七年级完全平方公式、平方差公式经典习题

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。

解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。

解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。

解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。

平方差、完全平方公式专项练习

平方差、完全平方公式专项练习

平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007 200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差、完全平方公式专项练习题 经典

平方差、完全平方公式专项练习题  经典

平方差公式专项练习题有关配方问题(一)对于a2+2ab+b2=(a+b)2、a2-2ab+b2=(a-b)2的配方问题是,对于a2,2ab,b2这三项,认准特点,式子中缺哪项就补哪项,但要保证式子相等。

具体操作:先确定第一项,再确定第三项,最后确定中间项,并且要检验中间项与原式中的中间项相等。

(二)练习: 1.若x2+mx+9是完全平方式,则m=_____.2. 若x2+12x+m2是完全平方式,则m=_____.3. 若x2-mx+9=(x+3)2,则m=_____.4. 若4x2-mx+9是完全平方式,则m=_____.5.若4x2+12x+m2是完全平方式,则m=_____.6.若(mx)2+12x+9是完全平方式,则m=_____.7.若mx2+12x+9是完全平方式,则m=_____.8.已知x2-2(m+1)xy+16y2是一个完全平方式,那么m的值是_____.9.(1)化简(a-b)2+(b-c)2+(a-c).(2)利用上题的结论,且a-b=10,b-c=5,求a2+b2+c2-ab-bc-ac的值.(3)已知a=2x-12,b=2x-10,c=2x+4,求a2+b2+c2-ab-bc-ac的值(4)已知a,b,c是三角形的三边且满足a2+b2+c2-ab-bc-ac=0,判断三角形的形状.10.已知x2-2x+y2+6y+10=0,求x=_____,y=_____,x+y=_____.11. 已知x2-4x+y2+6y+13=0,求x=_____,y=_____,xy=_____.12.试说明N=x2-4x+y2+6y+15永远为正值.平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差公式.完全平方公式 专题训练

平方差公式.完全平方公式 专题训练

平方差公式公式:语言叙述:两数的,. 。

公式结构特点:左边:右边:熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

填空:1、(2x-1)( )=4x2-12、(-4x+ )( -4x)=16x2-49y2第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+)(2x-)6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便1、 1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100)×(99)7、(20)×(19)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-)(x2+)(x+)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c)(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)提高题:.1.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-52.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.完全平方公式公式:语言叙述:两数的,. 。

公式结构特点:左边:右边:熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

七年级平方差公式和完全平方公式计算题

七年级平方差公式和完全平方公式计算题

七年级平方差公式和完全平方公式计算题在七年级的数学学习中,平方差公式和完全平方公式那可真是两道“拦路虎”,让不少同学感到头疼。

不过别担心,咱们一起来好好捋一捋这两个公式的计算题,保准能把它们拿下!先来说说平方差公式,(a+b)(a - b)= a² - b²。

这公式看起来简单,可真要用起来,还得费点心思。

比如说这道题:(3x + 2)(3x - 2),咱们就可以直接套平方差公式,把 3x 看作 a ,2 看作 b ,那答案不就出来啦,是 9x² - 4 。

再看这道:(2m + 5n)(2m - 5n),同样的道理,2m 当成 a ,5n 当成 b ,结果就是 4m² - 25n²。

有一次,我在课堂上给同学们出了一道平方差公式的计算题,大部分同学都能很快地做出来,可有个小同学却眉头紧锁,怎么都算不出来。

我走过去一看,发现他把公式记错了,把(a + b)(a - b)算成了a² + b²。

我就耐心地给他重新讲解了一遍公式,还举了好几个例子,直到他恍然大悟,脸上露出了开心的笑容。

完全平方公式也有它的门道,(a + b)² = a² + 2ab + b²,(a - b)²= a² - 2ab + b²。

像计算(x + 3)²,那就是 x² + 6x + 9 。

要是(2y - 5)²,那就是4y² - 20y + 25 。

还记得有一回,我布置了一道完全平方公式的作业题,让同学们回家完成。

第二天收上来批改的时候,发现有个同学的步骤写得乱七八糟,我都快被他绕晕了。

我把他叫到办公室,一点点给他指出问题所在,告诉他要按照公式一步一步来,不能自己瞎琢磨。

经过我的指导,他终于掌握了方法,后来的作业做得可好了。

咱们来做几道综合一点的题目。

比如(3x + 2y)² - (3x - 2y)²,这就得先分别用完全平方公式展开,再用平方差公式进行化简。

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题一、单选题1.下列各式添括号正确的是( )A.()x y y x --=--B.()x y x y -=-+C.105(2)m m -=-D.32(23)a a -=--2.(1)(1)y y +-=( )A.21+ yB.21y --C.21 y -D.21y -+ 3.下列计算结果为222ab a b --的是( )A.2()a b -B.2()a b --C.2()a b -+D.2()a b -- 4.()224454()2516a b a b -+=-,括号内应填( )A.2254a b +B.2254a b -C.2254a b --D.2254a b -+ 5.下列计算正确的是( )A.222()2x y x xy y --=---B.222(2)4m n m n +=+C.222(3)36x y x xy y -+=-+D.2211552524x x x ⎛⎫+=++ ⎪⎝⎭ 6.多项式3222315520m n m n m n +-各项的公因式是( )A.5mnB.225m nC.25m nD.25mn7.下列多项式中,能用平方差公式分解因式的是( )A.()22a b +-B.2520m mn -C.22x y --D.29x -+8.化简2(3)(6)x x x ---的结果为( )A.69x -B.129x -+C.9D.39x +9.下列多项式能用完全平方公式分解的是( )A.21x x -+B.212x x -+C.212a a ++D.222a b ab -+-10.计算(3)(3)a bc bc a ---的结果是( )A.2229b c a +B.2223b c a -C.2229b c a --D.2229a b c -+11.如果2(1)9x m x +-+是一个完全平方式,那么m 的值是( )A.7B.7-C.5-或7D.5-或512.若,,a b c 是三角形的三边之长,则代数式2222a bc c b +--的值( )A.小于0B.大于0C.等于0D.以上三种情况均有可能 二、解答题13.计算:(1)()()223535x y x y ---;(2)()291(13)(31)x x x +---.14.因式分解.(1) 2()3()m x y n x y ---(2)3218122a a a -+-15.用提公因式法将下列各式分解因式:(1)3224124a b a b ab -+-;(2)()2()a ab c a b -+-;(3)(34)(78)(1112)(78)a b a b a b a b --+--.16.分解因式:(1)2441x x -+;(2)2242025a ab b -+;(3)29()42()49a b a b -+-+;(4)2(2)8x y xy -+.17.分解因式:(1)22()()a a b b b a -+-;(2)2222x y x y -+-;(3)4416x y -.18.先化简,再求值:a(a ﹣2)﹣(a+1)(a ﹣1),其中12a =- 19.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+(1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 三、填空题20.已知32xy x y =-+=,,则代数式22x y xy +的值是_________.21.2210b b -+=,则a = ,b = .22.已知22()40,()4000m n m n -=+=,则22m n +的值是___________.23.已知4,2a b ab -==-,则224a ab b ++的值为 .24.计算(44的结果等于 .25.计算:()()()22a b a b a b -++= .参考答案1.答案:D解析:()x y x y --=-+,故A 错误;()x y x y -=--+,故B 错误;易知C 错误.故选D.2.答案:C解析:本题考查平方差公式.由平方差公式可得222(1)(1)11y y y y +-=-=-,故选C.3.答案:D解析:222222()2,()()a b a ab b a b a b a -=-+--=+=+22222222,()2,()2ab b a b a ab b a b a ab b +-+=-----=-+-.故选D.4.答案:C解析:()()()(22222225454545a b a b a b a -+--=-+)24442516,b a b =-∴括号内应填2254a b --.故选C.5.答案:D解析:222()2x y x xy y --=++,故A 错误;222(2)44m n m mn n +=++,故B 错误;222(3)96x y x xy y -+=-+,故C 错误;2211552524x x x ⎛⎫+=++ ⎪⎝⎭,故D 正确.故选D. 6.答案:C解析:多项式3222315520m n m n m n +-中,各项系数的最大公约数是5,各项都含有的相同字母是,m n ,字母m 的最低次数是2,字母n 的最低次数是1,所以各项的公因式是25m n .故选C.7.答案:D解析:A 选项,2a 与()2b -符号相同,不能用平方差公式分解因式,故A 选项错误;B 选项,2520m mn -()54m m n =-,不能用平方差公式分解因式,故B 选项错误;C 选项,2x 与2y 符号相同,不能用平方差公式分解因式,故C 选项错误;D 选项,22293x x -+=-+,两项符号相反,能用平方差公式分解因式,故D 选项正确.故选D.8.答案:C解析:222(3)(6)6969x x x x x x x ---=-+-+=.故选C.9.答案:B解析:A,C,D 项不符合完全平方式的形式,故不能用完全平方公式分解因式;B 项,2212(1)x x x -+=-,能用完全平方公式分解因式.故选B.10.答案:D解析:(3)(3)(3)(3)a bc bc a a bc a bc ---=--+=2229a b c -+.故选D.11.答案:C解析:2(1)9x m x +-+是一个完全平方式,(1)23m x x ∴-=±⋅⋅,16m ∴-=±,57m ∴=-或,故选:C.12.答案:B解析:()2222222222()a bc c b a b bc c a b c +--=--+=--=[()][()]()()a b c a b c a b c a c b +---=+-+-,因为三角形的任意两边之和大于第三边,所以00a b c a c b +->+->,,因此原式大于0.故选B.13.答案:(1)()()223535x y x y ---()()()22222245353(5).3259y x y x y x y x =---+=--=- (2)()291(13)(31)x x x +---()()()()()2222222224(31)(31)91(3)19191919181 1.x x x x x x x x x =-+--+⎡⎤=--+⎣⎦=-+=-=- 解析:14.答案:(1)()(23)x y m n -+(2)略解析:15.答案:(1)3224124a b a b ab -+-()()224434431.ab a b ab a abab a b a =-⋅-⋅+=--+(2)()2()a ab c a b -+-()()()().a abc a b a b a c =-+-=-+ (3)(34)(78)(1112)(78)a b a b a b a b --+--2(78)(341112)(78)(1416)2(78)(78)2(78).a b a b a b a b a b a b a b a b =--+-=--=--=- 解析:16.答案:(1)22441(21)x x x -+=-.(2)22242025(25)a ab b a b -+=-.(3)29()42()49a b a b -+-+22[3()7](3.37)a b a b =-+=-+(4)2(2)8x y xy -+2222244844(.2)x xy y xyx xy y x y =-++=++=+ 解析:17.答案:(1)22()()a a b b b a -+-()22222()()()()()()()().a a b b a b a b a b a b a b a b a b a b =---=--=--+=-+(2)2222x y x y -+-()22(22)()()2()()(2).x y x y x y x y x y x y x y =-+-=+-+-=-++(3)4416x y - ()()()()()22222222224444(2)(2).x y x y x y x y x y x y =-=+-=++- 解析:18.答案:化简得-2a+1;2解析:19.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:20.答案:-6解析:因为32x x y =-+=,,所以22()326x y xy xy x y +=+=-⨯=-.21.答案:-2 1 解析:22(1)0a b ++-=,∴ 20,10a b +=-=,2,1a b =-=22.答案:2020解析:22222()240,()m n m mn n m n m -=-+=+=+224000mn n +=,两等式相加,得()2224040m n +=,所以222020m n +=.23.答案:4解析:4,2a b ab -==-,()2222a b a b ab ∴+=-+()242212=+⨯-=,224a ab b ∴++()12424=+⨯-=.故答案为4.24.答案:9解析:根据平方差公式得,原式2241679=-=-=.25.答案:44a b -解析:原式()()222244a b a b a b =-+=-.。

七年级完全平方公式、平方差公式经典习题

七年级完全平方公式、平方差公式经典习题

平方差公式经典习题一、选择题1.下列各式能用平方差公式计算的是:( )A .)23)(32(a b b a --B .)32)(32(b a b a --+-C .)23)(32(a b b a +--D .)23)(32(b a b a +- 2.下列式子中,不成立的是:( )A.22)())((z y x z y x z y x --=--+- B .22)())((z y x z y x z y x --=---+ C .22)())((y z x z y x z y x --=-+-- D .22)())((z y x z y x z y x +-=++--3.()4422916)43(x y y x -=-- ,括号内应填入下式中的( ). A .)43(22y x - B .2234x y - C .2243y x -- D .2243y x +4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是( ). A .4 B .3 C .5 D .25.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是( ).A .22)()(a y b x --+B .))((2222b a y x --C .22)()(b y a x --+D .22)()(a y b x +-- 6.计算)1)(1)(1)(1(24-+++x x x x 的结果是( ). A .18+x B .14+x C .8)1(+x D .18-x 7.)1)(1)(1(222++-+c b a abc abc 的结果是( ).A .1444-c b aB .4441c b a -C .4441c b a --D .4441c b a +二、填空题1.()()22)4)(4(-=+-x x . 2.=-+++)1)(1(b a b a ( )2-( )2.3.=-+)68)(68(n m n m ______________. 4.=---)34)(34(ba b a _______________ . 5.=+-+))()((22b ab a b a _______________ .6.=-+++)2)(2(y x y x _______________ .7.)3(y x +( )=229x y - . 8.( )21)1(a a -=- .9.22916)4)(3(a b n b m a -=++- ,则._______________,==n m 10..________99.001.1=⨯ . 三、判断题1.226449)87)(87(n m m n n m -=-+ .( ) 2.116)14)(14(22-=-+b a ab ab .( ) 3.229)23)(23(x x x -=-+ .( ) 4.22))((b a b a b a -=-- .( ) 5.224)2)(2(y x y x y x -=+-- .( ) 6.6)6)(6(2-=+-x x x .( )7.22251)15)(15(y x xy xy -=+-+ .( )四、解答题1.用平方差公式计算:(1))231)(312(a b b a --- (2)))((y x y x n n -+ ;(3))3)(9)(3(2++-a a a ;(4)))((y x y x --- (5))23)(23()32)(32(n m n m n m n m +---+ ;(6))()())((2222a a b a b a -⋅---+ ;(7))23)(23(+--+b a b a ;(8))543)(534(c b a c a b +--+;(9)9288⨯ (10)76247125⨯ . 2.计算:(1)1999199719982⨯- ;(2))54)(2516)(54(2++-x x x ;(3))32)(32(c b a c b a -++- ; (4))65)(32)(56)(23(a b a b b a b a +--+ ;(5))161)(14)(12)(12(16142+++-x x x x ;(6)1)12()12)(12)(12)(12(64842++++++ .3、计算:(1)若,12,322=-=+y x y x 求y x -的值。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

公式变形之南宫帮珍创作一、基础题1.(-2x+y )(-2x -y )=______. 2.(-3x 2+2y 2)(______)=9x 4-4y 4.3.(a+b -1)(a -b+1)=(_____)2-(_____)2. 4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a 2+4)(a 4+16)(a -2).(2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3). 8(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜测:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数) (2)根据你的猜测计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索: ①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______. 完全平方式罕见的变形有:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求yx 的值。

平方差公式、完全平方公式练习题

平方差公式、完全平方公式练习题

数学试卷 第 1 页,共 2 页数学试卷 第 2 页,共 2 页/ / / ○ / / / / ○/ / / / ○ / / / / ○ / / / / ○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○ / / / / ○ / / / / ○ / / / / ○ / / / / ○ / / /密 封 线 内 不 许 答 题学校 年级 班 姓名 考号平方差公式、完全平方公式练习题一、选择题1、下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m) 2、下列运算中,正确的是( )A. 224)2)(2(b a b a b a -=+--B. 222)2)(2(b a b a b a --=-+-C. 222)2)(2(b a b a b a --=-+D. 224)2)(2(b a b a b a -=+--- 3、(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-4x 2-5y B.-4x 2+5y C.(4x 2-5y)2D.(4x+5y)24、有下列运算:①2229)3(a a = ②2251)51)(15(m m m -=++-③532)1()1()1(--=--a a a ④626442++=⨯⨯n m n m ,其中正确的是( )A. ①②B. ②③C.③④D. ②④5、若m ,n 是整数,那么22)()(n m n m --+值一定是( )A. 正数B. 负数C. 非负数D. 4的倍数 6、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-9 7、(a+3b)2-(3a+b)2计算的结果是( ).A.8(a-b)2B.8(a+b)2C.8b 2-8a 2D.8a 2-8b 28、(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( ).A.-25x 4-16y 4 B.-25x 4+40x 2y 2-16y 2C.25x 4-16y4D.25x 4-40x 2y 2+16y 29、若(x-5)2=x 2+kx+25,则k=( ) A .5 B .-5 C .10 D .-1010、如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )A .4B .2C .-2D .±2 二、填空题1、)(23(b a + 2294)a b -=;2、(12x+3)2 -(12x -3)2=______. 3、已知622=-y x ,3=+y x ,则=-y x4、若a 2+2a=1,则(a+1)2=_________.5、(1)a 2-4ab+( )=(a-2b)26、(a+b)2-( )=(a-b)2 三、计算题(1) )52)(52(22--+-x x (2)( )(3)()()2323x y z x y z +-++ (4)(3a+2b)2-(3a-2b)2(5) 20.1×19.9 (6)20012四、先化简,再求值. (x 3+2)2-2(x+2)(x-2)(x 2+4)-(x 2-2)2,其中x=-21.。

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项演习题之马矢奏春创作时间:二O二一年七月二十九日平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b暗示()A.只能是数 B.只能是单项式 C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(a+b)(b-a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.运用平方差公式计算:20×21.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-.2.式计算:2009×2007-20082.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:.(2)计算:.4.广场内有一块边长为2a米的正方形草坪,经统一筹划后,南南标的目标要缩短3米,器械标的目标要加长3米,则变革后的长方形草坪的面积是若干?5.下列运算准确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-a-4b)(a-4b)=16b2-a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律商量题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)不雅察以上各式并猜测:(1-x)(1+x+x2+…+xn)=______.(n为正整数)(2)按照你的猜测计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)经由进程以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论凋零题)请写出一个平方差公式,使个中含有字母m,n 和数字4.完全平方公式变形的运用完全平方法罕有的变形有:;;1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知,都是有理数,求的值.3、已知求与的值.练一练 A组:1.已知求与的值.2.已知求与的值.3、已知求与的值.4、已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值.B组:5、已知,求的值. 6、已知,求的值.7、已知,求的值.8、,求(1)(2)9、试说明不管x,y取何值,代数式的值老是正数.10、已知三角形ABC的三边长辨别为a,b,c且a,b,c知足等式,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法分化题一、请准确填空1、若a2+b2-2a+2b+2=0,则a2004+b2005=________.2、一个长方形的长为(2a+3b),宽为(2a-3b),则长方形的面积为________.3、5-(a-b)2的最大值是________,当5-(a-b)2取最大值时,a与b的关系是________.4.要使式子0.36x2+y2成为一个完全平方法,则应加上________.5.(4am+1-6am)÷2am-1=________.6.29×31×(302+1)=________.7.已知x2-5x+1=0,则x2+=________.8.已知(2005-a)(2003-a)=1000,请你猜测(2005-a)2+(2003-a)2=________.二、信赖你的选择9.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()10.(x+q)与(x+)的积不含x的一次项,猜测q应是()A.5B.C.-D.-511.下列四个算式:①4x2y4÷xy=xy3;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x3y=3x5y;12.④(12m3+8m2-4m)÷(-2m)=-6m2+4m+2,个中准确的有()13.设(xm-1yn+2)·(x5my-2)=x5y3,则mn的值为()A.1B.-1C.3D.-314.计算[(a2-b2)(a2+b2)]2等于()A.a4-2a2b2+b4B.a6+2a4b4+b6C.a6-2a4b4+b6D.a8-2a4b4+b816.若x2-7xy+M是一个完全平方法,那么M是()A.y2B.y2C.17.若x,y互为不等于0的相反数,n为正整数,你认为准确的是()A.xn、yn必定是互为相反数B.()n、()n必定是互为相反数C.x2n、y2n必定是互为相反数D.x2n-1、-y2n-1必定相等三、考察你的底子功:18.计算(1)(a-2b+3c)2-(a+2b-3c)2;(2)[ab(3-b)-2a(b-b2)](-3a2b3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.19.解方程x(9x-5)-(3x-1)(3x+1)=5.四、商量拓展与运用:20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).按照上式的计算方法,请计算:(3+1)(32+1)(34+1)…(332+1)-的值.演习:1.计算(a+1)(a-1)(+1)(+1)(+1). 2、计算:.3、计算:;3、计算:.五、“整体思惟”在整式运算中的运用1、当代数式的值为7时,求代数式的值.2、已知,,,求:代数式的值.3、已知,,求代数式的值.4、已知时,代数式,求当时,代数式的值.5、若,;试比较M 与N的大小.6、已知,求的值.时间:二O二一年七月二十九日。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知0136422=+-++yxyx,yx、都是有理数,求y x的值。

3.已知2()16,4,a b ab+==求223a b+与2()a b-的值。

练习:()5,3a b ab-==求2()a b+与223()a b+的值。

平方差公式与完全平方公式练习题含答案

平方差公式与完全平方公式练习题含答案

平方差公式一、填空题 1.(x+6)(6-x)= ,11()()22x x -+--= . 2.⋅--)52(b a ( )22254b a -=3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5. 18201999⨯= ,403×397= . 二、选择题1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)-(100-1)A.1个B.2个C.3个D.4个2、下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法公式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.数字、单项式、•多项式都可以二、解答题1、(2x+3y)(2x-3y)2、a(a -5)-(a+6)(a -6)3、 ( x+y)( x -y)( x 2+y 2)4、 9982-4完全平方公式一、填空1. (a +2b )2=a 2+ +4b 2.2. (3a -5)2=9a 2+25- .3. a 2-4ab+( )=(a-2b)24. (a+b)2-( )=(a-b)25. (3x+2y)2-(3x-2y)2=6. 49a 2- +81b 2=( +9b )2.7. (-2m -3n )2= .8. (a -b +c )2= .二、选择题1、在括号内选入适当的代数式使等式(5x-y)·( )=25x 2-5xy+y 2成立.A.5x-yB.5x+yC.-5x+yD.-5x-y2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.18C.9或-9D.18或-184、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )A.n 2B.2mnC.2mn-n 2D.2mn+n 2三、解答题1.(1)(-2a +5b )2; (2)(x -3y -2)(x +3y -2);(3)(2a +3)2+(3a -2)2;2.用简便方法计算:(1)972; (2)20022;(3)992-98×100; (4)49×51-2499214121212121平方差公式参考答案一.填空题1、236x -2、b a 52+-3、1+x4、)(c b +,)(c b +5、8180399,159991 二、选择题1-3 DCD三、解答题(1)2294y x - (2)、a 536- (3)44y x - (4)、996000 完全平方公式参考答案一、填空1、ab 42、a 303、24b4、ab 45、xy 246、ab 126- ,a 77、229124n mn m ++8、bc ab ac c b a 222222--+++二、选择题 1-4 ACDC三、解答题1、(1)2225204b ab a +- (2) 49422++-y x x (3) 13132+a2、(1)9409 (2)4008004 (3)1 (4)0。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )A.只能是数B.只能是单项式C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是( )A.5B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)22007200720082006-⨯.(2)22007200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是( )A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b )(a +b )=_______. ②(a -b)(a 2+ab+b 2)=______.③(a -b )(a3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式经典习题
教师:焦建锋 授课时间:2013.3.17
一、选择题
1.下列各式能用平方差公式计算的是:( )
A .)23)(32(a b b a --
B .)32)(32(b a b a --+-
C .)23)(32(a b b a +--
D .)23)(32(b a b a +- 2.下列式子中,不成立的是:( )
A.22)())((z y x z y x z y x --=--+- B .2
2)())((z y x z y x z y x --=---+
C .22)())((y z x z y x z y x --=-+--
D .22)())((z y x z y x z y x +-=++--
3.()4422916)43(x y y x -=-- ,括号内应填入下式中的(
).
A .)43(22y x -
B .2234x y -
C .2243y x --
D .2243y x +
4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是( ). A .4 B .3 C .5 D .2
5.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是( ).
A .22)()(a y b x --+
B .))((2222b a y x --
C .22)()(b y a x --+
D .22)()(a y b x +-- 6.计算)1)(1)(1)(1(24-+++x x x x 的结果是( ). A .18+x B .14+x C .8)1(+x D .18-x 7.)1)(1)(1(222++-+c b a abc abc 的结果是( ).
A .1444-c b a
B .4441c b a -
C .4441c b a --
D .4441c b a +
二、填空题
1.()()22)4)(4(-=+
-x x . 2.=-+++)1)(1(b a b a ( )2
-( )2

3.=-+)68)(68(n m n m ______________. 4.=---)3
4)(34(
b
a b a _______________ . 5.=+-+))()((22
b a b a b a _______________ .6.=-+++)2)(2(y x y x _______________ .
7.)3(y x +( )=229x y - . 8.( )21)1(a a -=- .
9.22916)4)(3(a b n b m a -=++- ,则._______________,==n m 10..________99.001.1=⨯ . 三、判断题
1.
7(m + 2.4(ab 3.3(+ 4.(a - )
( )
四、解答题
1(1)31
2(a -)y x - (5)32(m +(7)3(+a 7
6
24
. 2.计算:
(1)19982-
(2)54(-x
(3)2(b a - ; 1)1+ .
3、计算:
(1)若,12,322=-=+y x y x 求y x -的值。

(1)502498⨯;(2)7
619
71
20⨯ (3)222.608.59- 计算:(1));1)(1)(1)(1(24+++-a a a a (2);))((222b a b a b a a +-+(3))2)(2()2)(2(a b b a b a b a +---- 4)))(())((z y x z y x z y x z y x --++-+--+.
六.解答题
1.先化简,再求值)4)(2)(2())()((2222n m n m n m n m n m n m +--+-----+ ,其中 2,1-==n m 。

2.解方程:2)3)(3(2)2)(2()2)(1(-+-=+-+--x x x x x x 3.计算:1297989910022222-++-+- . 4.求值:)111111( .
1.(a +2b )3.(2x -___5.x 2-xy +7.(-2m -39.4a 2+4a 11.a 2+b 213.(a -2b +3
14.(a 2-1)15.代数式(A )(x -2116.已知x 2(A )8 (B )16 (C )32 (D )64
17.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( ) (A )18 (B )±18 (C )±36 (D )±64
18.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( ) (A )8与
21 (B )4与2
1
(C )1与4 (D )4与1
19.(1)(-2a +5b )2; (2)(-21ab 2-3
2
c )2; (3)(x -3y -2)(x +3y -2);
(4)(x -2y )(x 2-4y 2)(x +2y ); (5)(2a +3)2+(3a -2)2;
(6)(a -2b +3c -1)(a +2b -3c -1); (7)(s -2t )(-s -2t )-(s -2t )2;
20
(1)972;
21.求值:
(1)已知a +
(3
22.已知 (
23.已知(a
24.已知a
25. 已知x
26.已知x -
完成时间: 家长签字:。

相关文档
最新文档