几个常见函数的导数1

合集下载

常见函数的导数公式表

常见函数的导数公式表

常见函数的导数公式表
以下是一些常见函数的导数公式:
1. 常数函数 y=c 的导数为 y'=0
2. 幂函数y=x^μ 的导数为y'=μα^(μ-1)
3. 指数函数 y=a^x 的导数为 y'=a^x lna
4. 对数函数 y=logax 的导数为 y'=loga e/x
5. 三角函数 y=sinx 和 y=cosx 的导数分别为 y'=cosx 和 y'=-sinx
6. 反三角函数 y=arcsinx 和 y=arccosx 的导数分别为y'=1/√(1-x^2) 和
y'=-1/√(1-x^2)
7. 双曲函数 y=sh x 和 y=ch x 的导数分别为 y'=ch x 和 y'=sh x
8. 自然对数函数 y=lnx 的导数为 y'=1/x
9. 幂函数 f(x)=x^n 的导数为 f'(x)=nx^(n-1),当 n 为正整数时
10. 和差积的导数:(f+g)'=f'+g',(f-g)'=f'-g'
以上是基本初等函数的导数公式,对于其他复杂的函数,可以通过复合函数、幂函数、指数函数、对数函数、三角函数、反三角函数和双曲函数的导数进行推导。

求导公式知识点归纳总结

求导公式知识点归纳总结

求导公式知识点归纳总结一、基本导数公式1. 基本导数:函数y = k,y' = 0 (常数函数导数为0)函数y = x^n,y' = nx^(n-1) (幂函数的导数是指数减1乘以原指数)函数y = sinx,y' = cosx (正弦函数的导数是余弦函数)函数y = cosx,y' = -sinx (余弦函数的导数是负的正弦函数)函数y = e^x,y' = e^x (指数函数自身的导数是自身)2. 基本导数的性质:(1)常数法则:若f(x) = k,f'(x) = 0(2)幂法则:若f(x) = x^n,f'(x) = nx^(n-1)(3)和差法则:若f(x) = g(x) ± h(x),f'(x) = g'(x) ± h'(x)(4)积法则:若f(x) = g(x) * h(x),f'(x) = g'(x) * h(x) + g(x) * h'(x)(5)商法则:若f(x) = g(x) / h(x),f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / (h(x))^2 (6)复合函数法则:若f(x) = g(h(x)),f'(x) = g'(h(x)) * h'(x)3. 根据基本导数公式,我们可以求出一些特殊函数的导数,比如:(1)常数函数 f(x) = c,导数为 f'(x) = 0(2)幂函数 f(x) = x^n,导数为 f'(x) = nx^(n-1)(3)指数函数 f(x) = e^x,导数为 f'(x) = e^x(4)对数函数 f(x) = ln(x),导数为 f'(x) = 1/x(5)三角函数 f(x) = sinx,导数为 f'(x) = cosx(6)反三角函数 f(x) = arcsinx,导数为f'(x) = 1 / √(1 - x^2)二、常见函数的导数1. 常见初等函数的导数:(1)幂函数:y = x^n,y' = nx^(n-1)(2)指数函数:y = a^x (a > 0, a ≠ 1),y' = a^x * ln(a)(3)对数函数:y = loga(x) (a > 0, a ≠ 1),y' = 1 / (x * ln(a))(4)三角函数:y = sinx,y' = cosx(5)双曲函数:y = sinhx,y' = coshx(6)反三角函数:y = arcsinx,y' = 1 / √(1 - x^2)2. 常用初等函数的导数:(1)常数函数 f(x) = c,导数为 f'(x) = 0(2)幂函数 f(x) = x^n,导数为 f'(x) = nx^(n-1)(3)指数函数f(x) = a^x (a > 0, a ≠ 1),导数为 f'(x) = a^x * ln(a)(4)对数函数f(x) = loga(x) (a > 0, a ≠ 1),导数为 f'(x) = 1 / (x * ln(a))(5)三角函数 f(x) = sinx,导数为 f'(x) = cosx(6)双曲函数 f(x) = sinhx,导数为 f'(x) = coshx(7)反三角函数 f(x) = arcsinx,导数为f'(x) = 1 / √(1 - x^2)3. 常见非初等函数的导数:(1)绝对值函数 f(x) = |x|,导数为 f'(x) = x / |x|(2)分段函数f(x) = {x^2, x > 0; 2x, x ≤ 0},导数为f'(x) = {2x, x > 0; 2, x ≤ 0}三、高阶导数1. 高阶导数的定义:高阶导数是指一个函数的导数再次求导后所得到的导数。

1.2.1几个常用函数的导数

1.2.1几个常用函数的导数

1 (8)(ln x ) x
1 x ln a
例2 根据基本函数的导数公式和导数运算法则, 求函数y=x3 2 x 3的导数。
解:y ' =(x 2 x 3) '
3
(x )( ' 2 x)( ' 3) '
3
3x 2。
2
练习:求下列函数的导数:
(1) y 2e
1、熟记以下导数公式:
(1) (C)‘=0
(2)( x
( 3)
) x 1 (sin x) cos x

x
x
1、 [ f ( x) g ( x)]' f '( x) g '( x);
2、 [ f ( x) g ( x)]' f '( x) g ( x) f ( x) g '( x);
y c(
c 是常数)的导数。
y 0 常数的导数等于零 x 0 x 2 、求函数 y x 的导数。 y y lim lim 1 1. x 0 x x 0 y lim
y lim (2 x x) 2 x. x x0 1 y 1 1 4 函数 y f ( x) , 的导数 f ( x) lim lim 2. x 0 x x 0 x( x x) x x lim 3 函数 y f ( x) x , 的导数 f ( x) x 0
从图知:当x<0时,函数减少得快; 当x>0时,函数减少得慢。
练习1 求下列函数的导数:
(1) y x
解:
4
(2) y x
3
1 (3) y 2 x
(4) y x

求导公式大全

求导公式大全

求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。

2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。

高中常见函数的导数公式表

高中常见函数的导数公式表

高中常见函数的导数公式表1. 常数函数常数函数f(f)=f的导数为f′(f)=0。

2. 幂函数幂函数f(f)=f f的导数为f′(f)=ff f−1。

3. 指数函数指数函数f(f)=f f的导数为$f'(x) = a^x\\ln(a)$。

4. 对数函数自然对数函数$f(x) = \\ln(x)$的导数为$f'(x) = \\frac{1}{x}$。

5. 三角函数•正弦函数$f(x) = \\sin(x)$的导数为$f'(x) = \\cos(x)$。

•余弦函数$f(x) = \\cos(x)$的导数为$f'(x) = -\\sin(x)$。

•正切函数$f(x) = \\tan(x)$的导数为$f'(x) =\\sec^2(x)$。

•余切函数$f(x) = \\cot(x)$的导数为$f'(x) = -\\csc^2(x)$。

•正割函数$f(x) = \\sec(x)$的导数为$f'(x) =\\sec(x)\\tan(x)$。

•余割函数$f(x) = \\csc(x)$的导数为$f'(x) = -\\csc(x)\\cot(x)$。

6. 反三角函数•反正弦函数$f(x) = \\arcsin(x)$的导数为$f'(x) =\\frac{1}{\\sqrt{1-x^2}}$。

•反余弦函数$f(x) = \\arccos(x)$的导数为$f'(x) = -\\frac{1}{\\sqrt{1-x^2}}$。

•反正切函数$f(x) = \\arctan(x)$的导数为$f'(x) = \\frac{1}{1+x^2}$。

•反余切函数$f(x) = \\arccot(x)$的导数为$f'(x) = -\\frac{1}{1+x^2}$。

•反正割函数$f(x) = \\arcsec(x)$的导数为$f'(x) = \\frac{1}{|x|\\sqrt{x^2-1}}$。

常见导数公式表示

常见导数公式表示

常见导数公式表示常见数学导数公式在数学中,导数是描述函数变化率的概念。

导数通常用于描述函数在某一点的斜率,即函数在这一点处的变化速率。

对于不同类型的函数,有不同的导数公式。

下面列举了一些常见的导数公式:1. $$ \\frac{d}{dx} (c) = 0 $$这是常数函数的导数公式,其中c为常数。

2. $$ \\frac{d}{dx} (x^n) = nx^{n-1} $$这是幂函数的导数公式,其中c为任意实数。

3. $$ \\frac{d}{dx} (e^x) = e^x $$这是自然指数函数的导数公式。

4. $$ \\frac{d}{dx} (a^x) = a^x \\ln(a) $$这是以c为底的指数函数的导数公式。

5. $$ \\frac{d}{dx} (\\ln(x)) = \\frac{1}{x} $$这是自然对数函数的导数公式。

6. $$ \\frac{d}{dx} (\\sin(x)) = \\cos(x) $$这是正弦函数的导数公式。

7. $$ \\frac{d}{dx} (\\cos(x)) = -\\sin(x) $$这是余弦函数的导数公式。

8. $$ \\frac{d}{dx} (\\tan(x)) = \\sec^2(x) $$这是正切函数的导数公式。

9. $$ \\frac{d}{dx} (\\cot(x)) = -\\csc^2(x) $$这是余切函数的导数公式。

10. $$ \\frac{d}{dx} (\\sec(x)) = \\sec(x) \\tan(x) $$这是正割函数的导数公式。

11. $$ \\frac{d}{dx} (\\csc(x)) = -\\csc(x) \\cot(x) $$这是余割函数的导数公式。

总结以上列举了一些常见数学函数的导数公式,这些公式在微积分和求导过程中具有重要的作用。

熟练掌握这些导数公式,有助于我们更好地理解函数的变化规律和性质。

高二数学几个常用函数的导数

高二数学几个常用函数的导数





1 , x x x
y 1 1 所以 y` lim lim . x 0 x x 0 x x x 2 x
/xiaoxue/ 数学辅导 语文补习 英语补习班
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术 性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文 复数τα μαθηματικά(ta mathēmatiká).在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累 了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.此刻/他是那么の懊悔/当初因为水清没什么送他生辰礼の事情/他生咯壹 肚子の闷气/可是他为啥啊别去亲自质问她/那样の话/真相别就立即大白咯吗?他也别至于因为那各帕子而沦陷在淑清の柔情攻势之下/可是为啥啊/他竟没什么去质问/让他们两各人别停地兜兜转转/浪费咯那么多の大好时光/第1298章//松 弦即使已经时隔六年の时间/由于实在是太为特殊/格外地与众别同/所以直到现在/竹墨仍然记得清清楚楚/就是那各帕子/于是万分肯定地回复道:/回爷/就是那各/奴婢清楚地记得/李侧福晋看到那各帕子之后/根本别敢相信年侧福晋居然 会送爷那么壹各黑乎乎の破东西/

高等数学常用导数公式大全

高等数学常用导数公式大全

高等数学常用导数公式大全在高等数学中,导数是描述函数变化率的重要概念之一。

导数的应用十分广泛,特别是在求解极值、曲线切线以及函数图像的特征等方面具有重要作用。

本文将总结高等数学中常用的导数公式,供同学们参考使用。

常见函数的导数公式基本初等函数的导数公式1.常数函数:f(f)=f,导数为f′(f)=0。

2.幂函数:f(f)=f f,导数为f′(f)=ff f−1。

3.指数函数:f(f)=f f,导数为 $f'(x) = a^x \\ln a$。

4.对数函数:$f(x) = \\log_a x$,导数为 $f'(x) =\\frac{1}{x \\ln a}$。

5.三角函数:$f(x) = \\sin x$,导数为 $f'(x) = \\cosx$;$f(x) = \\cos x$,导数为 $f'(x) = -\\sin x$。

6.反三角函数:$f(x) = \\arcsin x$,导数为 $f'(x) =\\frac{1}{\\sqrt{1-x^2}}$;$f(x) = \\arccos x$,导数为$f'(x) = -\\frac{1}{\\sqrt{1-x^2}}$。

复合函数的导数公式1.链式法则:若f=f(f),f=f(f),则f=f(f(f))的导数为 $\\frac{dy}{dx} = \\frac{dy}{du} \\cdot \\frac{du}{dx}$。

高阶导数公式1.二阶导数:若f=f(f)的一阶导数为f′,则f″表示f′的导数,即 $y'' = \\frac{d}{dx} (f'(x))$。

隐函数求导公式1.隐函数求导:对于方程f(f,f)=0,当不能解出f对f的显式表达时,可利用隐函数求导公式,即$\\frac{dy}{dx} = - \\frac{F_x}{F_y}$。

常用函数导数总结在高等数学中,经常会遇到一些复杂函数的导数计算,下面给出一些常用函数的导数总结:1.反函数的导数计算:若f=f(f)的反函数为f=f−1(f),则f−1(f)的导数为 $\\frac{dx}{dy} =\\frac{1}{\\frac{dy}{dx}}$。

几个常用函数导数基本初等函数导数公式及导

几个常用函数导数基本初等函数导数公式及导

几个常用函数导数基本初等函数导数公式及导函数的导数是微分学中的一个重要概念,描述了函数在每一点上的变化率。

掌握基本初等函数的导数公式及导数求解方法,对于理解数学和物理等学科中的问题解决具有重要意义。

下面我将详细介绍几个常用函数的导数公式及导数求解方法。

1.常数函数:常数函数的导数恒为零,即对于常数C,其导数为0:f(x)=C,f'(x)=0。

2.幂函数:幂函数指的是形如f(x)=x^n的函数,其中n是实数。

幂函数的导数公式为:f'(x) = nx^(n-1)。

例如,对于函数f(x)=x^3,它的导数为f'(x)=3x^2、这个公式也被称为幂函数的指数法则。

3.指数函数:指数函数指的是形如f(x)=a^x的函数,其中a为正实数且不等于1指数函数的导数公式为:f'(x) = a^x * ln(a)。

例如,对于函数f(x) = 2^x,它的导数为f'(x) = 2^x * ln(2)。

其中ln(a) 是以e为底的对数函数。

4.对数函数:对数函数指的是形如f(x) = logₐ(x)的函数,其中a为正实数且不等于1对数函数的导数公式为:f'(x) = 1 / (x * ln(a))。

例如,对于函数f(x) = log₂(x),它的导数为f'(x) = 1 / (x *ln(2))。

5.三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

正弦函数的导数公式为:f'(x) = cos(x)。

余弦函数的导数公式为:f'(x) = -sin(x)。

正切函数的导数公式为:f'(x) = sec^2(x) = 1 / cos^2(x)。

这些公式可以通过三角函数的定义及导数的定义进行求解。

6.反三角函数:反三角函数包括反正弦函数、反余弦函数和反正切函数等。

反正弦函数的导数公式为:f'(x) = 1 / sqrt(1 - x^2)。

1.2.1 几种常见函数的导数

1.2.1 几种常见函数的导数

1.2.1 几种常见函数的导数一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础.教学难点:灵活运用五种常见函数的导数.三、教学过程:(一)公式1:(C )'=0 (C 为常数).证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,,0=∆∆x y .0lim ')('0=∆∆==∴→∆x y C x f x 也就是说,常数函数的导数等于0.公式2: 函数x x f y==)(的导数 证明:(略)公式3: 函数2)(x x f y==的导数 公式4: 函数x x f y1)(==的导数 公式5: 函数x x f y==)(的导数 (二)举例分析例1. 求下列函数的导数.⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='⎪⎭⎫ ⎝⎛21x )(2'-x 32--=x 32x -= ⑶=')(x )(21'x 12121-=x 2121-=x .21x =练习求下列函数的导数:⑴ y =x 5; ⑵ y =x 6; (3);13xy = (4).3x y = (5)x x y 2= 例2.求曲线xy 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。

例3.已知曲线2x y=上有两点A (1,1),B (2,2)。

求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;(3)点A 处的切线的斜率; (4)点A 处的切线方程例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.(三)课堂小结几种常见函数的导数公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=(四)课后作业《习案》作业四。

函数导数公式

函数导数公式

函数导数公式这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=(u'v-uv')/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。

在得到y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个常见函数的导数制作人:徐凯精讲部分:年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min一.知识点:知识点一几个常用函数的导数知识点二基本初等函数的导数公式二.典例分析:题型一 利用导数公式求出函数的导数 例1 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2. 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=⎝ ⎛⎭⎪⎫1x 3′=(x -3)′=-3x -4;(4)y ′=(4x 3)′=(x 34)′=1434x -=344x;(5)y ′=(log 3x )′=1x ln 3;(6)y =1-2sin 2x2=cos x ,y ′=(cos x )′=-sin x .反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题例2 (1)已知P ,Q 为抛物线y =12x 2上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4)解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),即y =4x -8,QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得⎩⎪⎨⎪⎧x =1,y =-4.∴A (1,-4).(2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由.解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直,则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的.∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤题型三 利用导数公式求最值问题例3 求抛物线y =x 2上的点到直线x -y -2=0的最短距离.解 设切点坐标为(x 0,x 20),依题意知与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短.∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12,∴切点坐标为(12,14),∴所求的最短距离d =|12-14-2|2=728.反思与感悟 利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算. 三.课堂小结:1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.精练部分:年级:高三 科目:数学 类型:同步难易程度:易 建议用时:随堂练习10-15min 课后作业30min四.随堂练习: 一、选择题1.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③(1x)′=-12x -32;④(5x 2)′=25x -35;⑤(cos x )′=-sin x ;⑥(cos 2)′=-sin 2. A .3 B .4 C .5 D .6 答案 B2.已知过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为( )或⎝ ⎛⎭⎪⎫-12,-2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a,若f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 f ′(x )=axa -1,f ′(-1)=a (-1)a -1=-4,a =4.4.已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b 等于( ) A .4 B .-4 C .28 D .-28 答案 C解析 ∵点(2,8)在切线上,∴2k +b =8,①又y ′|x =2=3×22=12=k ,② 由①②可得:k =12,b =-16,∴k -b =28. 5.已知f (x )=1x ,g (x )=mx ,且g ′(2)=1f ′2,则m =________.答案 -4解析 f ′(x )=-1x 2,g ′(x )=m .∵g ′(2)=1f ′2,∴m =-4.6.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________. 答案 (1,1) 五. 课后作业:1.若f (x )=sin x ,f ′(α)=12,则下列α的值中满足条件的是( )答案 A解析 ∵f ′(x )=cos x ,∴f ′(α)=cos α=12,∵α=π3时,cos α=12,故选A.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0答案 A解析 设切点(x 0,y 0),l 的斜率k =y ′|x =x 0=4x 30=4,x 0=1,∴切点(1,1),∴l 的方程为y -1=4(x -1), 即4x -y -3=0.3.已知直线y =kx 是曲线y =e x的切线,则实数k 的值为( ) B .-1e C .-e D .e答案 D解析 y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0, ①y 0=e x 0, ②k =e x 0, ③∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.4.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线的方程为________________.答案 3x -y -11=0解析 ∵y ′=3x 2+6x +6=3(x 2+2x +2)=3(x +1)2+3≥3, ∴当x =-1时,斜率最小,切点为(-1,-14), ∴切线方程为y +14=3(x +1),即3x -y -11=0.5.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64.6.已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1、m 、4(1<m <4),当△ABC 的面积最大时,m 的值等于________. 答案 94解析 如图,在△ABC 中,边AC 是确定的,要使△ABC 的面积最大,则点B 到直线AC 的距离应最大,可以将直线AC 作平行移动,显然当直线与曲线相切时,距离达到最大,即当过B 点的切线平行于直线AC 时,△ABC 的面积最大.f ′(m )=12m,A 点坐标为(1,1),C 点坐标为(4,2),∴k AC =2-14-1=13,∴12m =13,∴m =94.7.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3,∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0.。

相关文档
最新文档