随机过程随机过程的基本概念
随机过程的基本概念
随机过程的基本概念
1、随机过程的两种定义
①随机过程是所有样本函数的集合,记为ξ(t)。
样本函数:实验过程中一个确定的时间函数x i(t),即指某一次具体的实现。
②随机过程是在时间进程中处于不同时刻的随机变量的集合。
随机变量:某一固定时刻t1,不同样本函数的取值即为一个随机变量ξ(t1)。
2.随机过程的分布函数
(1)n维分布函数的定义
(2)n维概率密度函数的定义
如果
存在,则称其为ξ(t)的n维概率密度函数。
3.随机过程的数字特征
(1)均值(数学期望)
①均值的定义
随机过程ξ(t)的均值或数学期望定义为
②均值的意义
E[ξ(t)]是时间的确定函数,记为a(t),表示随机过程的n个样本函数曲线的摆动中心。
(2)方差
①方差的定义
随机过程ξ(t)的方差定义为
常记为σ2(t)。
②方差的意义
方差等于均方差与均值平方之差,表示随机过程在时刻t相对于均值a(t)的偏离程度。
(3)相关函数
①协方差函数
协方差函数的定义为
②自相关函数
自相关函数的定义为
③R(t1,t2)与B(t1,t2)的关系
④R(t1,t2)与B(t1,t2)的意义
衡量随机过程在任意两个时刻上获得的随机变量之间的关联程度。
⑤互相关函数
设ξ(t)和η(t)分别表示两个随机过程,则互相关函数定义为。
随机过程课程第二章 随机过程的基本概念
第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩
第2章随机过程的基本概念
F ?? { F ?t1 , t2 ,? , tn ; x 1 , x 2 ,? , x n ?:
ti ? T , x i ? Ri , i ? 1,2, ? , n , n ? 0} 称F为XT 的有限维分布函数族. 定义3 过程 { X(t), t的? nT维} 特征函数定义为
φ?t1 , t2 ,? , tn;?1 ,θ 2 ,? ,θ n ?
? E{e i[θ 1 X (t1 )? ? } ?θ n X (tn )]
称 {φ(t1, t2 ,? , tn;θ 1 ,θ 2 ,? ,θ n ) : t1 , t2 ,? , tn ? T, n ? 1}
为XT 的有限维特征函数族. 特征函数和分布函数是相互唯一确定.
定义2 过程 { X(t),对t ?任T给} 的
t1 , t2 ,? , tn ? T ,
随机向量
?X (t1 ), X (t2 ),? , X (tn )?
的联合分布函数
F (t1 , t2 ,? , tn; x1 , x2 ,? , xn ) ?
P{ X (t1 ) ? x1 , X (t2 ) ? x2 ,? , X (tn ) ? xn }
X(t1,ω)
X(t2,ω)
t1
t2
X(t,ω1) X(t,ω2) X(t,ω3) tn
定义 对每一固定 ω?,Ω称 { X(t, ? ), t的? 一T}个样本函数.
X是t ?随ω?机过程
也称轨道, 路径,现实.
Ex.5 利用抛硬币的试验定义一个随机过程,
X(t)
?
?cos? t, ?
?2t
出现正面; 出现反面. t ? R.
过程识别
第一章 随机过程 第二节 随机过程的基本概念
FX ( x1 , t1 ) f X ( x1 , t1 ) x1
2 、二维概率分布 为了描述S.P在任意两个时刻t1和t2的状态间的 内在联系,可以引入二维随机变量[X(t1),X(t2)]的分 布函数FX(x1,x2;t1,t2),它是二随机事件{X(t1)≤x1} 和{X(t2)≤x2}同时出现的概率,即
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
称为随机过程X(t)的二维分布函数。 若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在, 则 2 F ( x , x ;t ,t )
f X ( x1 , x2 ; t1 , t 2 )
X 1 2 1 2
x1x2
E[cos ] cos f ( )d cos
0 0
2
2
同理
1 d 0 2
E[sin ] 0
mx (t ) 0
2 2 x (t ) 2 (t ) mx (t ) 2 (t ) E[ x2 (t )] x x (2)
2 = E[sin (0t )] E [1 cos(20t 2 )]
t 离散型随机过程:对随机过程任一时刻1 的取值X (t1 ) 都是离散型随机变量。
连续随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是连续型随机变 量,即时间是离散的。相当于对连续型随 机过程的采样。 离散随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是离散型随机变 量,即时间和状态是离散的。相当于采样 后再量化 。
第二章 随机过程的基本概念_2.3 2.4
4 2 0 -2 -4 10 5 0 -5 -10
0
50
100
0
50
100
0 1
2015/5/12
0 100
14
两个不同相关时间随机过程的样本函数
2.3.4 循环平稳的概念
广义循环平稳:
如果随机过程X(t)的均值和自相关函数满足下列关系
2T
0
(1
2T
2 )[ RX ( ) mX ]d 0
平稳随机过程X(t)具有相关函数遍历性的充要条件
1 lim T T
2T
0
(1
2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
2015/5/12 22
第二章随机过程的基本概念
mX mX
其中
RX ( ) RX ( )
RX ( )
1 lim T 2T
T T
x(t
) x(t )dt
则X(t)为遍历(各态历经)过程。
2015/5/12 19
2.3.5 随机过程的各态历经性
X (t ) X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图 各态历经过程的一个样本函数经历了随机过程 所有可能的状态
如果
f XY ( x1 ,..., xN , t1 ,..., t N , y1 ,..., yM , t '1 ,..., t 'M ) f X ( x1 ,..., xN , t1 ,..., t N ) fY ( y1 ,..., yM , t '1 ,..., t 'M )
随机过程的基本概念及类型
第七章 随机过程的基本概念及类型
第一章 概率论基础
目录 Contents
7.1
随机过程的基本概念
7.2
随机过程的分布率和数字特征
7.3
复随机过程
7.4
几种重要的随机过程
7.1 随机过程的基本概念
通俗地讲, 用于研究随机现象变化过程的随机变量 族称为随机过程.
7.1.1 随机过程的实例
当 t1 t2 t 时,
DX (t )
2 X
(t)
BX
(t,t)
RX
(t,t
)
m
2 X
(t)
最主要的数字特征
mX (t) E[X (t)]
均值函数
RX(t1, t2 ) E[X (t1 )X (t2 )] 自相关函数
7.2 随机过程的分布律和数字特征
例7.2 设随机过程 X (t ) Y cos( t) Z sin( t), t 0, 其中 Y , Z 是相互独立的随机变量, 且 EY EZ 0, DY DZ 2 , 求 {X (t ) t 0}的均值函数 mX (t) 和 协方差函数 BX (s, t).
RW (s, t) E[W (s)W (t)] E[( X (s) Y (s))( X (t ) Y (t ))]
E[ X (s)X (t) X (s)Y (t) Y (s)X (t ) Y (s)Y (t)]
7.2 随机过程的分布律和数字特征
E[ X (s)X (t)] E[ X (s)Y (t)] E[Y (s)X (t)] E[Y (s)Y (t)]
◎ 显然有关系式 BX (s, t) RX (s, t) mX (s)mX (t) , s, t T .
随机过程的基本概念和分类
随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。
它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。
本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。
1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。
在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。
根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。
离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。
连续时间的随机过程是在连续时间上的函数,例如天气的变化。
在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。
随机过程可以用概率分布函数来表达。
对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。
对于离散时间的随机过程,概率分布可以用概率质量函数来描述。
概率分布函数可以通过研究随机过程的瞬时状态来推导。
随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。
2. 随机过程的分类随机过程可以按照多种方式进行分类。
以下是一些常见的分类方式。
2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。
马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。
根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。
离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。
2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。
这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。
平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。
第二章随机过程的概念与基本讲解
例 6、设 { X i , i 1,2,} 是一独立随机变量序列,且有 相同的两点分布
X i -1 1
pi 1/2 1/2
n
令Y (0) 0,Y (n) X i 。 i 1
试求:随机过程 {Y (n),n 0,1,2,} 的均值函数和相关 函数。
§ 2.3 复随机过程
定义 2.5 设 { X t , t T } ,{Yt , t T } 是取实数值的两
例 2 设随机过程
X (t) Y Zt, t 0
其中,Y,Z 是相互独立的 N(0,1)随机变量,求此随机过 程的一、二维概率密度族。
注:二维正态分布的密度函数:
f (x, y)
1
2σ1σ2 1 ρ2
1
exp
2(1
ρ2
)
(
x
μ1 )2 σ12
2ρ(
第二章 随机过程的概念与基本类型
随机过程---随机信号 随机过程是与确定性过程相对立的一个概念.从信 息论的观点 ,对接收者来讲只有信号表现出某种不可预 测性才可能蕴涵信息.因为如果在信号收到以前接收者 已准确地预测它的一切,则这种信号是毫无用处的.类似 地,若接收者能从信号的过去正确地预测它的将来,将来 的部分信号即成多余。
x
μ1 )( y σ1 σ2
μ2
)
(
y
μ2 σ22
)2
例 3 设 X(t)是实随机过程,x 为任意实数,令
Y
(t)
1, 0,
X (t) X (t)
x, x,
证明随机过程 Y(t)的均值函数和相关函数分别为 X(t)的 一维和二维分布函数。
简述随机过程的基本概念
简述随机过程的基本概念随机过程是概率论的一个重要分支,研究随时间变化的随机现象。
它描述的是随机变量随时间的变动规律,并通过概率论的方法研究其统计特性。
随机变量是随机过程的基本组成部分,表示在给定的实验空间中,某一随机事件所对应的数值。
随机变量可以是离散的(比如抛硬币的正反面),也可以是连续的(比如投掷骰子的点数)。
随机过程可分为离散时间随机过程和连续时间随机过程两种类型。
离散时间随机过程是指在离散的时间点上进行观测,比如某一事件在每个小时的发生概率。
离散时间随机过程通常用随机序列来描述,其中每个随机序列代表不同的事件。
连续时间随机过程是指在连续的时间段内进行观测,比如某一事件在每个时间段内的发生概率。
连续时间随机过程可以通过概率密度函数来描述。
随机过程有两个重要的性质:平稳性和马尔可夫性。
平稳性是指随机过程的统计特性在时间上保持不变。
强平稳性要求整个随机过程的概率分布在时间上保持不变,弱平稳性只要求随机过程的均值和自相关函数在时间上保持不变。
马尔可夫性是指在给定过去的条件下,未来的状态只与当前状态有关。
这意味着给定当前的状态,过去的状态对于预测未来的状态是无关的。
随机过程可以通过随机过程的定义、概率密度函数、特征函数等进行建模和描述。
常用的随机过程模型包括泊松过程、马尔可夫链、布朗运动等。
泊松过程是离散时间且符合强平稳性和马尔可夫性的随机过程。
泊松过程描述了在一段时间内随机事件发生的次数,常用于描述到达某个服务中心或系统的流量。
马尔可夫链是具有马尔可夫性的随机过程。
在马尔可夫链中,系统的状态在不同的时间段内转移,且转移的概率只与当前的状态有关。
这种随机过程常用于描述具有一定变化规律的系统,如天气系统、金融市场等。
布朗运动是连续时间且连续状态的随机过程,它具有良好的连续性和马尔可夫性质。
布朗运动常用于建模和描述股票价格、汇率波动等金融领域中的随机变动。
随机过程的研究可以用于预测和分析各种现实生活中的随机变化。
随机过程的基本概念和分类
随机过程的基本概念和分类随机过程是概率论中重要的概念之一,广泛应用于各个领域,包括金融、电信、工程等。
本文将介绍随机过程的基本概念和分类,以帮助读者更好地理解和应用随机过程。
一、基本概念随机过程是指一簇随机变量的集合,其中每个随机变量代表某个时间点的取值。
随机过程可以用数学形式表示为{X(t), t∈T},其中X(t)表示时间t时刻的取值,T表示时间的取值范围。
在随机过程中,时间是一个重要的概念。
时间可以是离散的,也可以是连续的。
当时间是离散的时候,随机过程称为离散随机过程;当时间是连续的时候,随机过程称为连续随机过程。
离散随机过程常用于描述离散事件,如投掷硬币的结果;而连续随机过程常用于描述连续变化的现象,如股票价格的变动。
二、分类随机过程可以根据其状态空间和时间的特性进行分类。
下面将介绍常见的几种分类方式。
1. 马尔可夫过程(Markov Process)马尔可夫过程是一种具有"无记忆性"的随机过程,即在给定当前状态下,未来的发展仅依赖于当前状态,而与过去的状态无关。
马尔可夫过程可以是离散的或连续的,常用于建模和分析具有动态特性的系统,如排队论、信道传输等。
2. 马尔可夫链(Markov Chain)马尔可夫链是马尔可夫过程的特例,它具有离散的状态空间和离散的时间。
马尔可夫链是一种时间齐次的马尔可夫过程,即系统的转移概率在不同的时间点保持不变。
马尔可夫链常用于描述离散状态的随机系统,如天气的转变、赌博游戏的输赢等。
3. 马尔可夫跳过程(Markov Jump Process)马尔可夫跳过程是一种具有离散和连续混合特性的随机过程。
它在连续时间间隔内可能发生状态的跳跃,并且在一个状态下停留的时间是指数分布的。
马尔可夫跳过程广泛应用于电信系统、金融市场等领域。
4. 广义随机过程(Generalized Stochastic Process)广义随机过程是一种对传统随机过程进行扩展的概念。
随机过程的基本概念与应用
随机过程的基本概念与应用随机过程是概率论中研究一系列随机事件在时间上的演化规律的重要分支。
它在各个领域都有着广泛的应用,在通信、控制、金融、生物、物理等方面都发挥着重要作用。
一、随机过程的基本概念1.1 随机过程的定义随机过程是指一组随机变量${X_t}$,其中$t$表示时间,$X_t$表示在时间$t$时刻随机变量的取值。
随机过程是随机变量的函数族,常用记号为${X_t:t\in T}$。
其中$t$取遍$T$所表示的时间集合,$T$可以是实数集、整数集或其他有限或无限集合。
1.2 随机过程的分类随机过程根据其时间变化的连续性与离散性可以分为连续时间随机过程和离散时间随机过程两种。
连续时间随机过程是指随机变量在时间上是连续的,如布朗运动、泊松过程等。
离散时间随机过程是指随机变量在时间上是离散的,如马尔可夫过程、随机游走等。
1.3 随机过程的性质随机过程具有多种性质,包括平稳性、独立性、齐次性等。
其中比较重要的平稳性是指在时间平移下,随机过程的统计性质保持不变,即一个随机过程是平稳的,当且仅当对于任意$t_1,t_2$,其一阶矩和二阶矩不随时间变化而改变。
例如,设随机过程${X_t:t\geq 0}$的均值为$\mu$,方差为$\sigma^2$,则其平稳性条件为:$$\mathbb{E}[X_t]=\mu, \ \forall t\geq 0$$$$\mathbb{E}[(X_s-\mu)(X_t-\mu)]=\sigma^2, \ \forall s,t\geq 0$$二、随机过程的应用随机过程在许多领域中都有着广泛的应用。
以下列举其中几个典型应用。
2.1 通信领域随机过程在通信领域中是必不可少的工具。
通信信号可以看作是一种随时间变化的随机过程,而信道则可看作是一种将输入信号映射成输出信号的随机过程。
因此,随机过程在信号调制、信噪比估计、编码等方面都有着广泛的应用。
2.2 控制领域在控制领域中,随机过程被广泛用于表示、建模和分析控制系统的动态特性。
随机过程-第一章
• {X(t, e),t∈T ,e∈Ω} 为一随机过程。
• 其实际意义就是: 若一物理过程,当时间t(或广义时间)固定,
过程所处的状态是随机的(不确定的),则此
过程就为随机过程。对该过程的一次记录(或
一个观察)就是一个现实,或称作随机过程的
一个样本函数或样本曲线。 • 固定t0,X(t0)是随机变量。 • 固定e0,X(t,e0)是一个现实,是t的函数,记 为 x(t)。
例4:具有随机初位相的简谐波。 X(t)=acos(ω0t+Φ),-∞<t<+∞, 其中a与ω0是正常数, Φ是在[0,2π]上均匀分布的随机变量。 一方面,随机过程X(t)是一族随机变量。 对每个固定t0, X(t0)= acos(ω0t+Φ)是个 随机变量。对(-∞,+∞)上有多少个t, 就对应多少个随机变量。∴对(-∞,+∞) 所有t,X(t)看作一族随机变量。 另一方面,随机过程是一族样本函数(曲线) 对样本空间Ω中每个基本事件e对应一个样本 函数,本例,Φ在Ω=[0,2π] 上任给定一个 相 位φi=e,就对应一个样本曲线,如:书P 4。
例6: 利用抛掷硬币的试验定义一个随机过程。
X(t) { sin π t,出现正面 ,记为记为 ω 0 e ,出现反面, 记 ω 1
t
(t R)
写出X(t)的所有样本函数(现实)
二、随机过程的的分布(有限维分布族) 1、对任意固定的t0∈T,随机过程X(t)的状态 X(t0)是一维随机变量, 其分布函数是P{X(t0)≤x} F(x,t0) 由于t的任意性,称F(x; t) = P{X(t) ≤x } 为随机过程X(t)的一维分布函数。 F(x,t)是与t有关的一维分布函数,在t,x平 面上是X(t)落在区间(X(t) ≤x)上的概率。
什么是随机过程(一)
什么是随机过程(一)引言概述:随机过程是概率论和数学统计学中的重要概念,用于描述随机事件在时间和空间上的演化规律。
它在实际问题建模和分析中具有广泛的应用,涵盖了大量的领域,如通信系统、金融市场、生物学等。
本文将介绍随机过程的基本概念和特征,并探讨其在实际中的应用。
正文:1. 随机过程的定义1.1 随机过程的基本概念1.2 随机变量与随机过程的关系1.3 不同类型的随机过程(如离散随机过程、连续随机过程等)2. 随机过程的特征2.1 随机过程的时间域特征2.2 随机过程的统计特征2.3 随机过程的独立性和相关性2.4 随机过程的平稳性2.5 随机过程的马尔可夫性质3. 随机过程的应用3.1 通信系统中的随机过程3.2 金融市场中的随机过程3.3 生物学中的随机过程3.4 物理学中的随机过程3.5 工程控制中的随机过程4. 随机过程的建模和分析方法4.1 马尔可夫链模型4.2 随机演化方程模型4.3 随机微分方程模型4.4 随机过程的仿真方法4.5 随机过程的参数估计方法5. 随机过程的未来发展5.1 随机过程在人工智能中的应用5.2 随机过程在时空数据分析中的应用5.3 随机过程在大数据分析中的应用5.4 新兴领域中的随机过程研究5.5 随机过程理论与实际应用的结合总结:本文介绍了随机过程的定义、特征和应用,并讨论了随机过程的建模和分析方法。
随机过程作为概率论和数学统计学的重要分支,具有广泛的应用前景。
随着人工智能和大数据分析的发展,随机过程在各个领域中的应用将进一步扩展。
值得期待的是,未来随机过程理论和实际应用的结合将推动该领域的进一步发展。
随机过程的基本概念与分类
随机过程的基本概念与分类随机过程是概率论的一个重要分支,在不同领域如金融、通信、生物学等都有广泛的应用。
它描述的是一组随机变量的演化规律,具有许多重要的特性和分类方式。
本文将介绍随机过程的基本概念和分类方法。
一、基本概念随机过程由一个或多个随机变量组成,这些随机变量的取值取决于一个或多个参数,如时间。
随机过程可以定义为函数的族,其中函数的输入参数是随机变量,输出是实数或向量。
常用的随机过程有离散时间和连续时间两种。
在离散时间随机过程中,随机变量类似于离散的时间点,通常用n表示。
每个时间点上都有一个随机变量X(n)与之相关。
连续时间随机过程则对应于时间变量连续变化的情况,通常用t表示。
每个时间点上都有一个随机变量X(t)与之相关。
随机过程的演化可以通过转移概率描述。
转移概率表示从一个时间点到另一个时间点的跳转概率,常用P(i,j)表示从状态i到状态j的概率。
二、分类方法1. 马尔可夫链马尔可夫链是一个简单的、具有重要应用的随机过程。
它具有马尔可夫性质,即未来状态只与当前状态有关,与历史状态无关。
马尔可夫链有着平稳分布,并且可以通过转移概率矩阵进行描述。
2. 马尔可夫过程马尔可夫过程是一种时间连续的随机过程。
它的转移概率与时间无关,但与前一状态有关。
常见的马尔可夫过程有泊松过程、连续时间马尔可夫链等。
3. 马尔可夫决策过程马尔可夫决策过程是一种在马尔可夫过程基础上引入决策的模型。
它包括状态空间、决策空间、转移概率、奖励函数等要素。
马尔可夫决策过程在决策分析、控制理论等领域有广泛应用。
4. 平稳随机过程平稳随机过程是指在统计特性上不随时间改变的过程。
平稳随机过程具有恒定的概率分布和自相关函数。
常见的平稳随机过程有白噪声、自回归过程等。
5. 随机游走随机游走是一种具有随机性的移动方式。
它可以用来模拟股市价格、随机漫步等现象。
随机游走中的步长和方向通常是随机变量,可以是离散的或连续的。
6. 马尔可夫随机场马尔可夫随机场是一种描述多变量间关系的图模型。
随机过程的基本概念
( t )],
称为随机过程{X(t)}的均方值函数 称为随机过程{X(t)}的均方值函数. {X(t)} 定义R.2.6 我们把随机变量X(t) X(t)的方差 定义R.2.6 我们把随机变量X(t)的方差
2 σ X (t ) = Var [ X (t )] = E { X (t ) − µ X (t )] 2 }, [
定义R.1.3 给定随机过程X(t),t∈T,当时间t取
t1 , t 2 ,⋯, t n ∈ T ,n维随机变量 ( X (t1 ), X (t 2 ),⋯, X (t n ))
的分布函数记为
Ft1 ,t2 ,⋯,tn ( x1 , x2 , ⋯ , xn ) = P ( X (t1 ) ≤ x1 , X (t 2 ) ≤ x2 , ⋯ , X (t n ) ≤ xn ),
Review 随机过程的基本概念
R.1.随机过程的分布函数 定义R.1.1给定随机过程X(t),t∈T,对于每一个固定的 t∈T,X(t)是一个随机变量它的分布函数一般与t有关, 记为
Ft ( x) = P ( X (t ) ≤ x),
称为随机过程的一维分布函数。
若存在非负函数ft(x),使
Ft ( x) = ∫
称为随机过程{X(t)}的方差函数(Varance)
是随机过程在任意二个时刻t 设X(t1)和X(t2)是随机过程在任意二个时刻t1和t2 时的状态. 时的状态. 定义R.2.7 称X(t1)和X(t2)的二阶混合原点矩
R X (t1 , t 2 ) = E[ X (t1 ) X (t 2 )]
为随机过程{X(t)}的自相关函数(correlation),简称相关函数 定义R.2.8 称X(t1)和X(t2)的二阶混合中心矩
第二章 随机过程
图2-1-1 噪声电压的输出波形
定义1 设随机试验E的样本空间为 ,如果 对于每一个样本 ,总可以依某种规则确定 一时间t的函数 (T是时间t的变化范 围 ) 与之对应。于是,对于所有的 来说, 就得到一族时间t的函数,称此族时间的函数为 随机过程(也称随机信号)X,而族中的每一个 函数称为该随机过程的样本函数。 注:随机过程是样本函数的集合 。
决定随机信号的主 要物理条件不变
3、主要性质 (1)、若 是严平稳随机过程,则它的一维概 率密度与时间无关。 证明 令 ,则一维概率密度函数
得证。
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
证明: 根据题意有 (2.3.2) (2.3.3) (2.3.4)
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
2.2.1、随机过程的概率分布
随机过程 ,在每一固定时刻 都是随机变量。 随机事件:
发生概率:
, 和
,
,
1、一维分布函数 与 和 都有直接的关系,是 和 的 二元函数,记为: (2.2.1) 被称为随机过程的一维分布函数。 2、一维概率密度函数 如果存在二元函数 ,使 (2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足 (2.2.3)
• 研究随机过程的概率密度函数的统计特性是 很困难的; • 随机过程一、二阶矩函数在一定程度上描述 了随机过程的一些重要特性。 (1) 噪声电压是一平稳过程 ,那么一、二阶 矩函数,就是噪声平均功率的直流分量、交 流分量、总平均功率等参数。 (2) 正态随机过程由数学期望和相关函数详 细描述。
1 定义 若随机过程
自协方差函数反映了随机过程 在两个不同 时刻的状态相对于数学均值之间的相关程 度。
随机过程的基本概念
(3) 对随机过程的理解 随机过程 { X t , ω } 可看成是关于时间 t 和样本
点 的二元函数,
(1) 当固定 t T , X t X (t , ) 就是一个随机 变量。 (2)当固定 0 , { X t 0 X (t , 0 )}就是一
称
RXY ( s, t ) E[ X ( s )Y (t )]
为随机过程 XT X (t ), t T 和 YT Y (t ), t T
的互相关函数。
例 设随机过程
X ( t ) Acos( t )
其中β是正常数, 随机变量 A 与Θ相互独立, A~N(0,1),
{F t1 , t2 ,, tn ; x1 , x2 ,, xn : t1 ,, t n T , n 1}
恰好是随机过程 X T X ( t ), t T 的有限维分布
函数族。
说明:柯尔莫哥罗夫定理表明,一个随机过程 完全由其有限维分布函数族所确定。但是,在实际
2
E ( A ) E[cos( t )cos( s )]
1 2π cos ( t θ ) cos ( s θ ) d θ 2π 0
1 2π [ cos ( t s ) cos ( ( t s ) 2 θ ) d θ 4π 0
(假定其步长相同),以 X(t) 记他 t 时刻在路上
的位置,则 X(t) 是直线上的随机游动。此时 X(t)
是一个随机过程。
例2 (排队系统)顾客到火车站买票,当购票
窗口有其他顾客买票时,来到的顾客就需要排队等
候,用 X(t) 表示 t 时刻的排队长度, Y(t) 表示 t
时刻来到的顾客所需等待的时间,由于顾客的到来
第二章随机过程基本概念.
为称使可积
}: ({ , ( , ( , (, 0 , (1111T t t X t x f dx
t x f t x F t x f x
Î=³ò¥-(2若有的一维概率分布。
为称满足}: ({}{1
, 0} ({T t t X p p
p p x t X P k k k k k
k Î=³==å
¥¥-k k iux X k k iux X p e
u t p x t X P t X dx t x f e u t t x f t X k , ( (( ( 2 , ( , ( , ( (111jj则有分布列若(,则
有密度若(
有时也需要利用常用的一些特征函数来求随机变量的分布函数,由特征函数与分布函数的一一对应性有:
cos(
(Q
+
=t
a
t
X w
的均值函数,方差函数和自相关函数。其中, a , w为常数, Q是在(0, 2p上均匀分布的随机变量。例4试求随机相位余弦波
2随机过程的特征函数
的一维特征函数。
为称为随机变量,记
由于给定( , ( ( ( , ( (, ( (t X u t u e
E u t t X T t X t X t iuX X jjjÙ==Îåò====
为X (t的有限维分布函数族。
为随机过程的n维分布函数。称关于随机过程X (t的所有有限维分布函数的集合
注意:随机过程的n维分布函数描述了随机过程在任意n不同时刻的状态之间的联系。
随机过程X (t的有限维分布函数族的意义何在?随机过程的n维分布函数(或概率密度能够近似地描述随机过程的统计特性,而且, n越大,则n维分布函数越趋完善地描述随机过程的统计特性。
随机过程随机过程的基本概念
2.2 随机过程的分类和举例
随机过程可以根据参数集 T 和状态空间 S 是离散集还是
连续集分为四大类.
1、离散参数、离散状态的随机过程 这类过程的特点是参数集是离散的,同时固定t ∈T, X(t)是离散型随机变量即其取值也是离散的。
例 2.2.1(贝努利过程)考虑抛掷一颗骰子的试验,设Xn
是第n(n≥1)次抛掷的点数,对于n=1,2,…的不同值, Xn是
,它不能用一个或几个随机变量来刻画,而要用一族无穷多
个随机变量来描绘,这就是随机过程. 随机过程是概率论的继续和发展. 被认为是概率论的“动力学
”部分. 它的研究对象是随时间演变的随机现象.
事物变化的过程不能用一个(或几个)时间t 的确定的函数 来加以描述. 对事物变化的全过程进行一次观察得到的结果是一个时间t 的 函数,但对同一事物的变化过程独立地重复进行多次观察所 得的结果是不同的,而且每次观察之前不能预知试验结果.
(3) 当 t
的分布函数为
1, x 0 F ( x) X( ) 0, x 0 2
第2章 随机过程的基本概念
2.1 随机过程的定义 2.2 随机过程的分类和举例 2.3 随机过程的有限维分布函数族 2.4 随机过程的数字特征 2.5 两个随机过程的联合分布和数字特征 2.6 复随机过程 2.7 几类重要的随机过程
“电压—时间函数”是不可能预先确知的,只有通过测量
才能得到. 如果在相同的条件下独立地再进行一次测量, 则得到的记录是不同的.
2.1 随机过程的定义
所谓一族随机变量,首先是随机变量,从而是该试验样
本空间上的函数;其次形成一族,因而它还取决于另一
个变量,即还是另一参数集上的函数. 所以,随机过程 就是一族二元函数. 定义2.1.1 设(Ω, F , P)是一个概率空间,T 是一个实的参 数集,定义在Ω 和T 上的二元函数 X(ω,t),如果对于任
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
当t
2
时,X(2)Vcos20,不论V取何值,
均有 X ( ) 0,因此 P(X( )0)1,从而 X ( )
2
2
2
的分布函数为
1,x0
F
X(
(x)
)
2
0,x0
第2章 随机过程的基本概念
2.1 随机过程的定义 2.2 随机过程的分类和举例 2.3 随机过程的有限维分布函数族 2.4 随机过程的数字特征 2.5 两个随机过程的联合分布和数字特征 2.6 复随机过程 2.7 几类重要的随机过程
2.1 随机过程的定义
在客观世界中,有许多随机现象表现为带随机性的变化过程 ,它不能用一个或几个随机变量来刻画,而要用一族无穷多 个随机变量来描绘,这就是随机过程.
随机过程是概率论的继续和发展. 被认为是概率论的“动力学 ”部分. 它的研究对象是随时间演变的随机现象.
事物变化的过程不能用一个(或几个)时间t 的确定的函数来 加以描述.
2.2 随机过程的分类和举例
定义2.1.3 设{X(t), t ∈T }是随机过程,则当ω ∈ Ω固定 时, X(t)是定义在上T不具有随机性的普通函数,记为 x(t), 称为随机过程的一个样本函数. 其图像成为随机过程 的一条样本曲线(轨道或实现).
2.1 随机过程的定义
例2.1.3 设X(t)=Vcosωt,﹣∞<t<+∞其中ω为常数,V服从 区间[0,1]上的均匀分布,即
2.1 随机过程的定义
所谓一族随机变量,首先是随机变量,从而是该试验样 本空间上的函数;其次形成一族,因而它还取决于另一 个变量,即还是另一参数集上的函数. 所以,随机过程就 是一族二元函数.
定义2.1.1 设(Ω, F , P)是一个概率空间,T 是一个实的参 数集,定义在Ω 和T 上的二元函数 X(ω,t),如果对于任 意固定的t ∈T ,X(ω,t) 是 (Ω, F T }为该概率空间上的随机过程( Stochastic Process),简记为{X(t), t ∈T }.
对事物变化的全过程进行一次观察得到的结果是一个时间t 的 函数,但对同一事物的变化过程独立地重复进行多次观察所 得的结果是不同的,而且每次观察之前不能预知试验结果.
2.1 随机过程的定义
例2.1.1 当t (t≥0)固定时,电话交换站在[0, t]时间内收到 的呼叫次数是随机变量,记为X(t). X(t) 服从参数为λt的 Poisson分布,其中λ是单位时间内平均收到的呼叫次数, 且λ>0. 如果t从0变到+∞, t 时刻前收到的呼叫次数需用 一族随机变量{X(t), t ∈[0, +∞]}来表示,则该随机现象就 是一个随机过程. 对电话交换站做一次实验,便可得到一 个“呼叫次数—时间函数”(即呼叫次数关于时间t 的函 数 x(t).
2.1 随机过程的定义
{X (ω,t), ω ∈ Ω, t ∈T }: 固定t = t0 ∈ T ,X(t0) 是一个随机变量(第i次试验值为xi(t0)). 对随机过程做一次试验,即固定样本点ω ∈ Ω ,得到一个参数t 的普通函数 x(t) .
2.1 随机过程的定义
定义2.1.2 设{X(t), t ∈T }是随机过程,则当t固定时, X(t)是一个随机变量,称之为{X(t), t ∈T }在t时刻的状态. 随机变量X(t)(t固定,t ∈T )所有可能的取值构成的集合, 称为随机过程的状态空间,记为S.
第2章 随机过程的基本概念
2.1 随机过程的定义 2.2 随机过程的分类和举例 2.3 随机过程的有限维分布函数族 2.4 随机过程的数字特征 2.5 两个随机过程的联合分布和数字特征 2.6 复随机过程 2.7 几类重要的随机过程
第2章 随机过程的基本概念
2.1 随机过程的定义 2.2 随机过程的分类和举例 2.3 随机过程的有限维分布函数族 2.4 随机过程的数字特征 2.5 两个随机过程的联合分布和数字特征 2.6 复随机过程 2.7 几类重要的随机过程
1,0v 1 fV (v) 0,其他
(1) 画出{X(t) ,﹣∞<t<+∞}的几条样本曲线;
(2)
求t
0, ,3 , 4 4
时随机变量X(t)的概率密度函数;
(3)求t 时X(t)的分布函数 2
2.1 随机过程的定义
解
(1) 取 V 2 则 x(t) 2 cost ; 取V=0,则x(t)=0;取V=1,
3
3
则x(t)=cosωt. 这些都是 t 的确定函数,即随机过程的样
本函数.
2.1 随机过程的定义
(2) 当t=0时,X(0)=V,故X(0)的概率密度函数就是V的概
率密度函数,即
1,0x1 fX(0)(x) 0,其他
当t
4
时, X(4 )Vcos4 12V,故X
( 4
)
的概
率密度函数为
f
X(
)
4
(x)
2,0 x
0,其他
1 2
2.1 随机过程的定义
当t
3 4
时,
X(4 3 )Vcos4 3 1 2V ,故X
(
3 4
) 的概
率密度函数为
fX(3
(x)
)
4
2,
1 2
0,其他
x0
当t
时,X( )Vcos V,故 X
(
)
的概率密
度函数为
1,1x0 fX()(x)0,其他
2.1 随机过程的定义
2.1 随机过程的定义
这个“呼叫次数—时间函数”是不可能预先确定的,只有通过测量 才能得到. 由于呼叫的随机性,在相同条件下,每次测量都产生不 同的“呼叫次数—时间函数”.
2.1 随机过程的定义
例2.1.2 电子元件或器件由于内部微观粒子(电子)的随 机热噪声引起的端电压称为热噪声电压,它在任一确定 时刻的值是随机变量,记为V(t). 如果t 从0变到+∞,t 时 刻的热噪声电压需要用一族随机变量{V(t), t ∈[0, +∞]}来 表示,则该随机变量就是一个随机过程. 对某种装置做一 次试验,便可得到一个“电压—时间函数”v(t) . 这个“ 电压—时间函数”是不可能预先确知的,只有通过测量才 能得到. 如果在相同的条件下独立地再进行一次测量,则 得到的记录是不同的.