微积分的基本公式PPT
合集下载
微积分基本公式PPT课件
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
微积分基本公式优秀课件
牛顿-莱布尼茨公式
例:求 2 x 2 d x 和 2 t 2 d t
1
1
例:求 y2cosx在 x [ 0 , ] 的平均值. 2
例:连续可导函数 f (x) 有 f (a) = 3, f (b) = 5, 求
b f ( x)dx. a
积分上限函数的导数
利用牛顿—莱布尼茨公式反过来理解积分上限函数 (注:此为非正规方式)
x
(x)a f(t)dt
就是 f (x) 在 [a , b] 上的一个原函数.即:
(x)f(x) 或 (x) f(x)dx
例:函数 f (t ) = t 的积分上限函数 (x)
x
tdt
0
(x)f(x)x
原函数存在定理
x
(x )af(t)d t (x )f(x )
证:
xx
x
(xx)(x) f(t)dt f(t)dt
例:已知
f
(x)
x x2
0 x1 ,求 1 x2
2
f ( x)dx.
0
y
f (x)
O
1 2x
例:已知
x2 f (x) ex
1 x2
,求
0 x1
2
f ( x)dx.
0
牛顿-莱布尼茨公式
例:求 cos x dx 0
例:求 sin x dx
2
例:求 1 x dx 0
2
例:求 2x 1 dx 0
F(x)(x)C, x[a,b]
当 x = a 得 F(a) (a)C,
牛顿-莱布尼茨公式
a
(a )af(x )d x0 F (a )C
( x ) F ( x ) C F ( x ) F ( a )
( 人教A版)微积分基本定理课件 (共38张PPT)
2
2
答案:D
3.设 f(x)=x22-,x0,≤1x<≤x≤1,2,
则2f(x)dx 等于________. 0
解析:2f(x)dx=1x2dx+2(2-x)dx
0
0
1
=x3310 +(2x-x22)21
=13+[(2×2-222)-(2-12)]=56.
答案:56
探究一 计算简单函数的定积分
[自主梳理]
如果 f(x)是区间[a,b]上的 连续 函数,并且 F′(x) 内容 = f(x),那么bf(x)dx= F(b)-F(a)
a
符号
bf(x)dx=F(x)ba = F(b)-F(a)
a
二、定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面积为 S 下,则 1.当曲边梯形的面积在 x 轴上方时,如图(1), 则bf(x)dx= S 上.
(7)baxdx=lnaxaba (a>0 且 a≠1). a
1.计算下列定积分.
(1)1(x3-2x)dx; 0
(2)
2 0
(x+cos
x)dx;
(3
解析:(1)∵(14x4-x2)′=x3-2x,
∴1(x3-2x)dx=(14x4-x2)10 =-34. 0
2.(1)若
f(x)=x2 cos
x≤0 x-1
x>0
2.常见函数的定积分公式: (1)bCdx=Cxba (C 为常数).
a
(2)abxndx=n+1 1xn+1ba (n≠-1). (3)bsin xdx=-cos xba .
a
(4)bcos xdx=sin xba . a
(5)b1xdx=ln xba (b>a>0). a
《高数》微积分的基本公式PPT共26页
《高数》微积分的基本公式
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
课件:微积分基本公式
二、积分上限函数及其导数
设f ( x)在[a,b]上连续, x [a,b],
记 ( x) ax f (t)dt ----积分上限函数
◆积分上限函数的重要性质:
定理1 若f ( x)在[a,b]上连续,则积分上限函数
( x) ax f (t )dt在[a,b]上可导,且x (a,b)有 :
( x)
其中: I可以为任意形式的区间.
d
x
x
f (t)dt [ f (t)dt] f (x)
dx a
a
例1 已知f ( x) 0x t 2 sin tdt,求f ( x). 解 f ( x) [0x t 2 sin tdt ] x2 sin x.
例2
已知f
(
x)
x2
0
t2
sintdt,求f
证 x (a,b),
y
( x x) axx f (t )dt
( x x) ( x)
axx f (t )dt ax f (t )dt
( x) (x)
o a x x x b x
x
f (t)dt
x x
f (t)dt
x
f (t)dt
x x
f (t)dt,
a
x
a
x
由积分中值定理得:
sin x
arctan x
xf
(t )dt ,
求g( x).
思考题解答
1. 已知f ( x)在[a,b]上连续,问ax f (t )dt与xb f (u)du 是 谁 的 函 数? 它 们 在[a , b]上 可 导 吗? 如可导, 求其导数.
解: 都是x的函数; 可导;
d dx
ax
微积分基本公式与计算PPT共28页
cos x 2
1.
2
0
2
例2. 计算
e2
x ln x dx.
1
buvdxuvb
b
vudx
a
aa
解:
原式=
1 2
e2 1
lnxdx2
1[x2 lnx
e
2
e2 x2 1dx]
2
11x
1 [2e4
1
x2
e2
]
2
21
u ln x v x; u 1
x v 1 x2
2
1(3e4 1) 4
e2
21ln x 2 3 2
1
注:用凑微分法完成的积分,如果没有引入新 的变量,则上下限不必变动。 即 配元不换限
例5 计算 2 cos5 xsinxdx. 0
解 2 cos5 xsinxdx 0 2cos5 xdcosx 0
换元必换限 不换元则不换限
cos6 x 2 1 .
6
2) 必须注意换元必换限 。但计算定积分值时 原函数中的新变量不必代回 .
例2.
4
计算 0
x2 dx. 2x1
解: 令 t 2x1,则 xt21, dxtdt, 且 2当x0时,t 1; x4, t 3.∴ 原式 =
3
t
2 1 2
2 t
dt
1t
1213(t23)dt
1(1t33t) 3 22
x2 d x
[2 5
x
5 2
]
2 1
2(4 21) 5
2)利用定积分的几何意义——曲边梯形面积
若被积函数的图像是规则图形(特别是圆)时, 定积分的值就可以用对应的曲边梯形面积得到。
微积分的基本公式PPT幻灯片课件
一个原函数, 则
b a
f
(x)d x
F ( x)
b a
F (b)
于是
0 | F(x) | |
x x
f (t)dt |
xx
| f (t) | dt Mx
x
x
由夹逼定理及点 x 的任意性, 即可得 F (x) C([a,b]) .
7
定理1说明: 定义在区间[a,b] 上的 积分上限函数是连续的.
积分上限函数是否可导?
8
由 F(x x) F(x)
xx
f (t)dt,
x
如果 f (x) C([a,b]), 则由积分中值定理, 得
xx
F(x x) F(x) x f (t)dt f ( )x ,
( 在 x 与 x x 之间)
故 lim F (x x) F (x) lim f ( )x
x0
推论2 基本初等函数在其定义域内原函数存在.
推论3 初等函数在其有定义的区间内原函数存在.
17
2. 微积分基本公式
如果 f (x) C([a,b]), 则
x
f (t)dt
为 f (x) 在[a,b] 上
a
的一个原函数.
若已知 F (x) 为 f (x) 的原函数, 则有
x
a f (t)dt F (x) C0.
( x)
F(x) ( a f (t)dt ) f ((x)) (x) .
14
例3
e1 t2 d t
计算 lim x0
cos x
x2
.
解
e1 t2 d t
cos x et2 d t
《高数》微积分的基本公式PPT文档26页
《高数》微积分的基本公式
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
26
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
26
微积分基本定理_图文_图文
微积分基本定理_图文_图文.ppt
【课标要求】 1.了解微积分基本定理的内容与含义. 2.会利用微积分基本定理求函数的定积分. 【核心扫描】 1.用微积分基本定理求函数的定积分是本课的重点. 2.对微积分基本定理的考查常以选择、填空题的形式出现.
1.微积分基本定理
自学导引
连续
f(x)
F(b)-F(a)
(1)用微积分基本定理求定积分的步骤: ①求f(x)的一个原函数F(x); ②计算F(b)-F(a). (2)注意事项: ①有时需先化简,再求积分; ②f(x)的原函数有无穷多个,如F(x)+c,计算时,一般只写一个最 简单的,不再加任意常数c.
【变式1】 求下列定积分:
求较复杂函数的定积分的方法: (1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积 函数的原函数,当原函数不易求时,可将被积函数适当变形后求 解,具体方法是能化简的化简,不能化简的变为幂函数、正、余 函数、指数、对数函数与常数的和与差. (2)精确定位积分区间,分清积分下限与积分上限.
定积分的应用体现了积分与函数的内在联系,可以通过 积分构造新的函数,进而对这一函数进行性质、最值等方面的考 查,解题过程中注意体会转化思想的应用.
【题后反思】 (1)求分段函数的定积分时,可利用积分性质将其表 示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝 对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论.
2.被积函数为分段函数或绝对值函数时的正确处理方式 分段函数和绝对值函数积分时要分段去积和去掉绝对值符
号去积.处理这类积分一定要弄清分段临界点,同时对于定积分 的性质,必须熟记在心.
题型一 求简单函数的定积分 【例1】 计算下列定积分
【课标要求】 1.了解微积分基本定理的内容与含义. 2.会利用微积分基本定理求函数的定积分. 【核心扫描】 1.用微积分基本定理求函数的定积分是本课的重点. 2.对微积分基本定理的考查常以选择、填空题的形式出现.
1.微积分基本定理
自学导引
连续
f(x)
F(b)-F(a)
(1)用微积分基本定理求定积分的步骤: ①求f(x)的一个原函数F(x); ②计算F(b)-F(a). (2)注意事项: ①有时需先化简,再求积分; ②f(x)的原函数有无穷多个,如F(x)+c,计算时,一般只写一个最 简单的,不再加任意常数c.
【变式1】 求下列定积分:
求较复杂函数的定积分的方法: (1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积 函数的原函数,当原函数不易求时,可将被积函数适当变形后求 解,具体方法是能化简的化简,不能化简的变为幂函数、正、余 函数、指数、对数函数与常数的和与差. (2)精确定位积分区间,分清积分下限与积分上限.
定积分的应用体现了积分与函数的内在联系,可以通过 积分构造新的函数,进而对这一函数进行性质、最值等方面的考 查,解题过程中注意体会转化思想的应用.
【题后反思】 (1)求分段函数的定积分时,可利用积分性质将其表 示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝 对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论.
2.被积函数为分段函数或绝对值函数时的正确处理方式 分段函数和绝对值函数积分时要分段去积和去掉绝对值符
号去积.处理这类积分一定要弄清分段临界点,同时对于定积分 的性质,必须熟记在心.
题型一 求简单函数的定积分 【例1】 计算下列定积分
2-1微积分学基本定理及基本积分公式.ppt
1
0
f ( x )dx ′ = f ( x ) , ∫
d ∫ f ( x )dx = f ( x )dx
不定积分 积分再求导 先 不定积分再求导 =本身 本身
或
20
或
∫ f ′( x )dx = ∫ df ( x ) =
f ( x) + C ,
f ( x) + C .
运算法则 ② 运算法则
10
20
∫ [ f ( x ) ± g ( x ) ] dx = ∫
∫ kf ( x ) dx = k ∫
f ( x )dx ±
(可加性 (可加性) ∫ g ( x )dx , 可加性)
f ( x )dx , (齐次性) 齐次性)
∫∑k
i =1
n
i
f i ( x )dx =
∑k ∫
i =1 i
n
f i ( x )dx . 线性性质) (线性性质 (线性性质)
1
1
例2
证:(1)
≤∫
−
2 1 2
e
− x2
dx ≤ 2 ;
π 1 sin x 2 2 (2) < ∫π dx < . 2 x 2 4
例3
3∫
设 f ( x ) ∈ C[0, 1] , f ( x ) ∈ D(0, 1) ,且
1 2 f ( x )dx = 3
1]
f ( 0 ) .证: ∃ ξ∈( 0 , 1) ,使 f ′( ξ ) = 0 .
a
ξ
b
x
推广的积分中值 推广的积分中值 Thm
上可积, 若函数 f ( x ) ∈ C[ a , b ] , g ( x ) 在 [a , b] 上可积,
微积分第二版课件第二节微积分基本公式
y
y=f (x)
(x) ax f (t)dt ,
称为变上限的积分.
oa
x
bx
定理(微积分基本定理)
若函数f (x)在区间[a,b]上连续,则变上限函数
Φ(x)
x
f (t)dt
(a
x b)在[a,b]上具有导数,且
a
Φ '(x)
d dx
ax
f
(t
)dt
f (x)
(a x b).
即上限函数Φ(x)是f (x)在[a,b]上的一个原函数.
对应变上限积分函数还有变下限积分函数
(x) xb f (t)dt 对于变上(下)限积分函数也可以进行函数的复合, 由变上限积分函数导数与复合函数求导法则有结论:
若函数 (x), (x) 可微,函数 f (x) 连续,则
(1) d dx
a x
f
(t)dt
d dx
x a
f
(t
)dt
f (x)
0
cos
t
2
d
t
x2
lim
x0
2x cos 2x
x4
lim cos
x0
x4
1
1
lim
x0
0xarctan x2
tdt
.
lim
x0
arctan 2x
x
1 2
lim
x0
1
x2
1
1. 2
二、微积分基本公式
变速直线运动的路程问题
设物体作变速直线运动其路程函数为s=s(t) , 速度
函数为v=v(t) .则在时间间隔 [T1,T2 ] 内有
根据导数的定义及函 数的连续性,有
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
d
x
costdt cx o . s
a
dx a
F(x)
( xcoxsdx)? a
定积分与积分变量的记号无关.
x
(acoxdsx)cox.s
.
12
例2
设 F (x )x 2 s1 i t n 2 )d t( ,求 F (x ). 0
解 令 u x 2 ,g ( u ) u s1 i t 2 ) d n t ,则 F ( ( x ) g ( x 2 ) , 0
0 4 c2 o x d x s 1 2 s2 i x 4 0 n 1 2 (s 2 4 i s n 0 i ) n 1 2 .
.
22
例7 解
计算 1co 2xd sx. 0
去绝对 值符号(如果
是分段函数,
0 1 c2 o x d x s 0 2 c2 o x d x s则的利性用质积将分积
x x
F ( x x ) F ( x ) f( t) d t f() x , x (在 x与 xx之) 间
故 liF m (x x ) F (x ) lifm () x
x 0 x
x 0 x
条件
这说明了什么 ?
lim f()f(x) x 0
.
9
定理 2 若 f( x ) C ( a ,b [ ]则 )F ( , x ) x f( t ) d t在 [ a ,b ] a 上可,导 且 F (x ) dx f( t)d t f(x )( a x b ). d xa
F ( x ) F ( x x ) F ( x )
x x
x
x x
a f( t) d t a f( t) d t x f( t) d t
又 f( x ) R (a ,[ b ]故 )f ,( x )在 [ a ,b ]上|f有 ( x )| M .界
于 0 | F ( 是 x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
.
14
例3 解
e 1 t2 dt
计算lx im 0 coxsx2 .
1et2dt
coxe st2dt
lx i0m cox x2 s
lim1 x 0
x2
下面再看 定理 2 .
罗必达法则
limeco2sx(sinx)
x0
2x
1. 2e
(x )
( f(t)d t) f((x ))(x )
a.
分分成几个
20|coxs|dx
部分的和的 形式.)
20 2co xds x2(co x)d sx
2
2sixn0 22sixn 22.
2
.
23
不定积分、定积分
x
F(x)af(x)dx
牛顿—莱布尼茨公式 微积分基本公式
a b f(x )d x F (x )b a F (b ) F (a ).
(f(x) C ) f()a bdxF ( b ) F ( a ) f() b ( a )
的一个原函数.
若已 F(x)知 为 f(x)的原 ,则 函有 数
x
af(t)dtF(x)C 0. 令 x a ,则 0 a a f ( t ) d t F ( a ) C 0 ,故 C 0 F ( a ) .
取xb, 则得到 基本公式
b
b
a f( t) d t a f( x ) d x F ( b ) F ( a ).
积分中值定理
拉格朗日中值定理
函数的可微性
.
24
.
19
定积分的计算 问题转化为已 知函数的导函 数,求原来函数 的问题 .
.
20
例5
(sxi) nco x,s
0 2 cx o d xs sx i0 2 n si2 n s0 i n 1 .
问题的关键是如何求一个 函数的原函数.
.
21
例6
1 1 1 1 x 2 d x arx c 1 1 a ta r1 n c atra c 1 ) n t 2 .a
.
10
定理 3 若 f(x ) R (a ,[ b ]且 ), x 0 在 [ a ,b ]处 点 , 连
则 F ( x ) a x f( t ) d t在 x 0 处 点 ,且 F 可 ( x 0 ) f( x 0 导 ) .
(在端点处是指的 左右导数 )
.11例1(xcotsdt
高 等 数 学(文)
—— 一元微积分学
微积分的基本公式
.
1
第六章 定积分
第二节 微积分的基本公式
一. 积分上限函数 二. 微积分基本公式
.
2
一. 积分上限函数 (变上限的定积分)
对可f积 (x)而 函 ,每 言 数 给a,定 b值 ,就 一有 对
确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a
yf(x)
aO
xx b x
曲边梯形的面积的代数和随 x 的位置而变化。
.
5
由积分bf的 (x)dx性 a质 f(x)dx : ,有
a
b
b
x
xf(t)dtbf(t)dt,
所以,我们只需讨论积分上限函数.
bf (t)dt 称为积分下限函 . 数 x
.
6
定理 1 若 f ( x ) R ( a , b [ ]则 ) F ( x , ) x f ( t ) d t C ( a , b [ ] .) a 证 x [ a , b ] ,且 x x [ a , b ] ,则
x
x
由夹逼 x的 定 任 ,即 理 意 F 可 及 (x)性 C 得 (点 a [,b ].)
.
7
定理1说明: 定义在区[a间 ,b]上的 积分上限函数是连 . 续的
积分上限函数是否可导?
.
8
由 F (x x ) F (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
之间存在一种函数关系.
固定积分 ,让 下 积 限 分 不 ,上 则 变 限 得变 到
分上限函数:
x
x
F ( x ) a f( x ) d x a f( t) d tx [ a ,b ] .
.
3
积分上限函数的几何意义 y yf(x)
aO
xx b x
.
4
积分上限函数的几何意义 y
x
a f (x)dx
故F(x)g(u)du(usi1n t2 ()dt)(x2) dx 0
s1 i n u 2 )2 (x 2 x s1 i n x 4 ).(
这是复合函数求导, 你能由此写出它的一般形式吗?
.
13
一般地,
若 (x )可 ,f(x 导 ) C ,则
( x )
F ( x ) ( a f( t ) d t) f(( x )) ( x ) .
.
18
定理 (牛顿—莱布尼茨公) 式
若 f( x ) C (a ,b [ ]F ) ( x ) ,为 f( x ) 在 [ a ,b ] 上 一个原函,数则
a b f(x )d x F (x )b a F (b ) F (a ).
牛— 顿莱布尼茨公式 将定积分的函 计数 算的 与计 求算 原.联
推论1 若 f(x)C(I),则 f(x)在 I上原函 . 数 推论2 基本初等函数域 在内 其原 定函 义数 . 存 推论3 初等函数在其 区有 间定 内义 原的 函 . 数
.
17
2. 微积分基本公式
如 f( x ) C 果 ( a , b [ ]则 )x , f( t ) d t为 f( x ) 在 [ a , b ] 上 a
15
定理 2 若 f( x ) C ( a ,b [ ]则 )F ( , x ) x f( t ) d t在 [ a ,b ] a 上可,导 且F (x ) dx f( t)d t f(x )( a x b ). d xa
由 F(x)
x
f(t)dt
及F(x)f(x)你会想到
a
.
16
定理 若 f ( x ) C ( a , b [ ]则 )F ( , x ) x f ( t ) d t ,x [ a , b ] a 为f(x)在[a,b]上的一个原. 函数