(完整版)弹塑性力学作业(含答案)(1)
弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
弹塑性力学阶段性作业1

中国地质大学(武汉)远程与继续教育学院弹塑性力学课程作业1(共 4 次作业)学习层次:专升本涉及章节:第1章——第2章一、选择题(每小题有四个答案,请选择一个正确的结果。
)1、弹塑性力学的研究对象是。
A.刚体;B.可变形固体;C.一维构件;D.连续介质;2、弹塑性力学的研究对象是几何尺寸和形状。
A.受到…限制的物体;B.可能受到…限制的物体;C.不受…限制的物体;D.只能是…受限制的任何连续介质;3、弹塑性力学的研究的问题一般都是。
A.力学问题;B.工程问题;C.静定问题;D.静不定问题;4、固体力学分析研究的问题大多是静不定问题。
通常这类问题的求解的基本思路是_______。
A.进行受力分析、变形分析、材料力学性质三方面的研究;B.进行应力的研究、应变的研究、材料力学性质三方面的研究;C.进行受力的研究、变形的研究、功和能量间关系三方面的的研究;D. 进行受力的分析、运动分析或变形分析、力与运动之关系或力与变形之关系三方面的研究。
5. 弹塑性力学任务中的最主要、最基本任务是。
A. 建立求解固体的应力、应变和位移分布规律的基本方程和理论;B.给出初等理论无法求解的问题的理论和方法,以及初等理论可靠性与精确度的度量;C.确定和充分发挥一般工程结构物的承载能力,提高经济效益;D.为进一步研究工程结构物的强度、振动、稳定性和断裂理论等力学问题,奠定必要的理论基础。
6.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是。
A..连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,。
A.是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;B .应该慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问 题的实质影响不大的因素,使问题得以简化;C .是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相 对地加以分析和研究;D .根据具体研究对象的性质,并联系求解问题的范围,慎重、客观、相对地加以分析 和研究,全面考虑对所研究问题的实质有影响的因素,使问题得以解决;8.弹塑性力学分析研究的问题大多是静不定问题。
弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )
得
G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax
(完整版)弹塑性力学作业(含答案)(1)

(完整版)弹塑性⼒学作业(含答案)(1)第⼆章应⼒理论和应变理论2—3.试求图⽰单元体斜截⾯上的σ30°和τ30°(应⼒单位为MPa )并说明使⽤材料⼒学求斜截⾯应⼒为公式应⽤于弹性⼒学的应⼒计算时,其符号及正负值应作何修正。
解:在右图⽰单元体上建⽴xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应⼒符号均按材⼒的规定)代⼊材⼒有关公式得:代⼊弹性⼒学的有关公式得:⼰知σx = -10 σy= -4 τxy = +2由以上计算知,材⼒与弹⼒在计算某⼀斜截⾯上的应⼒时,所使⽤的公式是不同的,所得结果剪应⼒的正负值不同,但都反映了同⼀客观实事。
2—6. 悬挂的等直杆在⾃重W 作⽤下(如图所⽰)。
材料⽐重为γ弹性模量为 E ,横截⾯⾯积为A 。
试求离固定端z 处⼀点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所⽰坐标系xoz ,在距下端(原点)为z 处的c 点取⼀截⾯考虑下半段杆的平衡得:c 截⾯的内⼒:N z =γ·A ·z ;c 截⾯上的应⼒:z z N A zz A Aγσγ??===?;所以离下端为z 处的任意⼀点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的⼀段杆件在⾃重作⽤下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε==??=?=ooooV ;显然该杆件的总的伸长量为(也即下端⾯的位移):()2222ll A l lW ll d l EEAEAγγ=??===oV ;(W=γAl ) 2—9.⼰知物体内⼀点的应⼒张量为:σij =50030080030003008003001100-?? +---应⼒单位为kg /cm 2 。
试确定外法线为n i(也即三个⽅向余弦都相等)的微分斜截⾯上的总应⼒n P v、正应⼒σn 及剪应⼒τn 。
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性力学习题集_很全有答案_

1 γ xy 。 (用弹塑性力学转轴公式来证明) 2
题 2—33 图
2 — 34
设 一 点 的 应 变 分 量 为 ε x = 1.0 × 10 −4 , ε y = 5.0 × 10 −4 , ε z = 1.0 × 10 −4 ,
ε xy = ε yz = 1.0 × 10 −4 , ε zx = 3.0 × 10 −4 ,试计算主应变。
应力 τ 8 。
2 —24* 一点的主应力为: σ 1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
P8 ,正应力 σ 8 ,剪应力 τ 8 。
2—25 试求各主剪应力 τ 1 、 τ 2 、 τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b) 图中有虚线所示的剪应力 τ ′ 时,能否应用平面应力圆求解。
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
态。
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学阶段性作业1

中国地质大学(武汉)远程与继续教育学院弹塑性力学课程作业1 (共 4 次作业)学习层次:专升本涉及章节:第1章——第2章一、选择题(每小题有四个答案,请选择一个正确的结果。
)1.弹塑性力学的研究对象是。
A.刚体;B.可变形固体;C.一维构件;D.连续介质;2.弹塑性力学的研究对象是几何尺寸和形状。
A.受到…限制的物体;B.可能受到…限制的物体;C.不受…限制的物体;D.只能是…受限制的任何连续介质;3.弹塑性力学的研究的问题一般都是。
A.力学问题;B.工程问题;C.静定问题;D.静不定问题;4.固体力学分析研究的问题大多是静不定问题。
通常这类问题的求解的基本思路是_______。
A.进行受力分析、变形分析、材料力学性质三方面的研究;B.进行应力的研究、应变的研究、材料力学性质三方面的研究;C.进行受力的研究、变形的研究、功和能量间关系三方面的的研究;D. 进行受力的分析、运动分析或变形分析、力与运动之关系或力与变形之关系三方面的研究。
5. 弹塑性力学任务中的最主要、最基本任务是。
A. 建立求解固体的应力、应变和位移分布规律的基本方程和理论;B.给出初等理论无法求解的问题的理论和方法,以及初等理论可靠性与精确度的度量;C.确定和充分发挥一般工程结构物的承载能力,提高经济效益;D.为进一步研究工程结构物的强度、振动、稳定性和断裂理论等力学问题,奠定必要的理论基础。
6.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是。
A..连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,。
A.是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;B .应该慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;C .是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究;D .根据具体研究对象的性质,并联系求解问题的范围,慎重、客观、相对地加以分析和研究,全面考虑对所研究问题的实质有影响的因素,使问题得以解决;8.弹塑性力学分析研究的问题大多是静不定问题。
弹塑性力学习题集_很全有答案_

题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
弹塑性力学答案

一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。
在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。
由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。
利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。
由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。
4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。
半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。
如果能满足弹性力学的全部条件,则这个解就是正确的解答。
否则需另外假定,重新求解。
二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。
弹塑性力学课后习题答案

(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii2a121a222a323
(I-12)
(ai) i2(a 1 1a22 a3)3 2 (I-13)
aibjk cijk
(I-21)
◆ 张量乘法不服从交换律,但张量乘法服从分配
律和结合律。例如:
( a i j b i) c j k a i c k j b i c k j; 或 ( a i b k j ) c m a i( b j k c m )
(I-22)
C、张量函数的求导:
◆ 一个张量是坐标函数,则该张量的每个分量都
◆ 绝对标量只需一个量就可确定,而绝对矢量则需
三个分量来确定。
◆ 若我们以r表示维度,以n表示幂次,则关于三维
空间,描述一切物理恒量的分量数目可统一地表 示成:
Mrn (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
(I-25 )
4.张量的分解
张量一般是非对称的。若张量 aij的分量满足
aij a ji
(I-27)
则 aij 称为对称张量。 如果 的分aij量满足
aij aji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11a22。a330
第二章 应力理论
七应变莫尔圆41弹性变形与塑性变形的特点塑性力学的附加假设42常用简化力学模型43弹性本构方程弹性应变能函数44屈服函数主应力空间常用屈服条件47塑性本构方程简介静不定问题的解答1静力平衡分析平衡微分方程2几何变形分析几何方程3物理关系分析物理方程表明固体材料产生弹性变形或塑性变形时应力与应变以及应力率与应变率之间关系的物性方程称为本构方程关系
弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。
(2):如以ϕ为应力函数,求出应力分量的表达式。
(3):指出在图示矩形板边界上对应着什么样的边界力。
(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。
(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案

解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学习题集(有图)

弹塑性⼒学习题集(有图)·弹塑性⼒学习题集$殷绥域李同林编!…中国地质⼤学·⼒学教研室⼆○○三年九⽉⽬录—弹塑性⼒学习题 (1)第⼆章应⼒理论.应变理论 (1)第三章弹性变形.塑性变形.本构⽅程 (6)第四章弹塑性⼒学基础理论的建⽴及基本解法 (8)第五章平⾯问题的直⾓坐标解答 (9)第六章平⾯问题的极坐标解答 (11)第七章柱体的扭转 (13)(第⼋章弹性⼒学问题⼀般解.空间轴对称问题 (14)第九章* 加载曲⾯.材料稳定性假设.塑性势能理论 (15)第⼗章弹性⼒学变分法及近似解法 (16)第⼗⼀章* 塑性⼒学极限分析定理与塑性分析 (18)第⼗⼆章* 平⾯应变问题的滑移线场理论解 (19)附录⼀张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提⽰ (22){前⾔弹塑性⼒学是⼀门理论性较强的技术基础课程,它与许多⼯程技术问题都有着⼗分密切地联系。
应⽤这门课程的知识,能较真实地反映出物体受载时其内部的应⼒和应变的分布规律,能为⼯程结构和构件的设计提供可靠的理论依据,因⽽受到⼯程类各专业的重视。
《弹塑性⼒学习题集》是专为《弹塑性⼒学》(中国地质⼤学李同林、殷绥域编,研究⽣教学⽤书。
)教材的教学使⽤⽽编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性⼒学的基本概念、基础理论和基本技能,并培养和提⾼其分析问题和解决问题的能⼒。
鉴于弹塑性⼒学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较⼤的习题给出了解题提⽰或解答。
…编者2003年9⽉%弹塑性⼒学习题第⼆章应⼒理论·应变理论~2—1 试⽤材料⼒学公式计算:直径为1cm 的圆杆,在轴向拉⼒P = 10KN 的作⽤下杆横截⾯上的正应⼒σ及与横截⾯夹⾓?=30α的斜截⾯上的总应⼒αP 、正应⼒ασ和剪应⼒ατ,并按弹塑性⼒学应⼒符号规则说明其不同点。
同济大学弹塑性力学试卷及习题解答(完整资料).doc

【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( )(2)可用矩阵描述的物理量,均可采用张量形式表述。
( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( )(7)Drucker 假设适合于任何性质的材料。
( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65(5)随动强化后继屈服面的主要特征为:___________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
解:首先求出该斜截面上全应力n P v在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z题图1-3P x =()x xy xz σττ++n '=()2538100++-⨯=⎡⎤⎣⎦P y =()yx y yz τστ++n '=()2303100++-⨯=⎡⎤⎣⎦ P z =()zx yz z ττσ++n '=()()28311100-+-+⨯=⎡⎤⎣⎦所以知,该斜截面上的全应力n P v及正应力σn 、剪应力τn 均为零,也即:P n =σn = τn = 02—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: 化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
解:由2—11题计算结果知该题的三个主应力分别为:1σ=20σ=;3σ=设σ2与三个坐标轴x 、y 、z 的方向余弦为:l 21、l 22、l 23,于是将方向余弦和σ2值代入下式即可求出σ2的主方向来。
以及:()22221222314l l l ++=L L L由(1)(2)得:l 23=0 由(3)得:2122l a l b =-;2221l bl a=-; 将以上结果代入(4)式分别得:21l ===;22l ===;2122al l b =-22l ∴==同理21l = 于是主应力σ2的一组方向余弦为:(,0);σ3的一组方向余弦为(,2±); 2—20.证明下列等式:(1):J 2=I 2+2113I ; (3):()212ii kk ik ik I σσσσ=--;证明(1):等式的右端为: ()()22211223311231133I I σσσσσσσσσ+=-+++++故左端=右端证明(3):()212ii kk ik ik I σσσσ=--右端=()12ii kk ik ik σσσσ-2—28:设一物体的各点发生如下的位移。
012301230123u a a x a y a z v b b x b y b z w c c x c y c z=+++⎧⎪=+++⎨⎪=+++⎩式中a 0、a 1………c 1、c 2均为常数,试证各点的应变分量为常数。
证明:将己知位移分量函数式分别代入几何方程得:1x u a xε∂==∂;2y v b y ε∂==∂;3z w c z ε∂==∂;12xy u v b a y xγ∂∂=+=+∂∂;23yz v wc b z yγ∂∂=+=+∂∂; 31zx u w a c y x γ∂∂=+=+∂∂; 2—29:设己知下列位移,试求指定点的应变状态。
(1):()()22232010410u x v yx --⎧=+⨯⎪⎨=⨯⎪⎩ 在(0,2)点处;(2):()()()22222615103210810u x w z xy v zy ---⎧=+⨯⎪⎪=-⨯⎨⎪=⨯⎪⎩在(1,3,4)点处解(1):2610x ux xε-∂==⋅∂ 2410y v x y ε-∂==⋅∂ 20410xy u v y y x γ-∂∂=+=+⋅∂∂ 在(0,2)点处,该点的应变分量为: 0x y εε==;2810xy γ-=⨯;写成张量形式则为:204040010000ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥⎣⎦;解(2):将己知位移分量函数式代入几何方程求出应变分量函数式,然后将己知点坐标(1,3,4)代入应变分量函数式。
求出设点的应变状态。
2212101210x u x xε--∂===⨯∂; 228103210yv z y ε--∂===⨯∂ 226102410z wz zε--∂===⨯∂; 0xy u v y x γ∂∂=+=∂∂ ()222010610zx w uy x zγ--∂∂=+=-+=-⨯∂∂; 用张量形式表示则为:2—32:试说明下列应变状态是否可能(式中a 、b 、c 均为常数)(1):()22200000ij c x y cxy cxycy ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2): ()()()()222222222210210211022ij axy ax by ax y az by ax by az by ε⎡⎤+⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++⎢⎥⎣⎦(3): ()22200000ij c x y z cxyz cxyz cy z ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦解(1):由应变张量εij 知:εxz =εyz =εzx =εzy =εz =0 而εx 、εy 、εxy 及εyx 又都是x 、y 坐标的函数,所以这是一个平面应变问题。
将εx 、εy 、εxy 代入二维情况下,应变分量所应满足的变形协调条件知:22222y xyx y x x yεγε∂∂∂+=∂∂∂∂ 也即:2c +0=2c 知满足。
所以说,该应变状态是可能的。
解(2):将己知各应变分量代入空间问题所应满足的变形协调方程得:222222222222222222222y xyx y yzz x zxz xy yz zx x xy yz y zx yz xy zx z y x x yz y y z x z z x x y z x y z y z x y z x z x y z x y εγεεγεεγεγγγεγγεγγγγε⎫∂∂∂+=⎪∂∂∂∂⎪⎪∂∂∂⎪+=∂∂∂∂⎪⎪∂∂∂+=∂∂∂∂⎬∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂∂⎛⎫∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)得:220000000002000ax ay b +=⎫⎪+=⎪⎪+=⎬=⎪⎪≠⎪=⎭不满足,因此该应变状态是不可能的。
解(3):将己知应变分量代入上(1)式得:202000002220cz cz cy cy cx +=⎫⎪+≠⎪⎪=⎬⎪=⎪≠⎪⎭不满足,因此该点的应变状态是不可能的。
第三章:弹性变形及其本构方程3-5.试依据物体三向受拉,体积不会缩小的体积应变规律,来证明泊松比V 的上下限为0<V <21;证明:当材料处于各向等值的均匀拉伸应力状态下时,其应力分量为:σ11=σ22=σ33=p σ12=σ23=σ31=0如果我们定义材料的体积弹性模量为k ,则显然:k =ep,e 为体积应变。
将上述应力分量的值代入广义胡克定律:e G ij ij ij λδεσ+=2 得:⇒⎪⎩⎪⎨⎧+=+=+=eG p e G p e G p λελελε321222三式相加得:()e G p 233+=λ将p =ke 代入上式得:()G G k 323231+=+=λλ……………………(1) 由弹性应变能u 0的正定性(也就是说在任何非零的应力值作用下,材料变形时,其弹性应变能总是正的。
)知k >0,E >0,G >0。
因:ij ij od or e Ge ke J G I k u u u +=+=+=222102121181我们知道体积变形e 与形状变化部分,这两部分可看成是相互独立的,因此由u o 的正定性可推知: k >0,G >0。