华东师大版八年级上册数学全册复习试题

合集下载

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷+

2022-2023学年华东师大版八年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.64的平方根为()A.8B.±8C.﹣8D.±42.若a x÷a n+1的运算的结果是a,则x为()A.3﹣n B.n+1C.n+2D.n+33.小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A.0.6B.6C.0.4D.44.下列命题中,是假命题的是()A.两点之间,线段最短B.3a3b的系数是3C.位似图形必定相似D.若|a|=|b|,则a=b5.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=7,b=25,c=24B.a=3,b=3,c=4C.a=6,b=8,c=10D.a=8,b=17,c=156.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36B.32C.28D.217.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB 于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF=2∠ECD;③S△AEC :S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤8.在△ABC中,∠A=∠B=∠C,则△ABC()A.是锐角三角形B.是直角三角形C.是钝角三角形D.形状不能确定二.填空题(共6小题,满分18分,每小题3分)9.比较大小:3.10.分解因式:8m2n﹣6mn2+2mn=.11.如图,在等腰三角形ABC中,AB=AC,∠A=50°,直线MN垂直平分边AC,分别交AB,AC于点D,E,则∠BCD=.12.计算:4x3y2÷2xy=.13.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=度,∠B=度,∠BAC=度.14.如图,在Rt△ACB中,∠ACB=90°,BC=6,AC=9.折叠△ACB,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF=.三.解答题(共10小题,满分78分)15.(6分)计算:(1)(2)16.(6分)计算(1)4y•(﹣2xy2)(2)(﹣x2)•(﹣4x)(3)(3m2)•(﹣2m3)2(4)(﹣ab2c3)2•(﹣a2b)317.(6分)先化简,再求值:x(x2﹣x﹣)+4(x2+1)﹣x(﹣3x2+6x﹣1),其中x=﹣2.18.(7分)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.19.(7分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长.(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长.写出每题的计算过程20.(8分)某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次随机抽取的市民中小于40岁的有人;(2)图2中D类区域对应圆心角的度数是度;(3)请补全条形统计图;(4)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?21.(8分)如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).22.(8分)如图,四边形ABCD中,AB∥CD,∠C=110°,E为BC的中点,直线FG 经过点E,DG⊥FG于点G,BF⊥FG于点F.(1)如图1,当∠BEF=70°时,求证:DG=BF;(2)如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;(3)当DG﹣BF的值最大时,直接写出∠BEF的度数.23.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.24.(12分)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P 在线段BC上以3cm/s的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C 是对应角,求t,a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵(±8)2=64,∴64的平方根是±8.故选:B.2.解:a x÷a n+1=a x﹣n﹣1=a,所以可得:x﹣n﹣1=1,x=2+n,故选:C.3.解:小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的有100﹣60=40次,所以反面朝上的频率为=0.4,故选:C.4.解:A、两点之间,线段最短,是真命题;B、3a3b的系数是3,是真命题;C、位似图形必定相似,是真命题;D、若|a|=|b|,则a=b或a=﹣b,原命题是假命题;故选:D.5.解:A、因为72+242=252,能构成直角三角形,此选项不符合题意;B、因为32+32≠42,不能构成直角三角形,此选项符合题意;C、因为62+82=102,能构成直角三角形,此选项不符合题意;D、因为82+152=172,能构成直角三角形,此选项不符合题意.故选:B.6.解:由题意得AB=BC,∠ABC=90°,AD⊥DE,CE⊥DE,∴∠ADB=∠BEC=90°,∴∠ABD+∠CBE=90°,∠BCE+∠CBE=90°,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD ≌△BCE (AAS );由题意得AD =BE =24cm ,DB =EC =12cm , ∴DE =DB +BE =36cm ,答:两堵木墙之间的距离为36cm . 故选:A .7.解:∵∠ACB =90°,CG ⊥AB ,∴∠ACE +∠BCG =90°,∠B +∠BCG =90°, ∴∠ACE =∠B .∵∠CED =∠CAE +∠ACE ,∠CDE =∠B +∠DAB ,AE 平分∠CAB , ∴∠CED =∠CDE ,①正确; ∴CE =CD ,又AE 平分∠CAB ,∠ACB =90°,DF ⊥AB 于F , ∴CD =DF .∵E 到AC 与AG 的距离相等, ∴S △AEC :S △AEG =AC :AG ,③正确; ∵CE =CD ,CD =DF , ∴CE =DF ,⑤正确.无法证明∠ADF =2∠FDB 以及S △CED =S △DFB . 故选:D .8.解:设∠A =x °,则∠B =x °,∠C =2x °, 根据三角形的内角和可得:x °+x °+2x °=180°, 解得:x =45,即∠A =45°,∠B =45°,∠C =90°, 所以△ABC 是直角三角形.故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:∵3=,∴<3.故答案为:<.10.解:原式=2mn(4m﹣3n+1),故答案为:2mn(4m﹣3n+1)11.解:∵AB=AC,∠A=50°,∴∠ACB=∠B=×(180°﹣∠A)=65°,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故答案为:15°.12.解:4x3y2÷2xy=2x2y故答案为2x2y.13.解:∵PQ=AP=AQ∴∠APQ=∠AQP=∠PAQ=60°.∵BP=QC=AP=AQ∴∠B=∠BAP=30°,∠C=∠CAQ=30°∴∠BAC=120°.故填60、30、120.14.解:∵D是BC的中点,BC=6,∴CD=3,∵折叠△ACB,使点A与BC的中点D重合,∴AF=FD,∵AC=9,设AF=x,则FC=9﹣x,DE=x,∵∠ACB=90°,在Rt△CDF中,x2=9+(9﹣x)2,∴x=5,∴CF=4,故答案为4.三.解答题(共10小题,满分78分)15.解:(1)==﹣(2)=﹣1+2×=﹣1+1=016.解:(1)原式=﹣8xy3.(2)原式=10x3.(3)原式=(3m2)•4m6=12m8.(4)原式=a2b4c6•(﹣a6b3)=﹣a8b7c6.17.解:原式=x3﹣x2﹣x+4x2+4+x3﹣2x2+x =2x3+x2+4,当x=﹣2时,原式=2×(﹣2)3+(﹣2)2+4=﹣16+4+4=﹣8.18.解:(1)△ABC≌△DEC,理由如下:∵DC⊥AE,∴∠ACB=∠DCE=90°,在△ABC与△DEC中,,∴△ABC≌△DEC(SAS);(2)∵△ABC≌△DEC,∴∠A=∠D=20°,∴∠E=90°﹣∠D=90°﹣20°=70°.19.解:(1)如图1所示:∵AB=3,BC=4,∴AC==5,故答案为:3,4,5(答案不唯一);(2)如图2所示:DF=DE==,EF==2,故答案为:,,2(答案不唯一).20.解:(1)本次随机抽取的市民中小于40岁的有20+20=40(人),故答案为:40;(2)根据题意可得,其他三类的百分比为1﹣25%=75%,其他三类的人数和为20+20+50=90(人),抽取的总数为90÷75%=120(人),图2中D类区域对应圆心角的度数是360°×=150°,故答案为:150;(3)抽取的C类市民有120×25%=30(人),补全条形统计图如下:(4)30÷25%÷5%=2400(人),答:估计该区已接种第一剂疫苗的市民有2400 人.21.解:∵∠ACB=90°,∴AC==≈109.7mm,答:两孔中心的垂直距离为109.7mm.22.(1)证明:若CH⊥FG,垂足为H,∵∠BEF=70°,∠BCD=110°,∴∠BEF+∠BCD=180°,∴FG∥CD,∵DG⊥HG,CH⊥HG,∴∠DGH+∠CHG=90°+90°=180°,∴DG∥CH,∴四边形CHGD是长方形,∴DG=CH,∵∠CHE=∠F,∠CEH=∠BEF,BE=CE,∴△BEF≌△CEH(AAS),∴BF=CH,∴DG=BF;(2)解:连接BD,∵DG=BF,DG∥BF,由平移的性质知得,BD∥FG,∴∠CBD=∠CEH,∵CB=CD,∠BCD=110°,∴∠CBD=(180°﹣110°)÷2=35°,∴∠BEF=∠CEH=∠CBD=35°;(3)解:由(2)知DG﹣CH≤CD,∴当DG﹣BF的值最大时,此时点D,C,G三点共线,∵∠BCD=110°,∴∠ECG=70°,∴∠CEG=20°,∴∠BEF=∠CEG=20°.23.解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.24.解:(1)CP的长为(8﹣3t)cm;(2)∵D为AB的中点,∴BD=5cm,∵AB=AC,∴∠B=∠C,∴当BD=CQ,BP=CP时,△BDP≌△CQP(SAS),即at=5,8﹣3t=3t,解得t=,a=;当BD=CP,BP=CQ时,△BDP≌△CPQ(SAS),即8﹣3t=5,3t=at,解得t=1,a=3;综上所述,t=,a=或t=1,a=3.。

华东师大版八年级上册数学试题:第13章全等三角形复习题

华东师大版八年级上册数学试题:第13章全等三角形复习题

1 / 3第13章复习 全等三角形一、选择题:1、只用无刻度的直尺就能作出的图形是( )A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP 2、下列命题中,真命题是( )A.相等的角是直角B.内错角相等C.两直线平行,同位角互补D.经过两点有且只有一条直线3、如图1所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.54、已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( ) A.6cm B.7cm C.8cm D.9cm5、如图2所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )A 、AB =DE B 、∠ACE =∠DFBC 、BF =ECD 、∠ABC =∠DEF6、用尺规作已知角的角平分线,其根据是构造两个三角形全等,它所用到的判别方法是( ) A.SAS B.ASA C.AAS D.SSS7、如图3,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACDB.∠B =∠CC.AD 是 BAC 的平分线D.△ABC 是等边三角形图1FECBA图3图4图22 / 38、如图4,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E , AB =10,△BCD 的周长为18,则BC 的长为( ) A.8 B.6 C.4 D.2二、填空:1、如果等腰三角形的一个角为90°,那么其余两个角分别是________和_________。

2、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为_____________。

3、把“互为邻补角的两个角的平分线互相垂直”写成“如果……,那么……”的形式为_______________.4、如图所示,在△ABC 和△DEF 中,AB=DE ,∠B=∠E ,要使△ABC ≌△DEF ,•需要补充的一个条件是____________.5、如图所示,△ABC 中,∠C=90°,AD 平分∠CAB ,BC=8cm ,BD=•5cm ,则D 点到直线AB 的距离是______cm .三、解答题:1、判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.2、如图,作出线段AB 的垂直平分线EF ,作出∠BCD 的平分线CN .(利用尺规作图,不写作法,但要保留作图痕迹)3 / 33、如图,已知△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F ,求证: 点F 在∠DAE 的平分线上.4、牧童在点A 处放牛,其家在点B 处,B A ,到河岸l 的距离分别为BD AC ,,且m BD AC 300==,测得m CD 800=.(1)牧童从A 处牵牛到河边饮水后再回家,是否有最近的路线可走?若有,请通过作图说明在何处饮水,所走的路线最短,并标出路线. (2)若有最短路线,请求出牧童走的最短路程.。

最新华师大版八年级数学上册单元测试题全套

最新华师大版八年级数学上册单元测试题全套

最新华师大版八年级数学上册单元测试题全套题目:最新华师大版八年级数学上册单元测试题全套数学是现代社会中不可或缺的一门学科,它的重要性在我们的日常生活和未来的职业发展中扮演着重要的角色。

作为学生,掌握好数学知识,提高数学能力是我们必须努力的方向。

因此,华师大版八年级数学上册的单元测试题是我们检验自己学习成果和弥补知识漏洞的重要工具。

本文将为大家提供最新华师大版八年级数学上册单元测试题全套。

一、单元测试题1:数与式1. 简答题:解释数和式的定义。

2. 选择题:a) 若a = 2,b = 3,则a^2 + b^2 =?A. 2B. 3C. 5D. 13b) 已知a/b = 2/3,求3a + 5b的值为多少?c) 化简表达式:3x + 2 - (x - 4)。

3. 计算题:a) 求(-7) + 6 - (-3) + (-4) - 8的值。

b) 将方程7x + 11 = 3(x + 5)化简成一元一次方程。

二、单元测试题2:图形的认识1. 简答题:解释平面图形和立体图形的概念,并举例说明。

2. 选择题:a) 下列图形中,既是凸多边形又是正多边形的是?A. 正方形B. 长方形C. 直角三角形D. 不规则四边形b) 如图所示,直线AB与直线CD分别为平面α和平面β的交线,交点为O。

则以下结论正确的是?图片描述:(图片描述直线AB与直线CD相交于点O)A. 直线AB与直线CD在平面α和平面β内都存在交点。

B. 直线AB与直线CD在平面α和平面β外都存在交点。

C. 直线AB与直线CD在平面α内不存在交点,在平面β内存在交点。

D. 直线AB与直线CD在平面α内存在交点,在平面β内不存在交点。

c) 在平行四边形ABCD中,若∠ABC = 60°,则∠ADC = ?3. 计算题:a) 已知正方形ABCD的边长为6cm,求其对角线的长度。

b) 如图所示,正方体的棱长为5cm,求其体积和表面积。

图片描述:(图片描述正方体)三、单元测试题3:代数式的计算1. 简答题:解释代数式的含义和计算方法。

华东师大版八年级数学上册期中压轴题复习练习题

华东师大版八年级数学上册期中压轴题复习练习题

华东师大版八年级上期数学期中考试压轴题训练1、已知x,y为实数,且y=﹣+4,则+=.2、已知非零实数a,b满足|2a﹣4|+|b+2|++4=2a,则a+b等于()A.﹣1B.0C.1D.23、已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形4、公式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2].(1)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.3(2)已知实数x,y,z,a满足x+a2=m,y+a2=m+1,z+a2=m+2,且xyz=108.求代数式的值.5、已知x,y,z是正整数,x>y,且x2﹣xy﹣xz+yz=23,则x﹣z等于()A.﹣1B.1或23C.1D.﹣1或﹣236、已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.7、若x﹣2y+z=0,则代数式x2+2xz+z2﹣4y2﹣3的值为.8、问题:若(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设(8﹣x)=a,(x﹣6)=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2,∴(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10;请仿照上例解决下面的问题:问题发现:(1)若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值.(2)若x满足(2022﹣x)2+(x﹣2023)2=2021,求(2022﹣x)(x﹣2023)的值.(3)如图,在四边形ABCD中,对角线AC⊥BD于点O,且BD﹣AC=2,BD2+AC2=100,则四边形ABCD的面积为.(4)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是5,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).(5)如图,长方形ABCD的周长是12cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为20cm2,求长方形ABCD的面积.9、如图①是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②.请你直接写出下列三个式子:(a+b)2、(a﹣b)2、ab之间的等量关系式为;(2)若m、n均为实数,且m+n=﹣2,mn=﹣3,运用(1)所得到的公式求m﹣n的值;(3)如图③,S1、S2分别表示边长为x、y的正方形的面积,且A、B、C三点在一条直线上,若S1+S2=20,AB=x+y=6,求图中阴影部分的面积.10、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.11、如图,过边长为8的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连接PQ交AC边于D,则DE的长为.12、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.13、如图,在等边△ABC中,点D为线段BC上一点(不含端点),AP平分∠BAD交BC于点E,PC与AD的延长线交于点F,连接EF,且∠PEF=∠AED,以下结论:①EB=EF;②△ABE≌△CPE;③△AFC是等腰三角形;④连结PB,∠BPF=120°;⑤AP=PF+PC.其中正确的有.(请写序号)14、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)①求证:△BOC≌△ADC;②当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当∠1为多少度时,△AOD是等腰三角形?15、如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定16、我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题如图,在△ABC中,D为△ABC外一点.(1)若AC平分∠BAD,CE⊥AB于点E,∠B+∠ADC=180°,求证:BC=CD;(2)若∠ACB=90°,AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF17、(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC 上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.18、如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.19、如图,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y 轴于点F,求点F的坐标用含m的式子表示).。

华东师大版数学八年级上册复习题(课件)

华东师大版数学八年级上册复习题(课件)
做垂线4种
重合反证法
线段相等 联 想 等腰三角形
构造等腰三角形
㈠当这个角为直角时,两个三角形全等——已研究; ㈡当这个角为钝角时,这两个三角形全等——已研究; ㈢当这个角为锐角时,这两个三角形全等吗?——待研究。
已知:△ABC和△A1B1C1,∠A=∠A1<90°,AB=A1B1,BC=B1C1, △ABC与△A1B1C1全等吗?
请欣赏谢雅礼老师的示范课《全等三角形 复习习题课——对“SSA”的深入探究》
探究是数学教学的生命线!学习数学的一个 很重要的任务是探索研究,就是要象科学家那样, 通过实验、视察、比较、发现、归纳、猜想,然后 进行证明 。
善于实验发现、善于视察比较、善于联想构造、 善于质疑提问、善于类比猜想、善于求异创新、善 于分析思考、善于归纳总结。
数学复习习题课教学理念
探究是数学教学的生命线! 数学习题课,不是题型模仿课,而是思维训 练课;不是题海战术课,而是应用数学知识的解 题探究课! 一堂优质高效的数学复习习题课,既是学生 回顾并应用所学知识,又是学生对数学知识认知 的深化,更是方法的提炼与总结、数学思想的升 华、思维能力的发展、数学素养的提高。
请大家注意:当α≥90°时必有n>m !所以最终的结论是: ㈠当 n=h 或 n≥m 时一定全等; ㈡当 h<n<m 时不一定全等.
二、数学思想、方法和原则
1、转化——数学的重要思想 ⑴一般→特殊;⑵新问题→旧问题;
2、分类讨论——严谨性,数学的重要方法; 3、选择与简约——科学性,数学的重要原则 。
解题思路——画图探究发现
用圆规按要求画△ABC:∠A=30°, AB=4, 使BC分别为:⑴1.5; ⑵2; ⑶3; ⑷4; ⑸5.

华东师大版八年级数学上册单元测试题全套(含答案)

华东师大版八年级数学上册单元测试题全套(含答案)

华东师大版八年级数学上册单元测试题全套(含答案)第11章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.(2015·泰州)下列4个数:9、227、π、(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)02.8的平方根是( ) A .4 B .±4 C .8 D .±83.(2015·安徽)与1+5最接近的整数是( ) A .4 B .3 C .2 D .1 4.下列算式中错误的是( ) A .-0.64=-0.8 B .±1.96=±1.4 C .925=±35 D .3-278=-325.如图,数轴上点N 表示的数可能是( ) A .10 B . 5 C . 3 D . 2(第5题)6.比较32,52,-63的大小,正确的是( )A .32<52<-63B .-63<32<52 C .32<-63<52 D .-63<52<327.若a 2=4,b 2=9,且ab >0,则a +b 的值为( ) A .-1 B .±5 C .5 D .-58.如图,有一个数值转换器,原理如下:(第8题)当输入的x 为64时,输出的y 等于( ) A .2 B .8 C . 2 D .89.已知2x -1的平方根是±3,3x +y -1的立方根是4,则y -x 2的平方根是( ) A .5 B .-5 C .±5 D .2510.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最接近的是()(第10题)A.0.1 B.0.04 C.30.08 D.0.3二、填空题(每题3分,共30分)11.实数3-2的相反数是________,绝对值是________.12.在35,π,-4,0这四个数中,最大的数是________.13.4+3的整数部分是________,小数部分是________.14.某个数的平方根分别是a+3和2a+15,则这个数为________.15.若2x-y3+|y3-8|=0,则yx是________理数.(填“有”或“无”)16.点P在数轴上和原点相距3个单位长度,点Q在数轴上和原点相距2个单位长度,且点Q在点P的左边,则P,Q之间的距离为______________.(注:数轴的正方向向右)17.一个正方体盒子的棱长为6 cm,现要做一个体积比原正方体体积大127 cm3的新盒子,则新盒子的棱长为________ cm.18.对于任意两个不相等的实数a,b,定义运算※如下:a※b=a+ba-b,那么7※9=________.19.若20n是整数,则正整数n的最小值是________.20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答题(22题9分,26题7分,27,28题每题10分,其余每题6分,共60分) 21.求下列各式中x的值.(1)4x2=25;(2)(x-0.7)3=0.027.22.计算:(1)⎝⎛⎭⎫-122+38-|1-9|; (2)3-1+3(-1)3+3(-1)2+(-1)2; (3)⎝⎛⎭⎫-132+89+(-3)2+(2-7-|7-3|).23.已知|3x -y -1|和2x +y -4互为相反数,求x +4y 的平方根.24.已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x +3y 的平方根和立方根.25.实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|,化简|b+3|+|a-2|+|c-2|+2c.(第25题)26.某段公路规定汽车行驶速度不得超过80 km/h,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在一次交通事故中,已知d=16,f=1.69.请你判断一下,肇事汽车当时的速度是否超出了规定的速度?27.观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1,…(1)观察上面的规律,计算下面的式子:12+1+13+2+14+3+…+12 015+ 2 014;(2)利用上面的规律,试比较11-10与12-11的大小.28.李奶奶新买了一套两室一厅的住房,将原边长为1 m的方桌换成边长是1.3 m的方桌,为使新方桌有块桌布,且能利用原边长为1 m的桌布,既节约又美观,问在读八年级的孙子小刚有什么方法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了.”(1)小刚的做法对吗?为什么?(2)你还有其他方法吗?请画出图形.(第28题)答案一、1.C 2.D 3.B 4.C 5.A 6.D 7.B 8.D 9.C10.B 点拨:由题意可得,正方形的边长为1,则圆的半径为12,阴影部分的面积为1-π4≈0.2,故选B .二、11.2-3;2-3 12.π 13.5;3-1 14.9 15.有 16.2-3或2+3 17.7 18.-2 19.5 20.111 111 111 三、21.解:(1)因为4x 2=25,所以x 2=254,所以x =±52;(2)因为(x -0.7)3=0.027,所以x -0.7=0.3,所以x =1. 22.解:(1)原式=14+2-2=14.(2)原式=-1-1+1+1=0. (3)原式=19+89+3+(2-7-3+7)=1+3-1=3.23. 解:根据题意得:||3x -y -1+2x +y -4=0,即⎩⎪⎨⎪⎧3x -y -1=0,2x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =2,所以x +4y =9.所以x +4y 的平方根是 ±3.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为316.25.解:由题图可知,a >2,c <2,b <-3,∴原式=-b -3+a -2+2-c +2c =-b -3+a +c.又|a|=|c|,∴a +c =0,∴原式=-b - 3.26.解:把d =16,f =1.69代入v =16df ,得v =16×16×1.69=83.2(km /h ),∵83.2>80,∴肇事汽车当时的速度超出了规定的速度.27.解:(1)12+1+13+2+14+3+…+12 015+ 2 014=(2-1)+(3-2)+(4-3)+…+( 2 015- 2 014)= 2 015-1.(2)因为111-10=11+10,112-11=12+11,且11+10<12+11,所以111-10<112-11.又因为11-10>0,12-11>0,所以11-10>12-11.点拨:此题运用归纳法,先由具体的等式归纳出一般规律,再利用规律来解决问题.28.解:(1)小刚的做法是对的,因为将边长为1 m 的两个正方形分别沿着一条对角线剪开,成为四个大小相同形状完全一样的等腰直角三角形,然后拼成一个大正方形,这个大正方形的面积为2,其边长为2,而2>1.3,故能铺满新方桌;(2)有.如图所示.(第28题)第12章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5 B .-a 5 C .a 6 D .-a 6 2.下列运算正确的是( )A .(a +1)2=a 2+1B .3a 2b 2÷a 2b 2=3abC .(-2ab 2)3=8a 3b 6D .x 3·x =x 43.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)2 4.计算⎝⎛⎭⎫232 013×⎝⎛⎭⎫322 014×(-1)2 015的结果是( ) A .23 B .32 C .-23 D .-32 5.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .06.下列各式中,不能用两数和(差)的平方公式分解因式的个数为( ) ①x 2-10x +25;②4a 2+4a -1;③x 2-2x -1;④-m 2+m -14;⑤4x 4-x 2+14.A .1B .2C .3D .47.已知a ,b 都是整数,则2(a 2+b 2)-(a +b)2的值必是( ) A .正整数 B .负整数 C .非负整数 D .4的整数倍8.已知一个长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( ) A .2x 2y 3+y +3xy B .2x 2y 3-2y +3xy C .2x 2y 3+2y -3xy D .2x 2y 3+y -3xy9.因式分解x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.用四个完全一样的长方形(长和宽分别设为x ,y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )(第10题)A .x +y =6B .x -y =2C .xy =8D .x 2+y 2=36二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________.12.已知x +y =5,x -y =1,则代数式x 2-y 2的值是________. 13.若x +p 与x +2的乘积中不含x 的一次项,则p 的值是________. 14.计算:2 015×2 017-2 0162=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________.16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=__________. 18.观察下列等式:1×32×5+4=72=(12+4×1+2)2 2×42×6+4=142=(22+4×2+2)2 3×52×7+4=232=(32+4×3+2)2 4×62×8+4=342=(42+4×4+2)2 …根据你发现的规律:可知n(n +2)2(n +4)+4=________.19.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab cd ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,则可以得出22 014+22 013+22 012+…+23+22+2+1的末位数字是________.三、解答题(27题12分,其余每题8分,共60分) 21.计算:(1)[x(x 2-2x +3)-3x]÷12x 2; (2)x(4x +3y)-(2x +y)(2x -y);(3)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (4)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)(x +5)(x -1)+(x -2)2,其中x =-2;(2)(2015·随州)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)2x 2y -8xy +8y ;(3)a 2(x -y)+4b 2(y -x); (4)4m 2n 2-(m 2+n 2)2.24.已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y)3m ·y m 的值.25.已知a ,b ,c 是△ABC 的三边长,且a 2+2b 2+c 2-2b(a +c)=0,你能判断△ABC 的形状吗?请说明理由.26.因为(x +a)(x +b)=x 2+(a +b)x +ab ,所以x 2+(a +b)x +ab =(x +a)(x +b).利用这个公式我们可将形如x 2+(a +b)x +ab 的二次三项式分解因式.例如:x 2+6x +5=x 2+(1+5)x +1×5=(x +1)(x +5), x 2-6x +5=x 2+(-1-5)x +(-1)×(-5)=(x -1)(x -5), x 2-4x -5=x 2+(-5+1)x +(-5)×1=(x -5)(x +1), x 2+4x -5=x 2+(5-1)x +5×(-1)=(x +5)(x -1). 请你用上述方法把下列多项式分解因式: (1)y 2+8y +15; (2)y 2-8y +15; (3)y 2-2y -15; (4)y 2+2y -15.27.(中考·达州)选取二次三项式ax 2+bx +c ()a ≠0中的两项,配成完全平方式的过程叫配方.例如 ①选取二次项和一次项配方:x 2-4x +2=()x -22-2;②选取二次项和常数项配方:x 2-4x +2=()x -22+()22-4x , 或x 2-4x +2=()x +22-()4+22x ; ③选取一次项和常数项配方:x 2-4x +2=()2x -22-x 2. 根据上述材料,解决下面的问题: (1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值.答案一、1.C 2.D 3.D 4.D 5.A 6.C 7.C 8.D 9.B 10.D 二、11.(1)-24a 5 (2)6;23 12.5 13.-2 14.-115.-2;-1 16.|4a +2| 17.(3x -3y +2)2 18.(n 2+4n +2)2 19.220.7 点拨:由题意可知22 014+22 013+22 012+…+23+22+2+1=(2-1)×(22 014+22 013+22 012+…+23+22+2+1)=22 015-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2、4、8、6的顺序循环,而2 015÷4=503……3,所以22 015的末位数字是8,则22 015-1的末位数字是7.三、21.解:(1)原式=(x 3-2x 2+3x -3x)÷12x 2=(x 3-2x 2)÷12x 2=2x -4.(2)原式=4x 2+3xy -(4x 2-y 2)=4x 2+3xy -4x 2+y 2=3xy +y 2.(3)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (4)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-a 2+a 2-5ab +3ab =4-2ab. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12=5. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=2y(x 2-4x +4)=2y(x -2)2.(3)原式=a 2(x -y)-4b 2(x -y)=(x -y)(a 2-4b 2)=(x -y)(a +2b)(a -2b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2.24.解:原式=(x 3m )2+(y 2m )3-(x 3m )2·(y 2m )2=22+33-22×32=4+27-4×9=-5. 25.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.26.解:(1)y 2+8y +15=y 2+(3+5)y +3×5=(y +3)(y +5). (2)y 2-8y +15=y 2+(-3-5)y +(-3)×(-5)=(y -3)(y -5). (3)y 2-2y -15=y 2+(-5+3)y +(-5)×3=(y -5)(y +3). (4)y 2+2y -15=y 2+(5-3)y +5×(-3)=(y +5)(y -3).27.解:解:(1)答案不唯一,例如:x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12或x 2-8x +4=(x -2)2-4x.(2)因为x 2+y 2+xy -3y +3=0, 所以⎝⎛⎭⎫x +y 22+34(y -2)2=0, 即x +y2=0,y -2=0,所以y =2,x =-1,所以x y =(-1)2=1.第13章达标检测卷(120分,90分钟) 得 分一、选择题(每题3分,共30分) 1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等 2.下列方法中,不能判定三角形全等的是( ) A .S .S .A . B .S .S .S . C .A .S .A . D .S .A .S .3.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的是( )(第3题)A .甲、乙B .甲、丙C .乙、丙D .乙4.在△ABC 中,∠B =∠C ,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这个100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C(第5题)5.如图,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( ) A .AB =AC B .∠BAE =∠CAD C .BE =DC D .AD =DE6.在△ABC 和△A′B′C′中,AB =A′B′,∠B =∠B′,补充条件后仍不一定能保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC =B′C ′B .∠A =∠A′C .AC =A′C′D .∠C =∠C′ 7.下列命题中,逆命题正确的是( )A.全等三角形的对应角相等B.全等三角形的周长相等C.全等三角形的面积相等D.全等三角形的对应边相等8.如图,在△ABC中,AB=m,AC=n,BC边的垂直平分线交AB于E,则△AEC的周长为() A.m+n B.m-n C.2m-n D.2m-2n9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD∶CD=9∶7,则点D到AB边的距离为()A.18 B.32 C.28 D.24(第8题) (第9题) (第10题)10.如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB 平分∠AED;④△ABD为等边三角形.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.把命题“等边对等角”的逆命题写成“如果……,那么……”的形式为________________________________________________________________________.12.如图,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“H.L.”说明Rt________≌Rt________得到AB=DC,再利用“________”证明△AOB≌△DOC得到OB=OC.13.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30 cm 和20 cm,则AB=________ cm.(第12题) (第13题)(第14题) (第16题) 14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA =________.15.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.16.(2015·怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是______.17.(2015·永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.18.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m.点P从点B开始以1 m/min 的速度向点A运动;点Q从点B开始以2 m/min的速度向点D运动.P,Q两点同时出发,运动________后,△CAP≌△PBQ.(第17题) (第18题) (第19题) (第20题)19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 的面积是________.20.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角的平分线相交于点D,DE⊥AC于E,DF⊥AB 交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠BAC=90°.其中正确的有____________.(填序号)三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).(第21题)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.(第22题)23.如图,在△A BC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F,交BC于E.试判断△AGF的形状并加以证明.(第23题)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第25题)26.如图①,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB =CD.(1)若BD与EF交于点G,求证:BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.(第26题)27.如图a,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图b,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图c,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F 不重合),并说明理由.(第27题)答案一、1.A 2.A 3.C 4.A 5.D 6.C7.D8.A9.C10.B二、11.如果一个三角形有两个角相等,那么这两个角所对的边相等12.△ABC;△DCB;A.A.S.13.1014.55°15.8 cm或5 cm16.90°17.318.4 min点拨:本题运用了方程思想,设未知数,利用全等三角形的性质列方程求解.设运动t min 后,△CAP≌△PBQ,由题意得AP=AB-BP=12-t,BQ=2t.当△CAP≌△PBQ时,AP=BQ,即12-t=2t,解得t=4.即运动4 min后,△CAP≌△PBQ.19.1520.①②③三、21.解:如图.(第21题)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =MG ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN ,∠FHN =∠MGE.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm ,∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 cm .23.解:△AGF 是等腰三角形.证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC. ∵GE ∥AD ,∴∠GFA =∠BAD ,∠G =∠DAC. ∴∠G =∠GFA.∴AF =GA.∴△AGF 是等腰三角形.24.解:(1)∵DE 垂直平分AC ,∴AE =CE ,∴∠ECD =∠A =36°. (2)∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°. ∵∠BEC =∠A +∠ACE =72°, ∴∠B =∠BEC ,∴BC =CE =5.25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC.又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(H .L .),∴CF =EB. (2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得CD =DE.进而证得Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,得AC =AE ,再将线段AB 进行转化.26.(1)证明:∵ED ⊥AC ,FB ⊥AC ,∴∠DEG =∠BFE =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE(H .L .).∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG(A .A .S .).∴FG =EG ,即BD 平分EF.(2)解:BD 平分EF 的结论仍然成立.理由:∵AE =CF ,FE =EF ,∴AF =CE.∵ED ⊥AC ,FB ⊥AC ,∴∠AFB =∠CED =90°.在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE.∴BF =DE.在△BFG 和△DEG 中,⎩⎪⎨⎪⎧∠BGF =∠DGE ,∠BFG =∠DEG ,BF =DE ,∴△BFG ≌△DEG.∴GF =GE ,即BD 平分EF ,结论仍然成立.点拨:本题综合考查了三角形全等的判定方法.(1)先利用H .L .判定Rt △ABF ≌Rt △CDE ,得出BF =DE ;再利用A .A .S .判定△BFG ≌△DEG ,从而得出FG =EG ,即BD 平分EF.(2)中结论仍然成立,证明过程同(1)类似.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由如下:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC =90°,∴∠DAF =∠BAC ,∴∠DAB =∠FAC ,又∵AB =AC ,∴△DAB ≌△FAC ,∴CF =BD ,∠ACF =∠ABD.∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∴∠ABC =45°,∴∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.(第27题)(2)当∠ACB =45°时,CF ⊥BD(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第14章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,62.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( )A .∠A>45°,∠B>45°B .∠A ≥45°,∠B ≥45°C .∠A<45°,∠B <45°D .∠A ≤45°,∠B ≤45°(第3题)3.如图,图中有一个正方形,此正方形的面积是( ) A .16 B .8 C .4 D .24.满足下列条件的△ABC 不是直角三角形的是( ) A .∠A =∠B -∠C B .∠A ∶∠B ∶∠C =1∶1∶2 C .b 2=a 2-c 2 D .a ∶b ∶c =1∶1∶25.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形(第6题)6.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处朝张大爷的房子方向折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗( )A .一定不会B .可能会C .一定会D .以上答案都不对7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线AC 上的D′点处.若AB =3,AD =4,则ED 的长为( )A .32B .3C .1D .43(第7题) (第8题) (第9题) (第10题)8.如图,在△ABC 中,AD 是BC 边的中线,AC =17,BC =16,AD =15,则△ABC 的面积为( ) A .128 B .136 C .120 D .2409.如图,长方体的高为9 m ,底面是边长为6 m 的正方形,一只蚂蚁从顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10 mB .12 mC .15 mD .20 m10.如图,是一种饮料的包装盒,长、宽、高分别为4 cm 、3 cm 、12 cm ,现有一长为16 cm 的吸管插入到盒的底部,则吸管露在盒外的部分h(cm )的取值范围为( )A .3<h<4B .3≤h ≤4C .2≤h ≤4D .h =4二、填空题(每题3分,共30分)11.若用反证法证明“有两个内角不相等的三角形不是等边三角形”,可先假设这个三角形是________.12.在△ABC中,AC2-AB2=BC2,则∠B的度数为________.13.如图,∠OAB=∠OBC=90°,OA=2,AB=BC=1,则OC2=________.(第13题) (第14题) (第19题) (第20题) 14.如图,直角三角形三边上的半圆形面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是________.15.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 c m,对角线长为100 cm,则这个桌面________(填“合格”或“不合格”).16.若直角三角形的两边长分别为a、b,且满足(a-3)2+|b-4|=0,则该直角三角形的斜边长为________.17.等腰三角形ABC的腰AB为10 cm,底边BC为16 cm,则面积为________cm2.18.(2015·黄冈)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.19.《中华人民共和国道路管理条例》规定:小汽车在城市街道上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直道行驶时,某一时刻刚好行驶到路对面车速检测仪观测点A正前方50 m 的C处,过了6 s后,行驶到B处的小汽车与车速检测仪间的距离变为130 m,请你判断:这辆小汽车________(填“是”或“否”)超速了.20.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 015=________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.用反证法证明一个三角形中不能有两个角是直角.22.园丁住宅小区有一块草坪如图,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.(第22题)23.如图,将断落的电话线拉直,使其一端在电线杆顶端A处,另一端落在地面C处,这时测得BC =6米,再把电话线沿电线杆拉扯,使AD=AB,并量出电话线剩余部分(即CD)的长为2米,你能由此算出电线杆AB的高吗?(第23题)24.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B 点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动,如果P,Q同时出发,问过3 s时,△BPQ的面积为多少?(第24题)25.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有一学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长?(第25题)26.图甲是任意一个直角三角形ABC,它的两条直角边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为(a+b)的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为_______,图丙中③的面积为________;(3)图乙中①②的面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?(第26题)答案一、1.A 2.A 3.B 4.D 5.D 6.A7.A8.C9.C10.B二、11.等边三角形12.90°13.614.S1+S2=S315.合格16.4或517.4818.126 cm2或66 cm219.是20. 2 016点拨:由勾股定理得:OP4=22+1=5,∵OP1=2,OP2=3,OP3=4,OP4=5,以此类推可得OP n=n+1,∴OP2 015= 2 016.本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.三、21.证明:假设三角形ABC的三个内角∠A、∠B、∠C中有两个直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,所以∠A=∠B=90°不成立,所以一个三角形中不能有两个角是直角.22.解:连接AC.在Rt△ABC中,由勾股定理得AC2=AB2+BC2,所以AC2=42+32=25,即AC=5米.在△ACD中,因为AC2+C D2=52+122=169=AD2.所以△ACD是直角三角形,且∠ACD=90°.所以S草坪=S△ABC+S△ACD=12×3×4+12×5×12=36(平方米).答:这块草坪的面积是36平方米.23.解:设AB=x米,则AC=AD+CD=AB+CD=(x+2)米.在Rt△ABC中,AC2=AB2+BC2,即(x+2)2=x2+62,解得x=8.即电线杆AB的高为8米.24.解:设AB=3x cm,则BC=4x cm,AC=5x cm,因为△ABC的周长为36 cm,所以AB+BC+AC=36 cm,即3x+4x+5x=36,解得x=3,所以AB=9 cm,BC=12 cm,AC=15 cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,且∠B=90°.过3 s 时,BP =9-3×1=6(cm ),BQ =2×3=6(cm ), 所以S △BPQ =12BP·BQ =12×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.(第25题)25.解:如图,设拖拉机行驶到C 处刚好开始受到噪音的影响,行驶到D 处时,结束了噪音的影响,连接AC ,AD ,则有CA =DA =100 m .在Rt △ABC 中,CB 2=1002-802=602. ∴CB =60 m .同理BD =60 m ,∴CD =120 m . ∵18 km /h =5 m /s ,∴该校受影响的时间为120÷5=24(s ).26.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2 (3)a 2+b 2(4)相等.理由:由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b)2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形,根据面积相等得(a +b)2=a 2+b 2+2ab ,由图丙可得(a +b)2=c 2+4×12ab.所以a 2+b 2=c 2.所以图乙中①②的面积之和与图丙中③的面积相等.于是得到直角三角形三边长的关系为a 2+b 2=c 2.第15章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要反映某市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图 D .以上都可以2.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3(第2题) (第3题) (第4题)3.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为( ) A .39.0 ℃ B .38.5 ℃ C .38.2 ℃ D .37.8 ℃4.(中考·邵阳)如图是某班学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组5.(中考·丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()B型A.16人B.14人C.4人D.6人6.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是()A.22,44% B.22,56% C.28,44% D.28,56%(第7题)7.某校图书馆整理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.90 B.144 C.200 D.808.如图是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.小麦产量和杂粮产量增加的幅度大约是一样的C.2014年杂粮产量约是玉米产量的六分之一D.2014年和2015年的小麦产量变化幅度最小(第8题) (第9题)9.(中考·武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选一种喜好的书籍,如果没有喜好的书籍,则作“其他”类统计.图①和图②是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两幅统计图可知喜好“科普常识”的学生有90人B.若该年级共有1 200名学生,则由这两幅统计图可估计喜好“科普常识”的学生约有360人C.由这两幅统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是()(第10题)A.4 B.5 C.6 D.7二、填空题(每题3分,共24分)11.Lost time is ne v er found again(岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是________.12.如图是根据某市2011年至2015年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是________年,比它的前一年增加________亿元.(第12题) (第14题) (第15题) 13.地球上山地面积、水域面积和陆地面积大体上可以用“三山六水一分田”来描述,则用扇形统计图来表示时,它们所占的百分比分别是________、________、________.14.调查机构对某地区1 000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如图,请根据图中信息,调查的 1 000名20~30岁年龄段观众选择观看《最强大脑》的人数约为________人.15.(中考·金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形的圆心角的度数是________.16.小张根据某媒体的报道中一幅条形统计图(如图所示),在随笔中写道:“……今年,我市中学生在艺术节上,参加合唱比赛的人数比去年激增……”小张说得对不对?为什么?请你用一句话对小张的说法作一个评价:________________________________________________________________________.(第16题) (第17题) (第18题)17.(2015·防城港)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图(如图),其中“其他”部分所对应的圆心角是36°,则“步行”部分所占的百分比是________.18.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有________名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有________名体尖生.三、解答题(19~21题每题12分,22,23题每题15分,共66分)19.某股票上周五的收盘价为3元,本周的收盘价分别是:周一3.2元;周二3.25元;周三3.35元;周四3.18元;周五3.3元,根据以上信息完成下列各题:(1)填下面的统计表:(2)画出你认为最能反映该股票变化情况的统计图.20.“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.(第20题)21.(改编·金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图解答下列问题.(1)第三次成绩的优秀率是多少?(2)将条形及折线统计图补充完整.(第21题)22.(中考·黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积都相同),绘制了如图所示的两幅不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全条形统计图,并计算出喜好菠萝味牛奶的学生人数在扇形统计图中所占扇形的圆心角的度数;(3)该校共有1 200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?(第22题)23.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测.某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别。

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷选择题:1. 下列四个数中,哪个是一个质数?A) 12B) 17C) 20D) 252. 若一个三角形有两个边长分别为5cm和8cm,那么第三条边的可能长度是:A) 12cmB) 7cmC) 15cmD) 3cm3. 某班有35名学生,其中男生占总人数的40%,则女生人数是:A) 15B) 20C) 17D) 124. 若一个圆的半径为6cm,则其周长约为:A) 18cmB) 12cmC) 36cmD) 24cm5. 一个矩形的长是12cm,宽是5cm,则它的面积是:A) 60平方厘米B) 42平方厘米C) 24平方厘米D) 30平方厘米填空题:1. 12的平方根是________2. 若一个数的四倍增加了9等于33,那么这个数是________3. 在一个标准的骰子上,三个相对的面的数字之和是________4. 如果一辆汽车每小时行驶60公里,3小时后行驶的总里程是________公里5. 一块土地的长度是8米,宽度是5米,面积是________平方米应用题:1. 某商店有500个苹果,每天售出30个,问多少天能售完?2. 小明学习数学用了1小时,语文用了45分钟,求他学习这两门课的总时间。

3. 一个长方形花园的长度是15米,宽度是8米,围绕着花园修一圈小路,小路的面积是3平方米,求小路的宽度。

4. 若一个长方形的周长是32厘米,宽为6厘米,求该长方形的面积。

5. 某班同学组织篮球比赛,男生队有15人,女生队有10人,男生队的人数是女生队的几倍?。

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

第11章一、选择题:(每题3分,共30分) 1. -2020的相反数是( )A. 2020B. -2020C.12020 D. -120202. (2020江苏盐城市)实数a ,b 在数轴上表示的位置如图所示,则( )2题图A. a >0B. a >bC. a <bD. a <b3.实数的立方根是( ) A.-1B.0C.1D.±14. (2020黑龙江绥化市)3的结果正确的是( )A.C. 5. (2020福建省)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m-n 的结果可能是( )5题图A. -1B. 1C. 2D. 36.下面各等式正确的是( )3=± B.7=- 0.3- D.0.000 1-7. )A .5B .6C .7D .88. 一个数的平方是 4,则这个数的立方是( )A .8B .8 或-8C .-8D .4 或-4 9. (2020湖北恩施州)在实数范围内定义运算“☆”:a ☆b =a +b -1,例如:2☆3=2+3-1,如果2☆x =1,则x 的值是( ).A. -1B. 1C. 0D. 2 10.一个自然数的算术平方根是a ,那么比这个自然数大且与它相邻的一个自然数的算术平方根是( )A.21a +C.1a +二、填空题:(每题3分,共30分)11. (2020四川遂宁市)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020中,无理数的个数有 个.12.(2020浙江宁波市)实数8的立方根是 .13.写出一个比2大比3小的无理数(用含根号的式子表示) .14π,-4,0这四个数中,最大的数是________.15.4+3的整数部分是5,小数部分是________.16.某个数的平方根分别是2a -1和2-a ,则这个数为________.17. =0.5981 5.98 1 0.1289 , 则 x = , y = .18. 规定用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定8⎡⎣的值为______________.19. 对于任意两个不相等的实数a ,b ,定义一种新运算“※”,规则如下:a ※b =b a ba -+,如3※2=2323-+=5,则12※4的值为________________. 20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11; (2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答下列各题:(共60分) 21.计算:(每题5分,共15分)①计算:|-2|(-1)×(-3); ;34.22.解方程:(每题5分,共10分)①(x+2)2-9=0;②(x+3)3+27=0.23.(5分)物体从某一高度自由落下,物体下落的高度h与下落的时间t•之间的关系可用公式h=12gt2表示,其中g=10米/秒2,若物体下落的高度是180米,•那么下落的时间是多少秒?24.(6分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求4x+3y 的平方根和立方根.25.(8分)已知x,y为实数,且y19,求xy的立方根.26.(8分)某小区为了促进全民健身活动的开展,决定在一块面积约为1000 m2的正方形空地上建一个篮球场.已知篮球场的面积为420 m2,其中长是宽的2815倍,篮球场的四周必须留出1 m宽的空地.请你通过计算说明能否按要求在这块空地上建一个篮球场?27.(8分)||||b c a c b c-++++.27题图第11章数的开方达标性测试题答案1.B.2.C.解析:由图可得a <0<b , b <a , 故选C .3.C.解析:∵21()=1,而1的立方根等于1,∴21()的立方根是1.4.D.3 =3-2D .5.C.解析:根据数轴可得0<m <1,-2<n <-1,则1<m-n <3, 故选C.6.C.7.B. 解析:∵36<37<496<7,∵37与36最接最接近的是6.故选B .8.B.解析:∵一个数的平方是 4,∴这个数是2或-2,那么2或-2的立方是8或-8. 应选B.9.C.解析:由题意知:2☆x =2+x -1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选C . 10.B.11. 3. 解析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,在上面所列的实数中,无理数有1.212212221…,2﹣π3个,故答案为:3. 12.2..解析:∵4<5<9,∴232大比3小的无. 14.π解析:∵45,∴小数部分是4 1. 16.9. 解析:由题意得2a -1+2-a =0,解得a =-1, ∴这个数为(2a -1)2=(-3)2=9.17. 214, 0.00214.18.3.点拨:∵9<13<16,∴343,∴8 4. 19.21. 20.111 111 111.21.①原式=2-2+3=3. ②0;③解:∵3<<4,∴1<-2<213<<28312=<912=34,∴<34.22. ①解:由(x +2)2-9=0得,(x +2)2=9; ∴ x +2=3或x +2=-3;∴x 1=-1, x 2=-5. ② 解:由(x +3)3+27=0得,(x +3)3=-27; ∴ x +3=-3,∴ x =-6 23.6.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为25.解:∵y 为实数,1-3x ≥0, x ≤13, ∴ 3x -1≥0, ∴ x ≥13.∴ x =13,∴y =+-19=-19,∴====-13.26. 解:设篮球场的宽为x m,那么长为2815x m. 根据题意,得2815x ·x =420, 所以x 2=225. 因为x 为正数, 所以x =15,又因为2815x 所以能按要求在这块空地上建一个篮球场.27.解:由数轴得:a <0,b <0,c >0, ∴a +b <0,b –c <0,a +c <0,b +c <0 ∴原式=a -a b ++b c -+a c ++b c +=-a -〔-(a +b )〕+〔-(b-c )〕+〔-(a +c )〕+〔-(b+c )〕 =-a +a +b -b +c -a -c-b-c =–a-b-c. 第12章1.(知识点1)下列运算正确的是( ) A .3x +4y =7xy B .(﹣a )3•a 2=a 5 C .(x 3y )5=x 8y 5 D .m 10÷m 7=m 32.(知识点2,3)下列各式计算正确的是( )A.(x-y)(y-x)=x2-y2B.2x(x-2y)=2x2-4xyC.(-a+b)(a+b)=a2+b2D.(2x+3)2=4x2+93. (2020•江苏徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a-b)2=a2-b2D.(ab)2=a2b24.(2020•湖南常德)下列计算正确的是()A.a2+b2=(a+b)2 B.a2+a4=a6 C.a10÷a5=a2D.a2•a3=a5 5.(2020•河北)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k6.(重点2)当x=3、y=1时,代数式(2x+y)(2x-y)+y2的值是.7.(重点2)若a2+b2=12,ab=2,则(a+b)2= .8.(重点2)已知x+y=2,x2-y2=6,则x-y= .9.(重点1)运转速度是7.9×103米/秒,2×102秒卫星运行所走过的路程是.10.(重点2)a>b>0,那么在边长为a+b的正方形内,挖去一个边长为a-b的正方形,剩余部分的面积为.11.(重点1) 计算:2x5(-x2)-(-x2)3(-7x).12.(重点2) 计算:(x+2)2-2(x+2)(x-2)+(x-2)2.13.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的一个根强化提高14.(重点2) 计算:(3x-2y+1)(3x+2y-1).第12章复习课(第1课时)1.D.解析:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.2.B.3. D. 解析:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6-3=a3,因此选项B不符合题意;(a-b)2=a2-2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.4.B. 解析:A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.5. A. 解析:=(k•k)k=(k2)k=k2k,故选:A.6.36.7.16.8.3.9.1.58×106米. 10.4ab. 11. -9x7. 12.16.13. 解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.14. 9x2-4y2+4y-1.知识点1:整式的除法法则. 知识点2:因式分解的定义及因式分解法.重点1:综合运用单项式的除法和多项式除以单项式的除法,进行整式除法运算. 重点2:灵活运用提取公因式和公式法进行因式分解.难点:单项式的除法运算.基础巩固1.(知识点1)下列运算正确的是( )A.a3+a4=a7B.a2·a5=a10C.(ab2)2=ab4D.a9÷a2=a72.(知识点2)若x2+mx-15=(x+3)(x+n),则n的值为( )A.-5B.5C.-2D.23.(知识点2)若多项式x2+mx+16可以分解因式,则整数m可取的值共有( )A.1个B.2个C.3个D.无限多个4. (知识点2)若9x2+mxy+16xy2是一个完全平方式,那么m的值是()A.±12B.-12C.±24D.-245.(重点1)计算: (-2x)10÷(2x)8=_____________.6.(重点2)分解因式:(1) xy3-x3y= ;(2) a2-1-b2-2b= ;(3) 2a3﹣8a=;(4) a4-3a3b+2a2b2= .7.(重点2)矩形面积是15a3b2cm2时,它的长为3a2b2cm,则它的宽是.8.(知识点1)若除式为a2+1,商式为a2-1,余式为2a,则被除式为.9. (重点2)已知一个长方形的长宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为______________10.(重点2) 因式分解:(1) -4a2b3+16ab2-12a b;(2) 4m2n2-(m2+n2)2.11.(重点1) 计算:(1) [(x+1)(x+2)–2]÷x. (2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).12.(重点1)化简求值.[(2x+y)2-y(y+4x)-8xy]÷2x,其中x=2,y=-2.强化提高13.(重点2)说明817-279-913能被15整除.1. D.2. A.3. B.4. C.5.4x2 .6. (1) xy(y+x)(y-x);(2) (a+b+1)(a-b-1);(3) 2a(a+2)(a﹣2);(4)a2(a-b)(a-2b).7.5a cm. 8.a4+2a-1.9. 25. 解析:由题意知,2(a+b)=10,ab=5,∴a+b=5, ∴a2b+ab2=ab(a+b)=25.10. (1) -4ab(ab2-4b+3). (2) -(m+n)2(m-n)2.11.(1) x+3. (2) -x+3y.12.解:原式=(4x2+4xy+y2-y2-4xy-8xy)÷2x=(4x2-8xy)÷2x=2x-4y.当x=2,y=-2时,原式=2×2-4×(-2)=12. 13.解:817-279-913=(34)7-(33)9-(32)13 =328-327-326=326(32-3-1)=326×5=325×3×5=325×15,故817-279-913能被15整除。

华师大版八年级上册数学全册复习试题(含参考答案和评分标准)

华师大版八年级上册数学全册复习试题(含参考答案和评分标准)

华师大版八年级上册数学全册复习试题时间:100分钟姓名: _____________ 总分 __________________________一、选择题(每小题 3分,共24分)1.81的算术平方根是【 】(A ) 9(B ) 9 (C ) 3 (D ) 32.实数—,0,3一27,6,0.10100100013.14中无理数的个数是【 】(A ) 1(B ) 2 (C ) 3(D ) 43.若 32m 35,则m 的值是【 】(A ) 2(B ) 9 (C ) 15(D ) 274.若X 4 X 3 X 2 mx n ,则m, n 的值分别是【 】(A ) m1,n12(B ) m1,n12(C ) m 1,n 12 (D ) m 1,n 125.某校八(3)班有50名学生,他们上学的方式有三种:①步行;②骑车;③乘公共 汽车•根据表中信息,下列结论错误的是上学方式 步行骑车乘公共汽车频数 ab20频率36%Cd(A)a 18,b(C) b 12,d40% (D) C 24%,d 40%6.如图,若MBND l MBA条件后不能判定厶ABM 也△ CDN 的是 【 (A)AM //CN(B) M N (C ) AC DB(D ) AM CN7.直角三角形的斜边长为20 cm,两条直角边长之比为3 :4 ,那么这个直角三角形的周长为 (A) 27 Cm(B) 30 Cm(C) 40 Cm(D) 48 CmNDC ,则添加下列】第6题图8.如图,在RtAABC 中,C 90 ,按如下步骤作图:①分别以A 、B 为圆心,以大于 1 - 一-AB 的长为半径画弧,两弧交于M 、N;②作直线MN,交BC 于点D;③连结AD.若 29. 两个连续整数x,y 满足X 、、3 2 10. 若 a b 217, a b 2 11,则 a 2 11. 因式分解:3x 2y 18xy 27y12. 等腰三角形的周长为20 cm,—边长为6 cm,则底边长为 ____________ cm. 13. 期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优等生人数为 _________ .14. _________ 如图,直线I 上有三个正方形a 、b 、C 若a 、C 的面积分别为5和11,则b 的面 积为 .15. 如图,长方形ABCD 中,AB 10, AD 4,E 为AB 的中点,在线段CD 上找一点 P,>^ APE 为一个腰长为5的等腰三角形,则线段DP 的长为 ______________第14题图DI ----------AE第15题图y ,则 X y __________ . b 2 __________ .ADE 64 ,则CAD 的度数为二、填空题(每小题 3分,共21分)第13题图三、解答题(共75分)16.计算:(8分)327; (2)9 x 2 X 2 3x2 . 2018(1)2 117. (12分)化简求值:(1) XX 2 2X 1 X 1 X 2 ,其中X 1.(2)已知X22X 3 0,求值:X18. (8分)如图,△ ACB和厶ECD都是等腰直角三角形,ACB ECD 90 ,D为AB边上一点.(1)求证:△ ACE^△ BCD;(2)若 AD 5, BD 12 ,求DE 的长.A19. (8分)如图,在等边三角形ABC中,点P在厶ABC内,点Q在厶ABC外,且ABP ACQ l BP CQ .(1)求证:△ ABP^△ ACQ;(2)请判断△ APQ的形状并说明理由.A20.(9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行了体能测试,测试结果分为A B、C、D四个等级,并绘制了两幅不完整的统计图,请根据图中的信息解答下列问题:(1)本次调查一共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形统计图;(3)若该校八年级共有700名学生,请你估计该校八年级学生中体能测试结果为D 等级的学生有多少名.21.(9 分)如图,在Rt△ ABC 中,C 90 I AC 6, BC 8,将厶ABC 沿直线AD折叠,使点C落在AB边上的点E处,求CD的长.C22. (9分)如图,在△ ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN的延长线相交于点F.(1)若厶CMN的周长为15 cm,求AB的长;(2)若MFN 70 ,求MCN的度数•CB23. (12分)问题情景:如图1,在等边三角形ABC内有一点P, PA 5,PB 4,PC 3,求BPC的度数.(1)问题解决:小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△ BPC绕点B逆时针旋转60 ,得到了厶BP'A (如图2),然后连结PP',请你参考小明同学的思路,求BPC的度数;BPC的度数.(3)类比迁移:如图3,在正方形ABCD内有一点P, PA , 5, PB 2PC 1 ,求A 图1A图2 图3新华师大版八年级上册数学全册复习试题参考答案、选择题(每小题3分,共30 分)二、填空题(每小题3分,共21分)29. 7 10. 14 11. 3y X 3 12. 8 或6 13. 1014. 16 15. 3或2或8(注意:答错一个或少答一个均不给分)部分题目答案提示:15.如图,长方形ABCD中,AB 10, AD 4,E为AB的中点,在线段CD上找一点P,>^ APE为一个腰长为5的等腰三角形,则线段DP的长为E第15题图CB三、解答题(共75 分)16.计算:(8分)X2 4X 4 X29(1)... 2 2 1 2018 3一27解:原式 2 1 33 36 •…••4分(2) 9 X 2 X 2 3X 1 2解:原式9 X2 4 9χ26χ 1 9X236 9X26χ 16χ37…•••8 分17. (12 分) 化简求值:(1) X X 2 X 12X 1 X 2 , 其中X 1.解:X X 2 X 1 2 X 1 X 2X2 2 2X X 2X 1 X2 X 2 2x2 1 χ2 x 2χ2 X 3 ................... 4 分当X 1时原式I2 1 33 .................... 6分(2 )已知 X22χ 30 ,求值:X 2 2 X 3 3 X .解:X 2 2 X 3 3 X2X24X2 X 2χ2 X 2χ原式 21118. (8 分)2χ 510分12分(1)证明:ACB和厶ECD都是等腰直角三角形∙∙∙ CE CD l CA CBDCE ACB 90B BAC 45 .......... 1 分∙∙∙ DCE ACD ACB ACD ••• 1 .................... 2 2分在厶ACE和厶BCD中CA CB•••△ ACE^△ BCD (SAS); ......................... 5分5322X3 0(2)由(1)可知:△ ACE 和厶BCD∙∙∙ AE BD 12, 3 B 45DAE 3 BAC 45 45 90 •••△ ADE是直角三角形.6分在RtAADE中,由勾股定理得:AD1 2AE2DE2∙∙∙ DE . AD2 AE252 122 13 .......................... 8分19. (8 分)△ ABP^△ ACQ1 证明:•••△ ABC是等边三角形∙∙∙ AB AC, BAC 60 .......................... 1分在厶ABP和厶ACQ中AB ACABP ACQBP CQ•••△ ABP^A ACQ (SAS); .......................... 4分2 ^ APQ是等边三角形.......................... 5分理由如下:由(1)可知:1 2, AP AQ ........ ...6 分1 PAC BAC 602 PAC 60PAQ 60• (7)分在厶APQ中,∙.∙ AP AQ, PAQ 60•••△ APQ是等边三角形. .......................... 8分20. (9 分)解:(1)10 20% 50 (人)答:本次调查一共抽取了50名学生;.......................... 3分(2)50 10 20 4 16 (人).......................... 4分补全条形统计图如图所示;..... 6分答:测试结果为C等级的学生有16人;(说明:不标注数字“ 16”扣1分)4(3)700 —56 (名)50答:估计D等级的学生有56名. .......................... 9分21. (9 分)解:由折叠可知:△ ACD^△ AED∙∙∙ CD ED,AC AE 6C AED BED 90•••△ BDE是直角三角形.3分在RtAABC中,由勾股定理得:AC2 BC2 AB2∙∙∙ AB . AC2 BC2. 62 82 10∙∙∙ BE AB AE 10 6 4 .......................... 5分设CD X,则 BD 8 x,DE X .......................... 6分在RtABDE中,由勾股定理得:BE2DE2BD2∙∙∙ 42 X2解之得:X 3∙CD 3 .................... 9 分22. (9 分)解:(1)V DM、EN分别垂直平分AC和BCV C CMN CM MN CN 15 cm∙ AM MN BN 15 ∙AB 15cm; ............... 4 分(2)在厶ACM和厶BCN中V AM CM , BN CN∙ A 1, B 2 ......................... 5分在四边形DCEF中V MFN 70DCE 360 90 70 90 110 ∙ACB 110 ......................... 7分∙ A B 180 110 70∙ 1 2 70 ........... 8 分∙MCN 110 70 40 ......................... 9分23. (12 分)解:(1)由旋转可知:△ BPC^ABP A PBP' 60∙ PB P'B 4,PC P'A 3∙ AM CM ,BN CNBCBV PB P'B, PBP' 60•••△ PBP'是等边三角形∙∙∙ PP'B 60 ,P'B P'P PB 4.......................... 3分在厶APP'中,V PA 5, P'P 4, P'A 3∙∙∙ P'A 2 P'P 2 32 42 52PA 2•••△ APP'是直角三角形∙∙∙ AP'P 90 ............. 5 分 ∙∙∙ BP'A 60 90 150•••△ BPC^ △ BP A ∙∙∙ BPC BP'A 150 ;.......................... 6分要点:可证:△ BP'P 为等腰直角三角 形,△AP'P 为直角三角形 ∙∙∙ BP'A 45 90 135.......................... 11分 •••△ BPC^ △ BP ABPC BP'A 135 .12分(2)如图所示将厶BPC 绕点B 逆时 针旋转90 ,得到△ BP'A ,连结P' P ........................... 8分A图2BC图3。

华东师大新版八年级上册数学期末复习试题及答案

华东师大新版八年级上册数学期末复习试题及答案

华东师大新版八年级上册数学期末复习试题及答案一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积()A.4a2B.4a2﹣ab C.4a2+ab D.4a2﹣ab﹣2b23.下列说法中错误的是()A.有一组邻边相等的矩形是正方形B.在反比例函数中,y随x的增大而减小C.顺次连接矩形各边中点得到的四边形是菱形D.如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°4.空气是由多种气体混合而成的.为了简明扼要地介绍空气的组成情况.较好地描述数据,最适合使用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.直方图5.已知三角形的三边长为a、b、c,如果(a﹣5)2+|b﹣12|+(c﹣13)2=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形6.如图的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定7.下列计算中正确的是()A.a3•a3=2a3B.a3•a3=a3C.a3•a3=a6D.a3•a3=2a68.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD9.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060二.填空题(共5小题,满分15分,每小题3分)11.命题“对顶角相等”的逆命题是.12.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为.成绩优良及格不及格频数102215313.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.14.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是.15.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC为半径画弧,交线段AB于点D;以点A为圆心,AD 长为半径画弧,交线段AC于点E.设BC=a,AC=b,若AD=EC,则a=(用含b的式子表示).三.解答题(共8小题,满分75分)16.(1)计算:(8x3y2﹣4x2y2)÷(﹣2x2y)﹣2x(1﹣2y)(2)计算:(3)因式分解:4a2﹣3b(4a﹣3b).17.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=318.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.19.如图,已知∠AOB内两点M,N,求作点P到∠AOB的两边距离相等且PM=PN.20.为调查市民上班时最常用的交通工具的情况,随机抽取了四个城市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭轿车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民;(2)扇形统计图中,C组对应的扇形圆心角是;并补全条形统计图;(3)计算四个城市中10000名市民上班时最常用家庭轿车的有多少?21.如图,在长方形ABCD中,已知AB=8cm,BC=10cm,将AD沿直线AF折叠,使点D落在BC的点E处,求CF的长.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.【感知】小亮遇到了这样一道题:已知如图①在△AB C中,AB=AC,D在AB上,E在AC的延长线上,DE 交BC于F,且DF=EF,求证:BD=CE,小亮仔细分析了题中的已知条件后,如图②过D点作DG∥AC交BC 于G,进而解决了该问题.(不需证明)【探究】如图③,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论.【应用】如图④,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=,∠GEF=90°,则GF的长为.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.2.解:余下的部分的面积为(2a+b)(2a﹣b)﹣b(a﹣b)=4a2﹣b2﹣ab+b2=4a2﹣ab,故选:B.3.解:A、有一组邻边相等的矩形是正方形,正确,不合题意;B、在反比例函数中,每个象限内,y随x的增大而减小,故原说法错误,符合题意;C、顺次连接矩形各边中点得到的四边形是菱形,正确,不合题意;D、如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°,正确,不合题意;故选:B.4.解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.5.解:∵(a﹣5)2+|b﹣12|+(c﹣13)2=0,∴a﹣5=0,b﹣12=0,c﹣13=0,∴a=5,b=12,c=13,∵52+122=132,∴a2+b2=c2,∴△ABC是以c为斜边的直角三角形.故选:C.6.解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选:D.7.解:A、结果是a6,故本选项不符合题意;B、结果是a6,故本选项不符合题意;C、结果是a6,故本选项符合题意;D、结果是a6,故本选项不符合题意;故选:C.8.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.9.解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BD A=∠AEC,故①正确∵∠DOF=∠AOE,∴∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠EAF=∠BAF,∵∠AFE=∠AFB,∴∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.解:∵第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,∴第n个图形需要围棋子的枚数=5+3(n﹣1)=3n+2,∴第2018个图形需要围棋子的枚数=3×2018+2=6056,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.12.解:成绩为“良”的频率为=0.44;故答案为:0.44.13.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.14.解:只要把长方体的右侧表面剪开与前面这个面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为:25厘米15.解:由作图可知:AD=AE,BC=BD=a,∵AD=EC,∴AE=EC=AD=b,∵∠C=90°,∴AB2=AC2+BC2,∴(b+a)2=a2+b2,整理得:b2=ab,∴b≠0,∴a=b,故答案为b.三.解答题(共8小题,满分75分)16.解:(1)原式=﹣4xy+2y﹣2x+4xy=2y﹣2x;(2)原式=+1+2﹣﹣3=0;(3)原式=4a2﹣12ab+9b2=(2a﹣3b)2.17.解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.18.(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.19.解:如图,点P即为所求.20.解:(1)本次调查中,调查的市民总人数为800÷40%=2000(名),故答案为:2000;(2)∵C组的人数为2000﹣(100+800+200+300)=600(名),∴C组对应的扇形圆心角是360°×=108°,补全条形统计图如下:故答案为:108°;(3)四市中10000名市民上班时最常用家庭轿车的有10000×=1000(人).21.解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADF≌Rt△AEF,∴∠AEF=90°,AE=10cm,EF=DF,设CF=xcm,则DF=EF=CD﹣CF=(8﹣x)cm,在Rt△ABE中由勾股定理得:AB2+BE2=AE2,即82+BE2=102,∴BE=6cm,∴CE=BC﹣BE=10﹣6=4(cm),在Rt△ECF中,由勾股定理可得:EF2=CE2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即CF=3cm.故答案为:3cm.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大23.【探究】解:AB=AF+CF.如图1,分别延长DC、AE,交于G点,∵AB∥DC,∴∠B=∠GCE,∠BAE=∠EGC,∵E为BC边的中点,∴BE=CE,∴△ABE≌△GCE(AAS),∴AB=CG,又∵AB∥DC,∴∠BAE=∠G而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴AB=CG=GF+CF=AF+CF.【应用】解:如图2,延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM(AAS),∴GE=EM,AG=BM=1,∵EF⊥MG,∴FG=FM,∵BF=,∴MF=BF+BM=1+,∴GF=FM=+1.故答案为:.。

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150°B.210°C.105°D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为().A. 1B. 2C. 5D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一B.等腰三角形两底角相等C.等腰三角形两腰相等D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是.15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E >90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE =1BE=1.27. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm. 10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF=x,EF=y,则有x+1+3=x+y+2=3+3+2=8所以x=4,y=2,六边形ABCDEF的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P在正方形的边AB上时,Rt△OCD≌Rt△OAP,∴OD=AP,∵点D 是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P(2,4).三.解答题17.【解析】证明:如图所示,在AC上取点F,使AF=AE,连接OF,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ).∴ ∠EOA =∠FOA .∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA)=180°-12(180°-60°)=120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°,∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC .∴AD 平分∠BAC .∴∠2=21∠BAC =3021⨯=15°.∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°,∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE .∴DN =NM .∴BN -DN =NE -NM ,即 BD =ME .∵DB =DC ,∴ME =DC .19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ;第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G ,过点F 作DH⊥DE 交DE 的延长线于点H ,∵∠B=∠E,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL ),∴∠A=∠D,在△ABC 和△DEF 中,, ∴△ABC≌△DEF(AAS ).20.【解析】证明:问题1:21,2 ; 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图) ∵AD 平分∠BAC ,∴∠1=∠2.在△AGD 和△ACD 中,AG AC 12 A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD ≌△ACD .∴DG =DC .∵△BGD 中,BD -DG <BG ,∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC .(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°.∴∠5 =∠3.在△BGD 和△ECD 中,53DB DE DG DC =⎧⎪∠∠⎨⎪=⎩=,∴△BGD ≌△ECD .∴∠B =∠6.∵△BFC 中,∠BFC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°.。

2022-2023学年华东师大版八年级上期末复习数学试卷含答案解析

2022-2023学年华东师大版八年级上期末复习数学试卷含答案解析

2022-2023学年华东师大新版八年级上数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.若=x﹣1成立,则x满足()A.x≥0B.x≥1C.x≤1D.x<12.已知:a m=﹣3,a n=2,则a m+n=()A.﹣1B.﹣5C.6D.﹣63.在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为()A.9B.8C.7D.64.下列各组数中,不能作为一个直角三角形的三边长的是()A.3,4,5B.8,6,10C.5,12,17D.9,40,415.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9B.9或13C.10D.10或126.如图,在Rt△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径画弧,两弧分别相交于AB两侧的M,N两点,直线MN交AB于点D,交AC于点E.若∠B=55°,则∠CBE=()A.20°B.35°C.55°D.65°7.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BEC;④∠PEC =∠PCE,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.一个数a与这个数的的差可以表示为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.我们用符号[x]表示一个不大于实数x的最大的整数,如:[2.78]=2,[﹣0.23]=﹣1,则按这个规律,[﹣1﹣]=.10.把多项式3x3﹣12x分解因式的结果是.11.以下4个命题:①三角形的一条中线将三角形分成面积相等的两部分;②三角形的三条高所在的直线的交点一定在三角形的内部;③多边形的所有内角中最多有3个锐角;④△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形.其中真命题的是.(填序号)12.如图,已知在Rt△ABC中,∠ACB=90°,AB=3,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.13.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=.14.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为.三.解答题(共10小题,满分78分)15.(6分)已知x、y是有理数,且(4+)x+(3﹣3)y=4+,求x,y的值.16.(6分)化简求值:(1)[(a+b)2﹣(a﹣b)2]÷(﹣4ab)(2)已知x﹣2y=﹣3,求(x+2)2﹣6x+4y(y﹣x+1)的值17.(6分)某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=.n=.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?18.(7分)如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE﹣AC.19.(7分)如图,某花园护栏是用直径为100厘米的半圆形条钢制成,且每增加一个半圆形条钢,护栏长度就增加a(a>0)厘米,设半圆形条钢的总个数为x(x为正整数).(1)当a=70,x=3时,护栏总长度为厘米;(2)当a=80时,用含x的代数式表示护栏总长度(结果要求化简);(3)在(2)的条件下,当护栏总长度为2020厘米时,求半圆形条钢的总个数.20.(7分)已知:如图,四边形ABCD中,AB∥CD,AM平分∠DAB,DM平分∠ADC,点M恰好在BC 上.(1)求证:AM⊥DM;(2)若M是BC的中点,猜想AD、AB、CD之间有何数量关系?请证明你的结论.21.(8分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.22.(9分)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E为线段CD上一点(不含端点),连接AE,设F为AE的中点,作CG⊥CF交直线AB于点G.(1)猜想:线段AG、BC、EC之间有何等量关系?并加以证明;(2)如果将题设中的条件“E为线段CD上一点(不含端点)”改变为“E为直线CD上任意一点”,试探究发现线段AG、BC、EC之间有怎样的等量关系,请直接写出你的结论,不用证明.24.(12分)实践操作:在矩形ABCD纸片中,AB=8,AD=4,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.初步思考:(1)若点P落在矩形ABCD的边AB上(如图①).①当点P与点A重合时,∠DEF=°;当点E与点A重合时,∠DEF=°;②当点E在AB上,点F在DC上(如图②),AP=6时,求EP的长;深入探究:(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接写出AP的最小值;拓展延伸:(3)若点F与点C重合,点E在AD上,边AB与CP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请求线段AE的长度;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵=x﹣1,∴x﹣1≥0,解得:x≥1.故选:B.2.解:因为a m=﹣3,a n=2,所以a m+n=a m•a n=(﹣3)×2=﹣6.故选:D.3.解:根据题意,第四组的频数为40﹣(2+7+11+12)=8,故选:B.4.解:A、∵32+42=52,∴能够成直角三角形,故本选项错误;B、∵62+82=102,∴能够成直角三角形,故本选项错误;C、∵52+122≠172,∴不能够成直角三角形,故本选项正确;D、∵92+402=412,∴能够成直角三角形,故本选项错误.故选:C.5.解:设等腰三角形的底边长为x,腰长为y,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故选:B.6.解:如图,连接BE,∵∠C=90°,∠B=55°,∴∠A=35°,据作图过程可知:ED是AB的垂直平分线,∴EA=EB,∴∠A=∠EBA=35°,∴∠CBE=55°﹣35°=20°.故选:A.7.解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BEC(三线合一),故②③正确,∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,故①正确,④无法证明,故选:C.8.解:一个数a与这个数的的差可以表示为a﹣a=a.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:∵2<<3,∴﹣4<﹣1﹣<﹣3,∴[﹣1﹣]=﹣4.故答案为:﹣4.10.解:3x3﹣12x=3x(x2﹣4)=3x(x﹣2)(x+2).故答案为:3x(x﹣2)(x+2).11.解:①三角形的一条中线将三角形分成面积相等的两部分,正确,是真命题;②三角形的三条高所在的直线的交点一定在三角形的内部,错误,钝角三角形三条高的交点在三角形的外部,是假命题;③多边形的所有内角中最多有3个锐角,正确,是真命题;④△ABC中,若∠A=2∠B=3∠C,则△ABC不是直角三角形,故错误,是假命题;真命题有①③,故答案为:①③.12.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=.故答案为:13.解:设∠A=x°,∵BD=AD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,∵在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°,故本题答案为:36°.14.解:根据勾股定理分两种情况:(1)当第三边为斜边时,第三边长==2;(2)当斜边为6时,第三边长==4;故答案为:2或4.三.解答题(共10小题,满分78分)15.解:因为(4+)x+(3﹣3)y=4+,所以(4x+3y)+(x﹣3y)=4+,所以,解得.故x,y的值分别是1,0.16.解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷(﹣4ab)=4ab÷(﹣4ab)=﹣1;(2)原式=x2+4x+4﹣6x+4y2﹣4xy+4y=(x﹣2y)2﹣2(x﹣2y)+4,当x﹣2y=﹣3时,原式=9+6+4=19.17.解:(1)22÷0.11=200人,m=200×0.42=84(人),n=66÷200=0.33,故答案为:84,0.33;(2)“其它”的频数为:200﹣84﹣22﹣66=28(人),频率为:28÷200=0.14,因为“文学”占比最高,因此“文学”读物最受学生欢迎,“艺术”读物占比最小,仅为11%,因此“艺术”读物受欢迎程度最小,(3)“文学”读物:3000×0.42=1260本,“艺术”读物:3000×0.11=330本,“科普”读物:3000×0.33=990本,“其它”读物:3000×0.14=420本,因此,在购书时,“文学”类的读物购买1260本,“艺术”类的读物购买330本,“科普”类的读物购买990本,“其它”类读物购买420本.18.证明:∵AC∥BE,∴∠C=∠CBE,∠ABE+∠A=180°,∵∠CDE+∠BDE=180°,∵∠ABE=∠CDE,∴∠A=∠BDE,在△ABC与△DEB中,∴△ABC≌△DEB(AAS),∴BC=BE,BD=AC,∵BC﹣BD=DC,∴DC=BE﹣AC.19.解:(1)由题意得,护栏总长度为[100+a(x﹣1)]厘米,当a=70,x=3时,原式=100+70×(3﹣1)=240.故答案为:240;(2)当a=80时,护栏总长度为100+80(x﹣1)=(80x+20)厘米;(3)由题意得80x+20=2020,解得x=25.故半圆形条钢的总个数是25.20.证明:(1)∵AB∥CD,∴∠CDA+∠DAB=180°.∵AM平分∠DAB,DM平分∠ADC,∴∠ADM=∠ADC,∠DAM=∠DAB,∴∠ADM+∠DAM=(∠CDA+∠DAB)=×180°=90°,∴∠AMD=90°,∴AM⊥DM;(2)AD=CD+AB.理由:如图2,延长DM、AB相交于点F,∵M是BC的中点,∴CM=BM.∵AB∥CD,∴∠C=∠B,∠CDM=∠F.在△DCM和△FBM中,,∴△DCM≌△FBM(AAS),∴CD=BF,DM=FM.∵AM⊥DM,∴AD=AF.∵AF=AB+BF,∴AF=AB+CD,∴AD=AB+CD.21.解:如图所示:即为符合条件的三角形.22.解:如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t==24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.解:(1)结论:AG=BC+EC.理由:如图1中,延长CF到M,使得FM=CF.∵AF=EF,∠AFM=∠EFC,FM=FC,∴△AFM≌△EFC(SAS),∴EC=AM,∠M=∠ECF,∵GC⊥CF,∴∠GCF=∠ACB=90°,∴∠ACM=∠BCG,∵CD⊥AB,∴∠G+∠GCD=90°,∠GCD+∠ECF=90°,∴∠G=∠ECF=∠M,∵CA=CB,∴△ACM≌△BCG(AAS),∴AM=BG,∴EC=BG,∵CA=CB,∠ACB=90°,∴AB=BC,∴AG=AB+BG=BC+EC.(2)①如图2﹣1中,当点E在线段DC的延长线上时,AG=|BC﹣EC|.理由:延长CF到H,使得FH=CF.同法可证,△AFH≌△EFC(SAS),△ACH≌△BCG(AAS),∴EC=AH,AH=BG,∵AB=BC,∴AG=|BC﹣EC|.②如图2﹣2中,当等E在线段CD的延长线上时,AG=BC+CE.证明方法类似(1).24.解:(1)①当点P与点A重合时,如图1:∴EF是AD的中垂线,∴∠DEF=90°,当点E与点A重合时,如图2,此时∠DEF=∠DAB=45°,故答案为:90,45;②当点E在AB上,点F在DC上时,如图3,∵EF是PD的中垂线,∴DO=PO,EF⊥PD,∵四边形ABCD是矩形,∴DC∥AB,∴∠FDO=∠EPO,∵∠DOF=∠EOP,∴△DOF≌△POE(ASA),∴DF=PE,∵DF∥PE,∴四边形DEPF是平行四边形,∵EF⊥PD,∴▱DEPF为菱形,当AP=6时,设菱形的边长为x,则AE=6﹣x,DE=x,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴42+(6﹣x)2=x2,x=4,∴当AP=6时,菱形的边长为4;(2)若点P落在矩形ABCD的内部,且点E、F分别在AD、DC边上,如图4,设DF=PF=x,则AF=,当A,P,F在一直线上时,AP最小,最小值为,所以当x最大取8时,AP最小值为4﹣8;(3)情况一:如图5,连接EM,∵DE=EP=AM,在Rt△EAM与Rt△MPE中,,∴Rt△EAM≌Rt△MPE(HL),设AE=x,则AM=DE=4﹣x,则BM=x+4,∵MP=EA=x,CP=CD=8,∴MC=8﹣x,∴(x+4)2+42=(8﹣x)2,解得:x=;情况二,如图6,∵DE=EP=AM,在△GAM与△GPE中,,∴△GAM≌△GPE(AAS),设AE=x,则DE=4﹣x,则AM=PE=DE=4﹣x,MP=AE=x,则MC=MP+PC=x+8,BC=4,BM=12﹣x,∴(12﹣x)2+42=(x+8)2,解得:x=4.。

华东师大版八年级数学上册期末考试(全面)

华东师大版八年级数学上册期末考试(全面)

华东师大版八年级数学上册期末考试(全面) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________. 2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.若m+1m =3,则m 2+21m=________. 4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=. (1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、D5、D6、D7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、x1≥.3、74、2≤a+2b≤5.5、96、40°三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)见解析;(2)经过,理由见解析4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、CD的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册期末考试(全面)

华东师大版八年级数学上册期末考试(全面)

华东师大版八年级数学上册期末考试(全面)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( ) A .10 B .14 C .20 D .22二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.函数32y x x =-+x 的取值范围是__________. 3x 2-x 的取值范围是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、A7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、23x -<≤3、x 2≥4、﹣2<x <256、8三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、3x3、(1)102b -≤≤;(2)2 4、略.5、CD 的长为3cm.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

华东师大版八年级数学上册同步练习题及答案全套

华东师大版八年级数学上册同步练习题及答案全套

12.1.1 平方根(第一课时)◆随堂检测1、若x 2= a ,则 叫 的平方根,如16的平方根是 ,972的平方根是 2、3±表示 的平方根,12-表示12的 3、196的平方根有 个,它们的和为 4、下列说法是否正确?说明理由 (1)0没有平方根; (2)—1的平方根是1±; (3)64的平方根是8; (4)5是25的平方根; (5)636±= 5、求下列各数的平方根(1)100 (2))8()2(-⨯- (3)1.21 (4)49151◆典例分析例 若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是( )A 、49B 、441C 、7或21D 、49或441 2、2)2(-的平方根是( )A 、4B 、2C 、-2D 、2± 二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是 三、解答题6、a 的两个平方根是方程3x+2y=2的一组解 (1) 求a 的值 (2)2a 的平方根7、已知1-x +∣x+y-2∣=0 求x-y 的值● 体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有 个3、(08荆门)下列说法正确的是( )A 、64的平方根是8B 、-1 的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根12.1.1平方根(第二课时)◆随堂检测1、259的算术平方根是 ;___ __ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是 ,若a ≥04、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根 C 、164的算术平方根是18 D 、0.4的算术平方根是0.02◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2 )A 、4B 、4±C 、2D 、2± 二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 2a +2b 的值6、已知a b-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是 ;若a<57<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2 立方根◆随堂检测1、若一个数的立方等于 —5,则这个数叫做—5的 ,用符号表示为 ,—64的立方根是 ,125的立方根是 ; 的立方根是 —5.2、如果3x =216,则x = . 如果3x =64, 则x = .3、当x 为 时,.4、下列语句正确的是( )A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32± D 、2)1(-立方根是1- 典例分析例 若338x 51x 2+-=-,求2x 的值.◆课下作业●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是( )A 、0B 、12-C 、0或12-D 、0或12或12- 2、若式子3112a a -+-有意义,则a 的取值范围为( )A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343 (2)64631)1(3-=-x6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是( )A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A 、4~5cm 之间 B 、5~6cm 之间 C 、6~7 cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个. 2、33-的相反数是 ,|33-|=57-的相反数是 ,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a| |b|;大于17小于35的整数是 ; 比较大小:3 5 5、下列说法中,正确的是( )A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例: 设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、 如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )A .2-1B .1-2C .2-2D .2-2 2、设a 是实数,则|a|-a 的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数 二、填空C A 0 B3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m = 三、解答题5、比较下列实数的大小(1)|8-| 和3 (2)52- 和9.0- (3)215-和876、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.● 体验中考2.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A.2- B.1-C.2-+D.1+3.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A . 2-B . 2C . 12D . 12-(第46题图)0 (第8题图)§13.1 幂的运算1. 同底数幂的乘法试一试(1) 23×24=( )×( )=2();(2) 53×54=5(); (3) a 3·a 4=a ().概 括:a m ·a n =( )( )= =a n m +.可得 a m ·a n =a n m +这就是说,同底数幂相乘, .例1计算:(1) 103×104; (2) a ·a 3; (3) a ·a 3·a 5.练习1. 判断下列计算是否正确,并简要说明理由.(1) a ·a2=a 2;(2) a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2. 计算:(1) 102×105; (2) a 3·a 7; (3) x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+同底数幂的乘法练习题1.计算: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5((7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+;(3)nnny y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+. 4.选择题: (1)22+m a可以写成( ).A .12+m aB .22a am+ C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯= B .443)3(=- C .4433=- D .3443= (3)下列计算正确的是( ).A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅2. 幂的乘方根据乘方的意义及同底数幂的乘法填空:(1) (23)2= × =2();(2) (32)3= × =3();(3) (a 3)4= × × × =a ().概 括(a m )n = (n 个)= (n 个)=a mn 可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方, .例2计算:(1) (103)5;(2) (b 3)4.练习 1. 判断下列计算是否正确,并简要说明理由.(1) (a 3)5=a 8;(2) a 5·a 5=a 15;(3) (a 2)3·a 4=a 9.2. 计算:(1)(22)2; (2)(y 2)5; (3)(x 4)3; ( 4)(y 3)2·(y 2)3.3、计算:(1)x·(x2)3 (2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8 (5)[(a -b )n ] 2 [(b -a )n -1] 2(6)[(a-b)n] 2 [(b-a)n-1] 2 (7)(m3)4+m10m2+m·m3·m8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m)n= ___(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。

华东师大版八年级上册数学全册综合检测一

华东师大版八年级上册数学全册综合检测一

八年级上册数学全册综合检测一姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.下列各数中,最小的数是()A. 3﹣2B.C.D.2.正方形具有而菱形不一定具有的性质是()A. 对角线互相垂直B. 对角线互相平分C. 对角线相等D. 对角线平分一组对角3.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个30°的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段4.可以写成()A. B. C. D.5.在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上).这个等腰三角形有几种剪法?()A. 1B. 2C. 3D. 46.如图,在△ABC中,∠ABC=45°,AC=5,F是高AD和BE的交点,则BF的长是()A. 7B. 6C. 5D. 47.有一列数如下排列,,,,,…,则第2015个数是()A. B. C. D.8.﹣2的值在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间9.一张长为4a厘米矩形纸片的面积为(8a2b+4a)平方厘米,则此矩形的宽为()A. (2ab+1)厘米B. 8a2b厘米C. (4ab+2)厘米D. (4a2b-2a)厘米10.已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+36,则m可以取的值共有()个?A. 0B. 5C. 10D. 1511.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A. 100B. 120C. 140D. 16012.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A. 5个B. 4个C. 3个D. 2个二、填空题(共10题;共30分)13.化简:(2a2)3=________14.两个实数在数轴上对应点的位置如图所示,则a________ b.(填“>”、“<”或“=”)15.如图,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的是________16.如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=________.17.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为________.18.如图,在△ABC中,AC=10cm,DE是AB的中垂线,△BDC的周长为16cm,则BC的长为________.19.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为________.20.在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=________。

_华东师大版八年级上册数学期末复习综合试卷

_华东师大版八年级上册数学期末复习综合试卷

2020-2021学年华东师大新版八年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.一个正数a的平方根是2x﹣3与5﹣x,则这个正数a的值是()A.25B.49C.64D.812.下列实数中,无理数是()A.B.3πC.D.3.下列计算中正确的是()A.b3•b2=b6B.x3+x3=x6C.a2÷a2=0D.(﹣a3)2=a6 4.如图,是根据某市2014年至2018年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中判断错误的是()A.2014年至2018年工业生产总值逐年增加B.2018年的工业生产总值比前一年增加了40亿元C.2016年与2017年每一年与前一年比,其增长额相同D.2015年至2018年,每一年与前一年比,2018 年的增长率最大5.下列各组数是勾股数的一组是()A.6,7,8B.1,,2C.5,12,13D.0.3,0.4,0.56.如图,数轴上的A、B、C、D四点中与表示数﹣的点最接近的是()A.点D B.点C C.点B D.点A7.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个8.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是()A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=89.下列命题中,是假命题的是()A.过直线外一点,有且只有一条直线与已知直线平行B.一个三角形中至少有两个锐角C.两直线平行,同位角相等D.相等的角是对顶角10.一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.32二.填空题(共6小题,满分24分,每小题4分)11.计算:+=.12.等腰△ABC周长为16cm,其中两边长的差为2cm,则腰长为cm.13.一组数据中共有40个数,其中53出现的频率为0.3,则这40个数中,53出现的频数为.14.如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=.15.若x+y=3且xy=1,那么代数式x2﹣2xy+3y=.16.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当∠BAD=30°时,BD=CE;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的结论是(把你认为正确结论的序号都填上).三.解答题(共9小题,满分86分)17.计算:(1)2a2•a4+(﹣3a3)2﹣3a6;(2)x(x﹣1)﹣2x(5﹣2x).18.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).19.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.20.如图,四边形ABCD的对角线AC、BD相交于点O,OA=OB,OC=OD.求证:(1)AB∥CD;(2)△ABC≌△BAD.21.班长小李对他所在班级(八年级2班)全体同学的业余兴趣爱好进行了一次调查,据采集到的数据绘制了下面的统计图表,根据调查他想写一个调查报告交给学校,建议学校根据学生的个人兴趣爱好,适当的安排一些特长培养或合理安排学生在校期间的课余活动,请你根据图中提供的信息,帮助小李完成信息采集.(1)该班共有学生人;(2)在图1中,请将条形统计图补充完整;(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数度;(4)求爱好“书画”的人数占该班学生数的百分数.22.如图,在铁路线CD附近有两个村庄A,B,到铁路的距离分别是2km和1km,作AC ⊥CD,BD⊥CD,垂足分别为C、D,且CD=4km.现在要在铁路线旁建一个农副产品收购站E,使A、B两村到E站的距离相等.(1)请利用尺规作图确定站E的位置.(不写作法,保留作图痕迹)(2)求出CE长度.23.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.24.如图,已知点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在BC上,求证:△ABC是等腰三角形;(2)如图②,若点O在△ABC内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC还成立吗?请画图说明.25.如图,在△ABC中,AB=AC,∠BAC=90°,BC=14,过点A作AD⊥BC于点D,E 为腰AC上一动点,连接DE,以DE为斜边向左上方作等腰直角△DEF,连接AF.(1)如图1,当点F落在线段AD上时,求证:AF=EF;(2)如图2,当点F落在线段AD左侧时,(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在点E的运动过程中,若AF=,求线段CE的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:由正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,解得x=﹣2,所以5﹣x=5﹣(﹣2)=7,所以a=72=49.故选:B.2.解:A、是有理数,不合题意;B、3π是无理数,符合题意;C、﹣=﹣2是有理数,不合题意;D、=3是有理数,不合题意;故选:B.3.解:b3•b2=b5,故选项A不合题意;x3+x3=2x3,故选项B不合题意;a2÷a2=1,故选项C不合题意;(﹣a3)2=a6,正确,故选项D符合题意.故选:D.4.解:A、2014年至2018年工业生产总值逐年增加,正确,不符合题意;B、2018年的工业生产总值比前一年增加了:100﹣60=40亿元,正确,不符合题意;C、2016年与2017年每一年与前一年比,其增长额相同,都增长了20亿元,正确,不符合题意;D、从2015年至2018年,每一年与前一年比,2018 年比前一年增长最多,增长率不最大,故D符合题意;故选:D.5.解:A、62+72≠82,不是勾股数,不合题意;B、不是正整数,不是勾股数,此选项不合题意;C、52+122=132,三边是整数,同时能构成直角三角形,故是勾股数,此选项符合题意;D、0.3,0.4,0.5,都不是正整数,不是勾股数,此选项不合题意.故选:C.6.解:∵<<,∴1<2,则﹣2<﹣<﹣1,又被开方数3离4更接近,∴﹣更接近于﹣2,故选:C.7.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.8.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∠A=∠D=60°,AB=DE=8,∴∠F=180°﹣∠E﹣∠D=70°,故选:C.9.解:A、过直线外一点,有且只有一条直线与已知直线平行,是真命题,故此选项不合题意;B、一个三角形中至少有两个锐角,是真命题,故此选项不符合题意;C、两直线平行,同位角相等,是真命题,故此选项不合题意;D、相等的角是对顶角,是假命题,故此选项符合题意;故选:D.10.解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB==25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=5﹣3=2.故答案为:2.12.解:设等腰△ABC的腰为xcm,底边为(x+2)cm,∴2x+x+2=16,∴x=,x+2=,且能构成三角形,∴腰长为cm,设等腰△ABC的腰为xcm,底边为(x﹣2)cm,∴2x+x﹣2=16,∴x=6,x﹣2=4,且6,6,4能构成三角形,∴腰长为6cm,综合以上可得腰长为6cm或cm.故答案为:或6.13.解:∵样本数据容量为40,“53”出现的频率为0.3,∴这一组的频数=40×0.3=12.故答案为:12.14.解:∵△ABC为锐角三角形,∴高AD和BE在三角形内.∵高AD和BE交于点H,∴∠ADC=∠BEC=90°.∵∠EBD+∠BHD=90°,∠AHE+∠HAE=90°,∠BHD=∠AHE,∴∠EAD=∠EBD,又∵BH=AC,∠ADC=∠BDH=90°,∴△BDH≌△ADC(AAS),∴BD=AD,∵∠ADB=90°,∴∠ABC=45°.故答案为45°15.解:∵x+y=3,∴x=3﹣y,∴x2﹣2xy+3y,=(3﹣y)x﹣2xy+3y,=3x﹣xy﹣2xy+3y,=3(x+y)﹣3xy,∵xy=1,∴原式=3×3﹣3×1=6.故答案为:6.16.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴D E⊥AC,故②正确;③∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=C E;故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,故④错误,故答案为:①②③.三.解答题(共9小题,满分86分)17.解:(1)2a2•a4+(﹣3a3)2﹣3a6;=2a6+9a6﹣3a6=8a6;(2)x(x﹣1)﹣2x(5﹣2x)=x2﹣x﹣10x+4x2=5x2﹣11x.18.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).19.解:原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当,时,原式===.20.(1)证明:∵OA=OB,OC=OD,∴∠OAB=∠OBA,∠OCD=∠ODC,∵∠COD=∠AOB,∠OAB+∠OBA+∠AOB=180°,∠OCD+∠ODC+∠COD=180°,∴∠OAB=∠OBA=∠OCD=∠ODC,即∠OAB=∠OCD,∴AB∥CD;(2)∵OA=OB,OC=OD,∴AC=BD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS).21.解:(1)该班共有学生14÷35%=40(人)故答案为:40;(2)选择书画的人数为:40﹣(14+12+4)=10(人),补全条形统计图如图所示:(3)在图2中,“音乐”部分所对应的圆心角的度数为,故答案为:108;(4)爱好“书画”的人数占本班学生数的百分比是:.22.解:(1)如图所示:点E即为所求;(2)连接AE、BE,设CE=xkm,则DE=(4﹣x)km,∵AC⊥CD,BD⊥CD,∴△ACE和△BDE都是直角三角形,在Rt△ACE中,AE2=22+x2,在Rt△BDE中,BE2=12+(4﹣x)2由(1)得:AE=BE,∴22+x2=12+(4﹣x)2,解得:,∴E点在距离C点处.23.解:(1)图①被分割的四个小长方形的长为m,宽为n,拼成的图②整体是边长为m+n 的正方形,中间是边长为m﹣n的小正方形,故答案为:m﹣n;(2)方法一:阴影部分是边长为m﹣n的正方形,因此面积为(m﹣n)2,方法二:大正方形的面积减去四个长方形的面积,即(m+n)2﹣4mn,故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)由(2)得,(m﹣n)2=(m+n)2﹣4mn;答:(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系为(m﹣n)2=(m+n)2﹣4mn;(4)由(3)得,(x﹣y)2=(x+y)2﹣4xy,所以(x﹣y)2=92﹣4×18=9,因此x﹣y=3或x﹣y=﹣3,答:x﹣y的值为3或﹣3.24.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,∠OEB=∠OFC=90°,在Rt△OEB和Rt△OFC中,,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC.(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)25.(1)证明:∵AB=AC,∠BAC=90°,AD⊥BC,∴∠CAD=45°,∵△EFD是等腰直角三角形,∴∠EFD=∠AFE=90°,∴∠AEF=180°﹣∠CAD﹣∠AFE=45°,∴∠EAF=∠AEF,∴AF=EF;(2)解:当点F落在线段AD左侧时,(1)中结论AF=EF仍然成立,理由如下:如图2,取AC的中点G,连接DG,FG,在Rt△ADC中,∴DG=CG=AG,∴∠GDC=∠C=45°,∴∠DGC=90°,∴△DGC是等腰直角三角形,∵△DFE是等腰直角三角形,∴=,∵∠FDG=∠FDE+∠EDG=45°+∠EDG,∠EDC=∠GDC+∠EDG=45°+∠EDG,∴∠FDG=∠EDC,∴△FDG∽△EDC,∴∠FGD=∠ECD=45°,∴∠FGA=45°,在△FGA和△FGD中,,∴△FGA≌△FGD(SAS),∴AF=DF,∵DF=EF,∴AF=EF;(3)在Rt△ABC中,BC=14,D是BC中点,∴AD=7,取AC的中点G,连接DG,FG,设直线FG与AD相交于点P,由(2)可知∠FGD=45°=∠GDC,∴FG∥DC,∴GP⊥AD且AP=DP=PG=AD=,在Rt△APF中,AP=,AF=,∴PF===,①如图2,当点F落在线段AD左侧时,FG=4,∵△FDG∽△EDC,∴=,∴EC=4;②如图3,当点F落在线段AD的右侧时,∴FG=PG﹣PF=DP﹣PF=3.5﹣0.5=3,同理得△FDG∽△EDC,∴=,∴EC=3.综上,EC的长是4或3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 题图NDAM 华师大版八年级上册数学全册复习试题时间:100分钟 姓名:____________ 总分____________一、选择题(每小题3分,共24分)1. 81的算术平方根是 【 】 (A )9± (B )9 (C )3± (D )32. 实数14.3,1010010001.0,6,27,0,33-π中无理数的个数是 【 】(A )1 (B )2 (C )3 (D )43. 若5233=⋅m ,则m 的值是 【 】 (A )2 (B )9 (C )15 (D )274. 若()()n mx x x x -+=-+234,则n m ,的值分别是 【 】 (A )12,1=-=n m (B )12,1-=-=n m (C )12,1-==n m (D )12,1==n m5. 某校八(3)班有50名学生,他们上学的方式有三种:①步行;②骑车;③乘公共汽车.根据表中信息,下列结论错误的是 【 】(A )12,18==b a (B )%12,18==c a (C )%40,12==d b (D )%40%,24==d c 6. 如图,若NDC MBA ND MB ∠=∠=,,则添加下列 条件后不能判定△ABM ≌ △CDN 的是 【 】 (A )CN AM // (B )N M ∠=∠ (C )DB AC = (D )CN AM =7. 直角三角形的斜边长为20 cm,两条直角边长之比为3 : 4 ,那么这个直角三角形的周长为 【 】 (A )27 cm (B )30 cm (C )40 cm (D )48 cm8. 如图,在Rt △ABC 中,︒=∠90C ,按如下步骤作图:①分别以A 、B 为圆心,以大于AB 21的长为半径画弧,两弧交于M 、N ;②作直线MN ,交BC 于点D ;③连结AD .若︒=∠64ADE ,则CAD ∠的度数为 【 】 (A )︒32 (B )︒34 (C )︒36 (D )︒38第 8 题图第 13 题图优良28%及格36%16%不及格二、填空题(每小题3分,共21分)9. 两个连续整数y x ,满足y x <+<23,则=+y x __________. 10. 若()(),11,1722=-=+b a b a 则=+22b a __________.11. 因式分解:=-+-y xy y x 271832________________.12. 等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________cm. 13. 期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优等生人数为__________.14. 如图,直线l 上有三个正方形c b a 、、,若c a 、的面积分别为5和11,则b 的面积为__________.15. 如图,长方形ABCD 中,,4,10==AD AB E 为AB 的中点,在线段CD 上找一点P ,使△APE 为一个腰长为5的等腰三角形,则线段DP 的长为__________.l 第 14 题图cba第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712---+-;(2)()()()213229---+x x x .17. (12分)化简求值:(1)()()()()21122+--++-x x x x x ,其中1=x .(2)已知0322=+-x x ,求值:()()()x x x +-+-3322.18. (8分)如图,△ACB和△ECD都是等腰直角三角形,︒ECDACB,D∠90==∠为AB边上一点.(1)求证: △ACE≌△BCD;(2)若12AD,求DE的长.=BD,5=ADEB19. (8分)如图,在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠∠,.ABP==CQBPACQ(1)求证: △ABP≌△ACQ;(2)请判断△APQ的形状,并说明理由.AQPB C20. (9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行了体能测试,测试结果分为A 、B 、C 、D 四个等级,并绘制了两幅不完整的统计图,请根据图中的信息解答下列问题:等级D 等级C 等级B 等级A 等级 20%(1)本次调查一共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形统计图;(3)若该校八年级共有700名学生,请你估计该校八年级学生中体能测试结果为D 等级的学生有多少名.21. (9分)如图,在Rt △ABC 中,8,6,90==︒=∠BC AC C ,将△ABC 沿直线AD 折叠,使点C 落在AB 边上的点E 处,求CD 的长.22. (9分)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN的延长线相交于点F.(1)若△CMN的周长为15 cm,求AB的长;(2)若︒∠的度数.MFN,求MCN=∠7023. (12分)问题情景: 如图1,在等边三角形ABC 内有一点P ,,4,5==PB PA3=PC ,求BPC ∠的度数.(1)问题解决: 小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转︒60,得到了△A BP '(如图2),然后连结'PP ,请你参考小明同学的思路,求BPC ∠的度数;(3)类比迁移: 如图3,在正方形ABCD 内有一点P ,1,2,5===PC PB PA ,求BPC ∠的度数.图 1ABCP图 2图 3PCABD新华师大版八年级上册数学全册复习试题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共21分)9. 7 10. 14 11.()233--xy12. 8或613. 1014. 16 15. 3或2或8(注意:答错一个或少答一个均不给分)部分题目答案提示:15. 如图,长方形ABCD中,,4,10==ADAB E为AB的中点,在线段CD上找一点P,使△APE为一个腰长为5的等腰三角形,则线段DP的长为__________.第 15 题图解析:根据题意分类讨论如下图所示:第 15 题图三、解答题(共75分)16. 计算:(8分) (1)()()3201822712---+-解:原式()312--+= 33+=6=…………………………4分 (2)()()()213229---+x x x解:原式()()1694922+---=x x x 16936922-+--=x x x 376-=x …………………8分 17. (12分)化简求值:(1)()()()()21122+--++-x x x x x ,其中1=x .解: ()()()()21122+--++-x x x x x()2122222-+-+++-=x x x x x x21222+--+=x x x32+-=x x ………………………4分当1=x 时 原式3112+-=3=……………………………6分 (2)已知0322=+-x x ,求值:()()()x x x +-+-3322.解: ()()()x x x +-+-3322()()()3322+-+-=x x x94422-++-=x x x5422--=x x ……………………10分∵0322=+-x x ∴322-=-x x ∴原式()5222--=x x ()532--⨯=11-= ……………………12分 18. (8分)(1)证明: ∵△ACB 和△ECD 都是等腰直角三角形 ∴CB CA CD CE ==,︒=∠=∠90ACB DCE︒=∠=∠45BAC B ………………1分 ∴ACD ACB ACD DCE ∠-∠=∠-∠ ∴21∠=∠…………………………2分 在△ACE 和△BCD 中∵⎪⎩⎪⎨⎧=∠=∠=CD CE CB CA 21 ∴△ACE ≌△BCD (SAS ); ……………………………………5分 (2)由(1)可知:△ACE 和△BCD∴︒=∠=∠==453,12B BD AE ∴︒=︒+︒=∠+∠=∠9045453BAC DAE ∴△ADE 是直角三角形……………………………………6分 在Rt △ADE 中,由勾股定理得:222DE AE AD =+ ∴131252222=+=+=AE AD DE……………………………………8分 19. (8分)(1)证明: ∵△ABC 是等边三角形 ∴︒=∠=60,BAC AC AB……………………………………1分 在△ABP 和△ACQ 中∵⎪⎩⎪⎨⎧=∠=∠=CQ BP ACQ ABP AC AB ∴△ABP ≌△ACQ (SAS ); ……………………………………4分 (2)△APQ 是等边三角形……………………………………5分 理由如下: 由(1)可知:△ABP ≌△ACQ∴AQ AP =∠=∠,21……………6分 ∵︒=∠=∠+∠601BAC PAC ∴︒=∠+∠602PAC∴︒=∠60PAQ ……………………7分 在△APQ 中,∵︒=∠=60,PAQ AQ AP ∴△APQ 是等边三角形.……………………………………8分 20. (9分)解:(1)50%2010=÷(人)答:本次调查一共抽取了50名学生; ……………………………………3分 (2)164201050=---(人) ……………………………………4分补全条形统计图如图所示; ………6分 答:测试结果为C 等级的学生有16人;等级(说明:不标注数字“16”扣1分) (3)56504700=⨯(名) 答:估计D 等级的学生有56名. ……………………………………9分21. (9分)解: 由折叠可知:△ACD ≌△AED∴6,===AE AC ED CD︒=∠=∠=∠90BED AED C ∴△BDE 是直角三角形……………………………………3分 在Rt △ABC 中,由勾股定理得:222AB BC AC =+∴10862222=+=+=BC AC AB∴4610=-=-=AE AB BE ……………………………………5分 设x CD =,则x DE x BD =-=,8 ……………………………………6分 在Rt △BDE 中,由勾股定理得:222BD DE BE =+ ∴()22284x x -=+解之得:3=x∴3=CD …………………………9分 22. (9分)解: (1)∵DM 、EN 分别垂直平分AC 和BC∴CN BN CM AM ==,……………………………………2分 ∵15=++=∆CN MN CM C CMN cm ∴15=++BN MN AM∴15=AB cm;……………………4分(2)在△ACM 和△BCN 中 ∵CN BN CM AM ==, ∴2,1∠=∠∠=∠B A……………………………………5分 在四边形DCEF 中 ∵︒=∠70MFN ∴︒=︒-︒-︒-︒=∠110907090360DCE ∴︒=∠110ACB……………………………………7分 ∴︒=︒-︒=∠+∠70110180B A ∴︒=∠+∠7021…………………8分 ∴︒=︒-︒=∠4070110MCN ……………………………………9分 23. (12分) 解: (1)由旋转可知: △BPC ≌△BP′A ,︒=∠60'PBP ∴3',4'====A P PC B P PB ……………………………………2分∵︒=∠=60','PBP B P PB ∴△'PBP 是等边三角形∴4'',60'===︒=∠PB P P B P B PP ……………………………………3分 在△'APP 中,∵3',4',5===A P P P PA∴222222543''PA P P A P ==+=+ ∴△'APP 是直角三角形∴︒=∠90'P AP ……………………5分 ∴︒=︒+︒=∠1509060'A BP ∵△BPC ≌△BP′A ∴︒=∠=∠150'A BP BPC ;……………………………………6分图 2图 3D(2)如图所示,将△BPC 绕点B 逆时针旋转︒90,得到△A BP ',连结P P '. ……………………………………8分要点:可证:△P BP '为等腰直角三角形,△P AP '为直角三角形 ∴︒=︒+︒=∠1359045'A BP……………………………………11分 ∵△BPC ≌△BP′A ∴︒=∠=∠135'A BP BPC .……………………………………12分。

相关文档
最新文档