初中数学几何拔高题

合集下载

初二数学拔高练习题推荐

初二数学拔高练习题推荐

初二数学拔高练习题推荐数学作为一门基础学科,对于中学生的学习非常重要。

通过不断的练习和提高,可以帮助学生更好地理解和掌握数学知识。

在初二阶段,为了能够更好地拔高自己的数学水平,以下是一些数学拔高练习题的推荐。

1. 代数方程练习题1.1 解方程:求解2x + 5 = 17的解。

1.2 模型应用:某图书馆现有图书n本,已借出了8本,还剩下的图书比已借出的图书的3倍多5本,请问图书馆共有多少本图书?1.3 字母代数:如果ab = 12,且a + b = 7,求a和b的值。

2. 几何运算练习题2.1 曲线长度:计算抛物线y = x^2在区间[0, 2]上的弧长。

2.2 三角形相似:已知两个三角形的两角分别相等,另一角对应边的比为3:4,判断这两个三角形是否相似。

3. 概率与统计练习题3.1 概率计算:有5个白球和3个黑球放在一个盒子里,从中随机摸出2个球,求摸出的两个球颜色相同的概率。

3.2 统计分析:在班级的一次数学测验中,40名学生的得分情况如下:60分及以下10人,60-70分15人,70分以上15人,请根据这个数据回答以下问题:- 60分及以下的学生占总人数的百分之几?- 70分以上的学生占总人数的百分之几?- 平均分是多少?4. 数列与函数练习题4.1 等差数列:已知某数列的前四项分别是-5、-2、1、4,请写出该数列的通项公式。

4.2 函数应用:已知函数f(x) = 2x^2 + 3x - 2,请计算f(-1)的值。

5. 实际问题应用练习题5.1 比例问题:某地区有3000名中学生,其中男生占总数的35%,女生占其余的65%,计算男生和女生的人数各是多少。

5.2 利息问题:小明存入银行1000元,年利率为4%,存款时间为3年,请计算存款到期后的总金额。

通过解答以上的练习题,可以帮助初二学生更好地巩固和提高数学知识。

同时,还可以培养学生的思维能力、逻辑思维和问题解决能力。

建议学生在课余时间,结合教材和学校作业,进行这些拔高练习题的练习。

七年级数学上册4.1几何图形难题拔高

七年级数学上册4.1几何图形难题拔高
(1)根据上面多面体模型,完成表格中的空格:
多面体
项点数(V)
面数(F)
棱数(F)
四面体
长方体
正八面体
正十二面体
你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.
(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是20;
七年级上册4.1几何图形难题突破
一、单选题
1.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与 重合的数字是()
A. 和 B. 和 C. 和 D. 和
2.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于( )
所以这一线路的路程为 ,
故蚂蚁从点 出发沿着圆柱体的表面爬行到点 的最短路程是 ,
故答案为: .
【点睛】
本题考查了平面展开,最短路径问题,将图形展开和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
4.5
【分析】
先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求10被3整除后余数是1,从而确定第1次变换的第1步变换.
(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
12.某种产品形状是长方形,长为8cm,它的展开图如图:
(1)求长方体的体积;
(2)请为厂家设计一种包装纸箱,使每箱能装10件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的表面积尽可能小)

初中几何100题--高难度版

初中几何100题--高难度版
N
E B
A
C
D O
M
第三十四题:
如图,四边形 ABCD 中, BC CD , BCA 21 , CAD 39 , CDA 78 ,求 BAC 的度数.
C
B
A
D
第三十五题:
如图,四边形 ABCD 中, AD CD , BAC 10 , ABD 50 , ACD 20 ,求 CBD 的度数.
C
E MA D
B
N
第三十二题:
如图, ABC 中, BD AC 于 D , E 为 BD 上一点,且 ABD 38 , CBD 68 , BCE 14 , DCE 8 ,求 DAE 的度数.
B
E
A
D
C
第三十三题:
CD 为⊙ O 的直径, A 、 B 为半圆上两点, DE 为过点 D 的切线, AB 交 DE 于 E ,连接 OE ,交 CB 于 M ,交 AC 于 N . 求证: ON OM
A
O
B
C
第九题:
已知:正方形 ABCD 中, OAD ODA 15 ,求证: OBC 为正三角形.
A
D
O
B
C
第十题:
已知:正方形 ABCD 中, E 、 F 为 AD 、 DC 的中点,连接 BE 、 AF ,相交于点 P ,连 接 PC . 求证: PC BC .
A
E
D
P
F
C P
Q A
B R
第十八题:
如图,已知 AD 是⊙ O 的直径,D 是 BC 中点,AB 、AC 交⊙ O 于点 E 、F ,EM 、FM 是⊙ O 的切线, EM 、 FM 相交于点 M ,连接 DM . 求证: DM BC .

初三数学几何辅导拔高练习题

初三数学几何辅导拔高练习题

初三数学几何辅导拔高练习题几何学作为初中数学的重要内容之一,对于初三学生来说是一个较为复杂和抽象的知识点。

为了提高学生的数学水平和解题能力,对于初三数学几何的辅导是至关重要的。

本文将针对初三数学几何辅导拔高练习题进行讨论和解析。

1. 证明题给出一个等腰三角形 ABC,角 A 的度数为 100°,请证明角 B 的度数也是 100°。

解析:首先,我们可以利用等腰三角形的特性,知道等腰三角形的底角是顶角的一半。

那么我们可以假设角 B 的度数为 x°,则根据等腰三角形的性质,角 C 的度数也为 x°。

由于三角形内角和为 180°,所以我们可以得出以下等式:x + x + 100 = 1802x + 100 = 1802x = 80x = 40所以,角 B 的度数为 40°,证明得证。

2. 计算题给出一个长方形 ABCD,AB = 6cm,BC = 4cm,请计算该长方形的周长和面积。

解析:长方形的周长可以通过公式 2*(长 + 宽) 来计算。

所以,该长方形的周长为:2*(6 + 4) = 2*10 = 20cm长方形的面积可以通过公式长 * 宽来计算。

所以,该长方形的面积为:6 * 4 = 24cm²所以,该长方形的周长为20cm,面积为24cm²。

3. 应用题给出一个圆的半径 r = 5cm,问这个圆的周长和面积分别是多少?请精确计算。

解析:圆的周长可以通过公式2πr 来计算,其中π 的值取3.14。

所以,这个圆的周长为:2 * 3.14 * 5 = 31.4cm圆的面积可以通过公式πr² 来计算。

所以,这个圆的面积为:3.14 * 5² = 3.14 * 25 = 78.5cm²所以,这个圆的周长为31.4cm,面积为78.5cm²。

通过以上的练习题,我们可以看到初三数学几何辅导拔高练习题对于学生的数学能力提高非常有帮助。

初中数学拔高九年级 专题25 平面几何的最值问题(含答案)

初中数学拔高九年级 专题25 平面几何的最值问题(含答案)

专题25 平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ABDCMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDCA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBAC路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB 为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算: 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= .∵ l 12 l 22,∴l 1 l 2 ( 填“>”或“<”),所以应选择路线 (填“1”或“2”)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME F DCABP解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △PAB的最小值. (中学生数学智能通讯赛试题)11CPABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △PAB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △PAB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)AF EAA 1DB D 1B 1C 1CAB CO第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△PAB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =FA . (1) 当∠BAD =75°时,求 ⌒BC的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC。

初三数学上册几何圆拔高练习题

初三数学上册几何圆拔高练习题

初三数学上册几何圆拔高练习题作文稿题目一:求正方形的对角线长度已知正方形ABCD的边长为a,求其对角线长度。

解析:正方形的对角线长等于边长的√2倍,即d = a√2。

题目二:求矩形的周长和面积已知矩形ABCD的长为a,宽为b,求其周长和面积。

解析:矩形的周长等于两倍长加两倍宽,即P = 2a + 2b。

矩形的面积等于长乘以宽,即S = ab。

题目三:求圆的周长和面积已知圆的半径为r,求其周长和面积。

解析:圆的周长称为圆周长,等于半径的2π倍,即C = 2πr。

圆的面积等于半径的平方乘以π,即S = πr²。

题目四:求圆环的面积已知两个圆的半径分别为r1和r2,其中r1 > r2,求圆环的面积。

解析:圆环的面积等于大圆的面积减去小圆的面积,即S = πr1² - πr2²。

题目五:求扇形的面积已知扇形的半径为r,圆心角为θ(单位为度),求扇形的面积。

解析:扇形的面积等于圆的面积乘以圆心角的比值(θ/360°),即S = (θ/360°)πr²。

题目六:求梯形的面积已知梯形ABCD,上底为a,下底为b,高为h,求梯形的面积。

解析:梯形的面积等于上底与下底的和的一半乘以高,即S = (a + b)h/2。

题目七:求圆柱的体积和表面积已知圆柱的底面半径为r,高为h,求圆柱的体积和表面积。

解析:圆柱的体积等于底面积乘以高,即V = πr²h。

圆柱的表面积等于底面积的两倍加上侧面积,即S = 2πr² + 2πrh。

题目八:求圆锥的体积和表面积已知圆锥的底面半径为r,高为h,求圆锥的体积和表面积。

解析:圆锥的体积等于底面积乘以高的三分之一,即V = πr²h/3。

圆锥的表面积等于底面积加上侧面积,即S = πr² + πrl,其中l为斜高。

题目九:求球的体积和表面积已知球的半径为r,求球的体积和表面积。

初二几何证明与计算拔高题

初二几何证明与计算拔高题

1、在△ABC中,AB=AC,∠BAC=90 ,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB =2,则GE的长为_______,并简述求GE长的思路.2、如图,等边△ABC的边长为4 cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE。

(1)如图①,在点D从点B开始移动至点C的过程中,①△ADE的面积是否存在最大值或最小值?若存在,直接写出这个最大值或最小值;若不存在,说明理由;②求点E移动的路径长.(2)如图②,当点D经过点C,并在继续移动的过程中,点E能否移动至直线AB上?为什么?A AAAB CE F D3、如图,正方形ABCD 、BGFE 边长分别为2、1,正方形BGFE 绕点B 旋转,直线GC AE 、想交于点H 。

(1)在正方形BGFE 绕点B 旋转过程中,∠AHC 的大小是否始终为90°,请说明理由;(2)连接BH DH 、,在正方形BGFE 绕点B 旋转过程中,①求DH 的最大值;②直接写出DH 的最小值.4、如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,过点C 作CE//AB 交DF 的延长线于点E,连结AE .(1)求证:四边形ADCE 为平行四边形.(2)若EF=22,∠FCD=30°,∠AED=45°,求DC 的长.如图,在正方形ABCD 中,点E 在边AD 上,点F 在边BC 的延长线上,连接EF 与边CD 相交于点G ,连接BE 与对角线AC 相交于点H ,AE =CF ,BE =EG .(1)求证:EF ∥AC ;(2)求∠BEF 大小;(3)若EB =4,求△BAE 的面积.. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵,∴,.∵射线、的延长线相交于点,∴.∵四边形为正方形,∴,.∴.∴△≌△.…………………3分∴.∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) .…………………5分思路如下:a 。

八年级数学拔高题试卷

八年级数学拔高题试卷

一、选择题(每题5分,共25分)1. 若a、b是方程x² - 3x + 2 = 0的两个根,则a² + b²的值为:A. 2B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为:A. (3,2)B. (-2,-3)C. (-3,-2)D. (-3,2)3. 若等比数列{an}的公比q=2,且a₁=1,则前10项和S₁₀为:A. 1023B. 2046C. 4094D. 81924. 在△ABC中,若∠A=60°,∠B=45°,则△ABC的周长与面积的比为:A. 2:1B. 3:1C. 4:1D. 5:15. 已知函数f(x) = x² - 4x + 3,则函数f(x)的图像与x轴的交点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)6. 若方程2x² - 5x + 3 = 0的两根为m和n,则m + n = ______,mn = ______。

7. 在△ABC中,若AB = 5,AC = 6,BC = 7,则△A BC的面积S为 ______。

8. 等差数列{an}的公差d=2,且a₁=3,则第10项a₁₀为 ______。

9. 在平面直角坐标系中,点P(-3,2)到直线2x + 3y - 6 = 0的距离为______。

10. 函数f(x) = 3x² - 2x + 1的顶点坐标为 ______。

三、解答题(共50分)11. (15分)已知函数f(x) = ax² + bx + c(a≠0),且f(1) = 2,f(-1) = 0,f(2) = 5,求a、b、c的值。

12. (15分)在平面直角坐标系中,已知点A(3,4)和点B(-2,-1),求直线AB的方程。

13. (15分)已知等差数列{an}的前n项和为Sn,且S₁₀ = 40,S₁₅ = 90,求等差数列的首项a₁和公差d。

初中数学拔高练习试题及参考答案

初中数学拔高练习试题及参考答案

初中数学总分:100分;时间:40分钟姓名______ 联系电话_________ 成绩________一.选择题(共4小题,每题8分)1.如图所示,已知直线+2y x =-分别与x 轴、y 轴交于A 、B 两点,与双曲线ky x=交于E 、F 两点,若AB=2EF ,则k 的值是( )A.-1B.1C.12 D.342. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若此时BN CN =13,则△AMD′ 的面积 与△AMN 的面积的比为( )A .1:3B .1:4C .1:6D .1: 93.如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H. 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是( )A B C D4、在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O 上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1 二.填空题(共3小题,每题8分) 5.计算6-19-83=6+2____________6.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是 ________2cm .7.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为 .三.解答题(共3小题,14+15+15)8.已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=50°时,∠ADE = °; (2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.图1 图29.如图3,在平行四边形ABCD 中,AB =7,BC =24,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)求证:OG =OH ;(2)若OG ⊥OH ,直接写出∠OAF 的正切值.EC10.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;EF OA BCD(2)如图1,将直线2y x 沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.初中数学参考答案题号 1 2 3 4 答案 D A D A 二.填空题(共3小题,每题8分) 题号 5 6 7 答案12240π8.解:(1)°65ADE ∠=;……………………………….(3分)(2)①见右图;……………………………………………………(5分)②EM EN =证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠.∴°902EDA ACB α∠=∠=-.∵BA BC =,∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED =………………………………(7分) ∵E 是AC 中点, ∴EA EC =.∴EA EC ED ==.∴点,,A D C 在以AC 为直径的圆上. ∴°90ADC ∠=.………………….(9分) 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点, ∴FD FB =.∴FDB ABC α∠=∠=.∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.………………………………………………………………(12分) ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED- ∠AEN=∠MEN-∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN .∴ EM=EN . ……………………………………………………………………..(14分)2568π-9.解:(1)证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴AD//BC ,AB//CD .∴∠ DAE=∠ AEB ,∠ BAE=∠ DPA . …………………………………………………….(3分) ∵AE 平分∠ BAD , ∴∠ DAE=∠ BAE ,∴∠ BAE=∠ AEB ,∠ DAE=∠ DPA .∴ BA=BE ,DA=DP , …………………………………………………….(6分) 又∵BG ⊥ AE ,DH ⊥ AE ,∴G 为AE 中点,H 为AP 中点. …………………………………………………….(8分) 又 ∵O 为AC 中点,AD=BC , ∴ ()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- .∴ OG=OH .………………………………………………………………………………….(11分) (2)1731.………………………………………(15分) 10.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点,01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩ 解得 1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ∴ 抛物线的解析式为214y x x =+.……………………………………..(4分)∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1--…………………………………………………….(5分) (2)设直线CD 的解析式为2y x m =+, 根据题意,得2124x x x m +=+,B化简整理,得2440x x m --=,由16160m ∆=+=,解得1m =-,∴直线CD 的解析式为21y x =- . …………………….(11分) (3)点的坐标为()2,7,最短距离为5.…………………………….(15分)。

初中几何100题--高难度版

初中几何100题--高难度版

初中竞赛几何必做100题第一题:已知:ABCAE⊥,ABCF⊥,AE、CF相交BAC,BC∆外接于⊙O,︒=∠60于点H,点D为弧BC的中点,连接HD、AD.∆为等腰三角形.求证:AHD第二题:如图,F为正方形ABCD边CD上一点,连接AC、AF,延长AF交AC的平行线DE于点E,连接CE,且AC=AE.CE .求证:CFE第三题:已知:ABC ∆中,AC AB =,︒=∠20BAC ,︒=∠30BDC . 求证:BC AD =.B第四题:已知:ABC ∆中,D 为AC 边的中点,C A ∠=∠3,︒=∠45ADB . 求证:BC AB ⊥.AC第五题:如图,四边形ABCD 的两条对角线AC 、BD 交于点E ,︒=∠50BAC ,︒=∠60ABD ,︒=∠20CBD ,︒=∠30CAD ,︒=∠40ADB ,求ACD ∠.BD第六题:已知,︒=∠30ABC ,︒=∠60ADC ,DC AD =,求证:222BD BC AB =+.DB第七题:如图,PC切⊙O于C,AC为圆的直径,PEF为⊙O的割线,AE、AF与直线PO相交于B、D.求证:四边形ABCD为平行四边形.第八题:已知:在ABC ∆中,AC AB =,︒=∠80A ,︒=∠10OBC ,︒=∠20OCA . 求证:OB AB =.CB第九题:已知:正方形ABCD 中,︒=∠=∠15ODA OAD ,求证:OBC ∆为正三角形.第十题:已知:正方形ABCD中,E、F为AD、DC的中点,连接BE、AF,相交于点P,连接PC.PC .求证:BC第十一题:如图,ACB ∆与ADE ∆都是等腰直角三角形,︒=∠=∠90ACB ADE ,︒=∠45CDF ,DF 交BE 于F ,求证:︒=∠90CFD .EB第十二题:已知:ABC ∆中,CAB CBA ∠=∠2,CBA ∠的角平分线BD 与CAB ∠的角平分线AD 相交于点D ,且AD BC =. 求证:︒=∠60ACB .第十三题:已知:在ABC ∆中,BC AC =,︒=∠100C ,AD 平分CAB ∠. 求证:AB CD AD =+.AB第十四题:已知:ABC ∆中,BC AB =,D 是AC 的中点,过D 作BC DE ⊥于E ,连接AE ,取DE 中点F ,连接BF . 求证:BF AE ⊥.A第十五题:已知:ABC ∆中,︒=∠24A ,︒=∠30C ,D 为AC 上一点,CD AB =,连接BD . 求证:AC BD BC AB ⋅=⋅.A第十六题:已知:ABCD 与1111D C B A 均为正方形,2A 、2B 、2C 、2D 分别为1AA 、1BB 、1CC 、1DD 的中点.求证:2222D C B A 为正方形.A第十七题:如图,在ABC ∆三边上,向外做三角形ABR 、BCP 、CAQ ,使︒=∠=∠45CAQ CBP ,︒=∠=∠30ACQ BCP ,︒=∠=∠15BAR ABR .求证:RQ 与RP 垂直且相等.Q第十八题:如图,已知AD是⊙O的直径,D是BC中点,AB、AC交⊙O于点E、F,EM、FM 是⊙O的切线,EM、FM相交于点M,连接DM.DM .求证:BCB第十九题:如图,三角形ABC 内接于⊙O ,两条高AD 、BE 交于点H ,连接AO 、OH 。

重点初中数学几何拔高题

重点初中数学几何拔高题

专题:角平分线、线段的垂直平分线一、角平分线1定义:2性质:3判定:二、线段的垂直平分线1、定义:2、性质:3、判定:典型例题讲解:1、如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E求证:(1)∠EAD=∠EDA;(2)DF∥AC(3)∠EAC=∠B2.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM.3、如图,PA=PB,∠1+∠2=180 。

求证:OP平分∠AOB。

4、如图13,△ABC中,P、Q分别是BC、AC上的点,PR⊥AB于R,PS⊥AC于S,若AQ=PQ,RP=PS。

则PQ 与AB是否平行?能力提升:、1.如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.BA.2.已知∠MON内有一定点P,在角的两边OM、ON上能否分别找到两点A、B,使△APB的周长最短?3.3.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.4.如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC的道理.5.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.6.如图,已知点B 、C 、D 在同一条直线上,△ABC和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由. 7.如图,已知△ABC 中,AH⊥BC 于H ,∠C=35°,且AB+BH=HC ,求∠B 度数.8.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足A DB C ABOEFCABD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.9.如图1,△ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过D 作EF//BC,交AB 于E,交AC 于F,易证:EF=BE+CF.当D 为∠ABC 的平分线和∠ACB 的外角平分线的交点(如图2)时,或当D 为∠ABC 的外角平分线和∠ACB 的外角平分线的交点(如图3)时,其它条件都不变,EF 、BE 、CF 的关系又如何?请对图2进行证明.ABC DE FH A BCD EF GABCD E F G。

2019-2020学年度青岛版数学七年级上册1.2 几何图形拔高训练九十四

2019-2020学年度青岛版数学七年级上册1.2 几何图形拔高训练九十四

2019-2020学年度青岛版数学七年级上册1.2 几何图形拔高训练九十四第1题【单选题】下面的图形,是由A,B,C,D中的哪个图旋转形成的( )A、B、C、D、【答案】:【解析】:第2题【单选题】如图,六棱柱的正确截面是( )A、B、C、D、【答案】:【解析】:第3题【单选题】下面平面图形中能围成三棱柱的是( )A、B、C、D、【答案】:【解析】:第4题【单选题】下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是( ) A、B、C、D、【答案】:【解析】:第5题【单选题】如果有一个正方体,它的展开图可能是下面四个展开图中的( )A、B、C、D、【答案】:【解析】:第6题【单选题】一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( )A、51B、52C、57D、58【答案】:【解析】:第7题【单选题】如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是( )A、冷B、静C、应D、考【答案】:【解析】:第8题【填空题】小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是______【答案】:【解析】:第9题【填空题】正方形ABCD的边长为2厘米,以直线AB为轴旋转一周所得到圆柱的底面周长为______厘米.【答案】:【解析】:第10题【填空题】假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______.【答案】:【解析】:已知长方形ABCD的长为10cm,宽为4cm,将长方形绕AD边所在直线旋转后形成一个什么立体图形?这个立体图形的体积是多少?【答案】:【解析】:第12题【解答题】如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】:【解析】:用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.A、解:如图所示:【答案】:【解析】:第14题【综合题】图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线.②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC 和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近.在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】:【解析】:第15题【综合题】如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.请在图4中画出拼接后符合条件的平行四边形;请在图2中,计算裁剪的角度(即∠ABM的度数).【答案】:【解析】:。

初二几何拔高题

初二几何拔高题

初二几何拔高题1、数学课上,李老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_____DB(填“>”,“<”或“=”).(2)一般情况,证明结论:如图2,过点E作EF∥BC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,则CD的长为_____(请直接写出结果).2、如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BA O=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.3、如图,在直角坐标系中,B点的坐标为(a,b),且a、b满足│a+b-4│+(a-b)2=0.(1)求B点的坐标;(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.4、在平面直角坐标系中,点A 的坐标为(1,0),以OA为边在第四象限内作等边△AOB.点C为x轴的正半轴上一动点(OC>1),连结BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)当点C运动到什么位置时,使得以A、E、C为顶点的三角形时等腰三角形。

5、(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.6、学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°。

2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何

2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何

2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何1.如图,点 A , B 在 x 轴上,以 AB 为边的正方形 ABCD 在 x 轴上方,点 C 的坐标为 (1,4) ,反比例函数 y =kx(k ≠0) 的图象经过 CD 的中点 E , F 是 AD 上的一个动点,将 △DEF 沿 EF 所在直线折叠得到 △GEF .(1)求反比例函数 y =kx(k ≠0) 的表达式;(2)若点 G 落在 y 轴上,求线段 OG 的长及点 F 的坐标.2.如图,反比例函数y =mx 的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数和一次函数的解析式;(2)结合图象,直接写出不等式mx <kx +b 的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,试求点E 的坐标.3.在矩形AOBC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数y =kx (x >0)的图象与AC 边交于点E ,连接OE ,OF ,作直线EF .(1)若CF =2,求反比例函数解新式; (2)在(1)的条件下求出△EOF 的面积; (3)在点F 的运动过程中,试说明EC FC是定值.4.如图,在平面直角坐标系中,一次函数 y 1=−x +2 与反比例函数 y 2=k x(x <0) 相交于点B ,与 x 轴相交于点 A ,点 B 的横坐标为-2.(1)求 k 的值;(2)直接写出当 x <0 且 y 1<y 2 时, x 的取值范围;(3)设点 M 是直线AB 上的一点,过点 M 作 MN// x 轴,交反比例函数 y 2=k x (x <0) 的图象于点 N .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 M 的坐标.5.如图,在平面直角坐标系 xOy 中,一次函数 y =x +1 的图象与反比例函数 y =k x(k ≠0)的图象交于一、三象限内的 A 、B 两点,直线 AB 与 x 轴交于点 C ,点 B 的坐标为 (− 2,n) .(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.7.如图,在Rt△AOB中,△ABO=90°,OB=4,AB=8,且反比例函数y=k x在第一象限内的图象分别交OA,AB于点C和点D,连结OD,△BOD的面积是4.(1)求反比例函数解析式;(2)将△AOB沿x轴向左运动,运动速度是每秒钟3个单位长度,求△AOB与反比例函数图象没有交点时,运动时间t的取值范围.8.如图,在平面直角坐标系中,点A(2,m)在正比例函数y=32x(x>0)的图象上,反比例函数y=kx(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P作x轴的垂线,与正比例函数y=32x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,32x≤kx的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.9.已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图1,若n=−5,且函数y1,y2的图象都经过点A(3,4)①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2为的图象相交于点B,与反比例函数y3= nx(x>0)的图象相交于点C,①若k=3.直线l与函数y2的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m−n的值:②过点B作x轴的平行线与函数y1的图象相交于点E.当m−n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d10.如图,一次函数y1=k1x+4与反比例函数y2=k2x的图象交于点A(2,m)和B(−6,−2),与y轴交于点C.(1)k1=,k2=;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:SΔODE=4:1时,求点P的坐标.(3)点M是坐标轴上的一个动点,点N是平面内的任意一点,当四边形ABMN是矩形时,求出点M的坐标.11.已知:如图1,点A(4,n)是反比例函数y=8x(x>0)图象上的一点.(1)求n的值和直线OA的解析式;(2)如图2,将反比例函数y=8x(x>0)的图象绕原点O逆时针旋转45°后,与y轴交于点M,求线段OM的长度;(3)如图3,将直线OA绕原点O逆时针旋转45°,与反比例函数y=8x(x>0)的图象交于点B,求点B的坐标.12.如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=k x(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.13.如图,直线y=﹣x+2与反比例函数y=k x(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC△x轴于点C,过点B作BD△x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.14.如图1,在平面直角坐标系xOy中,函数y=mx(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD−∠POC时,求此时m的值:(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=mx(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.15.已知点A(3,2)、点B(m,n)在反比例函数y=k x(x>0)图象上,点C是x轴上的一个动点.(1)求k的值;(2)若m=1,C(﹣1,0),试判断△ABC的形状,并说明理由;(3)若点C在x轴正半轴上,当△ABC为等腰直角三角形时,求出点C的坐标.16.如图,一次函数y=kx+b的图象与反比例函数y= mx的图象交于点A(1,4)、B(4,n)。

初中数学全年级拔高题150练习(附答案解析)

初中数学全年级拔高题150练习(附答案解析)

中点之间的距离是( )
A.3cm
B.4cm
C.5cm
D.无法计算
15.规定
a b
c d
=ad-bc,若
2 3
x
x 1 = 3
,则 x=(

A.-5
B.-4
C.0.8
D.1
二、填空题
16.化简 2 x 3 x 4 ______________
17.在体育课的跳远比赛中,以 5.00 米为标准,若小东跳出了 5.22 米,可记做+
2
4
5
你规定的新运算 a⊕b=
(用 a,b 的一个代数式表示).
三、解答题 31.计算:
(1)
1 2
-
5 9
7 12
-36
(2)
23
4 9
2 3
2
(3)
14பைடு நூலகம்
1 5
4
(1)3
32.计算
5
6
2a
a
3
1
33.先化简,再求值:
1 4
(-4x2+2x-8)-(
1 2
x-1),其中
x=
1 2

34.解方程:
7.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )
A.
B.
C.
D.
8.厦深铁路起点厦门北站,终点深圳北站.汕尾鲘门站、深圳坪山站在其沿线上,
它们之间有惠东站、惠州南站,那么在鲘门站和坪山站之间需准备火车票的种数为
(任何两站之间,往返两种车票)( )
A.8 种
B.10 种
C.12 种
D.14 种
(1) 6 2 x 3 x ;(2)1 3x 5 1 5x .

初中数学几何拔高题精编版

初中数学几何拔高题精编版

专题:角平分线、线段的垂直平分线一、角平分线1定义:2性质:3判定:二、线段的垂直平分线1、定义:2、性质:3、判定:典型例题讲解:1、如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E求证:(1)∠EAD=∠EDA ;(2)DF∥AC(3)∠EAC=∠B2.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N .求证:CM =2BM .3、如图,PA=PB ,∠1+∠2=180 。

求证:OP 平分∠AOB 。

21)OPBA4、如图13,△ABC 中,P 、Q 分别是BC 、AC 上的点,PR ⊥AB 于R ,PS ⊥AC 于S ,若AQ=PQ ,RP=PS 。

则PQ 与AB 是否平行?S QRPCB A能力提升:、1.如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .2.已知∠MON内有一定点P,在角的两边OM、ON上能否分别找到两点A、B,使△APB的周长最短?3.3.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=︒30,求∠ACB的度数;(2)已知∠A=︒40,求∠ACB的度数;(3)已知∠A=︒x,求∠ACB的度数;(4)请你根据解题结果归纳出一个结论.CB4.如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.5.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.DCABABOEFC6.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDCABH F7.如图,已知△ABC 中,AH⊥BC 于H ,∠C=35°,且AB+BH=HC ,求∠B 度数.CABH8.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.EDCAB9.如图1,△ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过D 作EF//BC, 交AB 于E, 交AC 于F, 易证: EF=BE+CF.当D 为∠ABC 的平分线和∠ACB 的外角平分线的交点(如图2)时,或当D 为∠ABC 的外角平分线和∠ACB 的外角平分线的交点(如图3)时,其它条件都不变,EF 、BE 、CF 的关系又如何?请对图2进行证明.ABC DE FH A BCDEFGABCDEFG。

2023年中考九年级数学高频考点拔高训练--二次函数动态几何问题

2023年中考九年级数学高频考点拔高训练--二次函数动态几何问题

2023年中考九年级数学高频考点拔高训练--二次函数动态几何问题1.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.2.如图二次函数y=ax2+bx+c(a≠0)的图像交x轴于A(−1,0)、B(3,0),交y轴于C(0,3),直线CD平行于x周,与抛物线另一个交点为D .(1)求函数的解析式;(2)若M是x轴上的动点,N是抛物线上的动点,求使以B、D、M、N为顶点的四边形是平行四边形的M的横坐标.3.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB 上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并在右图中画出函数的图象;(2)求△PBQ面积的最大值.4.如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.5.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以√2个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE△y轴,交AB于点E,过点Q作QF△y轴,交抛物线于点F,连接EF,当EF△PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.6.抛物线y=ax2+bc+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y 轴的交点为C,其中A(−1,0),OC=3.(1)求出抛物线的解析式;(2)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(3)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.7.如图,已知抛物线y=ax2−2ax−3(a≠0)与x轴交于点A,B(点A在B的左侧),与y轴交于点C,ΔABC的面积为6(1)求抛物线的表达式;(2)过D(−2,0)的直线l交线段BC于点M,l与抛物线右侧的交点为N,求MN DM的最大值.8.如图,抛物线y=ax2 + bx + c 交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0)、C(0,-3).(1)求抛物线y= ax2 + bx + c 的解析式;(2)求△AOC和△BOC的面积比;(3)在对称轴上是否存在一个P点,使△PAC的周长最小.若存在,请你求出点P的坐标;若不存在,请你说明理由.9.已知二次函数y=ax2+bx+c,其图象与x轴的一个交点为B(3,0),与y轴交于点C(0,−3),且对称轴为直线x=1,过点B,C作直线BC.(1)求二次函数和直线BC的表达式;(2)利用图象求不等式x2−3x≥0的解集;(3)点Р是函数y=ax2+bx+c的图象上位于第四象限内的一动点,连接PB,PC,①若ΔPBC面积最大时,求点Р的坐标及ΔPBC面积的最大值;②在x轴上是否存在一点Q,使得以P,C,Q,B为顶点的四边形是平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.10.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣49x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣49x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.11.抛物线y=−x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B的坐标为(3,0),点C的坐标为(0,3).(1)求抛物线的解析式.(2)如图甲,若P为BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标.(3)如图乙,M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.12.如图,抛物线y=12x2+mx+n与直线y=12x+3交于A,B两点,交x轴与D,C两点,连接AC,已知A(0,3),C(3,0).(1)抛物线的解析式;(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒√2个单位的速度运动到A后停止.若使点M在整个运动中用时最少,则点E的坐标.13.如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,D为直线BC上方抛物线上一动点,过点D做DQ△x轴于点M,DQ与BC相交于点M.DE△BC于E.(1)求抛物线的函数表达式;(2)求线段DE长度的最大值;(3)连接AC,是否存在点D,使得△CDE中有一个角与△CAO相等?若存在,求点D的横坐标;若不存在,请说明理由.14.如图,抛物线y=−12x2+bx+c的图象经过点C(0,2),交x轴于点A(−1,0)和B,连接BC,直线y=kx+1与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的表达式及点B的坐标;(2)求EFDF的最大值及此时点E的坐标;(3)在(2)的条件下,若点M为直线DE上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.15.如图,已知抛物线y=x2+bx+c与直线y=﹣x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=,c=;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.16.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣32),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.答案解析部分1.【答案】(1)解:把A (﹣3,0)和C (1,0)代入y =ax 2+bx ﹣3,得,{0=9a −3b −30=a +b −3,解得,{a =1b =2,∴抛物线解析式为y =x 2+2x ﹣3;(2)解:设P (x ,x 2+2x ﹣3),直线AB 的解析式为y =kx+b , 由抛物线解析式y =x 2+2x ﹣3, 令x =0,则y =﹣3, ∴B (0,﹣3),把A (﹣3,0)和B (0,﹣3)代入y =kx+b , 得,{0=−3k +b −3=b ,解得,{k =−1b =−3,∴直线AB 的解析式为y =﹣x ﹣3, ∵PE△x 轴, ∴E (x ,﹣x ﹣3), ∵P 在直线AB 下方,∴PE =﹣x ﹣3﹣( x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x+32)2+94,当x =﹣32时,y =x 2+2x ﹣3=−154,∴当PE 最大时,P 点坐标为(﹣32,−154)(3)解:存在,理由如下, ∵x =﹣22×1=-1,∴抛物线的对称轴为直线x =-1, 设Q (-1,a ),∵B (0,-3),A (-3,0),①当△QAB =90°时,AQ 2+AB 2=BQ 2, ∴22+a 2+32+32=12+(3+a )2, 解得:a =2,∴Q 1(-1,2),②当△QBA =90°时,BQ 2+AB 2=AQ 2, ∴12+(3+a )2+32+32=22+a 2, 解得:a =﹣4, ∴Q 2(-1,﹣4),③当△AQB =90°时,BQ 2+AQ 2=AB 2, ∴12+(3+a )2+22+a 2=32+32,解得:a 1=−3+√172或a 1=−3−√172,∴Q 3(-1,−3+√172),Q 4(-1,−3−√172),综上所述:点Q 的坐标是(-1,2)或(-1,﹣4)或(-1,−3+√172)或(-1,−3−√172).2.【答案】(1)解: ∵ 二次函数的图象交 x 轴于 A(−1,0) 、 B(3,0) ,∴ 设二次函数的解析式为 y =a(x +1)(x −3) 展开得: y =ax 2−2ax −3a , ∵ 二次函数的图象交 y 轴于 C(0,3) , ∴−3a =3 ,得 a =−1∴ 二次函数的解析式为 y =−x 2+2x +3 (2)解:联立方程组得: {y =3y =−x 2+2x +3,解得 {x =0y =3 或 {x =2y =3 , ∴D 点坐标为 (2,3) ,当以 B 、 D 、 M 、 N 为顶点四边形是平行四边形时,有两类情形; ①BD 是平行四边形的边时, 联立方程组 {y =−3y =−x 2+2x +3 , 解得, x N =1±√7如图,此时 x M′=0+1=1 ,或 x M′′=1−√7−1=−√7 或 x M′′′=1+√7−1=√7②BD是平行四边形的对角线时∵B、D两点的中点坐标为(2+32,32)=(52,32),∴设M′′′′(m,0),可得N′′′′的坐标为(5−m,3),将N′′′′的坐标(5−m,3)代入y=−x2+2x+3,得−(5−m)2+2(5−m)+3=3,解得m=3(舍去),m=5,得x M′′′′=53.【答案】(1)解:∵S△PBQ= 12PB·BQ,PB=AB-AP=18-2x,BQ=x,∴y= 12(18-2x)x,即y=-x2+9x(0<x≤4);函数图象如下图:(2)解:由(1)得:y=-x2+9x=-(x-92)2 + 814,∴顶点坐标为(92,814)∴当0<x≤ 92时,y随x的增大而增大,∵x的取值范围是0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.4.【答案】(1)52(2)解:如图2,过点C作CE△x轴于E,∴△AEC=△BOA=90°.∵△BAC=90°,∴△OAB+△CAE=90°.∵△OAB+△OBA=90°,∴△OBA=△CAE,由旋转知,AB=AC,∴△AOB△△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S△ABC= 52= 12AB2= 12×5OB2,∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣12x+1;(3)解:由(2)知,AB2=5,∴AB= √5,①当0≤m≤ √5时,如图3.∵△AOB=△AA'F ,△OAB=△A'AF ,∴△AOB△△AA'F ,∴AA ′OA =A ′F OB ,由运动知,AA'=m ,∴m 2=A ′F 1,∴A'F= 12 m ,∴S= 12 AA'×A'F= 14 m 2,②当 √5<m≤2 √5 时,如图4同①的方法得:A'F= 12 m ,∴C'F= √5 ﹣ 12 m ,过点C 作CE△x 轴于E ,过点B 作BM△CE 于E ,∴BM=3,CM=1,易知,△ACE△△FC'H ,∴AC C ′F =CE CH ,∴√5√5−12m =2C ′H ∴C'H=2√5−m√5 .在Rt△FHC'中,FH= 12 C'H= 2√5−m √5由平移知,△C'GF=△CBM .∵△BMC=△GHC',∴△BMC△△GHC',∴BM GH =AMC ′H ,∴3GH =12√5−m √5∴GH=3(2√5−m)√5 ,∴GF=GH ﹣FH= 5(2√5−m)√5 ∴S=S △A'B'C '﹣S △C'FG = 52 ﹣ 12 ×√5−m)√5× 2√5−m √5 = 52 ﹣ 14 (2 √5 ﹣m )2,即:S= {14m 2(0≤m ≤√5)52−14(2√5−m)2(√5<m ≤2√5). 5.【答案】(1)解:∵y=﹣x+3与x 轴交于点A ,与y 轴交于点B ,∴当y=0时,x=3,即A 点坐标为(3,0),当x=0时,y=3,即B 点坐标为(0,3),将A (3,0),B (0,3)代入y=﹣x 2+bx+c ,得 {−9+3b +c =0c =3 ,解得 {b =2c =3∴抛物线的解析式为y=﹣x 2+2x+3;(2)解:∵OA=OB=3,△BOA=90°,∴△QAP=45°.如图①所示:△PQA=90°时,设运动时间为t秒,则QA= √2t,PA=3﹣t.在Rt△PQA中,QAPA=√22,即:√2t3−t=√22,解得:t=1;如图②所示:△QPA=90°时,设运动时间为t秒,则QA= √2t,PA=3﹣t.在Rt△PQA中,PAQA=√22,即:3−t√2t=√22,解得:t= 32.综上所述,当t=1或t= 32时,△PQA是直角三角形;(3)解:如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2.∵EP△FQ,EF△PQ,∴EP=FQ.即:3﹣t=3t﹣t2.解得:t1=1,t2=3(舍去).将t=1代入F(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),得点F的坐标为(2,3).(4)解:如图④所示:设运动时间为t秒,则OP=t,BQ=(3﹣t)√2.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M的坐标为(1,4).∴MB= √12+12= √2.当△BOP△△QBM时,MBOP=BQOB即:√2t=(3−t)√23,整理得:t2﹣3t+3=0,△=32﹣4×1×3<0,无解:当△BOP△△MBQ时,BMOB=BQOP即:√23=(3−t)√2t,解得t= 94.∴当t= 94时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.6.【答案】(1)解:抛物线的对称轴为x=1,点A坐标为(−1,0),则点B(3,0),二次函数表达式为:y=a(x+1)(x−3)=a(x2−2x−3),∴−3a=−3,解得:a=1,故抛物线的表达式为:y=x2−2x−3(2)解:S△BOC=12OB·OC=12×3×3=92由题意得:S△POC=2S△BOC=9,设P(x,x2−2x−3)则S△POC=9=12OC·|x|=32·|x|所以|x|=6则x=±6,所以当x=6时,x2−2x−3=21,当x=−6时,x2−2x−3=45故点P的坐标为(6,21)或(−6,45);(3)解:如图所示,将点B 、C 坐标代入一次函数y =kx +b 得表达式得 {c =−33k +b =0,解得:{k =1b =−3, 故直线BC 的表达式为: y =x −3,设:点M 坐标为(x ,x −3),则点D 坐标为(x ,x 2−2x −3),则MD =x −3−x 2+2x +3=−(x −32)2+94,故MD 长度的最大值为94.7.【答案】(1)解:∵抛物线 y =ax 2−2ax −3 ,∴与 y 轴交点 C(0,−3) ,对称轴为直线 x =1 , ∴OC =3 .∵抛物线与 x 轴交于点 A ,B ,且 ΔABC 的面积为6,∴12AB ×3=6 ,则 AB =4 , ∴点 A(−1,0),B(3,0) . ∵抛物线过点 A , ∴0=a +2a −3 , ∴a =1 ,∴抛物线的表达式为 y =x 2−2x −3 .(2)解:如图,过点 D 作 DE ⊥x 轴交 BC 的延长线于点 E ,过点 N 作 NF//y 轴交线段 BC 于点 F ,则 DE//FN .∵B(3,0),C(0,−3) ,∴直线 BC 的表达式为 y =x −3 , ∵D(−2,0) ,∴点 E 的坐标为 (−2,−5) .设 N(m ,m 2−2m −3) ,则 F(m ,m −3) . ∵DE//FN ,∴MN DM =FN DE =m−3−m 2+2m+35=−15(m −32)2+920 , ∴MN DM 的最大值为 920. 8.【答案】(1)解:∵A ,B 两点关于x=1对称,∴B 点坐标为(3,0),根据题意得:{0=9a +3b +c 0=a −b +c −3=c ,解得a=1,b=-2,c=-3. ∴抛物线的解析式为y=x 2-2x-3. (2)解:(3)解:存在一个点P .C 点关于x=1对称点坐标C'为(2,-3), 令直线AC'的解析式为y=kx+b ∴{−3=2k +b 0=−k +b,∴k=-1,b=-1,即AC'的解析式为y=-x-1. 当x=1时,y=-2, ∴P 点坐标为(1,-2).9.【答案】(1)解: ∵ 抛物线的对称轴为 x =1,B(3,0) ,∴A(−1,0) .设抛物线的解析式为 y =a(x +1)(x −3) , 将点 C 的坐标代入得: −3a =−3, 解得 a =1,∴ 抛物线的解析式为 y =x 2−2x −3 . 设直线 BC 的解析式为 y =kx +b , 将点 B 和 C 的坐标代入得: {3k +b =0b =−3 ,解得 k =1,b =−3 ,直线 BC 的解析式为 y =x −3(2)解:由 x 2−3x ≥0 可得到 x 2−2x −3≥x −3 , 由函数图象可得到 x ≥3 或 x ≤0(3)解:①作 PM ⊥x 轴,垂足为 M ,交 BC 与点 N .设 Р(m,m 2−2m −3) , 则 N(m,m −3) .∴PN =m −3−(m 2−2m −3)=−m 2+3m .∴S ΔPBC =12PN ⋅(OM +MB)=12PN ·⋅OB =−32m 2+92m =−32(m −32)2+278 . 当 ΔPBC 的面积最大时,点 P 的坐标为 (32,−154) , ΔPBC 的面积的最大值为 278②∵ 点 B 和点 Q 均在 x 轴,以 P,C,Q,B 为顶点的四边形是平行四边形, ∴PC//BQ,PC =BQ ,∴ 点 P 与点 C 关于 x =1 对称, ∴ 点 P 的坐标为 (2,−3) .∴CP =2,∵BQ =PC =2,B(3,0) ,∴ 点 Q 的坐标为 (1,0) 或 (5,0) .10.【答案】(1)解:将A 、C 两点坐标代入抛物线,得{c =8−49×36+6b +c =0, 解得: {b =43c =8,∴抛物线的解析式为y=﹣ 49 x 2+ 43 x+8(2)解:①∵OA=8,OC=6, ∴AC= √OA 2+OC 2 =10, 过点Q 作QE△BC 与E 点,则sin△ACB= QE QC = AB AC = 35 ,∴QE 10−m = 35 , ∴QE= 35(10﹣m ),∴S= 12 •CP•QE= 12 m× 35 (10﹣m )=﹣ 310m 2+3m ;②∵S= 12 •CP•QE= 12 m× 35 (10﹣m )=﹣ 310 m 2+3m=﹣ 310 (m ﹣5)2+ 152 , ∴当m=5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形, ∵抛物线的解析式为y=﹣ 49 x 2+ 43 x+8的对称轴为x= 32 ,D 的坐标为(3,8),Q (3,4),当△FDQ=90°时,F1(32,8),当△FQD=90°时,则F2(32,4),当△DFQ=90°时,设F(32,n),则FD2+FQ2=DQ2,即94+(8﹣n)2+ 94+(n﹣4)2=16,解得:n=6± √72,∴F3(32,6+ √72),F4(32,6﹣√72),满足条件的点F共有四个,坐标分别为F1(32,8),F2(32,4),F3(32,6+ √72),F4(32,6﹣√72).11.【答案】(1)解:由题意得{−9+3b+c=0,c=3.解得{b=2,c=3.∴抛物线的解析式为y=−x2+2x+3(2)解:设点P的坐标为(m,−m2+2m+3),如图,过点P作PH⊥x轴于点H,交BC于点G.∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=−x+3.∴点G的坐标为(m,−m+3).∴PG=−m2+3m. S△PBC =12PG⋅OB=12(−m2+3m)×3=−32⋅(m−32)2+278∴当m=32时,S△PBC取得最大值,此时点P的坐标为(32,154)(3)解:存在点N满足要求.∵y=−x2+2x+3=−(x−1)2+4,∴顶点M的坐标为(1,4).∴直线MC的解析式为y=x+3.设直线MC与x轴交于点E,则点E的坐标为(−3,0).∴DE=DM=4.∴∠CMD=45°.设满足要求的点N坐标为(1,n),则MN=|4−n|.如图,过点N作NG⊥ME于点G,则NG=√22MN=√22|4−n|.∵NG=NA,∴NG2=NA2.又NA2=n2+4,∴(√22|4−n|)2=n2+4.整理得n2+8n−8=0.解得n=−4±2√6.∴存在点N满足要求,点N的坐标为(1,−4+2√6)或(1,−4−2√6). 12.【答案】(1)y=12x2﹣52x+3(2)(2,1)13.【答案】(1)解:∵抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,∴设抛物线解析式为y=a(x+1)(x-3),将C(0,3)代入,得:a×(0+1)×(0-3)=3,解得:a=-1,∴y=-(x+1)(x-3)=-x2+2x+3,∴抛物线解析式为y =-x 2+2x+3(2)解:设D (m ,-m 2+2m+3),且0<m <3,如图1,在Rt△BOC 中,BO =3,OC =3, ∴BC = √BO 2+OC 2=√32+32=3√2 ,设直线BC 的解析式为y =kx+n ,将B (3,0),C (0,3)代入, 得: {3k +n =0n =3 解得: {k =−1n =3∴直线BC 的解析式为y =-x+3, ∴G (m ,-m+3),∴DG =-m 2+2m+3-(-m+3)=-m 2+3m , ∵DE△BC ,∴△DEG =△BOC =90°, ∵DG△x 轴, ∴DG△y 轴, ∴△DGE =△BCO , ∴△DGE△△BCO , ∴DE DG =BO BC , ∴DE −m 2+3m =33√2,∴DE =- √22m 2+3√22m =−√22(m −32)2+9√28∴当m =32时,DE 取得最大值,最大值是9√28.(3)解:存在点D ,使得△CDE 中有一个角与△CFO 相等. ∵点F 是AB 的中点,A (-1,0),B (3,0),C (0,3), ∴F (1,0),∴OF =1,OC =3,BC =4, ∴tan△CFO =OC OF=3,如图2所示,过点B 作BG△BC ,交CD 的延长线于点G ,过点G 作GH△x 轴于点H ,①若△DCE =△CFO , ∴tan△DCE =tan△CFO =3, ∵tan△DCE =GB BC =3,∴GB =12,∵BG△BC ,GH△x 轴,∴△CBG =△GHB =△BCO =90°, ∴△CBO+△GBH =△BGH+△GBH =90°, ∴△CBO =△BGH , ∴△CBO△△BGH , ∴GH BO =HB OC =GB BC , ∴GH =9,HB =9, ∴OH =OB+BH =3+9=12, ∴G (12,9),设直线CG 的解析式为y =k 1x+b 1, ∴{12k 1+b 1=9b 1=3, 解得: {k 1=12b 1=3, ∴直线CG 的解析式为y =12x+3,联立方程组,得:{y =12x +3y =−x 2+2x +3,解得:{x 1=32y 1=154,,,{x 2=0y 2=3(不合题意,舍去), 当x =32时,y =12×32+3=154,∴D (32,154);②若△CDE =△CFO , ∴tan△CDE =tan△CFO =3, ∵BG△BC ,DE△BC , ∴△CBG =△CED =90°, ∴GB△DE , ∴△CDE =△CGB ,∴tan△CDE =tan△CGB =BC GB =3,∴GB =13BC =13×3√2=√2 ,∵△CBO△△BGH , ∴GH BO =HB OC =GB BC, ∴GH =13BO =1,HB =13OC =1,∴OH =OB+BH =3+1=4, ∴G (4,1);同①方法,易求得直线CG 的解析式为y =-12x+3,联立方程组,得 {y =12x +3y =−x 2+2x +3解得:{x 1=52y 1=74,,,{x 2=0y 2=3(不合题意,舍去), ∴D (52,74),综上所述,存在点D 使得△CDE 中有一个角与△CFO 相等,点D 的坐标为(32,154)或(52,74).14.【答案】(1)解:∵抛物线 y =−12x 2+bx +c 的图象经过点 C(0,2)∴c =2将点 A(−1,0) 代入 y =−12x 2+bx +2 得, 0=−12×(−1)2−b +2解得, b =32;∴抛物线的表达式 y =−12x 2+32x +2 ,当 y =0 时, −12x 2+32x +2=0解得, x 1=−1, x 2=4 ∴点B 的坐标为 (4,0) (2)解:存在,理由如下:由题意知,点E 位于y 轴右侧,作 EG//y 轴,交 BC 于点G ,如图1,∴CD//EG, ∴EF DF =EG CD∵直线 y =kx +1(k >0) 与y 轴交于点D ,则 D(0,1) . ∴CD =2−1=1 .∴EFDF =EG .设 BC 所在直线的解析式为 y =mx +n(m ≠0) . 将 B(4,0),C(0,2) 代入,得 {4m +n =0n =2.解得 {m =−12n =2. ∴直线 BC 的解析式是 y =−12x +2 .设 E(t,−12t 2+32t +2) ,则 G(t,−12t +2) ,其中 0<t <4 .∴EG =−12t 2+32t +2−(−12t +2)=−12(t −2)2+2 . ∴EF DF =−12(t −2)2+2 . ∵−12<0 ,∴当 t =2 时, EF DF存在最大值,最大值为2,此时点E 的坐标是 (2,3)(3)存在, M 1(√342,√34+22), M 2(−√342,−√34+22), M 3(3,4), M 4(176,236)15.【答案】(1)﹣4;3(2)解:∵将直线AB :y=﹣x+3向下平移h 个单位长度,得直线EF , ∴可设直线EF 的解析式为y=﹣x+3﹣h .把y=﹣x+3﹣h 代入y=x 2﹣4x+3,得x 2﹣4x+3=﹣x+3﹣h . 整理得:x 2﹣3x+h=0. ∵直线EF 与抛物线没有交点, ∴△=(﹣3)2﹣4×1×h=9﹣4h <0, 解得h > 94.∴当h > 94时,直线EF 与抛物线没有交点;(3)解:∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴顶点C (2,﹣1).设直线AC 的解析式为y=mx+n .则 {n =32m +n =−1 ,解得 {m =−2n =3 , ∴直线AC 的解析式为y=﹣2x+3.如图,设直线AC 交x 轴于点D ,则D ( 32 ,0),BD= 32 .∴S △ABC =S △ABD +S △BCD = 12 × 32 ×3+ 12 × 32×1=3.∵直线x=m 与线段AB 、AC 分别交于M 、N 两点,则0≤m≤2,∴M (m ,﹣m+3),N (m ,﹣2m+3),∴MN=(﹣m+3)﹣(﹣2m+3)=m .∵直线x=m 把△ABC 的面积分为1:2两部分,∴分两种情况讨论:①当 S △AMN S △ABC = 13 时,即 12m 23 = 13 ,解得 m=± √2 ;②当 S△AMN S △ABC = 23 时,即12m 23= 23,解得 m=±2∵0≤m≤2,∴m= √2 或m=2.∴当m= √2 或2时,直线x=m 把△ABC 的面积分为1:2两部分.16.【答案】(1)解: y =mx 2−2mx −3m =m(x −3)(x +1),∵m≠0,∴当y=0时, x 1=−1,x 2=3, ∴A(−1,0),B(3,0)(2)解:设 C 1:y =ax 2+bx +c ,将A. B. C 三点的坐标代入得:{a−b+c=09a+3b+c=0 c=−32,解得{a=12b=−1c=−32,故C1:y=12x2−x−32.如图:过点P作PQ△y轴,交BC于Q,由B. C的坐标可得直线BC的解析式为:y=12x−32,设P(x,12x2−x−32),则Q(x,12x−32),PQ=12x−32−(12x2−x−32)=−12x2+32x,S△PBC=S△PCQ+S△PBQ=12PQ⋅OB=12×(−12x2+32x)×3=−34(x−32)2+2716,当x=32时,S△PBC有最大值,S max=2716,12×(32)2−32−32=−158,P(32,−158);(3)解:y=mx2−2mx−3m=m(x−1)2−4m,顶点M坐标(1,−4m),当x=0时,y=−3m,∴D(0,−3m),B(3,0),∴DM2=(0−1)2+(−3m+4m)2=m2+1,MB2=(3−1)2+(0+4m)2=16m2+4,BD2=(3−0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=−1(∵m<0,∴m=1舍去);DM2+MB2=BD2.时有:m2+1+16m2+4=9m2+9,解得m=−√22( m=√22舍去).综上,m=−1或−√22时,△BDM为直角三角形.。

初一数学几何拔高题 线与角 适用于各个版本

初一数学几何拔高题 线与角  适用于各个版本

一.选择题(共20小题)1.在直线l上有A、B、C三点,AB=5cm,BC=2cm,则线段AC的长度为()A.7cm B.3cmC.7cm或3cm D.以上答案都不对2.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.63.三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°5.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于()A.3B.2C.3或5D.2或67.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE =60°,则∠BOD的度数为()A.50°B.60°C.65°D.70°8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.10.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON 的大小为()A.20°B.40°C.20°或40°D.30°或10°11.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.12.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 13.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示14.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个15.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.3916.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对17.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个18.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′19.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行20.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD二.解答题(共20小题)21.解答下列各题:(1)把一副三角尺(△COD和△ABO)在平整的桌面上叠放成如图所示的图形,已知OB平分∠COD,求∠AOC的度数;(2)如图,点O在直线AB上,∠1=40°,∠4=20°,∠2比∠3大10°,求∠BOD 的度数.22.如图,已知A,O,B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数;(2)若∠BOC=α,求∠DOE的度数;(3)通过(1)(2)的计算,你能总结出什么结论,直接简写出来,不用说明理由.23.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.24.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.25.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).26.如图,已知∠AOB=120°,OE平分∠AOB,射线OC在∠AOE内部,∠BOC=90°,(1)求∠EOC的度数.(2)作射线OF,使射线OC是∠EOF三等分线,则∠AOF的度数为.27.计算:(1)62.56°的余角等于°′″;(2)140°11′24″的补角等于°.28.如图,直线1上有A,B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm;(2)若点C是线段AB上一点(点C不与点AB重合),且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.求当t 为何值时,2OP﹣OQ=4(cm);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、如图,PA=PB,∠1+∠2= 。求证:OP平分∠AOB。
4、如图13,△ABC中,P、Q分别是BC、AC上的点,PR⊥AB于R,PS⊥AC于S,若AQ=PQ,RP=PS。则PQ与AB是否平行?
能力提升:
1.如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?
(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A.
2.已知∠MON内有一定点P,在角的两边OM、ON上能否分别找到两点A、B,使△APB的周长最短?
3.
3.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.
(1)已知∠A= ,求∠ACB的度数;
9.如图1,△ABC中,∠ABC和∠ACB的平分线交于点D,过D作EF//BC,交AB于E,交AC于F,易证: EF=BE+CF.
当D为∠ABC的平分线和∠ACB的外角平分线的交点(如图2)时,或当D为∠ABC的外角平分线和∠ACB的外角平分线的交点(如图3)时,其它条件都不变,EF、BE、CF的关系又如何?请对图2进行证明.
(2)已知∠A= ,求∠ACB的度数;
(3)已知∠A= ,求∠ACBቤተ መጻሕፍቲ ባይዱ度数;
(4)请你根据解题结果归纳出一个结论.
4.如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F, 试用你所学的知识说明BE=EF=FC的道理.
5.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.
专题:角平分线、线段的垂直平分线
一、角平分线
1定义:
2性质:
3判定:
二、线段的垂直平分线
1、定义:
2、性质:
3、判定:
典型例题讲解:
1、如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E
求证:(1)∠EAD=∠EDA ;
(2)DF∥AC
(3)∠EAC=∠B
2.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM.
6.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.
7.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.
8.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.
相关文档
最新文档