方程及方程组专题(习题)

合集下载

方程组练习题-答案(最新整理)

方程组练习题-答案(最新整理)


(2)共需要:3x+4y=120×3+180×4=1080(万元), 答:乙镇3个A类美丽村庄和4个B类村庄改建共需资金1080万元. 11. 加工的甲部件的有25人,加工的乙部件的有60人. 12.
解:设出租车的起步价是x元,超过3千米后,每千米的车费是y元,由题意得:

解得:

答:出租车的起步价是5元,超过3千米后,每千米的车费是1.5元.
7. 本题考查二元一次方程组的解法.解二元一次方程组主要有代入消元法和加减消 元法两种方法.
(1)观察方程的特点,①中的y可用x表示出来,所以选择代入消元法进行求解;
(2)首先对两个方程进行化简,两个方程x的系数相同,两方程直接相减即可进 行消元,然后求解.
8. 本题考查二元一次方程的解法。(1)把方程①代入方程②消去x,求出y的值, 再把y的值代入①,即可求出x的值,进而解出方程组的解; (2)①×4②×3消去y求出x的值,再把x的值代入①求出y的值,进而解出方程组的解.
所以方程组的解是

(2)整理,得

①×2+②,得11x=22,
∴x=2,
把x=2代入①,得8-y=5,
∴y=3,
所以方程组的解是 .
4. 原方程组可化为:
(1)×2-(2)×3得: -y=24, y=-24, 把y=-24代入(2)得: 2x-72=48, 2x=120, x=60,

.
5.
解:①
(2)先把方程组化简,然后用加减法消去y,求出x的值,把x的值代入化简后 的方程组的任意一个方程,求出y的值,从而得到方程组的解.
4. 先把原方程组去分母,再利用加减消元法解答即可.
解:原方程组可化为:

方程组练习题带答案

方程组练习题带答案

方程组练习题带答案1.方程组2x+3y=7,x-3y=8的解为________________.2.若实数a,b满足3a-1+b2=0,则ab的值为______.3.已知x,y满足方程组2x+y=5,x+2y=4,则x-y的值为_____________.4.方程组5x-2y-4=0,x+y-5=0的解是__________.5.以方程组y=x+1,y=-x+2的解为坐标的点在第____象限.6.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.7.已知x=2,y=1是关于x,y的二元一次方程组ax+by=7,ax-by=1的解,则a-b的值为A.1B.-1C.D.38.关于x,y的方程组3x-y=m,x+my=n的解是x=1,y=1,则m-n的值是A.B.C.D.19.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是A.x+y=70,2.5x+2.5y=420B.x-y=70,2.5x+2.5y=420C.x+y=70,2.5x-2.5y=420D.2.5x+2.5y=420,2.5x-2.5y=7010.解方程组:x-2y=3,3x-8y=13.11.已知x=1,y=-2是关于x,y的二元一次方程组ax+by=1,x-by=3的解,求a,b的值.12.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为1800 m3,问中、美两国人均淡水资源占有量各为多少?13.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利1000元,其中甲种蔬菜每亩获利000元,乙种蔬菜每亩获利100元,李大叔去年甲、乙两种蔬菜各种植了多少亩?二级训练14.如图2-1-2,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为 __________ 元.图2-1-215.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为又已知直线y=kx+b过点,则b的正确值应该是________.16.已知x=2,y=3是关于x,y的二元一次方程3x=y+a 的解,求+7的值.三级训练17.若关于x,y的二元一次方程组x+y=5k,x-y=9k的解也是二元一次方程2x+3y=6的解,则k的值为A.-3B.3C.4D.-4318.为了增强学生体质,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威.如图2-1-3,线段 l1,l2分别表示长跑的同学和骑自行车的同学行进的路程y随时间x变化的函数图象.根据图象,解答下列问题:图2-1-3分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x的函数表达式;求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学? 参考答案1.x=5,y=-1.1.1.x=2,y=5.一.207.B.D.D10.解:x-2y=3,①3x-8y=13. ②①×3,得3x-6y=9. ③③-②,得-6y-=9-13,解得y=-2.把y=-2代入①,得x=-1.∴原方程组的解为x=-1,y=-2.11.解:将x=1,y=-2代入二元一次方程组,得a-2b=1,①1+2b=3. ②由②,得b=1.将b=1代入①,得a-2=1.∴a=3.即a=3,b=1.12.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3,依题意,得y=5x,x+y=1800,解得x=200,y=1100.答:中、美两国人均淡水资源占有量各为200 m3,1100 m3.13.解:设李大叔去年种植了甲种蔬菜x亩,种植了乙种蔬菜y亩,则x+y=10,000x+100y=1000.解得x=6,y=4.答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.14.440 15.-1116.解:将x=2,y=3代入3x=y+a中,得a=3.∴+7=a2-1+7=3+6=9.17.B 解析:解关于x,y的二元一次方程组得x=7k,y=-2k,将之代入方程2x+3y=6,得k=34.18.解:线段l1过原点,设l1的解析式为y=kx.将点代入得10=60k,k=16. ∴长跑的同学行进路程与时间的函数表达式为y=16x.设l2的解析式为y=kx+b,将点,代入,得0=20k+b10=40k+b,解得k=12,b=-10.∴骑自行车的同学行进路程与时间的函数表达式为y=12x-10.联立以上两个方程组得:y=16x,y=12x-10,解得:x=30,y=5.解二元一次方程组练习及答案专题一:二元一次方程组解法精练一.解答题1.求适合的x,y的值.2.解下列方程组3.解方程组:.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?7.解方程组:;.8.解方程组:.解方程组:.10.解下列方程组:11.解方程组:12.解二元一次方程组:;.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.14.15.解下列方程组:;.16.解下列方程组:专题二:方程组解法强化训练 1.2..4.5.6..8.9.10. 11.12.13.14.15.16. 17.18.19.0.{21.y?12y?22x??122.x?y?23.24.25.26.27.28.29.30.答案2.解下列方程组.3.解方程组:6..4.解方程组:.解方程组:求k,b的值. k=,b=.当x=2时,y的值.把x=2代入,得y=.当x为何值时,y=3?把y=3代入,得x=17.解方程组:;.8.解方程组:9.解方程组:10.解下列方程组:11.解方程组:12.解二元一次方程组:13.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.;.式和方程练习题一、填空。

方程组专题训练(一) 解下列方程组

方程组专题训练(一) 解下列方程组

m x 2ny 4, x y 1.

的 解相同,求(1)相同的解;(2)m,n的值.
x y 3, nx m 1 y 3.
(3)
3x 2 y 4, 2 x 3 y 19.
5 x 2 2 y 1, 2x 2 y 1 5.
4 x 3 y 5 0, (4) x 2 y 4 0.
(6)
(5)
0.2 x 0.5 y 0.2, 0.4 x 0.1y 0.4.
ax by 3, (3)在解方程组 cx 5 y 7. 时,甲同学正确地解得结是 x 3
乙同学因把c看错,得到的解是 (4)已知方程组
x3
y , 2
3x y 12, 4 x ay 2.
y 1
, 求a,b,c的值.
有正整数解(a为整数),求a的 值.
(5)已知关于x,y的方程组
方程组专题训练(六)
2x 1 2,
(1).已知方程组
2 x y 3 0. 的解是二元一次方程
ax+by=5的一个解,试用含a的代数式表示b. 3 x 5 y 2a, (2)当a为何值时,方程组 的解x,y的值互为相 反 数. 2 x 7 y a 18.
(1).解方程组:
2a b 3a 2b 2.已知 3, 求a, b的值. 3 8
5 1 3a b a b 4. 5
m n 2 m n
a b 1,
3.已知3a
m 6 2 n 2
b
与6a b
是同类项, 求m, n的值.
的值.
3 x y 4a,
(4).方程组 2 x y a. 2004 x+2y=1的解,试求 a (5)已知方程组 的解也是二元一次方程

二元一次方程组 习题及答案100道【范本模板】

二元一次方程组 习题及答案100道【范本模板】

二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303。

7x+2y=527x+4y=624。

4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567。

5x+7y=525x+2y=228.5x+5y=657x+7y=2039。

8x+4y=56x+4y=2110。

5x+7y=415x+8y=4411.7x+5y=543x+4y=3812.x+8y=154x+y=299x+5y=46 14.9x+2y=62 4x+3y=36 15。

9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 17.3x+8y=51 x+6y=27 18。

9x+3y=99 4x+7y=95 19.9x+2y=38 3x+6y=18 20。

5x+5y=45 7x+9y=69 21.8x+2y=28 7x+8y=62 22.x+6y=143x+3y=27 23。

7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25.7x+y=926。

6x+6y=486x+3y=4227.8x+2y=167x+y=1128。

4x+9y=778x+6y=9429。

6x+8y=687x+6y=6630。

2x+2y=227x+2y=471)66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=230374x-y=1998答案:x=27 y=79 (3)44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=408230x-y=2940答案:x=98 y=51 (5)67x+54y=8546 71x—y=5680答案:x=80 y=59 (6) 42x—95y=-1410 21x—y=1575答案:x=75 y=48 (7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x—32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=720258x-y=2900答案:x=50 y=98 (10)42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=—2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x—y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x—y=880答案:x=40 y=12(14)32x+62y=5134 57x+y=2850答案:x=50 y=57 (15)83x-49y=8259x+y=2183答案:x=37 y=61 (16)91x+70y=5845 95x-y=4275答案:x=45 y=25 (17)29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=—4355 40x—y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=352052x+y=2132答案:x=41 y=50 (21) 48x-54y=—3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x—y=799答案:x=17 y=91 (23) 13x—42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x—y=4628答案:x=89 y=30 (25) 62x-98y=—2564 46x—y=2024答案:x=44 y=54 (26) 79x—76y=—4388 26x—y=832答案:x=32 y=91 (27)63x-40y=—821 42x-y=546答案:x=13 y=41 (28) 69x—96y=-1209 42x+y=3822答案:x=91 y=78 (29)85x+67y=7338 11x+y=308答案:x=28 y=74(30)78x+74y=12928 14x+y=1218答案:x=87 y=83 (31)39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33)40x+31y=6043 45x-y=3555答案:x=79 y=93 (34)47x+50y=8598 45x+y=3780答案:x=84 y=93 (35)45x—30y=-1455 29x—y=725答案:x=25 y=86 (36) 11x—43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38)89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=751778x+y=3822答案:x=49 y=41 (40)28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=847217x—y=1394答案:x=82 y=54 (42) 41x—38y=—1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=82463x+y=4725答案:x=75 y=14 (44)95x-56y=—401 90x+y=1530答案:x=17 y=36 (45)93x-52y=—852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=975638x—y=950答案:x=25 y=92 (49)99x-67y=4011 75x—y=5475答案:x=73 y=48 (50)83x+64y=9291 90x-y=3690答案:x=41 y=92 (51)17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=273914x-y=364答案:x=26 y=11 (53)20x—68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=411083x-y=5727答案:x=69 y=29(55) 22x-38y=80486x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84(57) 46x+37y=7085 61x—y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x—61y=—1907 89x—y=2314答案:x=26 y=53 (60)69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x—41y=75474x-y=6956答案:x=94 y=16 (62)78x—55y=656 89x+y=5518答案:x=62 y=76(63)29x+21y=1633 31x—y=713答案:x=23 y=46(64)58x—28y=2724 35x+y=3080答案:x=88 y=85 (65)28x-63y=—2254 88x—y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57(67)58x-77y=1170 38x-y=2280答案:x=60 y=30(68)92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=605552x-y=1716答案:x=33 y=34 (70) 15x+26y=172994x+y=8554答案:x=91 y=14 (71) 64x+32y=355256x-y=2296答案:x=41 y=29 (72)94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=—5815 89x+y=2314答案:x=26 y=95 (74)96x+54y=6216 63x—y=1953答案:x=31 y=60 (75)60x—44y=-352 33x—y=1452答案:x=44 y=68 (76)79x-45y=51014x-y=840答案:x=60 y=94 (77)29x—35y=-218 59x—y=4897答案:x=83 y=75 (78)33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80)61x+90y=5001 48x+y=2448答案:x=51 y=21 (81)93x—19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-591030x—y=2340答案:x=78 y=77 (83)80x+74y=8088 96x—y=8640答案:x=90 y=12 (84)53x—94y=1946 45x+y=2610答案:x=58 y=12(85) 93x+12y=911728x—y=2492答案:x=89 y=70 (86)66x—71y=-1673 99x-y=7821答案:x=79 y=97 (87)43x—52y=-1742 76x+y=1976答案:x=26 y=55(88)70x+35y=8295 40x+y=2920答案:x=73 y=91(89)43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x—19y=236 95x—y=7885答案:x=83 y=40 (91)51x+99y=8031 71x—y=2911答案:x=41 y=60 (92) 37x+74y=440369x—y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x—y=4565答案:x=83 y=20 (95)30x-17y=239 28x+y=1064答案:x=38 y=53 (96)55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x—24y=-45067x—y=3886答案:x=58 y=84 (98)97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100)51x-97y=297 19x-y=1520答案:x=80 y=39。

方程组解应用题(习题及答案)

方程组解应用题(习题及答案)

方程组解应用题(习题)例题示范例1:小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg梨,共花了26元;小丽买了2kg苹果和1kg梨,共花了28元.则苹果和梨每千克的价格各为多少?列表梳理信息:苹果x元梨y元总价小明1226小丽2128过程书写:解:设每千克苹果的价格是x元,每千克梨的价格是y元,根据题意得,226 228 x yx y+=⎧⎨+=⎩解得,108 xy=⎧⎨=⎩答:每千克苹果的价格是10元,每千克梨的价格是8元.巩固练习1.解下列三元一次方程组.(1)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩(2)2343327231x y zx y zx y z-+=⎧⎪-+=⎨⎪+-=⎩2.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少”.请你帮助小明解决他的问题.3.医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?4.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.则两种客房各租住了多少间?5.某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子.现有此种布料600米,请你帮助设计一下,如何分配布料,才能使运动服成套且不致于浪费,此时能生产多少套运动服?6.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数分别是多少?思考小结1.解一元一次方程应用题和二元一次方程组应用题的关键在于找等量关系,一元一次方程应用题需要找______组等量关系,二元一次方程组应用题需要找______组等量关系;表示等量关系的常见关键词有:恰好,___________________________.2.结合下图梳理本章知识,并回答下列问题:①解二元一次方程组的基本思想是________________,可以通过_____________,________________把二元一次方程组转化为一元一次方程来解.②解决二元一次方程组应用题需要对信息进行梳理,梳理信息的常见手段有_________,__________.【参考答案】 巩固练习1.(1)345xyz=⎧⎪=⎨⎪=⎩(2)132xyz=⎧⎪=-⎨⎪=-⎩2.萝卜3元/斤,排骨18元/斤3.甲原料28克,乙原料30克4.三人间8间,两人间13间5.360米布料生产上衣,240米布料生产裤子,此时能生产240套运动服6.原来两个加数分别是21和32思考小结1.一;两;刚好,同时,共需,相同等2.①消元,代入消元法,加减消元法②列表,画线段图。

解方程组练习题20道

解方程组练习题20道

解方程组练习题20道1. 已知方程组:(1) 2x + y = 5(2) 3x - 2y = -4解:首先,将第一式乘以2,得到:4x + 2y = 10然后,将第二式与新得到的方程相加,消去y的项,得到:7x = 6最后,将x的值代入第一式,求得y的值:2x + y = 5 → 2(6/7) + y = 5 → y = 32/7因此,方程组的解为x = 6/7,y = 32/7。

2. 解方程组:(1) x + 2y = 7(2) 3x + 4y = 18解:首先,将第一式乘以3,得到:3x + 6y = 21然后,将第二式与新得到的方程相减,消去x的项,得到:2y = -3最后,将y的值代入第一式,求得x的值:x + 2(-3/2) = 7 → x = 10因此,方程组的解为x = 10,y = -3/2。

3. 解方程组:(1) 2x - y = 4(2) x + 3y = 6解:首先,将第二式乘以2,得到:2x + 6y = 12然后,将第一式与新得到的方程相加,消去x的项,得到:-7y = -8最后,将y的值代入第二式,求得x的值:x + 3(-8/7) = 6 → x = 18/7因此,方程组的解为x = 18/7,y = 8/7。

4. 解方程组:(1) 3x + 2y = 8(2) 4x + 5y = 16解:首先,将第一式乘以4,得到:12x + 8y = 32然后,将第二式与新得到的方程相减,消去x的项,得到:-3y = -16最后,将y的值代入第一式,求得x的值:3x + 2(-16/3) = 8 → x = 40/3因此,方程组的解为x = 40/3,y = 16/3。

5. 解方程组:(1) 5x - 3y = 7(2) 2x + 4y = 6解:首先,将第一式乘以2,得到:10x - 6y = 14然后,将第二式与新得到的方程相加,消去y的项,得到:12x = 20最后,将x的值代入第一式,求得y的值:5x - 3(20/12) = 7 → y = -11/6因此,方程组的解为x = 5/3,y = -11/6。

初二解方程练习题加答案

初二解方程练习题加答案

初二解方程练习题加答案一、单元一:一元一次方程(10题)1、解方程:2x + 3 = 7解析:将已知方程化简为:2x = 7 - 32x = 4x = 4 ÷ 2x = 2所以方程的解为 x = 2。

2、解方程:4x - 9 = 7解析:将已知方程化简为:4x = 7 + 94x = 16x = 16 ÷ 4x = 4所以方程的解为 x = 4。

3、解方程:3(x + 2) = 15 解析:将已知方程化简为:3x + 6 = 153x = 15 - 63x = 9x = 9 ÷ 3x = 3所以方程的解为 x = 3。

4、解方程:2(3x - 1) = 10 解析:将已知方程化简为:6x - 2 = 106x = 10 + 26x = 12x = 12 ÷ 6x = 2所以方程的解为 x = 2。

5、解方程:5 - 2x = 7解析:将已知方程化简为:-2x = 7 - 5-2x = 2x = 2 ÷ -2x = -1所以方程的解为 x = -1。

6、解方程:3(x - 4) = 6(x + 1) 解析:将已知方程化简为:3x - 12 = 6x + 6-3x = 6x + 6 + 12-3x = 6x + 18-9x = 18x = 18 ÷ -9x = -2所以方程的解为 x = -2。

7、解方程:2(2x - 3) = 4(x + 1) 解析:将已知方程化简为:4x - 6 = 4x + 4-6 = 4方程无解。

8、解方程:7 - (3 - x) = 2解析:将已知方程化简为:7 - 3 + x = 24 + x = 2x = 2 - 4x = -2所以方程的解为 x = -2。

9、解方程:2(3x + 2) - x = 1 + x 解析:将已知方程化简为:6x + 4 - x = 1 + x5x + 4 = x + 14x = 1 - 44x = -3x = -3 ÷ 4x = -0.75所以方程的解为 x = -0.75。

专题 解二元一次方程组(计算题50题)(原卷版)

专题 解二元一次方程组(计算题50题)(原卷版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。

2023年九年级数学中考复习+方程及方程组同解问题+专题提升训练

2023年九年级数学中考复习+方程及方程组同解问题+专题提升训练

2022-2023学年九年级数学中考复习《方程及方程组同解问题》专题提升训练(附答案)1.我们把解相同的两个方程称为同解方程.例如:方程:2x=6与方程4x=12的解都为x =3,所以它们为同解方程.(1)若方程2x﹣3=11与关于x的方程4x+5=3k是同解方程,求k的值;(2)若关于x的方程x﹣2(x﹣m)=4和﹣=1是同解方程,求m的值.2.(1)x取何值时,代数式4x﹣5与3x﹣6的值互为相反数?(2)k取何值时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+1)的解相同?3.已知关于x的方程(|k|﹣3)x2﹣(k﹣3)x+2m+1=0是一元一次方程.(1)求k的值.(2)若已知方程与方程3x﹣2=4﹣3x的解互为相反数,求m的值.(3)若已知方程与关于x的方程7﹣3x=﹣5x+2m的解相同,求m的值.4.如果关于x的方程4x﹣(3a+1)=6x+2a﹣1的解与方程的解相同,求字母a的值.5.已知关于x的方程(a﹣2)x|a|﹣1+4b=0为一元一次方程,且该方程的解与关于x的方程的解相同.(1)求a、b的值;(2)在(1)的条件下,若关于y的方程|m﹣1|y+n=a+1+2by有无数解,求m,n的值.6.已知关于x的方程2(x+1)=3m+1的解与方程5x+3=﹣7的解互为相反数,求m的值.7.如果方程的解与方程4x﹣(3a﹣5)=6x+2a﹣5的解相同,求式子a﹣的值.8.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.(1)求m的值;(2)求代数式(﹣2m)2020﹣(m﹣)2021的值.9.已知方程组和方程组的解相同.(1)求a,b的值.(2)求的值.10.已知关于x的方程kx﹣b=0(k≠0).(1)当k=2,b=3时,方程的解为;(2)若x=﹣1是方程的解,用等式表示k与b满足的数量关系:;(3)若这个方程的解与关于x的方程2kx﹣5=0的解相同,则b的值为.11.(1)仔细阅读下面解方程组的方法,并将解题过程补充完整:解方程组时,如果直接用代入消元或加减消元,计算会很繁琐,若采用下面的解法,则会简单很多.解:①﹣②.得:2x+2y=2,即x+y=1③;③×16,得:16x+16y=16④;②﹣④,得:x=;将x的值代入③得:y=;∴方程组的解是;(2)请你采用上述方法解方程组:.12.已知关于x,y的方程组和方程组的解相同.(1)这两个方程组的解;(2)求(2a+b)的值.13.已知关于x,y的方程组的解中x与y的和为3,求m的值及此方程组的解.14.如果某个二元一次方程组的解互为相反数,那么我们称这个方程组为“奇妙方程组”.(1)请判断方程组是否为“奇妙方程组”,并说明理由;(2)如果关于x,y的方程组是“奇妙方程组”,求a的值.15.如图,在平面直角坐标系中,已知点A的坐标为(a,0),B(b,0),a和b满足方程组,若C为y轴正半轴上一点,且三角形ABC的面积为6.(1)求A,B,C三点的坐标;(2)坐标系中是否存在点P(m,n),使三角形P AB的面积为三角形ABC面积的一半?若存在,求出点P的坐标;若不存在,请说明理由.16.我国著名数学家苏步青在访问德国时,德国一问位数学家给他出了这样一道题目:甲、乙两人相对而行,他们相距10km,甲每小时走3km,乙每小时走2km,甲带着一条狗,狗每小时跑5km,狗跑得快,它同甲一起出发的,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去.问:当甲、乙两人相遇时,这条狗一共跑了多少千米?苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲身边跑到乙身边的路程,再计算狗从乙身边跑到甲身边的路程s,……,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(h),这样就不难求出狗一共跑的路程是5×2=10(km).苏步青教授在解题时,把注意力和着眼点放在问题的结构上,从而能触及问题的实质:狗所走的时间恰好是甲、乙两人相遇所用的时间,从而使问题得到巧妙的解决.苏教授这种解题的方法实际上就是数学中的整体思想的运用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种方法的应用.比如解方程组解:把②代入①,得x+2×1=4,∴x=2.把x=2代入②,得2+2y=1,解得y=﹣,∴方程组的解为.同学们,你会用同样的方法解这个方程组吗?试试看!17.甲、乙两位同学在解关于x、y的方程组时,甲同学看错a得到方程组的解为,乙同学看错b得到方程组的解为,求x+y的值.18.阅读材料:善思考的小军在解方程组时,采用了一种“整体代入”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y③;把方程①代入③,得:2×3+y=5,所以y=﹣1;把y=﹣1代入①得,x=4,所以方程组的解为.请你模仿小军的“整体代入”法解方程组.19.若关于x,y的方程组与有相同的解.(1)求这个相同的解;(2)求2m+n的平方根.20.已知关于x,y的方程组.(1)若方程组的解满足x+y=0,求m的值;(2)无论实数m取何值,方程m﹣2y+mx+9=0总有一个公共解,请直接写出这个公共解.参考答案1.解:(1)∵方程2x﹣3=11与关于x的方程4x+5=3k是同解方程,∴2x﹣3=11,解得x=7,把x=7代入方程4x+5=3k,解得k=11,∴k的值为11;(2)∵x﹣2(x﹣m)=4,∴x=2m﹣4,∵方程x﹣2(x﹣m)=4和﹣=1是同解方程,∴﹣=1,∴3(3m﹣4)﹣2(2m﹣4)=6,∴m=2.2.解:(1)∵4x﹣5与3x﹣6的值互为相反数,∴4x﹣5+3x﹣6=0,解得x=;(2)2(2x﹣3)=1﹣2x,4x﹣6=1﹣2x,6x=7,x=,∴8﹣k=2(x+1)的解为x=,∴8﹣k=2×,解得k=.3.解:(1)由题意得:|k|﹣3=0且k﹣3≠0,∴k=±3且k≠3,∴k=﹣3,∴k的值为﹣3;(2)3x﹣2=4﹣3x,6x=6,x=1,∵已知方程与方程3x﹣2=4﹣3x的解互为相反数,∴把x=﹣1,k=﹣3代入(|k|﹣3)x2﹣(k﹣3)x+2m+1=0中可得:﹣6+2m+1=0,m=,∴m的值为:;(3)把k=﹣3代入(|k|﹣3)x2﹣(k﹣3)x+2m+1=0中可得:6x+2m+1=0,∴x=,7﹣3x=﹣5x+2m,∴x=,∵已知方程与关于x的方程7﹣3x=﹣5x+2m的解相同,∴=,∴m=,∴m的值为:.4.解:4x﹣(3a+1)=6x+2a﹣1,4x﹣3a﹣1=6x+2a﹣1,﹣2x=5a,x=﹣a,,2(x﹣4)﹣48=﹣3(x+2),2x﹣8﹣48=﹣3x﹣6,5x=50,x=10,∵两个方程的解相同,∴﹣a=10,∴a=﹣4.5.解:(1)∵方程(a﹣2)x|a|﹣1+4b=0为一元一次方程,∴|a|﹣1=1,∴a=±2,∵a﹣2≠0,∴a≠2,∴a=﹣2,∴方程为﹣4x+4b=0,解得x=b,∵方程的解与方程的解相同,∴=1,∴x=1,∴b=1;(2)由题可知方程为|m﹣1|y+n=﹣2+1+2y,∴(|m﹣1|﹣2)y=﹣n﹣1,∵方程有无数解,∴﹣n﹣1=0,|m﹣1|=2,∴n=﹣1,m=3或m=﹣1.6.解:5x+3=﹣7,解得x=﹣2,因为关于x的方程2(x+1)=3m+1的解与方程5x+3=﹣7的解互为相反数,所以关于x的方程2(x+1)=3m+1的解是x=2,把x=2代入方程2(x+1)=3m+1,得2×(2+1)=3m+1,解得.∴m的值为.7.解:,去分母得2(x﹣4)﹣48=﹣3(x+2),去括号得2x﹣8﹣48=﹣3x﹣6,移项得2x+3x=﹣6+8+48,合并同类项得5x=50,系数化为1得x=10,把x=10代入4x﹣(3a﹣5)=6x+2a﹣5得40﹣3a+5=60+2a﹣5,移项得﹣3a﹣2a=60﹣5﹣40﹣5,合并同类项得﹣5a=10,解得a=﹣2,∴a﹣=﹣2﹣(﹣)=﹣2+=﹣.8.解:(1)由4x+2m=3x+1解得:x=1﹣2m,由3x+2m=6x+1解得:x=,由题知:1﹣2m=,解得:m=;(2)当m=时,(﹣2m)2020﹣(m﹣)2021=(﹣2×)2020﹣(﹣)2021=1+1=2.9.解:(1)∵方程组和方程组的解相同,∴和同解,,①×2得,4x+2y=2③,③﹣②,得3x=6,∴x=2,将x=2代入①可得y=﹣3,∴方程组的解为,∴,④×2得,4a+6b=14⑥,⑤×3得,6b+9a=24⑦,⑦﹣⑥,得5a=10,∴a=2,将a=2代入④,得b=1,∴方程组的解为;(2)将a=2,b=1代入可得,|﹣2|+(1﹣)=2﹣+﹣2=0.10.解:(1)∵k=2,b=3,∴2x﹣3=0,∴x=,故答案为:;(2)∵x=﹣1是方程的解,∴﹣k﹣b=0,∴k=﹣b,故答案为:k=﹣b;(3)解关于x的方程kx﹣b=0,得x=,解关于x的方程2kx﹣5=0,得x=,∵两方程的解相同,∴=,∴2b=5,∴b=,故答案为:.11.解:(1)②﹣④,得:17x+16y﹣16x﹣16y=15﹣16,即x=﹣1;将x的值代入③得:﹣1+y=1,即y=2;故答案为:﹣1;2;;(2),①﹣②,得:2x+2y=2,即x+y=1③,③×2019,得:2019x+2019y=2019④,②﹣④,得:x=﹣1,将x的值代入③,得:y=2,∴方程组的解为.12.解:(1)∵关于x,y的方程组和方程组的解相同,∴x,y满足,由①×2+②×3可得:2(2x﹣3y)+3(3x+2y)=﹣10×2+11×3,13x=13,x=1,将x=1代入①可得:2﹣3y=﹣10,y=4,∴两个方程组的解为,(2)将两个方程组中的第二个方程联立可得,将代入可得,由③+④×4可得:a+4b+4(4a﹣b)=14+5×4,17a=34,a=2,将a=2代入③可得:2+4b=14,b=3,∴2a+b=2×2+3=7.13.解:,解得:,∴x+y=,又∵x与y的和为3,∴=3,解得:m=5,把m=5代入,解得:,∴方程组的解为:解得:,∴m的值为5,方程组的解为解得:.14.解:(1)是奇妙方程组,理由如下:,②﹣①得x+y=0,∴原方程组是“奇妙方程组”;(2)∵该方程组是奇妙方程组,∴x=﹣y,∴原方程组可化为,①+②,得6﹣a+4a=0,∴a=﹣2,即a的值为﹣2.15.解:(1)解方程组得,∴A(1,0),B(﹣5,0),∴AB=6,∵三角形ABC的面积为6,∴,∴OC=2,∴C(0,2);(2)存在,∵三角形P AB的面积为三角形ABC面积的一半,∴,∴n=±1,∴P点的坐标为(m,1)或(m,﹣1).16.解:+2y=9可变形为+2y=9.∵2x﹣3y﹣2=0,整理得1+2y=9,∴y=4.将y=4代入2x﹣3y﹣2=0,解得x=7.∴方程组的解为.17.解:把代入bx﹣y=2得:3b﹣4=2,解得:b=2,把代入2x+ay=1得:4﹣3a=1,解得:a=1,∴原方程组为,解得:,∴x+y==.18.解:将方程②变形为:9x﹣6y+2y=19,即3(3x﹣2y)+2y=19③,将方程①整体代入③中,得3×5+2y=19,解得:y=2,将y=2代入①,得3x﹣2×2=5,解得:x=3,∴方程组的解是.19.解:(1)根据题意,联立,①+②,得2x=4,解得x=2,把x=2代入①,得2+y=1,解得y=﹣1.∴这个相同的解为.(2)将代入,得,③+④,得m=6,把m=6代入③,得12﹣2n=4,解得n=4.∴2m+n=16,∴2m+n的平方根为±=±4.20.解:(1)根据题意,联立,①﹣②,得y=5,将y=5代入①,得x=﹣5.把代入m﹣2y+mx+9=0,可得m﹣2×5﹣5m+9=0,解得m=.∴m的值为.(2)这个公共解为.理由:将m﹣2y+mx+9=0变形,得(1+x)m﹣2y+9=0,∵无论实数m取何值,方程m﹣2y+mx+9=0总有一个公共解,∴1+x=0,解得x=﹣1,将x=﹣1代入m﹣2y+mx+9=0,可得y=.∴这个公共解为.。

专题2.2 一次方程及方程组(真题专练)

专题2.2 一次方程及方程组(真题专练)

专题2.2 一次方程及方程组(真题专练)一、单选题1.(2021·湖南株洲·中考真题)方程122x-=的解是( )A .2x =B .3x =C .5x =D .6x =2.(2021·浙江温州·中考真题)解方程()221x x -+=,以下去括号正确的是( ) A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=3.(2021·山东聊城·中考真题)若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤54.(2021·黑龙江牡丹江·中考真题)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( ) A .不盈不亏B .盈利20元C .盈利10元D .亏损20元5.(2021·广西梧州·中考真题)在△ABC 中,△A =20°,△B =4△C ,则△C 等于( ) A .32°B .36°C .40°D .128°6.(2021·吉林·中考真题)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.(2021·广东广州·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-8.(2021·四川德阳·中考真题)关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x a y b =⎧⎨=⎩,若点P(a ,b )总在直线y =x 上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣19.(2021·湖南郴州·中考真题)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( )A .2B .6C .2-D .6-10.(2021·安徽·中考真题)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是( ) A .a b c >>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-11.(2021·湖北武汉·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487y y -+= D .3487y y +-=二、填空题12.(2021·山东枣庄·中考真题)已知x ,y 满足方程组43123x y x y +=-⎧⎨+=⎩,则x y +的值为______.13.(2021·浙江金华·中考真题)已知2x y m =⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________.14.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.15.(2021·浙江嘉兴·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.16.(2021·四川遂宁·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.17.(2021·山东泰安·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50。

专题07二元一次方程及方程组(基础巩固练习) 解析版

专题07二元一次方程及方程组(基础巩固练习) 解析版

2021年中考数学专题07 二元一次方程及方程组(基础巩固练习,共40个小题)【答案】B【解析】把各选项中的x、y值代入原方程,判断左右两边是否相等即可.解:把A选项代入原方程,左边=右边,此项不符合题意;把B选项代入原方程,左边≠右边,此项符合题意;把C选项代入原方程,左边=右边,此项不符合题意;把D选项代入原方程,左边=右边,此项不符合题意;故答案为:B.2.下列方程组中,是二元一次方程组的是( )A.3235x yx y-=⎧⎨+=⎩B.2024x yx y k++=⎧⎨-=⎩C.3010x yxy-+=⎧⎨+=⎩D.2135x yxy+=⎧⎪⎨+=⎪⎩【答案】A【解析】解:根据二元一次方程组的定义逐项判断,是二元一次方程组的是3235x yx y-=⎧⎨+=⎩,故答案为:A.3.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解,则a-b的值为( )A.-1 B.1 C.2 D.3 【答案】A.【解析】把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中得到关于a、b的方程组,进而求解即可.解:把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中,得:2721a ba b+=⎧⎨-=⎩,解得:23ab=⎧⎨=⎩,∴a-b=-1,故答案为:A.4.方程组224x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.31xy=⎧⎨=⎩C.2xy=⎧⎨=-⎩D.2xy=⎧⎨=⎩【答案】D【分析】可解此方程组,也可把四个选项依次代入原方程组验证.5.(2018•北京市)方程组33814x yx y-=⎧⎨-=⎩的解为( )A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【答案】D【解答】解:33814x yx y-=⎧⎨-=⎩①②,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为21xy=⎧⎨=-⎩.故选:D.6.(2019•天津市)方程组3276211x yx y+=⎧⎨-=⎩的解是( )A.15xy=-⎧⎨=⎩B.12xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩【答案】D【解答】解:3276211x yx y+=⎧⎨-=⎩①②,①+②得,x=2,把x=2代入①得,6+2y=7,解得12y=,故原方程组的解为:212xy=⎧⎪⎨=⎪⎩.故选:D .7.(2019•广西贺州)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( )A .2-B .2C .4-D .4【答案】C【解析】两式相减,得32x y +=-,2(3)4x y ∴+=-,即264x y +=-,故选:C . 8.(2019•重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组。

初三数学方程专题复习题

初三数学方程专题复习题

初三数学方程专题复习题1.如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是A.x =-3,y =2B.x =2,y =-3C.x =-2,y =3D.x =3,y =-22 解下列方程组:1{4519323a b a b +=--= 2{2207441x y x y ++=-=- 3、 若方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解相同,求m 、n 的值. 1.若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a . 2. 在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____.3. 下列方程组中,是二元一次方程组的是A .⎪⎩⎪⎨⎧=+=+9114y x y x B .⎩⎨⎧=+=+75z y y x C .⎩⎨⎧=-=6231y x x D .⎩⎨⎧=-=-1y x xy y x 4. 关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m =A .2B .-1C .1D .-25.某校初三2班40表格中捐款2元和.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A .272366x y x y +=⎧⎨+=⎩B .2723100x y x y +=⎧⎨+=⎩C .273266x y x y +=⎧⎨+=⎩D .2732100x y x y +=⎧⎨+=⎩二1. 把分式方程11122x x x--=--的两边同时乘以x-2, 约去分母,得 A .1-1-x=1 B .1+1-x=1 C .1-1-x=x-2 D .1+1-x=x-22. 方程2321x x -=+的根是 A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为124. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________.5. 若方程1322a x x x -=---有增根,则增根为_____,a=________. 6解下列分式方程:韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 注意:1222121212()2x x x x x x +=+-⋅ 222121212()()4x x x x x x -=+-⋅;12x x -=3①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则1200x x ∆>⎧⎨⋅<⎩; ④方程一根大于1,另一根小于1,则120(1)(1)0x x ∆>⎧⎨--<⎩ 4应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入;4.用配方法解一元二次方程的配方步骤:例:用配方法解24610x x -+=第一步,将二次项系数化为1:231024x x -+=,两边同除以4 第二步,移项: 23124x x -=- 第三步,两边同加一次项系数的一半的平方:2223313()()2444x x -+=-+第四步,完全平方:235()416x -=第五步,直接开平方:344x -=±,即:1344x =++,2344x =-+ 中考考点①利用一元二次方程的意义解决问题;②用整体思想对复杂的高次方程或分式方程进行变形换元法;③考查配方法主要结合函数的顶点式来研究;④一元二次方程的解法;⑤一元二次方程根的近似值;⑥建立一元二次方程模型解决问题;⑦利用根的判别式求方程中字母系数的值和利用根与系数关系求代数式的值;⑧与一元二次方程相关的探索或说理题;⑨与其他知识结合,综合解决问题;一、填空题1、关于x 的方程2(3)20m x --=是一元二次方程,则m 的取值范围是 ____ .2、若(0)b b ≠是关于x 的方程220x cx b ++=的根,则2b c +的值为____ .3、方程2310x x -+=的根的情况是_______________________________.4、写出一个既能直接开方法解,又能用因式分解法解的一元二次方程是_______________.5、在实数范围内定义一种运算“*”,其规则为)(b a a b a -=*,根据这个规则,方程(2)50x +*=的解为_________________.6、如果关于x 的一元二次方程2210kx x --=有两个实数根,则k 的取值范围是_____________;7、设12,x x 是一元二次方程20ax bx c ++=的两个根,则代数式3322121212()()()0a x x b x x c x x +++++=的值为___________.8、 a 是整数,已知关于x 的一元二次方程01)12(2=-+-+a x a ax 只有整数根,则a =__________.二、选择题1、关于x 的方程220x kx k -+-=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定2、已知方程有一个根是,则下列代数式的值恒为常数的是 A 、 B 、 C 、D 、 3、方程23270x +=的解是 A. B. C. D. 无实数根4、若关于x 的一元二次方程22(4)60x kx x --+=没有实数根,那么k 的最小整数值是 A. 1 B. 2 C. 3 D.5、如果a 是一元二次方程230x x m -+=的一个根,a -是一元二次方程230x x m +-=的一个根,那么a 的值是A 、1或2B 、0或3-C 、1-或2-D 、0或36、设m 是方程250x x +=的较大的一根,n 是方程2320x x -+=的较小的一根,则m n += A. B. C. 1 D. 2三、解答题2、已知方程222(9)(34)0x k x k k +-+++=有两个相等的实数根,求k 值,并求出方程的根;3、已知,,a b c 是ABC ∆的三条边长,且方程222()210a b x cx +-+=有两个相等的实数根,试判断ABC ∆的形状;4、 已知关于x 的一元二次方程2223840x mx m m --+-=.1求证:原方程恒有两个实数根;2若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围.一元二次方程的应用专项训练解应用题步骤:①审题;②设未知数;③列方程;④解方程;⑤检验根是否符合实际情况;⑥作答;一传播问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛二商品销售问题售价—进价=利润 一件商品的利润×销售量=总利润 单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P 件与每件的销售价X 元满足关系:P=100-2X 销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R P与x 的关系式分别为R=500+30X,P=170—2X;(1)当日产量为多少时每日获得的利润为1750元(2)若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元三平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率;3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率四数字问题1.两个数的和为8,积为,求这两个数;2.两个连续偶数的积是168,则求这两个偶数;3.一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调,所得的两位数与原来的两位数的乘积为736,求原来的两位数;五面积问题1.为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;2.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为 cm.3.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽;4如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,求所截去的小正方形的边长;。

解方程组练习题10道带答案

解方程组练习题10道带答案

解方程组练习题10道带答案1. 题目:解方程组已知方程组:2x + 3y = 74x - 5y = 11求解x和y的值,并给出详细步骤。

解析:我们可以使用消元法来解这个方程组。

首先,将第二个方程的系数乘以2,并与第一个方程相加,消去x的系数。

2x + 3y = 78x - 10y = 22然后,我们得到新的方程组:2x + 3y = 7-10y = 15将第二个方程解出y的值,得到:y = -1.5。

将y的值带入第一个方程,解出x的值:2x + 3(-1.5) = 72x - 4.5 = 72x = 11.5x = 5.75因此,方程组的解为x = 5.75,y = -1.5。

2. 题目:解方程组已知方程组:3x + 2y = 102x - y = 3求解x和y的值,并给出详细步骤。

解析:我们可以使用代入法来解这个方程组。

先将第二个方程解出y的值,得到:y = 2x - 3。

然后将该表达式代入第一个方程中,解出x的值:3x + 2(2x - 3) = 103x + 4x - 6 = 107x - 6 = 107x = 16x = 16/7将x的值带入第二个方程,解出y的值:2(16/7) - y = 332/7 - y = 3-y = 3 - 32/7-y = 9/7y = -9/7因此,方程组的解为x = 16/7,y = -9/7。

3. 题目:解方程组已知方程组:x + y = 42x - y = 1求解x和y的值,并给出详细步骤。

解析:我们可以使用消元法来解这个方程组。

首先,将第一个方程乘以2,并与第二个方程相加,消去y的系数。

2(x + y) = 2(4)2x + 2y = 82x - y = 1然后,我们得到新的方程组:2x + 2y = 82x - y = 1将第一个方程解出y的值,得到:2y = 7。

将y的值带入第二个方程,解出x的值:2x - 7 = 12x = 8因此,方程组的解为x = 4,y = 0。

方程组综合练习题

方程组综合练习题

单元综合练习题一.选择题1.下列方程:①2x﹣3y=5;②xy=3;④x+=3;④3x﹣2y+z=0;⑤x2+y=6.其中,二元一次方程有()个.A.1 B.2 C.3 D.42.在方程组、、、中,是二元一次方程组的有()A.1个 B.2个C.3个D.4个3.已知二元一次方程3x﹣y=1,当x=2时,y﹣8等于()A.5 B.﹣3 C.﹣7 D.74.在自然数范围内,方程2x+y=7的解有()A.一组B.三组C.四组D.无数组5.设方程组的解是,那么a,b的值分别为()A.﹣2,3 B.3,﹣2 C.2,﹣3 D.﹣3,26.方程组的解为()A.B.C.D.7.在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2 B.y=﹣3x+2 C.y=3x﹣2 D.y=﹣3x﹣28.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣19.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和◆,则这两个数●和◆的值为()A.B.C.D.10.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2二.填空题11.写出一个解为的二元一次方程组.12.当a=时,方程组的解为x=y.13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.14.已知(n﹣1)x|n|﹣2y m﹣2016=0是关于x,y的二元一次方程,则n m=.15.若(a﹣2b+1)2与互为相反数,则a=,b=.16.若方程组与的解相同,则a=,b=.17.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的,两根铁棒长度之和为220cm,此时木桶中水的深度是cm.18.已知x、y满足方程组:,则(x+y)x﹣y的值为.19.一个两位数,它的个位数字是十位数字的2倍,且十位数字与个位数字和的4倍,等于这个两位数,这个两位数是.20.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有名同学.三.解答题21.解方程组:(1)(2)(3)22.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.23.我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?24.豆浆、油条是中国老百姓最爱的早餐,以前小明同学买一份早餐,包括1碗豆浆和2根油条只需7元,现在由于豆浆涨价20%,油条涨价50%,同样一份早餐却要9.6元.(1)现在买1碗豆浆、1根油条分别需要多少元?(2)某天妈妈给了小明同学30元钱,小明想用这些钱为全家三口人买3碗豆浆和8根油条,他所带的钱是否够用?请说明理由.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)26.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2013年5月20日在河南郑州圆满落幕,作为东道主的河南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求河南省签订的境外,省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主河南省共引进资金多少亿元?27.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?28.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?29.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y=y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组,求xy的值.30.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档401度及以上三档电价。

(完整版)二元一次方程组经典练习题+答案解析100道

(完整版)二元一次方程组经典练习题+答案解析100道

二元一次方程组练习题100道(卷一)1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;□x +5y =13 ① 4x -□y =-2 ②27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。

方程组练习题带答案

方程组练习题带答案

方程组练习题带答案1.方程组2x+3y=7,x-3y=8的解为________________.2.若实数a,b满足3a-1+b2=0,则ab的值为______.3.已知x,y满足方程组2x+y=5,x+2y=4,则x-y的值为_____________.4.方程组5x-2y-4=0,x+y-5=0的解是__________.5.以方程组y=x+1,y=-x+2的解为坐标的点在第____象限.6.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.7.已知x=2,y=1是关于x,y的二元一次方程组ax+by=7,ax-by=1的解,则a-b的值为A.1B.-1C.D.38.关于x,y的方程组3x-y=m,x+my=n的解是x=1,y=1,则m-n的值是A.B.C.D.19.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是A.x+y=70,2.5x+2.5y=420B.x-y=70,2.5x+2.5y=420C.x+y=70,2.5x-2.5y=420D.2.5x+2.5y=420,2.5x-2.5y=7010.解方程组:x-2y=3,3x-8y=13.11.已知x=1,y=-2是关于x,y的二元一次方程组ax+by=1,x-by=3的解,求a,b的值.12.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为1800 m3,问中、美两国人均淡水资源占有量各为多少?13.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利1000元,其中甲种蔬菜每亩获利000元,乙种蔬菜每亩获利100元,李大叔去年甲、乙两种蔬菜各种植了多少亩?二级训练14.如图2-1-2,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为 __________ 元.图2-1-215.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为又已知直线y=kx+b过点,则b的正确值应该是________.16.已知x=2,y=3是关于x,y的二元一次方程3x=y+a 的解,求+7的值.三级训练17.若关于x,y的二元一次方程组x+y=5k,x-y=9k的解也是二元一次方程2x+3y=6的解,则k的值为A.-3B.3C.4D.-4318.为了增强学生体质,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威.如图2-1-3,线段 l1,l2分别表示长跑的同学和骑自行车的同学行进的路程y随时间x变化的函数图象.根据图象,解答下列问题:图2-1-3分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x的函数表达式;求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学? 参考答案1.x=5,y=-1.1.1.x=2,y=5.一.207.B.D.D10.解:x-2y=3,①3x-8y=13. ②①×3,得3x-6y=9. ③③-②,得-6y-=9-13,解得y=-2.把y=-2代入①,得x=-1.∴原方程组的解为x=-1,y=-2.11.解:将x=1,y=-2代入二元一次方程组,得a-2b=1,①1+2b=3. ②由②,得b=1.将b=1代入①,得a-2=1.∴a=3.即a=3,b=1.12.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3,依题意,得y=5x,x+y=1800,解得x=200,y=1100.答:中、美两国人均淡水资源占有量各为200 m3,1100 m3.13.解:设李大叔去年种植了甲种蔬菜x亩,种植了乙种蔬菜y亩,则x+y=10,000x+100y=1000.解得x=6,y=4.答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.14.440 15.-1116.解:将x=2,y=3代入3x=y+a中,得a=3.∴+7=a2-1+7=3+6=9.17.B 解析:解关于x,y的二元一次方程组得x=7k,y=-2k,将之代入方程2x+3y=6,得k=34.18.解:线段l1过原点,设l1的解析式为y=kx.将点代入得10=60k,k=16. ∴长跑的同学行进路程与时间的函数表达式为y=16x.设l2的解析式为y=kx+b,将点,代入,得0=20k+b10=40k+b,解得k=12,b=-10.∴骑自行车的同学行进路程与时间的函数表达式为y=12x-10.联立以上两个方程组得:y=16x,y=12x-10,解得:x=30,y=5.解二元一次方程组练习及答案专题一:二元一次方程组解法精练一.解答题1.求适合的x,y的值.2.解下列方程组3.解方程组:.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.求k,b的值.当x=2时,y的值.当x为何值时,y=3?7.解方程组:;.8.解方程组:.解方程组:.10.解下列方程组:11.解方程组:12.解二元一次方程组:;.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.14.15.解下列方程组:;.16.解下列方程组:专题二:方程组解法强化训练 1.2..4.5.6..8.9.10. 11.12.13.14.15.16. 17.18.19.0.{21.y?12y?22x??122.x?y?23.24.25.26.27.28.29.30.答案2.解下列方程组.3.解方程组:6..4.解方程组:.解方程组:求k,b的值. k=,b=.当x=2时,y的值.把x=2代入,得y=.当x为何值时,y=3?把y=3代入,得x=17.解方程组:;.8.解方程组:9.解方程组:10.解下列方程组:11.解方程组:12.解二元一次方程组:13.甲把a看成了什么,乙把b看成了什么?求出原方程组的正确解.;.式和方程练习题一、填空。

方程及方程组专项练习题

方程及方程组专项练习题

方程及方程组专项练习题一、选择题1.关于x的一元二次方程(x+3)(x﹣4)=0的解是()A.x1=3,x2=4B.x1=3,x2=﹣4C.x1=﹣3,x2=4D.x=32.若关于x的一元二次方程x2﹣4x+n=0无实数根,则n的值可以是()A.﹣3B.0C.4D.53.某商店9月份的营业额为50万元,10月份的营业额比9月份减少了15%,之后商店通过加强管理,改变营销策略,使得11,12月份的营业额连续增长且平均增长率相同,12月份的营业额达到了61.2万元,设11,12月份营业额的平均增长率为x,依题意可列方程为()A.50(1﹣15%)(1+x)2=61.2B.50(1+x)2=61.2×(1+15%)C.50(1+x)2=61.2×(1﹣15%)D.50(1﹣15%)(1+x)=61.24.若关于m的方程bm+c=0(b≠0)的解为m=6,则关于x的方程b(x2﹣x)+c=0的解是()A.x=6B.x=30C.x1=3,x2=﹣2D.x1=﹣3,x2=2 5.(2022秋•香河县期末)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k<﹣1且k≠0D.k>﹣1且k≠0 6.若关于x的方程x2+bx+36=0有两个相等的实数根,则b的值是()A.12B.﹣12C.±12D.±67.若x=1是关于x的一元二次方程x2+ax﹣2b=0的一个根,则a﹣2b的值为()A.1B.﹣1C.﹣2D.28.(2022秋•顺平县期末)下列方程变形正确的是()A.由﹣3x=2,得x=−32B.由4﹣2(3x﹣1)=1去括号得:4﹣6x﹣2=1C.由2+x=5,得x=5﹣2D.由x−12−x+23=1,去分母得:3(x﹣1)﹣2(x+2)=19.关于x的一元二次方程4x2+(4m+1)x+m2=0有实数根,则m的最小整数值为()A.1B.0C.﹣1D.﹣210.(2022秋•顺平县期末)已知x=3是方程ax+5=17﹣a的解,则a的值是()A.3B.114C.6D.1111.(2022秋•莲池区校级期末)有两个人患了流行性感冒,经过两轮传染后共有392人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A.14B.15C.13D.1212.(2022秋•顺平县期末)2022年底,新冠疫情持续蔓延,若一人携带病毒未进行有效隔离,经过两轮传染后共有441人感染,设每轮传染中平均每个人传染了x人,则根据题意可列出方程()A.x(1+x)=441B.x+(1+x)2=441C.x+x(1+x)=441D.1+x+x(1+x)=44113.若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.1214.(2022秋•顺平县期末)一元二次方程x2﹣x=0的根是()A.x=1B.x=0C.x1=0,x2=1D.x1=0,x2=﹣1 15.(2022秋•莲池区校级期末)一元二次方程x2﹣6x﹣2=0配方后可变形为()A.(x﹣3)2=11B.(x﹣3)2=7C.(x﹣6)2=36D.(x﹣3)2=2 16.(2022秋•栾城区校级期末)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少辆车?设共有x辆车,则()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.x3−2=x+92D.x−23=x2+917.有一道解一元一次方程题:3x﹣(5□x)=﹣7,□处为运算符号,在印刷时被油墨盖住了,查阅后面的答案得知这个方程的解是x=﹣1,则□处应是()A.﹣B.+C.×D.÷18.(2022秋•大名县期末)小明在解方程5m﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,原方程的解为()A.x=0B.x=1C.x=2D.x=3 19.(2022秋•邢台期末)方程x﹣3=2x﹣4的解为()A.x=1B.x=﹣1C.x=7D.x=﹣7 20.(2022秋•邯山区校级期末)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为9万元,第三个月的销售额为14万元,设这两个月销售额的月平均增长率为x,则根据题意,可列方程为()A.9(1+2x)=14B.2×9(1+x)=14C.9(1+x2)=14D.9(1+x)2=1421.(2022秋•平泉市校级期末)解方程:5x+13−2x−16=1.去分母正确的是()A.2(5x+1)﹣(2x﹣1)=1B.2(5x+1)﹣2x﹣1=6 C.2(5x+1)﹣(2x﹣1)=6D.3(5x+1)﹣(2x﹣1)=1822.若关于x的分式方程2x−3+x+m3−x=1有增根,则m的值为()A.3B.0C.﹣1D.﹣3 23.(2022秋•路南区校级期末)某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成任务,设这个工程队原计划每天要铺建x米管道,依题意所列方程正确的是()A.2000x +2=20001.5xB.2000x=20001.25x+2C.2000x +20001.25x=2D.20001.25x−2000x=224.(2022秋•平泉市校级期末)甲做320个零件与乙做400个零件所用的时间相同,已知两人每天共做90个零件,若设甲每天做x个零件,则可列方程()A.320x −90=400xB.32090−x=400xC.320x +90=400xD.320x=40090−x25.(2022秋•丛台区校级期末)某农场开挖一条长480米的渠道,开工后每天比原计划多挖30米,结果少花4天完成任务,若设原计划每天挖x米,那么下列方程中正确的是()A.480x −480x+30=4B.480x+30−480x=4C.480x−4−480x=30D.480x−480x−4=3026.已知关于x的分式方程m+3x−1=1的解为正数,则m的取值范围是()A .m ≥﹣4B .m ≥﹣4且m ≠﹣3C .m >﹣4D .m >﹣4且m ≠﹣327.(2022秋•雄县校级期末)小明解方程x 2﹣2x ﹣8=0的过程如表所示,开始出现错误的是( ) x 2﹣2x ﹣8=0 解:x 2﹣2x =8 第一步 x 2﹣2x +1=8+1 第二步 (x ﹣1)2=9 第三步 x =4 第四步 A .第一步B .第二步C .第三步D .第四步28.(2022秋•莲池区校级期末)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,绳多一尺,本长几何?”意思是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条短1尺.木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( ) A .{y =x +4.512y =x −1B .{y =x +4.5y =2x −1C .{y =x +4.512y =x +1D .{y =x −4.5y =2x +129.小亮求得方程组{2x +y =⋅2x −y =12的解为{x =5y =⋆,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数,“●”“★”表示的数分别为( ) A .5,2B .﹣8,2C .8,﹣2D .5,430.(2022秋•南宫市期末)随着环保意识日益深入,我国新能源汽车的生产技术也不断提升.今年7月至9月,市场上某款新能源汽车的售价由260000元/辆下降到210600元/辆.则该款汽车售价的月平均下降率是( ) A .5%B .10%C .15%D .20%31.(2022秋•河北期末)将一元二次方程x 2﹣8x +1=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b 的值分别是( ) A .﹣4,15B .﹣4,﹣15C .4,15D .4,﹣1532.(2022秋•南宫市期末)在解方程1−x 4−x =3x−13时,去分母正确的是( )A .4(1﹣x )﹣x =3(3x ﹣1)B .3(1﹣x )﹣x =4(3x ﹣1)C .4(1﹣x )﹣12x =3(3x ﹣1)D .3(1﹣x )﹣12x =4(3x ﹣1)二、填空题33.(2022秋•定州市期末)已知x1,x2是一元二次方程x2﹣8x=1的两根,则x1+x2=.34.若关于x的方程2x2+3x+a=0有一个根为−12,则另一个根为.35.(2022秋•河北期末)已知(m﹣3)x|m|﹣2+8=0是关于x的一元一次方程,则m的值是,此时方程的解为.36.(2022秋•丰南区校级期末)若关于x的分式方程xx−2−3=mx−2的解是正数,则m.37.(2022秋•丰宁县校级期末)若关于x的分式方程2x−2−6=mx−2的解是x=3,则m=.38.(2022秋•磁县期末)若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为相反数,则a的值为.39.已知关于x的方程x2+2x+k﹣4=0有两个不相等的实数根.(1)k的取值范围是;(2)若x=﹣2是该方程的一个根,则k=.40.(2022秋•万全区期末)方程2x+5=9的解为.41.(2022秋•香河县期末)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2﹣1的值是.42.(2022秋•磁县期末)由于换季,商场准备对某商品打折出售,如果按原售价的八折出售,将亏损10元,而按原售价的九折出售,将盈利20元,则该商品的原售价为元.43.(2022秋•易县期末)关于x的一元二次方程x2+mx+4=0有一个根为1,则m的值为.44.已知关于x的分式方程3−2xx−3+9−mx3−x=−1无解,则m的值为.三、解答题45.(2022秋•莲池区期末)解方程:(1)2x﹣3(x﹣1)=2;(2)x+23−2x−12=1.46.(2022秋•竞秀区期末)嘉淇准备完成题目:解方程:x2+□x﹣8=0.发现系数“□”印刷不清楚.(1)她把“□”猜成2,请你解方程x2+2x﹣8=0;(2)她妈妈说:“你猜错了,我看到该题标准答案的结果有一个是﹣1.”通过计算说明原题中“□”是几.47.(2022秋•顺平县期末)解方程:(1)2﹣3(x﹣1)=﹣4;(2)1−2x3=2x+15−2.48.(2022秋•顺平县期末)科学规范戴口罩是阻断新冠病毒传播的有效措施之一.疫情期间琪琪家购买N95口罩花费了200元,购买医用外科口罩花费了100元.已知一只N95口罩比一只医用外科口罩贵1.5元,并且购买的医用外科口罩的数量是N95口罩数量的2倍,一只医用外科口罩多少元?49.(2022秋•顺平县期末)为了丰富课后服务课程,助推“双减”落地,某校开展了篮球兴趣班和足球兴趣班,现需要给每名兴趣班同学分别购买一个篮球或一个足球,已知篮球每个80元,足球每个60元,结合图中两个学生的一段对话,求两个兴趣班各有多少人?50.(2022秋•栾城区校级期末)如图,现有两条乡村公路AB,BC,AB长为1600米,BC 长为1800米,一个人骑摩托车从A处以20米/秒的速度匀速沿公路AB,BC向C处行驶;另一人骑自行车从B处以4米/秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距160米?51.(2022秋•邢台期末)某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套,问:每天分别安排多少名工人加工大、小齿轮,才能刚好配套?52.(2022秋•蔚县校级期末)某网上商城在“双11”期间举行促销活动,有以下两种优惠方案:①购物金额每满200元减20元;②购物金额打95折.某人购物金额超过400元不足600元.通过计算发现,选择方案①比方案②便宜18元,这个人购物的金额是多少元?53.一件大衣按其进价提高50%后标价.由于季节原因,现以标价的七折售出,结果仍盈利18元.这件上衣的进价是多少元?(提示:利润=售价﹣进价)54.(2022秋•桥西区校级期末)关于x的分式方程:xx−3=2−m3−x.(1)当m=1时,求此时方程的根;(2)若这个方程xx−3=2−m3−x的解为正数,求m取值的范围.55.某商店老板,第一次用1000元购进了一批口罩,很快销售完;第二次购进口罩时发现,每只口罩的进价比第一次上涨了2.5元,老板用2500元购进了第二批口罩,所购口罩数量是第一次购进口罩数量的2倍,同样很快销售完,两批口罩的售价均为每只15元.(1)第一次购进多少只口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?56.(2022秋•竞秀区校级期末)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用42元买这种本子的数量与用70元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的80元压岁钱购买这种笔和本子,计划80元刚好用完,并且笔和本子都买,请列出所有购买方案.57.葡萄加工厂现收购10吨葡萄,该葡萄的出原汁率80%(原汁含皮带籽).若在市场上直接销售原汁,每吨可获利润500元;制成葡萄汁(葡萄汁不含皮不带籽)销售,每加工1吨原汁可获利润1200元;制成葡萄饮料销售,每加工1吨原汁可获利润2000元.该厂的生产能力是:若制葡萄汁,每天可加工3吨原汁;若制葡萄饮料,每天可加工1吨原汁;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批葡萄必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:(将葡萄榨成原汁时间忽略不计)方案一:尽可能多的制成葡萄饮料,其余直接销售原汁;方案二:将一部分制成葡萄饮料,其余制成葡萄汁销售,并恰好4天完成.(1)请计算方案一的获利情况.(2)方案二应如何安排原汁的使用.(3)上述两种方案中哪一种方案获利较多,请计算说明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考第二轮专题复习例题示例
中考第二轮专题复习三方程及其应用A
11、用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式相关数据如
12、由方程t=-x+5,t=y-4组成的方程组可得x,y的关系式是()
A.2x+y=14 B.2x+y=7 C.x+y=9 D.x+y=3
13、解方程
(1) x+y=1 ①(2)2x2-3x-2=0
2x−y=−4 ②
14、已知方程组 3x−5y=2a 的解x,y的值互为相反数,求a的值及原方程组的解.
2x+7y=a−18
□C:想一想,不过如此
15、给出下面四个方程:x+y=2°,xy=1,x=cos60°,y+2x=5
(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?
(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解.
16、关于x,y的方程组 x+2y=3m
x−y=9m
(1)若x的值比y的值小5,求m的值;
(2)若方程3x+2y=17与方程组的解相同,求m的值.。

相关文档
最新文档