平面的基本性质及推论m

合集下载

十三 点、线、面的位置关系及判定与性质(逻辑推理)

十三 点、线、面的位置关系及判定与性质(逻辑推理)

点、线、面之间的位置关系及判定与性质(逻辑推理)一、空间的点、直线、平面之间的位置关系1 平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:经过不在同一直线上的三点,有且只有一个平面.(三个推论)推理1:经过一条直线和这条直线外的一点有且只有一个平面。

推理2:两条相交直线确定一个平面。

推理3:两条平行直线确定一个平面。

公理3:如果两个平面有一个公共点,那么有且只有一条通过这个点的公共直线.2 平行公理:平行于同一条直线的两条直线互相平行。

等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

3 异面直线(1)定义:不同在任何一个平面内的两条直线。

(2)性质:两条异面直线既不相交也不平行。

(3)判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。

(4)异面直线所成的角:例1有下列命题:①若ABC ∆在平面α外,它的三条边所在的直线分别与α交于P 、Q 、R 三点,则P 、Q 、R 三点共线;②若三条直线a 、b 、c 互相平行且分别交直线l 与A 、B 、C 三点,则这四条直线共面;③空间的五个点最多确定10个平面。

其中正确的命题的个数是( )A. 0B. 1C. 2D. 3例2 给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a 、b 中的一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面;③一定存在平面α同时和异面直线a 、b 都平行。

其中正确的命题为( )A. ①B. ②C. ③D. ① ③例3 在正方体1111D C B A ABCD -中,E 为AB 的中点。

(1)求证:AC ⊥平面BDD 1;(2)求BD 1与CE 所成角的余弦值。

例4 如图所示,E 、F 在AD 上,G 、H 在BC 上,图中8条线段所在的直线,互为异面直线的有 对。

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第二节 点、线、面的位置关系

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第二节 点、线、面的位置关系

第二节点、线、面的位置关系【知识点5】平面的概念及点、线、面之间的位置关系2. 点、线、面之间的位置关系点、直线、平面之间的基本位置关系及语言表达1.平面的概念(1)平面的概念:广阔的草原、平静的湖面都给我们以平面的形象.和点、直线一样,平面也是从现实世界中抽象出来的几何概念.(2)平面的画法:一般用水平放置的正方形的直观图作为平面的直观图一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.(3)平面的表示方法平面通常用希腊字母α,β,γ…表示,也可以用平行四边形的两个相对顶点的字母表示,如图中的平面α、平面AC等.3.平面的基本性质【典例讲解】类型一、符号表示问题【例1】(点、直线、平面之间的位置关系的符号表示)如图,用符号表示下列图形中点、直线、平面之间的位置关系.【反思】(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【变式1】若点A在直线b上,b在平面β内,则点A,直线b,平面β之间的关系可以记作________.(填序号)①A∈b∈β;②A∈b⊂β;③A⊂b⊂β;④A⊂b∈β.【变式2】空间两两相交的三条直线,可以确定的平面数是______.【思考1】在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体经过P,Q,R的截面图形是________.【变式1】如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.类型二、点线共面问题【例2】(点线共面)如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.【变式1】求证:和同一条直线相交的三条平行直线一定在同一平面内.【反思】证明多线共面的两种方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.【变式2】已知l1∩l2=A,l2∩l3=B,l1∩l3=C,如图所示.求证:直线l1,l2,l3在同一平面内.类型三,点共线、线共点问题【例3】(点共线)如图,在正方体ABCD—A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.【反思】证明多点共线通常利用公理2,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在直线上.【变式1】已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.【变式2】若直线l 与平面α相交于点O ,A ,B ∈l ,C ,D ∈α,且AC ∥BD ,则O ,C ,D 三点的位置关系是________.【例4】(线共点问题)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE ,D 1F ,DA 三线交于一点.【反思】 证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上.此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.【变式1】如图,已知D ,E 是△ABC 的边AC ,BC 上的点,平面α经过D ,E 两点,若直线AB 与平面α的交点是P ,则点P 与直线DE 的位置关系是________.【变式2】如图所示,在空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD 和AD 上的点,且AE EB =CF FB =1,AH HD =CGGD=2.求证:EH ,BD ,FG 三条直线相交于同一点.【知识点6】空间两条直线的位置关系典型例题异面直线的判断【例1】(1)在四棱锥P—ABCD中,各棱所在的直线互为异面的有________对.(2)如图是一个正方体的展开图,如果将它还原成正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?分别是哪几对?【反思】(1)判断空间中两条直线位置关系的关键点①建立空间观念,全面考虑两条直线平行、相交和异面三种位置关系,特别关注异面直线.②重视正方体等常见几何体模型的应用,会举例说明两条直线的位置关系.(2)判定两条直线是异面直线的方法1.在同一平面内,两条直线位置关系:平行与相交.空间中,既不平行又不相交的两条直线叫做异面直线。

平面的基本性质

平面的基本性质

∴过不共线的三点A,B,C有一个平面 (公理3)
∵B∈ ,C∈ ∴a (公理1)
∴过点A和直线a有一个平面
(唯一性)
又由公理3,经过不共线的三点A、B、C的平面
只有一个 ∴经过a和平点面的A基本的性质平面只有一个.
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直 线 a bC 有 且 只 有 一 个 平 面 , 使 得 a, b.
平面的基本性质
一.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的 平面形象,数学中的平面概念是现实平面加以抽 象的结果。
二.平面的特征:
观察思考
平面没有大小、厚薄和宽窄,平面在空间是 无限延伸的。
三.平面的表示方法:
平面可以用小写的希腊字母或大写的英文字 母表示,也可以用三个或三个以上字母表示。
察 思
问题2 如图,两个平面只有一个公共点,是吗? 考
?
问题3 照相机架为什么只有三只脚?自行车只用
一只撑脚?
平面的基本性质
公理一:如果一条直线上的两点在一个平面内, 那么这条直线上的所有点都在这个平面内
BAAB
B A α
l
如果直线l 上所有点都在平面α内就说直线l在平 面α内,或者说平面α经过直线l,否则,就说直 线l在平面α外 应用:
平面的基本性质
推论3.两条平行直线唯一确定一个平面。
βA
Ba b
C
数学语言表示:
直 线 a//b 有 且 只 有 一 个 平 面 , 使 得 a, b.
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三条都不在同一平 面内,有它们中的两条来确定平面,可以确定多少个平面。

2014年职高数学第一轮复习 平面的概念及基本性质

2014年职高数学第一轮复习 平面的概念及基本性质

三.异面直线所成的角
复习回顾 在平面内,两条直线相交成四 个角, 其中不大于90度的角称为它 们的夹角, 用以刻画两直线的错开 程度, 如图. 问题提出 在空间,如图所示, 正方体 ABCD-EFGH中, 异面直线AB
O
H E F
G
与HF的错开程度可以怎样来刻
画呢?
D A
B
C
解决问题
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题
已知: c, a,
b, a b O
求证:O c

c
O
证明:
a
b
O b,b , O O a,a , O
O在与的交线上,

O c 又 c,
练.判断下列命题是否正确: (1)经过三点确定一个平面。 (×) (2)经过同一点的三条直线确定一个平面。 (×) (3)若点A 直线a,点A 平面α,则a α. (×) (4)平面α与平面β相交,它们只有有限个公共点。(×)
o
o
思考 : 这个角的大小与O点的位置有关吗 ? 即O点位
置不同时, 这一角的大小是否改变?
练习3
下图长方体中 (1)说出以下各对线段的位置关系?
① EБайду номын сангаас ② BD ③BH
H E D A B F
G
和BH是 和FH是 和DC是
相交 平行 异面
直线 直线 直线
C
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考:
这个长方体的棱中共有多少对异面直线?
巩固: 1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ­ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。

1_平面基本性质第三课时

1_平面基本性质第三课时
(×)
练习
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 3
看看答案吧
或 两个平面可以把空间分成________部分 部分, (2) 两个平面可以把空间分成 3或4 部分, , , 或 三个平面呢?_________________。 。 三个平面呢 4,6,7或8
CD上,H在AD上,且DF:FC=2:3,DH:HA=2:3, 上 在 上 : : , : : , 求证: 、 交于一点。 求证:EF、GH、BD交于一点。 、 交于一点 A G H B D F E C 证明三线共点的方法: 证明三线共点的方法: 证明两直线的交点在第三直线上, 证明两直线的交点在第三直线上,而第三直线又 往往是两平面的交线
证共面问题:可先由公理3(或推论)证某些元素确定一个平面, 证共面问题:可先由公理 (或推论)证某些元素确定一个平面, 再证其余元素都在此平面内; 再证其余元素都在此平面内 ; 或者指出给定的元素中的某些元 素在一个平面内,再证两个平面重合. 素在一个平面内,再证两个平面重合.
题目变型:求证三角形ABC的三条边在同一个平面内。 ABC的三条边在同一个平面内 题目变型:求证三角形ABC的三条边在同一个平面内。
同理b 同理b、c确定平面β ,且l ⊂β 确定平面β
而l、b ⊂α, 、b ⊂β,l∩ b = B l
∴α与β重合
∴a,b,c,l共面 a,b,c,l共面
四、证明共面问题 AB、 两两相交, 例5、直线AB、BC、CA两两相交,交点分别为A、B、C, 、直线AB BC、CA两两相交 交点分别为A 判断这三条直线是否共面,并说明理由。 如图) 判断这三条直线是否共面,并说明理由。(如图)

中职数学教案:平面的基本性质 平面及其表示

中职数学教案:平面的基本性质  平面及其表示

江苏省XY中等专业学校2021-2022-2教案编号:备课组别数学组上课日期主备教师授课教师课题:§9.1.1 平面的基本性质—平面及其表示教学目标1学会用符号语言表达空间点、线、面之间的位置关系,能将文字语言转化为符号语言2了解平面的三个公理及推论重点学会用符号语言表达空间点、线、面之间的位置关系,能将文字语言转化为符号语言难点了解平面的三个公理及推论教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一新课引入立体几何在生活中无处不在;本章研究空间中的直线和平面,是处理空间问题、形成空间想象能力的基础二新知探究(一)平面定义:平面是平的,没有厚度的,在空间无限延伸的图形.数学中的平面的概念是现实中平面形象抽象的结果.比如平静的湖面、桌面等.平面的表示方法:(1)用大写的英文字母表示:平面M,平面N等;(2)用小写的希腊字母表示:平面,平面等;(3)用平面上的三个(或三个以上)点的字母表示:(如图14-1)平面ABCD等.教学内容平面的直观图画法:正视图垂直放置的平面M 水平放置的平面M相交平面画法注意:看得见的线用实线,看不见的线用虚线。

(二)空间点、线、面的位置关系的集合语言表示法在空间,我们把点看作元素,直线和平面看作是由元素点所组成的集合,建立了如下点、线、面的集合语言表示法.点与线:点A在直线L上:(直线L经过点A);点Q不在直线L上:点与平面:点A在平面内:(平面经过点A);点B不在平面内:;教学内容直线与平面:直线L在平面上:直线L上所有的点都在平面上,即直线L在平面上,或平面经过直线L,记作.直线L在平面外:当直线L与平面只有一个公共点A时,称直线L与平面相交于点A,记作;当直线L与平面没有公共点时,称直线L与平面平行,记作或.直线与直线:直线a与直线b相交于点A,记作.三例题讲解例1用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α外;⑵直线L在平面α内,直线m不在平面α内;⑶平面α和β相交于直线L⑷直线L 经过平面α外一点P和平面α内一点Q ;。

14.1平面及其基本性质

14.1平面及其基本性质

a b
14.1平面及其基本性质(1)
例1、正方体的各顶点如图所示,正方体的三个面所在平
面 A1C1,A1B1,B1C1,分别记作、、,试用适当的符号填空.
(1)A1______, _B1_______ (2)B1______, _C1_______ (3)A1______,_D1 _______
14.1平面及其基本性质(1)
❖ (二)平面的表示方法:
❖ 1、几何表示:

水平放置①:

正视垂直放置②: ② 侧视垂直放置③:
❖ 2、符号表示:
(1)直线AB,直线l,直线a
(2)平面ABCD(顶点字母),
平面αβγ(小写的希腊字母),平面M、N
❖ 3、点、线、面的位置关系(借用集合符号)
14.1平面及其基本性质(1)
❖ 例4、空间三个点能确定几个平面? 空间四个点能确定几个平面?
❖ 例5、 空间三条直线相交于一点,可以确定几个平面? 空间四条直线相交于一点,可以确定几个平面?
❖ 例6、两个平面可以把空间分成________部分, 三个平面呢?_________________。
三条直线相交于一点,可以确定几个平面?

m
(3) l
P

(4)P l,P ,Q l,Q
Q
14.1平面及其基本性质(1)
例3、如图,正方体 ABCDA1B1C1D 1,E,F分别是
B1C1, BB1的中点,问:直线EF和BC是否相交;
如果相交,交点在哪几个平面内?
D1
C1
A1
B1 E
DF C
A
B
14.1平面及其基本性质(1)
(4)_____A _1B_ 1 ______B_1B

名师辅导 立体几何 第1课 平面的概念与性质(含答案解析)

名师辅导 立体几何 第1课  平面的概念与性质(含答案解析)

名师辅导立体几何第1课平面的概念与性质(含答案解析)●考试目标主词填空1.平面(1)平面是理想的、绝对的平且无限延展的.(2)平面是由它内部的所有点组成的点集,其中每个点都是它的元素.2.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且这些公共点的集合是一条过这个公共点的直线.(3)公理3:经过不在同一直线上的三点,有且只有一个平面.推论1 经过一条直线和这条直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.●题型示例点津归纳【例1】在空间内,可以确定一个平面的条件是 ( )A.两两相交的三条直线B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点E. 两条直线【解前点津】 A中的两两相交的三条直线,它们可能相交于同一点,也可能不交于同一点;若交于同一点,则三直线不一定在同一个平面内.∴应排除A.B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,三条直线是不能确定一个平面的.∴应排除B.对于C来说,三个点的位置可能不在同一直线上,也可能在同一直线上,只有前者才能确定一个平面,后者是不能的.∴应排除C.条件E中的两条直线可能共面,也可能不共面.∴应排除E.只有条件D中的三条直线,它们两两相交且不交于同一点,可确定一个平面.【规范解答】 D.【解后归纳】平面的基本性质(三个公理及公理3的三个推论)是研究空间图形性质的理论基础,必须认真理解,熟练地掌握本题主要利用公理3及其推论来解答的.【例2】把下列用文字语言叙述的语句,用集合符号表示,并画直观图表示.(1)点A在平面α内,点B不在平面α内,点A、B都在直线l上;(2)平面α与平面β相交于直线l,直线a在平面α内且平行于直线l.【解前点津】注重数学语言(文字语言、符号语言、图形语言)间的相互转化训练,有利于提高分析问题、解决问题的能力.正确使用⊂、⊄、∈、∉、⋂等符号表示空间基本元素之间的位置关系是解决本题的关键.【规范解答】 (1)A ∈α,B ∉α,A ∈l ,B ∈l ,如图(1);(2)α∩β=l ,a ⊂α,a ∥l ,如图(2).例2题解图【例3】 如图,已知:l 不属于α,A 、B 、C …∈l ,AA 1⊥α,BB 1⊥α,CC 1⊥α.求证:AA 1、BB 1、CC 1…共面.【解前点津】 证明n 条直线共面,首先,选择适当的条件,确定一个平面,然后分别证明直线都在此平面内.【规范解答】 证法一 ∵AA 1⊥α,CC 1⊥α,∴AA 1∥CC 1.∴AA 1与CC 1确定平面β,且β⊥α.∵AC ⊂β,即l ⊂β,而B ∈l,∴B ∈β,又知BB 1⊥α,∴BB 1⊂β.∴AA 1、BB 1、CC 1…共面.证法二 反证法由证法1得β⊥α于A 1C 1,假设BB 1不属于β,在β内作BB ′⊥A 1C 1(如图).∴BB ′⊥α,已知BB 1⊥α,与过一点引面的垂线,有且只有一条矛盾.∴BB 1不属于β是不可能的,∴BB 1⊂β,∴AA 1、BB 1、CC 1…共面.【解后归纳】 证明共面的一般方法有直接法和间接法两种.【例4】 设平行四边形ABCD 的各边和对角线所在的直线与平面α依次相交于A 1,B 1,C 1,D 1,E 1,F 1六点,求证:A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【规范解答】 设平行四边形ABCD 所在平面为α,∵A ∈β,B ∈β,∴AB ⊂β,又A 1∈AB,∴A 1∈β,又A 1∈α∴A 1在平面α与平面β的交线上,设交线为l ,则A 1∈l ,同理可证B 1,C 1,D 1,E 1,F 1都在直线l 上,∴A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【解后归纳】 证明点共线通常证明这些点都在两平面的交线 上,或先由某两点作一条直线再证明其他点也在这条直线上,选此题的意图,就是使学生掌握证点共线的一般方法.●对应训练 分阶提升一、基础夯实1.α、β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面的个数为 ( ).32 C 例3题图例4题图2.下列说法正确的是 ( )A.如果两个平面α、β有一条公共直线a ,就说平面α、β相交,并记作α∩β=aB.两平面α、β有一公共点A ,就说α、β相交于过A 的任意一条直线C.两平面α、β有一个公共点,就说α、β相交于A 点,并记作α∩β=AD.两平面ABC 与DBC 交于线段BC3.下列命题正确的是 ( )A.一点和一条直线确定一个平面B.两条直线确定一个平面C.相交于同一点的三条直线一定在同一平面内D.两两相交的三条直线不一定在同一个平面内4.设α、β是不重合的两个平面,α∩β=a ,下面四个命题:①如果点P ∈α,且P∈β,那么P ∈a ;②如果点A ∈α,点B ∈β,那么AB α;③如果点A ∈α,那么点B ∈β;④如果线段AB α,且AB β,那么AB a .其中正确命题的个数是 ( ).1 C5.空间四点A 、B 、C 、D 共面但不共线,那么这四点中 ( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线6.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长为1的等腰梯形,则这个平面图形的面积是 ( ) A.221+ B. 222+ C.21+ D.22+ 7.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原三角形ABC 的面积为 ( )A.223aB. 243aC. 223a D.26a 8.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的什么条件 ( )A.充分不必要B.必要不充分C.充要D.不充分不必要二、思维激活9.如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有 个.10.不重合的三个平面把空间分成n 个部分,则n 的可能值为 .11.四条线段首尾相连,它们最多确定平面的个数是 .12.与空间不共面四点距离相等的平面为 个.13.四边形ABCD 中,AB =BC =CD =DA =BD =1,则成为空间四面体时,AC 的取值范围是 .三、能力提高14.如图,已知l 1∥l 2∥l 3,l ∩l 1=A,l ∩l 2=B,l ∩l 3=C .求证:l 1、l 2、l 3、l 共面.第14题图15.四个点不共面,证明它们中任何三点都不在同一条直线上.它的逆命题正确吗 已知:A 、B 、C 、D 是不共面四点.求证:它们中任何三点都不共线.16.已知△ABC 的三个顶点都不在平面α上,它的三边AB 、AC 、BC 的延长线交平面α于P 、R 、Q 三点.求证:P 、R 、Q 三点共线.17.已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF .求证:直线EF 、GH 、AC 交于一点.18.已知直线a,b,c ,其中b,c 为异面直线,试就a 与b,c 的不同位置关系,讨论可以确定平面的情况.第1课 平面的概念与性质习题解答C 24C 13+C 23C 13+2=32. 排除法.有三个交点或只有一个交点.②③错在条件不充分.分有三点共线和只有两点共线两类.第17题图根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1.容易求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形.再由“竖取半”知,直腰长为2,∴S=2211++·2=2+2. 按斜二测画法还原.充分性根据公理2进行判断,必要性用反证法得到证明.公共点最多1个,否则直线在平面内,得知直线上所有的点在平面内.,6,7,8.个 可确定C 24-2=4个.个 这四点构成一个四面体,当平面平行于四个面中某一个面时有四个;当平面平行于三对异面直线时有三个.13.(0,3) AC>0,ABCD 为菱形时AC =3.14.由l 1∥l 2,知l 1与l 2确定一个平面α,同理l 2、l 3确定一个平面β,由A ∈l 1,l 1α,知A ∈α,同理B ∈α,又A 、B ∈l ,故l α,同理l β.由上知l ∩l 2=B,且l 、l 2α,l 、l 2β,因两相交直线l 、l 2确定一个平面,故α与β重合,所以l 1、l 2、l 3、l 共面.15.证明:假设其中有三点共线,如A 、B 、C 在同一直线a 上,点D ∉a .∴点D 和a 可确定一平面α,∴A 、B 、C 、D ∈α.与A 、B 、C 、D 不共面矛盾.逆命题是:如果四点中任何三点都不共线,那么这四点不共面.逆命题不正确.16.如图,∵AP ∩AR =A ,∴AP 与AR 确定平面APR又P 、R ∈α,∴α∩平面APR =PR .又B ∈平面APR ,C ∈平面APR ,∴BC 平面APR ,即Q ∈平面APR .又Q ∈α,∴Q ∈α∩平面APR =PR .∴P 、Q 、R 三点共线.点评:欲证三点共线,可以证明某点在经过其余两点的直线上即可.17.∵E 、H 分别是AB 、AD 的中点,∴EH ∥BD ,EH =21BD , ∵F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF , ∴EH ∥FG ,EH ≠FG ,∴四边形EFGH 为梯形,则EF 与GH 必相交,设交点为P .∵EF 平面ABC ,∴P ∈平面ABC .又P ∈平面DAC ,平面BAC ∩平面DAC =AC .故P ∈AC ,即EF 、GH 、AC 交于一点P .18.(1)若a 与b,c 都相交,a 与b ,a 与c 都能确定平面,故可确定两个平面.(2)若a 与b ,c 之一相交,不妨设a 与b 相交.①a ∥c ,a 与b ,a 与c 都可确定平面故可确定两个平面.②a 与c 不平行,只a 与b 确定平面,故可确定一个平面.(3)若a 与b ,c 都不相交. 第16题图解①若a与b,c之一平行,不妨设a与b平行,只a与b可确定平面,故确定一个平面.②若a与b,c都不平行,又因为都不相交,故不能确定平面.点评:此题应用启发、引导、归纳法讲解,这样才能达到使学生建立空间概念,加强严密的逻辑思维,并达到复习,巩固“分类讨论”的思想方法.本资料来源于《七彩教育网》。

高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)

高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)

模块: 十一、立体几何课题: 1、平面、空间直线教学目标: 知道平面的含义,理解平面的基本性质,会用文字语言、图形语言、集合语方表述平面的基本性质;掌握确定平面的方法,并能运用于确定长方体的简单截面.掌握空间直线与直线、直线与平面、平面与平面的各种位置关系,并能用图形、符号和集合语言予以表示.重难点: 平面的基本性质,平行线的传递性,空间直线与直线、直线与平面、平面与平面的各种位置关系及其表示方法.一、 知识要点1、平面的基本性质公理1、如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理2、如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3、经过不在同一条直线上的三点,有且只有一个平面.推论1、经过一条直线和直线外的一点有且只有一个平面.推论2、经过两条相交直线有且只有一个平面.推论3、经过两条平行直线有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.2、空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点. 3、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.二、 例题精讲例1、四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC=2∶3,DH ∶HA=2∶3求证:EF 、GH 、BD 交于一点.答案:证明略.例2、已知n 条互相平行的直线123,,,,n l l l l 分别与直线l 相交于点12,,,n A A A , 求证:123,,,,n l l l l 与l 共面.例3、已知四边形ABCD 中,AB ∥CD ,四条边AB ,BC ,DC ,AD (或其延长线)分别与平面α相交于E ,F ,G ,H 四点,求证:四点E ,F ,G ,H 共线.例4、平面α平面βC =,a α⊂,且//a c ,b β⊂,b c M =,求证:直线a b 、是异面直线.例5、A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.答案:(1)略;(2)45︒例6、长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.答案:(1);;b c 22c b bc +;(2)))((2222222c b a b a b a +++-.例7、在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90BAD ︒∠=,//AD BC ,AB BC a ==,2AD a =,且PA ⊥底面ABCD ,PD 与底面成30︒角.(1) 若AE PD ⊥,E 为垂足,求证:BE PD ⊥;(2) 求异面直线AE 与CD 所成角的余弦值.答案:(1)略;(2)4.三、 课堂练习1、在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 .2、在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若EFGH 是正方形,则AC 与BD 满足的条件是 .答案:垂直且相等.3、已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点,则在上面的结论中,正确结论的编号是 .答案:(1)(2)(4)4、已知m n 、为异面直线,m ⊂平面α,n ⊂平面β,l αβ=,则l ( )A 、与m n 、都相交B 、与m n 、中至少一条相交C 、与m n 、都不相交D 、至多与m n 、中的一条相交答案:B5、一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:(1)AB EF ⊥;(2)AB 与CM 成60︒;(3)EF 与MN 是异面直线;(4)//MN CD ,其中正确的是( )A 、(1)(2)B 、(3)(4)C 、(2)(3)D 、(1)(3)答案:D6、与正方体1111ABCD A B C D -的三条棱111AB CC A D 、、所在直线的距离相等的点( )A 、有且只有1个B 、有且只有 2个C 、有且只有3个D 、有无数个 答案:D四、 课后作业一、填空题1、空间中有8个点,其中有3个点在一条直线上,此外再无任何三点共线,由这8个点可以确定 条直线,最多可确定 个平面.答案:26,452、已知PA ⊥平面ABC ,90ACB ︒∠=,且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于 .答案:2.3、(1)若//,//a b b c ,则//a c ;(2)若,,a b b c ⊥⊥则a c ⊥;(3)若a 与b 相交,b 与c 相交,则a 与c 也相交;(4)若a 与b 异面,b 与c 异面,则a 与c 也异面.上面的四个命题中,正确命题的题号是 .答案:(1)4、已知平面//αβ,A C α∈、,B D β∈、,直线AB 与CD 交于S ,且AS=8,BS=9,CD=34,则CS= .答案:16或2725、以下命题:(1)过直线外一点有且只有一条直线与已知直线平行;(2)某平面内的一条直线和这个平面外的一条直线是异面直线;(3)过直线外一点作该直线的垂线是唯一的;(4)如果一个角的两边和另一个角的两边分别平行,则这两个角相等或互补.则其中正确的命题的题号是 .答案:(1)(4)6、对于四面体ABCD ,下列命题正确的是 .(1)相对棱、AB 与CD 所在的直线异面;(2)由顶点A 作四面体的高,其垂足是BDC ∆的三条高线上的交点;(3)若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;(4)分别作三组相对棱中点的连线,所得的三条线段相交于一点;(5)最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.答案:(1)(4)(5)二、选择题7、正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱的侧面对角线1E D 与1BC 所成的角是( )A 、90︒B 、60︒C 、45︒D 、30︒ 答案:B8、已知直线a 和平面αβ、,l αβ=,a α⊄,a β⊄,a 在αβ、内的射影分别为直线b 和c ,则b c 、的位置关系是( )A 、相交与平行B 、相交或异面C 、平行或异面D 、相交、平行或异面答案:D9、空间中有五个点,其中有四个点在同一个平面内,但没有任何三点共线,这样的五个点确定平面的个数最多可以是( )A 、4个B 、5个C 、6个D 、7个 答案:D三、解答题10、正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD 、交于点M ,求证:点1C O M 、、共线.11、如图,在四面体ABCD 中作截面PQR ,如PQ 、CB 的延长线交于点M ,RQ 、DB 的延长线交于点N ,RP 、DC 的延长线相交于点K .求证:M 、N 、K 三点共线.11、长方体1111ABCD A B C D -中,12,,AB BC a A A a E H ===、分别是11A B 和1BB的中点,求:(1)EH 与1AD 所成的角;(2)11A D 与1B C 之间的距离;(3)1AC 与1B C 所成的角.答案:(1)1arccos5;(2)2a ;(3)arccos 5.。

高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2(2021年整理)

高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2(2021年整理)

(鲁京辽)2018-2019学年高中数学第一章立体几何初步1.2.1 平面的基本性质与推论学案新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((鲁京辽)2018-2019学年高中数学第一章立体几何初步1.2.1 平面的基本性质与推论学案新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(鲁京辽)2018-2019学年高中数学第一章立体几何初步1.2.1 平面的基本性质与推论学案新人教B版必修2的全部内容。

1.2。

1 平面的基本性质与推论学习目标 1.理解平面的基本性质与推论,能运用平面的基本性质及推论去解决有关问题。

2.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.3.理解异面直线的概念.知识点一平面的基本性质与推论思考1 直线l与平面α有且仅有一个公共点P。

直线l是否在平面α内?有两个公共点呢?答案前者不在,后者在.思考2 观察图中的三脚架,你能得出什么结论?答案不共线的三点可以确定一个平面.思考3 观察正方体ABCD—A1B1C1D1(如图所示),平面ABCD与平面BCC1B1有且只有两个公共点B,C吗?答案不是,平面ABCD与平面BCC1B1相交于直线BC.梳理(1)平面的基本性质平面内容作用图形基本性质1如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(即直线在平面内或平面经判断直线是否在平面内的依据过直线)基本性质2经过不在同一条直线上的三点,有且只有一个平面(即不共线的三点确定一个平面)确定平面及两个平面重合的依据基本性质3如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线判断两平面相交,线共点,点共线的依据(2)平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.知识点二点、直线、平面之间的关系及表示思考直线和平面都是由点组成的,联系集合的观点,点和直线、平面的位置关系,如何用符号来表示?直线和平面呢?答案点和直线、平面的位置关系可用数字符号“∈”或“∉”表示,直线和平面的位置关系,可用数学符号“⊂”或“⊄”表示.梳理点、直线、平面之间的基本位置关系及表示文字语言符号语言图形语言A在l上A∈lA在l外A∉lA在α内A∈αA在α外A∉αl在α内l⊂αl在α外l⊄αl,m相交于A l∩m=A l,α相交于Al∩α=Aα,β相交于l α∩β=l知识点三共面与异面直线思考如图,直线AB与平面α相交于点B,点A在α外,那么直线l与直线AB能不能在同一个平面内?为什么?直线l与直线AB的位置关系是怎样的?答案不可能在同一个平面内,因为如果在同一个平面内,点A就在α内,这与点A在α外矛盾.由图知,直线l与直线AB没有公共点,所以它们不相交,直线l与直线AB不可能平行,否则它们就会同在平面α内,所以直线l与直线AB既不相交也不平行.梳理共面与异面直线(1)共面①概念:空间中的几个点或几条直线,都在同一平面内.②特征:共面的直线相交或者平行.(2)异面直线①概念:既不平行又不相交的直线.②判断方法:与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.1.分别在两个平面内的两条直线一定是异面直线.(×)2.两直线若不是异面直线,则必相交或平行.(√)类型一点、直线、平面之间的位置关系的符号表示例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.解在(1)中,α∩β=l,a∩α=A,a∩β=B。

高中人教B版辽宁数学必修1 第6章 6.2.1 平面的基本性质与推论

高中人教B版辽宁数学必修1 第6章 6.2.1 平面的基本性质与推论

6.2 点、线、面之间的位置关系 6.2.1 平面的基本性质与推论1.平面的基本性质及推论经过不在同一条直线上的三点,推论1 经过一条直线和直线外的一点,有且只有一个平面(图①). 推论2 经过两条相交直线,有且只有一个平面(图②). 推论3 经过两条平行直线,有且只有一个平面(图③).2.异面直线(1)定义:把既不相交又不平行的直线叫做异面直线.(2)画法:(通常用平面衬托)3.空间两条直线的位置关系思考:不在同一平面的两条直线是异面直线,对吗?[提示]不对,是不同在任何一个平面内.1.如图所示的平行四边形MNPQ表示的平面不能记为()A.平面MNB.平面NQPC.平面αD.平面MNPQA[MN是平行四边形MNPQ的一条边,不是对角线,所以不能记作平面MN.]2.能确定一个平面的条件是()A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线D[不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.]3.根据图,填入相应的符号:A________平面ABC,A________平面BCD,BD________平面ABC,平面ABC∩平面ACD=________.[答案]∈∉⊄AC画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m⊄α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.[解](1)点A在平面α内,点B不在平面α内.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上.(3)直线l经过平面α外一点P和平面α内一点Q.图形分别如图①②③所示.①②③1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”表示,直线与平面的位置关系只能用“⊂”或“⊄”表示.3.由符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.1.如图,根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解](1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.【例2】面内.[思路探究]四条直线两两相交且不共点,可能有两种情况:一是有三条直线共点;二是任意三条直线都不共点,故要分两种情况.[解]已知:a,b,c,d四条直线两两相交,且不共点,求证:a,b,c,d 四线共面.证明:(1)若a,b,c三线共点于O,如图所示,∵O∉d,∴经过d与点O有且只有一个平面α.∵A,B,C分别是d与a,b,c的交点,∴A,B,C三点在平面α内.由公理1知a,b,c都在平面α内,故a,b,c,d共面.(2)若a,b,c,d无三线共点,如图所示,∵a∩b=A,∴经过a,b有且仅有一个平面α,∴B,C∈α.由公理1知c⊂α.同理,d⊂α,从而有a,b,c,d共面.综上所述,四条直线两两相交,且不共点,这四条直线在同一平面内.证明点线共面常用的方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线也在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.2.一条直线与三条平行直线都相交,求证:这四条直线共面.[解]已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c,l共面.证明:法一:∵a∥b,∴a,b确定一个平面α,∵l∩a=A,l∩b=B,∴A∈α,B∈α,故l⊂α.又∵a∥c,∴a,c确定一个平面β.同理可证l⊂β,∴α∩β=a且α∩β=l.∵过两条相交直线a,l有且只有一个平面,故α与β重合,即直线a,b,c,l共面.法二:由法一得a,b,l共面α,也就是说b在a,l确定的平面α内.同理可证c在a,l确定的平面α内.∵过a和l只能确定一个平面,∴a,b,c,l共面.【例1111①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.[思路探究]判断两直线的位置关系,主要依据定义判断.①平行②异面③相交④异面[根据题目条件知直线A1B与直线D1C 在平面A1BCD1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”;直线D1D与直线D1C相交于D1点,所以③应该填“相交”.]1.判定两条直线平行与相交可用平面几何的方法去判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.3.若a、b是异面直线,b、c是异面直线,则()A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面D[若a、b是异面直线,b、c是异面直线,那么a、c可以平行,可以相交,可以异面.][1.如图,在正方体ABCD-A1B1C1D1中,设A1C∩平面ABC1D1=E.能否判断点E在平面A1BCD1内?[提示]如图,连接BD1,∵A1C∩平面ABC1D1=E,∴E∈A1C,E∈平面ABC1D1.∵A1C⊂平面A1BCD1,∴E∈平面A1BCD1.2.上述问题中,你能证明B,E,D1三点共线吗?[提示]由于平面A1BCD1与平面ABC1D1交于直线BD1,又E∈BD1,根据公理3可知B,E,D1三点共线.【例4】如图,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是棱CD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.[解]因为MN∩EF=Q,所以Q∈直线MN,Q∈直线EF,又因为M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.所以M,N∈平面ABCD,所以MN⊂平面ABCD.所以Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.所以Q∈平面ADD1A1.又因为平面ABCD∩平面ADD1A1=AD,所以Q∈直线AD,即D,A,Q三点共线.点共线与线共点的证明方法(1)点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.4.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.(1)B D(2)AC[(1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD=BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.]1.思考辨析(1)三点可以确定一个平面.()(2)一条直线和一个点可以确定一个平面.()(3)四边形是平面图形.()(4)两条相交直线可以确定一个平面.()[解析](1)错误.不共线的三点可以确定一个平面.(2)错误.一条直线和直线外一个点可以确定一个平面.(3)错误.四边形不一定是平面图形.(4)正确.两条相交直线可以确定一个平面.[答案](1)×(2)×(3)×(4)√2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行或异面B.相交或异面C.异面D.相交B[如图,在长方体ABCD-A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线,故选B.]3.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.C[∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.]4.如图,三个平面α,β,γ两两相交于三条直线,即α∩β=c,β∩γ=a,γ∩α=b,若直线a和b不平行.求证:a,b,c三条直线必过同一点.[证明]∵α∩γ=b,β∩γ=a,∴a⊂γ,b⊂γ.由于直线a和b不平行,∴a、b必相交.设a∩b=P,如图,则P∈a,P∈b.∵a⊂β,b⊂α,∴P∈β,P∈α.又α∩β=c,∴P∈c,即交线c经过点P.∴a,b,c三条直线相交于同一点.。

直线与平面的关系

直线与平面的关系

一、平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈L ,B ∈L=>L α A ∈α,B ∈α公理1作用:判断直线是否在平面内公理2:过不在一条直线上的三点,有且只有一个平面。

推论1: 经过一条直线及直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理2作用:确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据 二、空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 异面直线:不在同一个平面内的两条直线。

异面直线既不相交也不平行。

异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过这点的直线是异面直线。

这个定理是判定空间两条直线是异面直线的理论依据。

LA· αCB ·A· αP ·αLβ共面直线5 注意点:(1)直线所成的角θ∈(0, ]。

(2)条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;(3)直线互相垂直,有共面垂直与异面垂直两种情形;(4)计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

三、空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2直线、平面平行的判定及其性质线面平行的判定定理1、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2.1.1平面的基本性质及三大公理 (1)

2.1.1平面的基本性质及三大公理 (1)
(×)
(2)经过同一点的三条直线确定一个平面。 (×) (3)若点A 直线a,点A 平面,则a . (×) (4) 平面 与平面 相交,它们只有有限个公共点。
(×)
练习 1、下列四个命题中,正确的是( D ) A、任何一个平面图形都是一个平面 B、平面就是平行四边形 C、平面图形可以看成是点的有限集 D、三角形可以确定一个平面
天花板α 墙面γ
墙面β
在空间确定两个平面的交 线, 可用来证三点共线, 公理3:如果两个平面有一个公共点, 三线共点
那么它们还有其他的公共点,且所有的 这些点的集合是一条过这个点的直线


P
l
P l , 且P l
关键词:一点,一线
例3.判断下列命题是否正确: ( 1)经过三点确定一个平面。
关键词: 两点,
图形语言
作用:用来证明或 判断直线在平面内
所有
例2、已知直线 AB、AC 都在平面 内,求证: BC 也在平面 内.
证明: AB , AC
B ,C
BC
你骑车放学回家了,到家时如何才 能把自行车停稳?
B A
C
公理2经过不在同一直线上的 三点有且只有一个平面.
(2)四个点可确定几个平面 ? (3)三条直线两两平行可确 定几个平面?
(4)三条共点的直线可确定 几个平面?
(5)三条两两相交的直线可 确定几个平面?
练习
1、判断下列各题的说法正确与否,在正
确的说法的题号后打 √ ,否则打x
1、一个平面长 4 米,宽 2 米;
:
( )
2、平面有边界;
3、一个平面的面积是 25 cm 2; 4、菱形的面积是 4 cm 2;

高中数学 第一章 立体几何初步 1.2.1 平面的基本性质

高中数学 第一章 立体几何初步 1.2.1 平面的基本性质

公共点个数 有且只有一个 没有 没有
特别提醒
若直线 a,b 是异面直线,则在空间中找不到一个平面,使其同时经过 a,b 两条 直线.例如,如图所示的长方体 ABCD-A1B1C1D1 中,棱 AB 和 B1C1 所在的直线 既不平行又不相交,找不到一个平面同时经过这两条棱所在的直线.要注意 分别在两个平面内的直线不一定是异面直线,可以平行,可以相交,也可以异 面.
.
探究一
探究二
探究三
探究四
解析:图(1)可以用几何符号表示为 α∩β=AB,a⊂ α,b⊂ β,a∥AB,b∥AB. 即平面 α 与平面 β 相交于直线 AB,直线 a 在平面 α 内,直线 b 在平面 β 内,直线 a 平行于直线 AB,直线 b 平行于直线 AB. 图(2)可以用几何符号表示为 α∩β=MN,△ABC 的三个顶点满足条件 A∈MN,B∈α,C∈β,B∉ MN,C∉ MN. 即平面 α 与平面 β 相交于直线 MN,△ABC 的顶点 A 在直线 MN 上,点 B 在 α 内但不在直线 MN 上,点 C 在平面 β 内但不在直线 MN 上. 答案:α∩β=AB,a⊂ α,b⊂ β,a∥AB,b∥AB α∩β=MN,△ABC 的三个顶 点满足条件 A∈MN,B∈α,C∈β,B∉ MN,C∉ MN
(2)在“A∈α,A∉ α,l⊂ α,l⊄ α”中“A”视为平面 α(集合)内的点(元素),直 线 l(集合)视为平面 α(集合)的子集.明确这一点,才能正确使用集合符号.
探究一
探究二
探究三
探究四
【典型例题 1】 如图所示,写出图形中的点、直线和平面之间的关系.
图(1)可以用几何符号表示为
.
图(2)可以用几何符号表示为
经过不在同一条直线上的

平面、平面的基本性质及应用

平面、平面的基本性质及应用

平面、平面的基本性质及应用一、平面的基本性质回顾:包括三个公理、三个推论、其中公理3,推论1,推论2,推论3分别提供了构造平面的四种:(1)选不共线的三点(2)选一条直线与直线外一点(3)选两条相交直线(4)选两条平行直线二、证明共面的两种方法:1、构造一个平面,证相关元素在这个平面内;2、构造两个平面,证能确定平面的元素同在这两个平面内(同一法)。

例1.已知a//b, A∈a, B∈b, C∈b.求证:a,b及直线AB,AC共面。

思路(1):由a//b可确定平面α,再证ABα,ACα;思路(2):由a//b可确定平面α,由直线AB,AC可确定平面β。

因为α,β都经过不共线的三点A、B、C,所以α,β重合。

思路(3):在思路(2)中的平面β,还可以由不共线的A,B,C三点来构造,或者由点A与直线b来构造。

另外,同学们在书写证明过程的时候,一定要把公理及推论的题设交待清楚,建议同学们书写时注明理由,如下所示:写法(一):证明:∵a//b(已知)∴a,b确定一个平面α(推论3)∵A∈a, b∈b, c∈b(已知)∴A∈α,B∈α,C∈α∴直线ABα,直线ACα(公理1)∴a,b,AB,AC共面。

写法(二):证明:∵a//b(知)∵a,b确定一个平面α(推3)∴A∈α,B∈b, C∈b(已知)∴a经过A,B,C三点,∵AB∩AC=A ∴直线AB,AC确定一个平面β(推论2)∴β经过A,B,C三点,∵A∈a,B∈b, C∈b, a//b(已知)∴A,B,C不共线∴α与β重合(公理3)∴a, b,AB,AC共面。

关于同一法证题的思路,请同学们再看一道例题。

例2.如果三条互相平行的直线和同一条直线相交,求证:这四条直线共面。

分析:这是一个文字命题,要求画图,写出已知,求证,然后进行证明。

另外,在写已知,求证时,要尽量忠实原文的意思。

已知:a//b//c,a∩d=A,b∩d=B,c∩d=C求证:a,b,c,d共面。

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。

江苏省昆山市高中数学苏教版必修二教案1.2.1《平面的基本性质及推论(二)》

江苏省昆山市高中数学苏教版必修二教案1.2.1《平面的基本性质及推论(二)》

1.2.1平面的基本性质及推论(二)教学目标:理解推论1、2、3的内容及应用教学重点:理解推论1、2、3的内容及应用教学过程:推论1:直线及其外一点确定一个平面(一) 推论2:两相交直线确定一个平面(二) 推论3:两平行直线确定一个平面(四)例1已知:空间四点A 、B 、C 、D 不在同一平面内.求证:AB 和CD 既不平行也不相交.证明:假设AB 和CD 平行或相交,则AB 和CD 可确定一个平面α,则α⊂AB ,α⊂CD ,故α∈A ,α∈B , α∈C ,α∈D .这与已知条件矛盾.所以假设不成立,即AB 和CD 既不平行也不相交.卡片:1、反证法的基本步骤:假设、归谬、结论;2、归谬的方式:与已知条件矛盾、与定理或公理矛盾、自相矛盾.例2已知:平面α⋂平面β=a ,平面α⋂平面γ=b ,平面γ⋂平面β=c 且c b a 、、不重合.求证:c b a 、、交于一点或两两平行.证明:(1)若三直线中有两条相交,不妨设a 、b 交于A .因为,β⊂a ,故β∈A ,同理,γ∈A ,故c A ∈.所以c b a 、、交于一点.(2)若三条直线没有两条相交的情况,则这三条直线两两平行.综上所述,命题得证.例3已知ABC ∆在平面α外,它的三边所在的直线分别交平面α于R Q P 、、.求证:R Q P 、、三点共线. 证明:设ABC ∆所在的平面为β,则R Q P 、、为平面α与平面β的公共点,所以R Q P 、、三点共线.卡片:在立体几何中证明点共线,线共点等问题时经常要用到公理2.例4正方体1111D C B A ABCD -中,E 、F 、G 、H 、K 、L 分别是、、、111D A DD DC BC BB B A 、、111的中点.求证:这六点共面. 证明:连结BD 和KF , 因为 L E 、是CB CD 、的中点,所以 BD EL //. 又 矩形11B BDD 中BD KF //,所以 EL KF //,所以 EL KF 、可确定平面α,所以 L K F E 、、、共面α,同理 KL EH //, A B C PQ R αC A A B B C D DEF G H K L 1111故 L K H E 、、、共面β.又 平面α与平面β都经过不共线的三点L K E 、、,故 平面α与平面β重合,所以E 、F 、G 、H 、K 、L 共面于平面α.同理可证α∈G ,所以,E 、F 、G 、H 、K 、L 六点共面.卡片:证明共面问题常有如下两个方法:(1)接法:先确定一个平面,再证明其余元素均在这个平面上;(2)间接法:先证明这些元素分别在几个平面上,再证明这些平面重合.课堂练习:1.判断下列命题是否正确(1)如果一条直线与两条直线都相交,那么这三条直线确定一个平面. ( )(2)经过一点的两条直线确定一个平面. ( )(3)经过一点的三条直线确定一个平面. ( )(4)平面α和平面β交于不共线的三点A 、B 、C . ( )(5)矩形是平面图形. ( )2.空间中的四点,无三点共线是四点共面的 条件.3.空间四个平面两两相交,其交线条数为 .4.空间四个平面把空间最多分为 部分.5.空间五个点最多可确定 个平面.6.命题“平面α、β相交于经过点M 的直线a ”可用符号语言表述为 .7.梯形ABCD 中,AB ∥CD ,直线AB 、BC 、CD 、DA 分别与平面α交于点E 、G 、F 、H .那么一定有G 直线EF ,H 直线EF .8.求证:三条两两相交且不共点的直线必共面.小结:本节课学习了平面的基本性质的推论及其应用课后作业:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档