按应用分类的运算放大器选型指南
运放选型参数
运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。
作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。
本文将详细介绍运放选型参数,并以实际案例进行说明。
首先,我们来了解一下运放的增益带宽积。
增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。
在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。
输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。
输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。
这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。
共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。
在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。
输出电流和电压是运放输出性能的重要参数。
输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。
在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。
电源电压范围和功耗是运放的两个重要电气参数。
电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。
在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。
下面通过一个实际应用案例来说明如何进行运放选型。
某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。
根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。
接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。
运算放大器选型指南
快速选型指南——精密放大器(插页)................................ 7 轨到轨输入/输出............................................. . . . . . . . 34
按性能规格分类的放大器选型指南
FastFET (FET输入)............................................... . . . . . . 35
共模抑制比(CMRR) 共模电压范围(CMVR)与此范围内的输入失调电压(ΔVoOS)变化的比 值,结果用dB表示。CMRR (dB) = 20log (CMVR/ΔVOS)
全功率带宽 指在单位增益下测得的最大频率,在该频率下,额定负载上可 以获得一个正弦信号的额定输出电压,并且压摆率限制不会导 致失真。
选择运算放大器并非易事,可供选择的放大器类型、类别、架 构和参数如此之多,因此选择过程可能相当困难。每位客户和 每种应用所要求的性能可能都略有不同。无论您是设计咖啡机
(不错,咖啡机中也会使用运算放大器),还是新一代医疗成像系 统,ADI公司都能提供合适的放大器来满足您的需求。
本手册将能够帮助您轻松快捷地找到满足您应用需求的运算放大 器。手册包括如下内容:运算放大器术语和用于制造IC的工艺说 明、各种选型表、应用指南、设计工具,以及一份方便易用的运 算放大器参考挂图插页。希望您经常查阅这份选型指南,它将帮 助您更好地了解和鉴识运算放大器及其诸多应用。
轨到轨输出. . . . . . . . . . . . . . . ...................................... ..... 24 通信.................................................................. 46
运算放大器应用技术手册
运算放大器应用技术手册摘要:1.运算放大器简介1.1 运算放大器的定义1.2 运算放大器的基本原理1.3 运算放大器的分类2.运算放大器的应用领域2.1 音响放大器2.2 摄像头2.3 飞行控制器2.4 传感器信号处理2.5 其他应用3.运算放大器的性能参数3.1 开环增益3.2 输入偏置电流3.3 输入偏置电压3.4 共模抑制比3.5 输出摆幅3.6 电源抑制比3.7 增益带宽积3.8 工作温度范围4.运算放大器的选择与使用4.1 选择运算放大器4.2 运算放大器的使用方法4.3 运算放大器的电路设计5.运算放大器的故障处理与维护5.1 故障现象5.2 故障原因分析5.3 故障处理方法5.4 维护与保养正文:运算放大器是一种模拟电子技术中的重要组件,广泛应用于各种电子设备中。
它具有高输入阻抗、低输出阻抗、高共模抑制比等特性,可以对输入信号进行放大、求和、求差等运算。
运算放大器应用领域十分广泛。
在音响放大器中,运算放大器可以放大音频信号,使扬声器发出更响亮的声音。
在摄像头中,运算放大器可以对摄像头接收到的信号进行放大处理,提高图像质量。
在飞行控制器中,运算放大器可以对各种传感器的信号进行放大处理,使飞行控制器能够准确地控制飞行器。
此外,运算放大器还在其他领域有广泛的应用。
运算放大器的性能参数是衡量其性能的重要指标。
开环增益是指运算放大器在没有反馈时的增益,它决定了运算放大器能够放大的信号范围。
输入偏置电流和输入偏置电压是衡量运算放大器输入阻抗的参数。
共模抑制比是衡量运算放大器抑制共模信号的能力。
输出摆幅、电源抑制比、增益带宽积等参数也都对运算放大器的性能有重要影响。
在选择和使用运算放大器时,需要考虑其性能参数和应用领域。
选择运算放大器时,应选择符合应用要求的运算放大器。
在使用运算放大器时,应按照其使用方法进行操作,并在设计电路时注意考虑其性能参数。
运算放大器在使用过程中可能会出现故障,如输出电压不足、噪声大、不能正常工作等。
运算放大器参数说明及选型指南
运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。
增益可以是固定的,也可以是可调的。
增益决定了输出信号相对于输入信号的放大程度。
2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。
带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。
3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。
输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。
4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。
输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。
5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。
输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。
6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。
输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。
7.输出电流:输出电流是指运放输出端提供的最大电流。
输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。
8.输出电压:输出电压是指运放输出端能够提供的最大电压。
输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。
二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。
例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。
2.选择性能指标:根据应用需求选择合适的性能指标。
不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。
3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。
产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。
常用运算放大器参数
常用运算放大器,参数和选型通用廉价运算放大器。
这些廉价的运放除OP07用于直流外,其它的一般不用于直流电路。
1.OP07,这是在各类文章中用得最多的运放,国产型号F07,低漂移,低噪声,增益带宽积不到1MHZ,其中以MAXIM的OP07AJ的品质最好。
特别适用于直流放大,对带宽要求不高的场合,价格便宜。
工业级的OP07性能超好,但是很贵(100块以上)。
2.LM324,廉价的四路运放,增益带宽积1MHZ,开环直流增益100DB,适合低电压场合,音频场合也用,最主要优势是便宜。
工业级的用LM124代替,LM124在广普屯的报价是14块一只,性能不错的,很难烧坏。
3.TL084,廉价4运放。
4.LM741,增益带宽积1MHZ,适合小信号交流放大,输出能力较小5.LM1458,廉价的双路运放,实际是两个LM741封装在一起,和LM741一样基本上要被淘汰了,双运放的场合用TL084代替就行了。
宽带运算放大器。
适合于交流放大,这类运放的直流漂移一般较大。
1.NE5532,增益带宽积10MHZ,输出电流50mA,输出阻抗低,适合于要求较高的交流放大场合,总线驱动,信号驱动等。
双运放。
2.NE5534,增益带宽积10MHZ,比NE5532摆率高,开环放大倍数大些。
单运放,带调整。
3.OP27,OP37,高速宽带运算放大器,增益带宽积40MHZ,摆率高,适合于10MHz以下的交流小信号放大。
常用廉价仪表放大器。
这两种都是很便宜的,性能也不错。
1.AD620,20多元一只2.INA128,稍贵,都是工业级。
极品运放1.OPA2227,双路运放,增益带宽积10MHZ,极低噪声和极低漂移,开环增益140DB以上,输出能力50mA,全部为工业级,具有极好的直流和交流特性,自带保护,基本上不会烧坏,为我至今见过的最好的运放,可以使用于1MHz以下的各种场合,广普屯没有卖的,建议订货,24块钱一只。
2.OPA4227,性能和OPA2227相同,四路运放。
运算放大器应用技术手册
运算放大器应用技术手册摘要:1.运算放大器简介1.1 运算放大器的定义与作用1.2 运算放大器的基本原理2.运算放大器的分类与特点2.1 运算放大器的分类2.2 运算放大器的特点3.运算放大器的应用领域3.1 音频处理3.2 信号处理3.3 仪器测量3.4 通信系统3.5 其他领域4.运算放大器的基本电路4.1 反相放大电路4.2 同相放大电路4.3 差分放大电路4.4 积分电路4.5 微分电路5.运算放大器的性能参数与选择5.1 开环增益5.2 输入偏置电流5.3 输入偏置电压5.4 输出电流5.5 电源电压5.6 选择运算放大器的方法6.运算放大器的使用与调试6.1 运算放大器的使用方法6.2 运算放大器的调试步骤7.运算放大器的常见问题及解决方法7.1 输出信号波动较大7.2 输入偏置电流过大7.3 电路噪声问题7.4 输出短路问题正文:【运算放大器简介】运算放大器(Operational Amplifier,简称OPA)是一种模拟电子器件,具有高增益、高输入阻抗、低输出阻抗等特性。
它广泛应用于各种电子设备和系统中,承担信号放大、处理、滤波等功能。
【运算放大器的基本原理】运算放大器的基本原理是基于反馈网络,通过对输入信号进行比例、求和、差分等运算,得到所需的输出信号。
运算放大器的核心部分是运放芯片,它由输入级、中间级、输出级组成。
【运算放大器的分类与特点】运算放大器根据技术指标和应用领域的不同,可以分为多种类型。
常见的有通用运算放大器、高速运算放大器、低功耗运算放大器、仪表运算放大器等。
各种类型的运算放大器具有不同的特点,如高增益、低失真、低噪声、宽频带等。
【运算放大器的应用领域】运算放大器广泛应用于各个领域,如音频处理(如音响放大器)、信号处理(如滤波器、信号发生器)、仪器测量(如示波器、频谱分析仪)、通信系统(如放大器、振荡器)等。
【运算放大器的基本电路】运算放大器可以实现多种基本电路,如反相放大电路、同相放大电路、差分放大电路、积分电路、微分电路等。
(完整版)运放分类及选型
运放分类及选型对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。
对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小)运算放大器大体上可以分为如下几类:1、 通用型运放2、 高阻型运放3、 低温漂型运放4、 高速型运放5、 低功耗型运放6、 高压大功率型运放1、 通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356。
2、 高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。
实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。
这类运放有LF356、LF355、LF347、CA3130、CA3140等3、 低温漂型运放在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。
底温漂型运放就是为此设计的。
目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。
4、 高速型运放在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。
高速型运放的主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、175A μ等。
其SR=50~70V/ms5、 低功耗型运放由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。
常用的低功耗运放有TL-022C,TL —160C 等。
6、 高压大功率型运放运放的输出电压主要受供电电源的限制。
在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。
高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。
D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。
运放分类及选型
运放分类及选型对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。
对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小)运算放大器大体上可以分为如下几类:1、通用型运放2、高阻型运放3、低温漂型运放4、高速型运放5、低功耗型运放6、高压大功率型运放1、通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如3741,LM358 (双运放),LM324及场效应管为输入级的LF356.2、高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。
实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。
这类运放有LF356、LF355、LF347、CA3130、CA3140 等3、低温漂型运放在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。
低温漂型运放就是为此设计的。
目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。
4、高速型运放在快速A/D及D/A以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG —定要足够大。
高速型运放的主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、从175等。
其SR=50~70V/ms5、低功耗型运放由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。
常用的低功耗运放有TL-022C, TL-160C等。
6、高压摆大功率型运放运放的输出电压主要受供电电源的限制。
在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。
高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。
D41运放的电源电压可达-150V,J A791运放的输出电流可达1A。
运放分类及指标
运算放大器分类:一:性能指标分类1.通用型运算放大器通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例μA741(单运放)、LM358(双运放)、LM324(四运放)以及场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
2.高阻型运算放大器这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>1GΩ~1TΩ,IB为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有OP07、OP27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、μA715等,其SR=50~70V/ms,BWG>20MHz。
5.低功耗型运算放大器由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250μA。
运算放大器选型指南
运算放大器选型指南运算放大器(Operational Amplifier,简称Op Amp)是一种重要的电子元件,广泛应用于各种电子设备和电路中。
它具有输入阻抗高、增益稳定、输出能力强等特点,可放大输入信号并输出放大后的信号,被用于放大、滤波、比较、积分、微分等多种信号处理应用。
在进行运算放大器选型时,需要考虑以下几个因素:1.功能要求:首先要明确需要运算放大器实现的功能。
不同的应用场景需要不同的功能要求,比如需要放大直流或交流信号,需要实现滤波、比较、积分、微分等功能。
2.参数指标:选择合适的运算放大器要考虑其参数指标,如增益带宽积、输入与输出电压范围、电源电压范围、偏置电压、输入偏置电流、输出阻抗等。
这些参数指标对于实现具体的应用要求至关重要。
3.精度要求:根据应用需求考虑运算放大器的精度要求,如增益的稳定性、输入和输出的精度、温度漂移、噪声等。
一般来说,要求精度越高的应用,选择的运算放大器性能要求也相对较高。
4.效率和成本:运算放大器的效率和成本也是选型中的考虑因素。
效率指的是运算放大器的功耗和能耗,可以根据实际需求选择功耗较低的型号。
成本包括器件本身的价格和其他外部元件的成本,需要综合考虑投资和应用需求。
5.兼容性和可靠性:考虑运算放大器的兼容性和可靠性,特别是在多个放大器组成的电子系统中,要保证各个放大器之间的配合和运行稳定性。
在具体选型时,可以参考厂商提供的数据手册和技术规格表,查找满足应用需求的运算放大器型号。
此外,也可以借鉴其他工程师的经验和评价,了解不同型号的优缺点,从而做出更好的选择。
总结起来,在运算放大器选型时要考虑功能要求、参数指标、精度要求、效率和成本、兼容性和可靠性等因素,根据实际需求选择合适的型号。
最后,进行实际应用前,还需通过实验和测试验证选型的正确性和可靠性。
运算放大器应用技术手册
运算放大器应用技术手册摘要:1.运算放大器的基本概念和原理2.运算放大器的分类和主要参数3.运算放大器的应用领域和实例4.运算放大器的发展趋势和前景正文:一、运算放大器的基本概念和原理运算放大器,简称运放,是一种模拟电子电路,具有高增益、差分输入、零点漂移小、输入阻抗高等特点。
其基本原理是基于负反馈,将输入端的差分信号经过放大后反馈到输入端,使得输出端信号接近于零。
这种电路结构使得运算放大器在实际应用中具有广泛的应用价值。
二、运算放大器的分类和主要参数1.分类根据运放的结构和性能,运算放大器可分为两级放大器、折叠式Cascode 放大器等。
根据输入电路形式,可分为差分对、共源对和共射对等。
2.主要参数运算放大器的主要参数包括:(1) 开环增益:表示运放在无负反馈时的电压放大倍数。
(2) 输入阻抗:表示运放输入端的等效电阻,一般很高。
(3) 输出阻抗:表示运放输出端的等效电阻,一般较低。
(4) 全功率带宽:表示运放在给定增益下,输出信号能够保持在额定范围内的最大频率。
(5) 输入失调电压:表示运放输入端两个输入信号理想情况下应该相等,但由于制造工艺等原因导致的微小差异。
三、运算放大器的应用领域和实例运算放大器广泛应用于模拟电路设计、信号处理、仪器测量、自动控制等领域。
以下是一些典型的应用实例:1.信号放大与滤波:将微弱的信号经过运放放大后,能够提高信号的幅值,便于后续处理。
同时,运放可与滤波器电路结合,实现信号的滤波。
2.模拟计算机:在模拟计算机中,运算放大器可用于实现各种数学运算,如加法、减法、乘法、除法等。
3.振荡电路:通过运放与电容、电感等元器件组合,可构成各种类型的振荡电路,如RC 振荡器、LC 振荡器等。
4.电压比较器:利用运放的差分输入特性,可构成电压比较器,实现信号的幅度鉴别。
四、运算放大器的发展趋势和前景随着科技的进步和应用领域的拓展,运算放大器在性能、功能、小型化等方面不断取得突破。
运算放大器分类、作用及运放的选型
运算放大器分类、作用及运放的选型展开全文运算放大器分类、作用及运放的选型,详细解析了运算放大器的特点、工艺、功能、性能、参数、指标和运算放大器的对信号放大的影响和运放的选型举例,并附有常见运算放大器列表!1. 模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。
最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。
在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。
当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。
经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。
这使得初学者选用时不知如何是好。
为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。
1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。
按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。
标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。
这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。
为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。
标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。
ADI运算放大器选型指南
2011–2012
和内设含计产公品式选插型页
/zh/opamps
/zh/opamps | 1
ADI公司为每种应用都准备了合适的放大器
为什么会有如此之多不同类型的运算放大器?ADI公司的工程师 坚持不懈地追寻令人捉摸不定的理想运算放大器,虽然我们离实 现它仅几步之遥,但遗憾的是,它仍然只存在于书本中。因此, 我们致力于提供类型广泛的运算放大器,来满足客户的众多不同 需求。
工作电源电压范围 放大器在额定范围内工作时,能够施加于放大器的电源电压范 围。许多应用的运算放大器电路采用平衡的双电源,但有些应用 出于节能或其它原因而使用单电源。例如,汽车和轮船设备中的 电池电源仅提供一个极性。甚至线路供电的设备,如计算机等, 也可能只有单极性电源,为系统提供+5 V或+12 V直流电源,或者 低至1.8 V,较新的应用使用的电压甚至更低。
• 自稳零运算放大器:<1 µV • 精密运算放大器:50 µV至500 µV • 最佳双极性运算放大器:10 µV至25 µV • 最佳JFET输入运算放大器:100 µV至1000 µV • 最佳双极性高速运算放大器:100 µV至2000 µV • 未调整的CMOS运算放大器:>2 mV • DigiTrim® CMOS运算放大器:<100 µV至1000 µV
精密放大器 (带宽 < 50 MHz)
电流反馈...................................................... . . . . . . . 36
零漂移... . . . . . . . . . . . . . . . . . ....................................... ..... 10 高输出电流................................................... . . . . . . . 37
运算放大器的参数、用途、分类和选型
运算放大器分析Part1 静态特性一、电位分析体系首先,运放的电源输入Vcc和Vss(或者是GND)确定后,运放的Vcc-GND(-Vss)电位体系就确定了,这是运放电位体系的基础(如下图)。
通过这个电位体系再去分析运放的输入端V+与V-就会自然引出共模信号(common-mode signal)、差模信号(Differential mode signal)、共模抑制比(CMRR,单位dB)、共模输入范围(CMVR)…….等一系列概念。
最后注意一点:运放动态电压输出范围(Output Voltage Swing)——普通运放低于电源电压1-2V 动态输出范围与电源电压相同的我们称之为轨到轨运放(Rail-Rail)紧急补充!!实际情况中,运放输入的共模电压变化时,也会引起输出变化。
运放设计时要减小这种现象,所以用CMRR来衡量这个性能。
二、关于运放的开环增益在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,简称AOL。
这句话简单的定义了运放的开环增益。
理想运放的开环增益Aol是无穷大的。
这是我们在模电课本上学到的运放的一条基本知识。
但现实总是残酷的,残酷到所有的运放的开环增益都不是无穷大,它是一个有限值。
实际的运放的开环增益,有高有低,并且会随温度变化,这是我们不想看到的。
PS:运放Datasheet里标示的Bode图和幅频曲线,指的是开环增益——切记!三、关于输入端电阻的说明运放分析时,输入端是“虚断”的,这用另一种方式解释就是输入阻抗无限大。
从工艺上讲:双极管运放输入——输入阻抗小(几百K左右)场效应管运放输入——输入阻抗大(几十M以上)——基本相当于虚断了具体设计对策如下图:四、输出阻抗…..有输入就有输出,但是——别指望运放的输出能带的动负载一般情况下,运放的开环输出阻抗约为几十欧姆,闭环输出阻抗几乎为0运放的最大输出电流一般约为10-20mA,不适合驱动太重的负载五、电压增益(Au)和噪声目前的运放电压增益可以达到100dB,足够折腾了运放输出的噪声与闭环增益、通频带有关六、失调电压(偏置电压)当运放两输入为零时,输出都有一定数值,即失调电压Vos。
运算放大器的参数、选型与应用
运算放大器的参数、选型与应用唐桃波长江大学国家级电工电子实验教学示范中心创新基地长江大学石油仪器研究室1•1930年TI的前身Geophysical service inc.成立,主要研发地震仪与石油探测仪。
•1950年Geophysical service inc.上市同时改名为TI。
•1956年Burr-Brown Research公司成立。
•1958年7月TI公司的Jack Kilby发明了集成电路(integrated circuit)简称IC。
•1963年Fairchild公司的Bob widlar发明了世界上第一片世界公认的单片集成电路运放μA702但是不是很成功。
•1965年1月MATT LORBER和RAY STATA创建了ADI公司。
•1965年11月Fairchild公司的Bob widlar发明了μA709大获成功,但是μA709不稳定,易烧坏,易锁闭。
•1967年Bob widlar离开Fairchild加入NSC(National Semiconductor后并入TI),同年发表了LM101,后来陆续开发了LM301,LM307,LM308,LM318,LM309等运放。
•1969年Fairchild公司的Dave Fullagar发表了发明了世界上第一款内置30pF相位补偿电容的运放μA741一直应用至今,现在还是各大高校模电实验的首选运放。
2•1975年PMI公司的George Erdi发表了世界上第一款精密运放OP07(后逐渐发展出OP27 OP37 OP177及OP27的JFET版本OPA627,OP37的JFET版本OPA637).由于OP07太过经典,各大公司都推出了自己的相关产品。
•1972年NSC公司的Russell and Frederiksen引入新技术设计出LM324.•1975年RCA公司发布了CMOS运放CA3130.•1976年NSC公司发布了JFET运放LF356.•1978年TI发布了TL06X TL07X TL08X系列低价格JFET运放。
运放选型
运算放大器的结构形式主要有三种:模块、混合电路和单片集成电路。
对于设计工程师来说,不仅是要知道所用产品的型号,而且还应熟悉生产这些产品的工艺,从而能够从一类放大器中选出一种放大器做特定的应用。
表1 给出了各种运算放大器结构的性能情况。
(一)模块放大器目前使用几种工艺生产运算放大器,性能最高的放大器是以模块的形式由分立元件构成的。
因为使用分立元件,所以可选用像高压输出晶体管、超低电流的FET 管以及阻值很高的电阻等等这类专门制作的元件。
在模块的设计中,在电气测试时(密封之前)通过对直流参数(比如失调电压)或交流参数(比如建立时间)进行细调的方法来选择电阻和电容是可能的。
模块工艺的缺点是实际的尺寸较大和价格高。
由于每个模块都是单独构成的,大量加工制造是不现实的,并且制造成本相对地也是很高的,但是对于那些对性能有极高级别要求的特殊应用来说,由于模块运算放大器的规范由生产厂来保证,所以它们还是有吸引力的。
模块运算放大器包括斩波稳定放大器、可变电抗静电计放大器和宽带高速放大器。
1.斩波稳定放大器当需要放大(或缩小)电平极低的电压信号时,要使用斩波放大器。
斩波放大器的内部是交流耦合的--有效的差动输入信号被斩波成方波,这个方波被解调和放大。
交流耦合消除了许多与运放有关的误差,因此失调和漂移极低。
斩波放大器的主要性能指标:低失调电压10 A低失调漂移0.1 V/℃长期稳定性1 V/年高开环增益107V/V低温升漂移3 V2.静电计放大器当需要尽可能高的输入阻抗和最低的偏置电流时,要使用静电计放大器。
静电计放大器内部也是交流耦合的,输入信号被加到包括低漏流的变容二极管(电压可变电容)的电桥上,该电桥由高频载波信号所激励。
输入电压引起电桥的不平衡,合成的交流误差信号被交流耦合到下一级,在那里被同步解调和放大。
使用低漏流可变电容产生的输入电流低至10fA(1fA=10-15A),获得这样的低电流是以较高的失调电压为代价的。
集成运算放大器是怎样分类的
集成运算放大器是怎样分类的集成运算放大器经过几十年的发展其型号和种类较多,按性能指标可分为两大类通用型和专用型集成运算放大器。
其中。
专用型又分为高精度型、高输人阻抗型、低功耗型、高速型等。
(1)通用型集成运算放大器:通用型集成运算放大器目前已有很高的集成度,其制造工艺到达了大规模集成电路水平、可以将半导体=极管和场效应管集成在同一块基片L.它的主要性能指标已接近理想的直流放大器,它的成本在不断地降低。
〔2)专用型集成运算放大器:在实际应用中,会对集成运算放大器的性能提出特殊要求。
所以,根据需要又设计出某些技术指标突出或具有某一特殊用途的产品,如在遥控、遥测、航天下业等应用场合,需要使用低功耗集成运算放大器。
在自动测试和精细仪器以及控制系统中,则需要使用低漂移、高精度集成运算放大器另外,具有某一特殊用途的宽带放大、射频放大、电视机、音响、收录机等专用型集成运算放大器种类日趋增多。
低功耗集成运算放大器特点:在消耗功率低的条件下仍有较大的功率输出,比通用型集成运算放大器的功耗低1~2个数量级。
它可以在低电源下工作。
克服了通用型集成运算放大器电源电压下降引起的性能变坏等缺点。
〔3〕高精度集成运算放大器特点:具有噪声和漂移非常低增益和共模抑制比非常高的特点。
对放大信号为毫伏级或更低的微弱信号开展精细的测量。
计算时采用高精度集成运算放大器可以获得非常好的性能指标。
(4)高输人阻抗集成运算放大器特点:输人级采用场效应管组成的差分放大器,输入阻抗可高达10(1数量级。
在采样保持电路、测量放大器等电路中应用。
它使前级所接电路的带负载压力减轻。
高速集成运算放大器特点:具有很高的输人/输出的转换速率,在数/模和模/数变换、有源滤波、采样保持等应用方面,对集成运算放大器提出了很高的速率要求需要采用高速集成运算放大器才可很好地完成其任务。
另外。
还有高压集成和功率集成运算放大器它可满足高输出电压或高输出功率的要求。
随着集成运算放大器的发展,其功能越来越完善,用途越来越广泛。
高速运算放大器型号选择
高速运算放大器型号选择
相比高速运算放大器,通用型集成电路运算放大器在组成各种系统上,即可以降低成本,市场上也容易找到货源。
但是在某些需要快速A/D、D/A 转换,视频放大器特殊要求中,需要运算放大器的转换速率SR 高,单位增益带宽BWG 也要提高,在这些应用场景中我们就需要使用到高速运算放大器。
下面我们就来详细罗列下ADI、TI、INTERSIL、LINEAR 几家公司一些常用的高速运算放大器型号及其描述,供大家选型设计作为参考:
关于运算放大器设计、电路应用等相关知识,可以查阅以下资料进一步学习(点击如下标题文字):
1. 集成运算放大器应用手册
2. 电子工程师必备运算放大器11 种经典电路
3. 集成运算放大器分析与设计
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADI 公司开发创新能源解决方案已逾十年。
我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。
能源应用放大器
欲了解有关能源应用的更多信息,请访问:/zh/energy
典型太阳能电池系统图
典型变电站自动化系统图
过程控制和工业自动化应用放大器
40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。
我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。
欲了解有关过程控制和工业自动化应用的更多信息,请访问:/zh/processcontrol
仪器仪表和测量应用放大器
ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。
我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。
领先的放大器产品可帮助客户优化定性和定量仪器的性能。
网络分析仪框图
电子秤框图
欲了解有关仪器仪表和测量应用的更多信息,请访问:/zh/instrumentation
电机和电源控制应用放大器
针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。
ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。
欲了解有关电机和电源控制应用的更多信息,请访问:/zh/motorcontorl
健器械的未来。
脉搏血氧仪功能框图
医疗保健应用放大器(续)
超声功能框图
欲了解有关医疗保健应用的更多信息,请访问:/zh/healthcare
通信应用放大器
通信系统联通世界。
无论是传输重要信息,报导突发新闻,还是联系家人和朋友,通信系统都不可或缺。
宽带系统设计工程一向信赖ADI公司来创造卓越的设计。
ADI公司丰富多样的运算放大器支持由点到点通信系统、专用移动无线电和无线基础设施设备所组成的网络以低功耗、高容量和经济有效的方式运行。
直接变频框图
欲了解有关通信应用的更多信息,请访问:/zh/communications
消费音频应用放大器
欲了解有关消费电子应用的更多信息,请访问:/zh/consumer
汽车应用放大器
ADI 公司以45年以上的信号处理经验和业界领先的技术,为设计工程师提供鲁棒的放大器产品和技术支持以实现任何汽车应用。
ADI 公司的技术可满足当今先进的安全、信息娱乐、传动系、车身/底盘电子系统最具挑战性的信号链要求,适合全世界的电动、混合动力和矿物燃料汽车。
如果产品型号后带有“W ”字母,则表示该放大器为汽车级放大器。
这些产品已通过汽车应用认证,达到或超过汽车行业的严格要求。
安全气囊
音频系统
引擎管理
安全系统
电动助力转向
电子液压制动
电池管理
自适应悬挂
传动
辅助雷达
欲了解有关汽车应用的更多信息,请访问:/zh/automotive
防务和航空航天应用放大器
逾45年来,ADI公司在航空航天和防务应用信号处理技术的创新方面始终居于前沿地位。
ADI公司对性能和可靠性的不懈追求使其成为美国国防部以及其它世界各国防务机构的首选供应商。
当今先进的军工系统涉及雷达、通信、航空电子、军工电子等众多领域,
50
|
运算放大器选型指南
防务应用认证产品(续)
欲了解有关防务和航空航天应用的更多信息,请访问:/zh/mil-aero
| 51
/zh/opamps 航空应用认证产品
ADI 公司致力于打造最高质量的线性和混合信号产品,满足全球航天界的需求。
除了下面所列的丰富放大器产品外,ADI 公司还为航空应用提供众多其它线性和数据转换器件。
ADI 公司按照最高质量标准——MIL-PRF-38535 QML Level V ,包括耐辐射保证(RHA)测试要求加工航空应用产品。
52
|
运算放大器选型指南。