得:6x-5×(-3)=17,6x=2,所以:点评若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.分析方程组中,相同未知数的系数没有一样的,也没有互为相反数的.但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y.解:(1)×3,得9x+12y=48(3)(2)×2,得10x-12y=66(4)(3)+(4),得19x=114,所以x=6.把x=6代入(1),得3×6+4y=16,4y=-2,点评将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些.一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变x的系数后要做减法.例6 已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n 的值.分析根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以解这个方程组.整理,得(4)-(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所分析因为x+y=2,所以x=2-y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m.解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2.因为x+y=2,所以2+y=2,所以y=0,于是得x=2.把x=2,y=0代入2x+3y=m,得m=4.把m=4代入m2-2m+1,得m2-2m+1=42-2×4+1=9.例8 已知x+2y=2x+y+1=7x-y,求2x-y的值.分析已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决.解:已知条件可转化为整理这个方程组,得解这个方程组.由(3),得x=y-1(5)把(5)代入(4),得5(y-1)-2y-1=0,5y-2y=5+1,所以y=2.把y=2代入(3),得x-2+1=0,所以x=1.2x-y=0.二元一次方程组的典型例题二元一次方程组复习题例题:1、下列方程是二元一次方程的是()1+1=0(A)x2+x+1=0(B)2x+3y-1=0(C)x+y-z=0(D)x+y2、下列各组数值是x-2y=4方程的解的是()⎧x=2⎧x=-1⎩⎨⎧x=0⎧x=4⎨(A)y=1(B)⎩y=1⎨(C)⎩y=-2⎨(D)⎩y=-1⎧x=2⎨3、以⎩y=1为解的二元一次方程的个数是()(A)有且只有一个(B)只有两个(C)有无数个(D)不会超过100个4、二元一次方程3x+2y=7的正整数解的组数是()(A)1组(B)2组(C)3组(D)4组⎧x=4⎨5、已知⎩y=-2是二元一次方程mx+y=10的一个解,则m的值为6、已知3xm-1-4y2m-n+4=1是二元一次方程,则m=,n=.7、下列方程组中,属于二元一次方程组的是()。
二元一次方程组应用题(50题)
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
《二元一次方程组的应用》各环节配题
《二元一次方程组的应用》各环节配题
以下是《二元一次方程组的应用》各环节的配题:
引入环节:
1. 小明和小华去公园玩,他们想买一些饮料。
小明想买3瓶可乐和2瓶果汁,小华想买2瓶可乐和3瓶果汁。
他们各自带了足够多的钱。
你能帮他们算出每种饮料的价格吗?
2. 某班有男生25人,女生20人,如果每排站5人,可以站几排?
探索环节:
1. 某班共有50名学生,每人都至少定一份报纸,其中23人订了《人民日报》,25人订了《光明日报》,那么同时订这两种报纸的有多少人?
2. 甲、乙两地相距100公里,汽车和自行车先后从甲地出发前往乙地。
汽车出发1小时后,自行车才从甲地出发。
已知汽车的速度是60公里/小时,自行车的速度是20公里/小时。
那么自行车追上汽车需要多少时间?
应用环节:
1. 某商店出售一种品牌的空调,其中某一型号的进价为2500元,商店将进价提高30%后作为定价进行销售,一段时间后,商店又进行促销活动,决定将定价降低10%出售。
促销活动后,每台空调的售价为多少元?
2. 甲、乙两地相距40公里,A、B两人同时从甲地出发前往乙地。
A选择普通道路骑自行车前往乙地,B选择高速公路驾车前往乙地。
A骑车的速度是20公里/小时,B驾车的速度是100公里/小时。
那么B比A早到多少时间?
小结环节:
1. 你能总结一下解决二元一次方程组应用问题的一般步骤吗?
2. 通过这节课的学习,你对于二元一次方程组的应用有了哪些新的认识?
以上配题覆盖了引入、探索、应用和小结四个环节,旨在帮助学生理解和掌握二元一次方程组的应用。
二元一次方程应用题应用精题(附答案)
二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。
二元一次方程组经典例题
二元一次方程组经典例题一、例题例1:解方程组2x + y = 5 x - y = 1解析:1. 观察方程组的特点- 这个方程组中y的系数分别为1和-1,可以采用加减消元法。
2. 消元求解- 将方程2x + y = 5与方程x - y = 1相加,得到(2x + y)+(x - y)=5 + 1。
- 化简得2x+y+x - y=6,即3x=6,解得x = 2。
3. 回代求y- 把x = 2代入x - y = 1中,得到2 - y = 1,解得y=1。
所以方程组的解为x = 2 y = 1例2:解方程组3x+2y = 8 2x - 3y=-5解析:1. 选择消元方法- 为了消去其中一个未知数,我们可以给第一个方程乘以3,第二个方程乘以2,然后再相加来消去y。
2. 消元计算- 方程3x + 2y = 8两边乘以3得9x+6y = 24。
- 方程2x - 3y=-5两边乘以2得4x-6y=-10。
- 将这两个新方程相加:(9x + 6y)+(4x-6y)=24+( - 10)。
- 化简得9x+6y + 4x-6y = 14,即13x=14,解得x=(14)/(13)。
3. 回代求y- 把x=(14)/(13)代入3x + 2y = 8中,得到3×(14)/(13)+2y = 8。
- 即(42)/(13)+2y = 8,移项得2y = 8-(42)/(13)。
- 2y=(104 - 42)/(13)=(62)/(13),解得y=(31)/(13)。
所以方程组的解为x=(14)/(13) y=(31)/(13)例3:某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,问购买甲、乙两种票各多少张?设购买甲种票x张,购买乙种票y张。
根据题意可列方程组x + y = 40 10x+8y = 370解析:1. 消元方法选择- 由第一个方程x + y = 40可得y = 40 - x,我们可以采用代入消元法。
二元一次方程组应用题类型题
22名二级工和三级工人准备完 成1400个零件,其中二级工每人 定额完成200个,三级工人每人 定额完成50个,问二级工和三 级工各多少人
现在年龄
甲X
乙y
将来年龄
X+ x-y
61
Y- x-y
4
甲比乙大的岁数
x-y
解:设甲、乙现在的年龄分 从问题情境可以知知道甲
别是x、y岁根据题意,得 的年龄大于乙的年龄
y-(x- y)=4
x=42
X+(x-y)=61 解得 y=23
答:甲、乙现在的年龄分别是42、23岁
5、小明骑摩托车在公路上匀速行驶,12:00时看 到里程碑上的数是一个两位数,它的数字之和是7; 13:00时看里程碑上的两位数与12:00时看到的个 位数和十位数颠倒了;14:00时看到里程碑上的 数比12:00时看到的两位数中间多了个零,小明在 12:00时看到里程碑上的数字是多少
形或六边形要求每两个相邻的图形只有一条公共边,已 知摆放的正方形比六边形多4个,并且一共用了110个小 木棍,问连续摆放了正方形和六边形各多少个
…
…
图形 正方形 六边形
关系
连续摆放的个数 (单位:个) x
y
正反方形比六边形多 4 个
使用小木棒的根数 (单位: 根)
4+3(x-1)=3x+1
6+5(y-1)=5y+1
相等关系
30只母牛和15只小牛,1天约需用饲料675kg
42只母牛和20只小牛,1天约需用饲料940kg
列
30x 15y 675
42x 20y 940
解得: x 20
y
5
答:平均每只母牛1天约需饲料20kg,每只小牛1天约需饲料5kg,
二元一次方程组的应用习题(带答案)
1.【题文】班主任王老师为奖励表现出色的同学,用20元钱买来铅笔与中性笔共30•支作为奖品.已知铅笔的单价为0.50元,中性笔的单价为1元,问铅笔与中性笔各买了几支?设铅笔买了x支,中性笔买了y支,则可得方程组为_________.答案【答案】解析【解析】试题分析:根据等量关系:总价为20元,总数量为共30•支,即可列出方程组。
根据等量关系:总价为20元,可得方程,根据等量关系:总数量为共30•支,可得方程,则可得方程组为.考点:本题考查的是根据实际问题列二元一次方程组点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.2.【题文】两袋水果共6千克,一袋苹果的价格是每千克4元,•一袋芒果的价格是每千克12元,共花费40元,则一袋苹果的质量为_______千克,一袋芒果的质量为_____千克.答案【答案】4,2解析【解析】试题分析:设一袋苹果的质量为x千克,一袋芒果的质量为y千克,根据等量关系:总质量为6千克,总价为40元,即可列出方程组,解出即可。
设苹果每千克x元,芒果每千克y元,由题意得,解得,答:一袋苹果的质量为4千克,一袋芒果的质量为2千克.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3.【题文】现有56枚1角和5角的硬币,共有14•元,•问1•角、•5•角的硬币分别是______,_____枚.答案【答案】35,21解析【解析】试题分析:设1•角的硬币是x枚,5•角的硬币是y枚,根据等量关系:总数量为56枚,总价为14•元,即可列出方程组,解出即可.设1•角的硬币是x枚,5•角的硬币是y枚,由题意得,解得,答:1•角的硬币是35枚,5•角的硬币是21枚.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.同时要注意统一单位。
二元一次方程组应用举例
(1)求原计划拆除和新建面积各多少平方米?
(2)若搞绿化需200元/m2,用实际完成的拆、建工程中节余的资
金来搞绿化,则绿化面积大约是多少平方米?
分析: 校舍种类 计划面积/m2 变化后面积/m2
拆旧校舍
x
(1+10%)x
x+y=7200
建新校舍
y
80%y
(1+10%) xƮ
节余资金:(80x+700y)-[ 80×(1+10%)x+ 700×80%y]=(140y-8x)元
3.小明的爸爸骑摩托车带着小明在公路上匀速行驶,小明第 一次注意到路边里程碑上的数时,发现它是一个两位数且它 的两个数字之和为9,刚好过1h,他发现路边里程碑上的数 恰好是第一次看到的个位上的数字和十位上的数字颠倒后得 到的,又过3h,他发现里程碑上的数字比第一次看到的两位 数中间多个0,你知道爸爸骑的摩托车的速度是多少吗?
(1)求原计划拆除和新建面积各多少平方米? (2)若搞绿化需200元/m2,用实际完成的拆、建工程中节余的资 金来搞绿化,则绿化面积大约是多少平方米? 分析: 校舍种类 计划资金/元 变化后资金/元
拆旧校舍
80x
80×(1+10%)x
建新校舍
700y
700×80%y
总计
80x+700y 80×(1+10%)x+ 700×80%y
7200
2.为满足市民对优质教育的需求某中学决定改变办学条件计划 拆除一部分旧校舍、建造新校舍。拆除旧校舍需80元/m2,建 造新校舍需700元/m2。计划在年内拆除旧校舍与建造新校舍共 7200m2,在实施中为扩大绿化面积,新校舍只完成了计划的80%, 而拆除校舍则超过了10%,结果恰好完成了原计划的拆除和新 建的总面积。
七年级二元一次方程组应用题10道
七年级二元一次方程组应用题10道1.小明和小红两人一起去超市买水果。
小明买了几个苹果和几个橙子,总共花了12元;小红买了几个苹果和几个橙子,总共花了10元。
已知每个苹果的价格是1元,每个橙子的价格是2元。
问小明和小红分别买了几个苹果和几个橙子?2.一对双胞胎姐妹一共有18颗糖。
姐姐比妹妹多得糖的个数是4颗,姐姐的一颗糖的价格是妹妹的2倍。
问姐姐和妹妹各自得了几颗糖以及价格分别是多少?3.有一群小学生在体育场比赛,共有男生和女生两种性别。
男生每人比女生多10人,男生人数是女生人数的2倍。
如果体育场共有120人参加比赛,问男生和女生各有多少人?4.学校要组织外出观光,计划包括学生和老师两类人。
学生每人多于老师10人,学生共有60人,老师共有4人。
问学生和老师各占多少人数?5.小明和小红两人一共骑自行车去郊外游玩。
小明每小时骑行速度为10公里,小红每小时骑行速度为15公里。
他们同时出发,小红比小明先到达目的地1个小时。
问目的地距离原点多少公里?6.学校举办校运动会,共有游泳比赛和跑步比赛。
报名参加游泳比赛的男生占总报名人数的1/3,报名参加跑步比赛的女生占总报名人数的1/4,已知男生和女生总共有60人参加比赛,问男生和女生各有多少人?7.有一批水果共有苹果和梨两种。
苹果的价格比梨的价格高出每斤2元,苹果共有5斤,梨共有3斤,总共支付了35元。
问苹果和梨各自的价格是多少元每斤?8.甲、乙两人一共走了30公里路程。
甲比乙每小时走得快5公里,所以他比乙提早1小时到达终点。
问甲和乙每小时的步行速度分别是多少?9.小明和小红两人一共有24本书。
小明比小红多8本书,小明和小红的书的总价值是168元,小明每本书比小红多4元。
问小明和小红的书各有多少本以及每本书的价值是多少元?10.甲、乙、丙三人共有240元。
甲比乙多30元,丙比甲少40元。
问甲、乙、丙各自有多少元?。
二元一次方程组_应用题专项练习
二元一次方程组应用题(一)1、小王购买了一套经济适用房,他准备将地面铺上地砖,构如图1所示。
根据图中的数据(单位:m ),解答下列问题: (1)用含x 、y 的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m 2是卫生间面积的15倍。
若铺1m 2地砖的平均费用为80元,那么铺地砖的总费用为多少元o2、八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗3、2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年6、某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆株笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗7、“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨8、某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜10、李明家和陈刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了8桶和12桶,且在乙供水点比在甲供水点多花18元钱.若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些11、某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱12、随着我国人口速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某区2003年和2004年小学儿童人数之比为8 : 7,且2003年入学人数的2倍比2004年入学人数的3倍少1500人,某人估计2005年入学儿童数将超过2300人,请你通过计算,判断他的估计是否符合当前的变.二元一次方程组应用题(二)1、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元(2)有几购买文化衫和相册的方案哪种方案用于购买老师纪念品的资金更充足2、李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设月销售件数为x 件,月总收入为y 元,销售每件奖励a 元,营业员月基本工资为b 元.(1)求a b ,的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件3、 某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱4、随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展。
二元一次方程组应用题(50题)精选全文
可编辑修改精选全文完整版二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
10道二元一次方程组应用题及答案(精品文档)
1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
二元一次方程组解决实际问题典型例题
类型三:列二元一次方程组解决——商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商 品的利润率为4%,共可获利46元。价格调整后,甲商品 的利润率为4%,乙商品的利润率为5%,共可获利44元, 则两件商品的进价分别是多少元?
【变式】某商场用36万
A
B
元购进A、B两种商品,销 进价(元/ 1200
1000
售完后共获利6万元,其进 件)
பைடு நூலகம்
价和售价如下表:
求该商场购进A、B两种商
售价(元/ 件)
1380
1200
品各多少件;
类型四:列二元一次方程组解决——银行储蓄问题
4.小明的妈妈为了准备小明一年后上高中的费 用,现在以两种方式在银行共存了2000元钱,一种是 年利率为2.25%的教育储蓄,另一种是年利率为2.25 %的一年定期存款,一年后可取出2042.75元,问这 两种储蓄各存了多少钱?(利息所得税=利息金额 ×20%,教育储蓄没有利息所得税)
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或【【2变2变个式式盒23】底】某,一工一张厂个方有盒桌工身由人与1个6两0桌人个面,盒、生底4产配条某成桌种一腿由个组一完成个整, 螺盒如栓子果套,1立两问方个用米螺多木母少料的张可配铁以套皮做产制桌品盒面,身5每,0个人多,每少或天张做生铁桌产皮腿螺制3栓盒001底条4 ,。 个可现或以有螺正5立母好方2制0米个成的,一木应批料分完,配整那多的么少盒用人子多生?少产立螺方栓米,木多料少做人桌生面, 产用螺多母少,立才方能米使木生料产做出桌的腿螺,栓做和出螺的母桌刚面好和配桌套腿。,恰 好配成方桌?能配多少张方桌?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二元一次方程组的应用》典型例题
例1 小明家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少?
例2 要配制成浓度为30%的烧碱溶液50千克,需要浓度为10%和60%的两种烧碱溶液多少千克?
例3 一辆汽车在相距70千米的甲、乙两地往返行驶,由于行驶中有一坡度均匀的小山,该汽车由甲地到乙地需用2小时30分,而从乙地回到甲地需用2小时18分.若汽车在平地上的速度为30千米/时,上坡的速度为20千米/时,下坡的速度为40千米/时,求从甲地到乙地的行程中,平路、上坡路、下坡路各多少千米?
例4 某中学初三(1)班计划用66元钱同时购买单价分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加艺术节活动的同学,已知购买乙种纪念品的件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半.若购买甲、乙、丙三种纪念品恰好用了66元钱,那么可有几种购买方案?每种方案中,购买的甲、乙、丙三种纪念品各是多少件?
例5 某工程队计划在695米线路上分别装25.8米和25.6米长两种规格的水管共100根,问这两种水管各需多少根?
例6 若甲、乙两库共存粮95吨,现从甲库运出存粮的3
2,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各存多少吨粮食?
例7 甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人的速度.
例8 通讯员在规定的时间内由A地前往B地.如果他每小时走35公里,那么他就要迟到2小时;如果他每小时走50公里,那么他就可以比规定时间早到1小时,求A、B两地间的距离.
例9 某车间加工螺钉和螺母,当螺钉和螺母恰好配套(一个螺钉配一个螺母)时就可以运进库房.若一名工人每天平均可以加工螺钉120个或螺母96个,该车间共有工人81名.问应怎样分配人力,才能使每天生产出来的零件及时包装运进库房?
例10要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合干3天完成任务,问甲、乙两个工程队每天各能修路多少千米?
例11甲乙两物体分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两物体反向运动时,每15秒钟相遇一次,当两物体同向运动时,每1分钟相遇一次,求各物体的速度?
参考答案
例1 分析 若设去年收收x 元,支出y 元,则可由去年结余5000元,今年结余9500元这两个条件列出两个方程.
解 设去年收入x 元,支出y 元,根据题意,得
⎩
⎨⎧=--+=-)2( .9500%)101(%)151()1( ,5000y x y x 解得⎩⎨⎧==.
15000,20000y x 答:去年小明家收入20000元,支出15000元.
例2 分析 本题中要抓住两个数量关系,一是两种烧碱溶液重量和为50千克,二是10%和60%的烧碱溶液中纯烧碱的量的和等于50千克30%的烧碱溶液中的纯烧碱量.
解 设需要浓度为10%的烧碱溶液x 千克,浓度为60%的烧碱溶液y 千克,
根据题意,得 ⎩⎨⎧+=+=+)2(
).%(30%60%10)1( ,50y x y x y x 解得 ⎩
⎨⎧==.20,30y x 答:需要浓度为10%的烧碱溶液30千克,浓度为60%的烧碱溶液20千克.
例3 解 设甲地到乙地的上坡路为x 千米,下坡路为y 千米,则平路为)70(y x --千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧=--++=--++.3.2307020
40,5.230704020y x y x y x y x
解得 ⎩
⎨⎧==,4,12y x 则.5470=--y x 答:从甲地到乙地上坡路12千米,下坡路4千米,平路54千米.
例4 分析 可设购买甲、乙、丙三种纪念品的件数分别为x 、y 、z .在题目中有两个相等关系:“购买乙种纪念品的件数比购买甲种纪念品的件数多2件”,“购买甲、乙、丙三种纪念品恰好用了66元钱”.根据这两个相等关系可以列出两个关于x 、y 、z 的方程.但这里有三个未知数,只列出了两个方程是无法求出它们的解的,注意到题目中还有两个限制条件:“购买甲种纪念品的件数不少于10件”,“购买甲种纪念品的费用不超过总费用的一半”.有了这两个条件,就确定了x 的取值范围,而x 必为正整数,因此可求出x 的值,从而求出另外两个求知数.
解 设购买的甲、乙、丙三种纪念品的件数分别为x 、y 、z ,根据题意,有 ⎩⎨⎧+==++.2,6623x y z y x 则⎩
⎨⎧-=+=.562,2x z x y ∵ 10≥x ,且2
663≤x ,∴ 1110≤≤x ,又∵ x 为整数,∴ 10=x 或11=x . (1)当10=x 时,;121056212210=⨯-==+=z y ,
(2)当11=x 时,.71156213211=⨯-==+=z y ,
答:可有两种购买方案:第一种方案:购买甲种纪念品10件、乙种12件、丙种12件;第二种方案:购买甲种纪念品11件、乙种13件、丙种7件.
例 5 分析 本题中有两个未知数——规格为25.8米长水管的根数与规格为
25.6米长水管的根数.题目中恰有两个相等关系:
(1) 25.8米长的水管根数十25.6米长水管根数=100根
(2) 25.8米长水管总米数十25.6米长水管的总米数=线路的总米数 解 设25.8米长规格的水管需x 根,25.6米长规格的水管y 根,
根据题意,得⎩⎨⎧=+=+695
25.625.8100y x y x 解这个方程组,得⎩
⎨⎧==6535y x 答:需规格为25.8米长的水管35根,需规格为25.6米长的水管65根.
说明:在实际生活中,我们常常遇到象例1这样的问题,我给出的解法是列出二元一次方程组求解.同学们想一想,还有没有其他的方法?能不能列出一元
一次方程来解呢?如果能,比较两者的不同,看一看哪种方法简单?然后自己归纳出列二元一次方程组解应用题的步骤.
例6 分析 本题有两个未知数——甲仓库原存粮与乙库原存粮;有两个相等关系:
(1)甲仓库原存粮吨数+乙仓库原存粮吨数=95吨
(2)乙仓库剩余粮食吨数=2倍甲库剩余粮食吨数
解 设甲仓库原存粮食x 吨,乙仓库原存粮食y 吨, 根据题意,得⎪⎩
⎪⎨⎧-=-=+x y y x )321(2%)401(95 解这个方程组,得 ⎩⎨⎧==40
45y x 答:甲仓库原存粮食45吨,乙仓库原存粮食50吨.
例7 分析 这里有两个未知数——甲、乙两人的速度.有两个相等关系:
(1)甲先走2小时的行程+甲乙在2.5小时内走的行程=36千米
(2)甲乙3小时走的行程+乙在2小时内走的行程=36千米
解 设甲的速度为x 千米/小时,乙的速度为y 千米/小时,
根据题意,得⎩⎨⎧=+=+36
53365.25.4y x y x 解方程组,得 ⎩
⎨⎧==6.36y x 答:甲的速度为6千米/小时,乙的速度为3.6千米/小时.
例8 分析 这里有两个未知数——规定时间和A 、B 两地间距离.有两个相等关系:
(1)员速度以35公里/小时走完全程用的时间-2小时=规定时间
(2)通讯员速度为50公里/小时走完全程用的时间+1小时=规定时间
解 设A 、B 两地间的距离为x 公里,规定时间为y 小时.
根据题意,得⎪⎪⎩⎪⎪⎨⎧=+=-y x y x 150
235
解方程组,得 ⎩
⎨⎧==8350y x 答:A 、B 两地间的距离为350公里.
例9 分析 这里有两个未知数——生产螺钉的人数和生产螺母的人数.有两个相等关系:
(1)生产螺钉的人数+生产螺母的人数=总人数(81名)
(2)每天生产的螺钉数=每天生产的螺母数
解 设生产螺钉的工人有x 名,生产螺母的工人有y 名,
根据题意,得⎩
⎨⎧==+y x y x 9612081 解方程组,得 ⎩⎨⎧==45
36y x 答:生产螺钉的工人有36名,有45名工人生产螺母,才能使每天生产出来的零件及时包装运进库房.
例10 分析 这里有两个未知数——甲工程队每天修路的千米数和乙工程队每天修路的千米数;有两个相等关系:
(1)甲2天修路的长+甲、乙合修2天的公路长=公路总长
(2)乙2天修路的长+甲、乙合修3天的公路长=公路总长
解 设甲每天修公路x 千米,乙每天修公路y 千米,
根据题意,得 ⎩
⎨⎧=++=++420)(32420)(22y x y y x x 解方程组,得 ⎩
⎨⎧==3090y x 答:甲每天修公路90千米,乙每天修公路30千米.
例11 分析 题中有两个未知数,即甲乙两物体速度,题中“每15秒相遇一次”就是15秒两物体经过路程之和是600米,“每分钟相遇一次”就是60秒甲物体要比乙物体多运动一周,故有两个等量关系.
解 设甲物体速度为x 米/秒,乙物体为y 米/秒.
根据题意得解得⎩
⎨⎧=-=+,60060606001515y x y x 解得⎩⎨⎧==.
1525y x 答:甲乙两物体速度为25米/秒,15米/秒.
说明:解此题关键是找出甲、乙两物体同向、反向运动路程之间的相等关系,必要时可画出两物体运动的轨迹示意图,帮助找相等关系.。