三极管混频器——高频课程设计
高频电子线路课程设计_晶体管混频器设计
《通信电子线路》课程设计说明书晶体管混频器院、部:学生姓名:指导教师:职称讲师专业:通信工程班级:学号:完成时刻: 2012年12月摘要现代通信技术在人们日常生活中占据愈来愈重要的地位。
混频电路作为无线传输体系中不可缺少的重要部份,被普遍应用于各类通信设备中,以实现信号频谱的搬移。
在调制系统中,输入的基带信号都要通过频率的转换变成高频已调信号。
在解调进程中,接收的已调高频信号也要通过频率的转换,变成对应的中频信号。
专门是在超外差式接收机中,混频器应用最为普遍,如AM 广播接收机将频率为535KHZ一1605KH的已调信号变成465KHZ中频信号,电视接收机将频率为48.5M一870M 的已调图象信号变为38MHZ的中频图象信号。
在本次课程设计中,本小组选择设计一个三极管混频器,当输入信号为10MHz正弦波、本振信号为16.455MHz正弦波时,混频器能输出频率为6.465MHz 左右的正弦波。
设计结果大体知足本次设计要求。
关键词: 混频;晶体管ABSTRACTModern communication technology in People's Daily life occupy an increasingly important position. Mixing circuit as a wireless transmission system is an essential part, is widely applied in various communication equipment, in order to realize signal spectrum of the move. In the modulation system, the input of the baseband signal are through frequency conversion into high frequency modulated signal. In the demodulation process, receiving high frequency modulated signal also should pass frequency conversion, into the corresponding intermediate frequency signal. Especially in the superheterodyne receiver, mixer are widely used, such as AM radio receiver will frequency for 535 KHZ a 1605 kh of modulated signal into 465 KHZ intermediate frequency signal, TV receiver will frequency is 48.5 M a 870 M of the modulated signal is transformed into the image of the intermediate frequency image signal . In this course design, the team chose to design a triode mixer, when the input signal for 10 MHz sine wave, the vibration signal is 16.455 MHz sine wave, mixer can output frequency is 6.465 MHz or so sine wave. Design results are basically meet the design requirementsKeywords: mixing; transistor目录1 方案论证 01.1 课题设计任务及功能要求 01.2 三极管混频电路方案分析 01.2.1 方案一 01.2.2 方案二 01.2.3 方案三 01.3 三极管混频器方案确信 02 硬件电路设计 (2)2.1 混频电路 (2)2.1.1 混频电路工作原理 (2)2.1.2 静态工作点的选取 (4)2.1.3 选频网络的参数设置 (4)3 电路仿真及结果分析 (5)3.1 Multisim 11 软件简介 (5)3.2 仿真电路 (5)3.3 仿真结果 (6)3.3.1 仿真结果分析 (8)4 电路板的制作与调试 (9)4.1 电路板的制作 (9)4.2 电路板的调试 (9)4.2.1 调试进程的波形图记录 (9)4.2.2 三极管混频器的误差分析 (11)终止语 (12)致谢 (13)参考文献 (14)附录A:元件清单 (15)附录B:电路原理图 (16)附录C:PCB图 (17)附录D:实物图 (18)1 方案论证1.1 课题设计任务及功能要求设计一个三极管混频器,要求输入信号为10MHz 正弦波,本振信号为16.455MHz 正弦波,混频输出为6.465MHz 的正弦波。
三极管混频器
2012高频课程设计1.三极管混频器的设计内容及要求1.1设计内容在本次通信电子线路课程设计中我采用了Multisim仿真软件对三极管混频器进行设计及绘制,并模拟仿真,在仿真的基础上再做了实物。
从理论上对电路进行了分析。
选择合适的元器件,设计出满足要求的三极管混频器。
1.2设计要求设计一个三极管混频器。
要求中心频率为10MHz, 本振频率为16.455MHz。
1.3设计框图及原理说明1.3.1混频原理框图混频器是一种典型的线性时变参数电路,要完成频谱的线性搬移,关键是要获得两个输入信号的乘积,能找到这个乘积项,就可完成所需的线性搬移功能。
如下图1.1为混频器的组成电路,它由非线性器件、本地振荡器和带通滤波器组成。
图1.1 混频工作原理1.3.2混频原理说明混频电路输入的是载频为fc 的高频已调波信号ui(t)和频率为f r的本地振荡信号ur(t),经过非线性器件变频后输出端有两个信号的差频(f r-f c)、和频(f r+f c)及其他频率分量,再经滤波器滤掉不需要的频率分量,取差频(或和频)f I 作为中频已调波信号uI(t),即中频f I=(f r-f c),或f I=(f r+f c),从而实现变频作用。
通常从输出端取出差频的混频称为下混频,而取出和频的混频称为上混频。
本次课程设计我的电路是用10MHZ的交流信号电压源、本振电路(产生16.455MHZ)、三极管混频器电路以及选频电路组成。
信号源所产生的10MHZ 的正弦波与本振电路所产生的16.455MHZ正弦波通过三极管进行混频后产生和频、差频信号及其它频率信号,然后通过滤波网络滤掉不需要的频率分量,取出差频(6.455MHZ)的信号,即为所需的6.455MHZ信号。
错误!未指定书签。
2.设计电路及原理与仿真2.1本地振荡电路本地振荡器是本设计电路的重要部分,同时也是超外差式接收机的主要部分。
其主要作用是将直流信号变为高频正弦信号,2.1.1振荡起振条件正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。
高频课程设计--混频器电路设计
高频课程设计--混频器电路设计三峡大学高频电子线路课程设计名称:混频器电路设计院系:理学院专业:光信息科学与技术姓名:学号:完成时间:2012/12/25成绩:摘 要混频电路是高频电子线路课程必须掌握的关键电路。
混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。
具体原理框图如图1所示。
本文详细的介绍了混频电路的设计过程,并且用Multisim 软件对设计的电路进行了仿真测试,结果符合要求,以下是电路的设计要求。
振荡器输出一频率为10MHz 1 f 、幅值0.2V <m U 1<1V 的正弦波信号,此信号作为混频器的第一路输入信号;高频信号源输出一正弦波信号,2f =10MHz 、幅值m U 2=200mV ,此信号作为混频器的第二路信号,将这两路信号作为模拟乘法器的输入进行混频。
选频放大电路则对混频后的信号进行选频、放大,最终输出2MHz 的正弦波信号。
图1混频器原理框图关键词: 混频电路 Multisim 软件 模拟乘法器正弦波振荡器 模拟 乘法器 选频、 放大电路高频信号源一、总体设计方案对于混频电路的分析,重点应掌握,一是混频电路的基本组成模型及主要技术特点,二是混频电路的基本原理及混频跨导的计算方法,三是应用电路分析。
混频电路的基本组成模型及主要技术特点:混频,工程上也称变频,是将信号的频率由一个数值变成另一个数值的过程,实质上也是频谱线性搬移过程,完成这种功能的电路就称为混频电路或变频电路。
混频电路的基本原理:图2中:U s (t)为输入信号,Uc(t)为本振信号,Ui(t)输出信号。
分析:当 st sm s cos U (t)U ψ=则 (t)(t)U U (t)U c s p ==ct cm st sm cos U cos U ψψ=ct st cos cos Am ψψ其中:cm sm U U Am =对上式进行三角函数的变换则有:())t]-(c s)t c [cos( Am 21cos cos Am t U s c t c st 1p ψψψψψψos ++== 从上式可推出,Up(t)含有两个频率分量和为(ψc+ψS),差为(ψC-ψS)。
三极管混频器
1 三极管混频器任务、功能要求说明及总体方案1.1课题任务设计一个三极管混频器。
要求中心频率为10MHz, 本振频率为16.455MHz 。
1.2 课题总体方案介绍及工作原理1.2.1 总体方案图1.1 结构和原理(1)输出中频调幅波与输入高频调幅波规律完全相同,即载波振幅的包络形状完全相同。
唯一的差别是载波频率不同。
(2)从频谱上看,输出中频信号与输入高频信号的频谱结构相同,只不过在频谱上搬移了一个位置。
(3) (称为下混频) 低中频(称为上混频) 高中频一般,用于振幅调制与解调的电路均可用于混频,需要改变的只是输入、输出回路和输出滤波器的参数。
若非线性器件本身仅实现混频,本振信号由单独的本地振荡器提供,称为混频器; 若非线性器件既产生本振信号又实现混频,则称为变频器。
SI L S I LS I S I L S I f f f f f f f f f f f f f >+=-=<-=1.2.2 工作原理混频电路的基本原理:图1.2图2中,U s (t)为输入信号,U c (t)为本振信号。
U i (t)输出信号。
分析: 当st sm s cos U (t)U ψ= (1.1) 则:(t)(t)U U (t)U c s p = (1.2)= ct cm st sm cos U cos U ψψ = ct st cos cos Am ψψ其中: cm sm U U Am = (1.3) 对上式进行三角函数的变换则有:()t c st 1p cos cos Am t U ψψ=:)t]-(c s)t c [cos( Am 21s c ψψψψos ++从上式可推出,U p (t)含有两个频率分量和为(ψc +ψS ),差为(ψC -ψS )。
若选频网络是理想上边带滤波器则输出为]t Amcos[21(t)U s c i ψψ+= (1.4)若选频网络是理想下边带滤波器则输出:]t -Amcos[21(t)U s c i ψψ= (1.5)工程上对于超外差式接收机而言,如广播电视接收机则有ψc >>ψS .往往混频器的选频网络为下边带滤波器,则输出为差频信号,]t -Amcos[21(t)U s c i ψψ=。
5三极管混频
三极管变频一、实验目的(1)掌握晶体三极管变频器变频的过程(2)了解本振电压L u 和工作电流e I 对中频输出电压大小的影响二、实验原理混频器的功能是将载波为S f (高频)的已调波信号不失真地变换为另一载频I f (固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如下图所示。
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号L u ,并与输入信号S u 经混频器后所产生的差频信号经带通滤波器滤出。
混频器电路模型 目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用晶体三极管作混频电路实验。
Q l 为变频管,作用是把通过输入调谐电路收到的不同频率的电台信号(高频信号)变换成固定的465KHz 的中频信号。
Q l 、T 2、CC1等元件组成本机振荡电路,它的作用是产生一个比输入信号频率高465KHz 的等幅高频振荡信号。
由于C 9对高频信号相当短路,T 1的次级L 的电感量又很小,为高频信号提供了通路,所以本机振荡电路是共基极电路,振荡频率由T 2、C C1控制,C C1是双连电容器的另一连,调节它可以改变本机振荡频率。
T2是振荡线圈,其初次级绕在同一磁芯上,它们把Q l 的集电极输出的放大了的振荡信号以正反馈的形式耦合到振荡回路,本机振荡的电压由T 2的抽头引出,通过C 10耦合到Q l 的发射极上。
混频电路由Q l 、T 3的初级线圈等组成,是共发射极电路。
其工作过程是:调制信号从J4输入,经选频回路选频,通过T l 的次级线圈送到Q l 的基极,本机振荡信号又通过C 10送到Q l 发射极,调制信号和本振信号在Q l 中进行混频,由于晶体三极管转移伏安特性的非线性特性,产生众多的组合频率S L qf pf ,其中有一种是本机振荡频率和调制信号频率的差等于465KHz 的信号,这就是中频信号。
三极管混频器-高频课程设计
三极管混频器-高频课程设计通信电子线路课程设计说明书三极管混频器系、部:学生姓名:指导教师:职称专业:班级:完成时间: 2010年12月17日摘要混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。
移动通信中一次中频和二次中频等。
在发射机中,为了提高发射频率的稳定度,采用多级式发射机。
用一个频率较低石英晶体振荡器做为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
人们一直都在寻求快速远距离通信的手段。
但是,直到十八世纪中叶才有了现代意义上的快速远距离通讯手段,这归功于无线电的发明。
一个多世纪以来,通信的方式和内容不断更新发展,从最初的莫尔斯电码到现在的卫星通讯,现代通讯技术正成为人们日常生活中越来越重要的角色。
作为无线传输体系中不可缺少的重要环节,混频技术,如晶体管混频,二极管混频以及场场效应管混频等,被广泛应用于各种通讯设备中,实现信号频谱的搬移。
混频的用途是广泛的,它一般用在接收机的前端。
除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把次中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。
高频课程设计报告
一、主要技术指标要求 发射功率P A ≥500mW 负载电阻(天线)R L =50Ω 工作中心频率f 0=5MHz 最大频偏总效率二、调频发射机的工作原理一个调频发射机的组成框图如下图所示,其工作原理是:第一本机振荡产生一个固定频率的中频信号,它的输出送至调制器;话音放大电路放大来自话筒的信号,其输出也送至调制器;调制器输出是已调幅了的中频信号,该信号经中频放大后与第二本振信号混频;第二本振是一频率可变的信号源,一般选第二本振频率fo2是第一本振fo1与发射载频fc 之和,混频器输出经带通或低通滤波器滤波,是输出载频fc=fo2-fo1;功放级将载频信号的功率放大到所需发射功率。
本振1调制器中放混频带通功放天线本振2话筒话音放大三、发射机的组成方框图拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。
单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。
由于本题要求的发射功率P A不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,组成框图如图1所示,各组成部分的作用是:图1 发射机组成方框图四、单元电路设计4.1 LC调频振荡级(1)LC调频振荡级产生频率为f0=5MHz的高频振荡,变容二极管线性调频,最大频偏为,整个发射机的频率稳定度由该级决定。
可假设主振频率f0=5MHz,频率稳定度≤,输出电压V0≥1V,最大频偏。
由于对主振频率f0要求不高,但对频率稳定度要求较高,故选用图2所示的LC调频振荡器电路。
图2 LC调频振荡级原理图(2)电路原理分析在LC振荡电路中晶体管T电容三点式振荡器的改进型电路,即克拉波电路,它被接成共基组态,C B为基极耦合电容,其静态工作点由R B1、R B2、R E及R C决定。
小功率振荡器的静态工作电流I CQ一般为1—4mA。
I CQ 偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。
高频电子课程设计晶体管混频器
目录目录 (1)第一章混频器的工作原理分析 (2)第一节三极管混频器的工作原理及组成框图 (2)第二节三极管混频器的工作波形及变频前后频谱图 (4)第二章晶体管混频器的电路组态及优缺点 (5)第一节三极管混频器的电路组态及其优缺点 (5)第二节三极管混频器的技术指标 (6)第三章自激式变频器电路工作原理分析 (9)第一节自激式变频器工作原理分析 (9)第二节自激式变频器与他激式变频器的比较 (10)第四章心得体会 (11)第一章混频器的工作原理分析第一节三极管混频器的工作原理及组成框图1.1 组成框图变频(混频)是将高频信号经过频率变换,变为一个固定的频率。
通常指将高频信号的载波频率从高频变为中频,同时必须保持其调制规律不变。
具有这种功能的电路称为混频电路或变频电路,亦称为混频器或变频器。
一般变频器应由四部分组成,即输入回路、非线性器件、带通滤波器和本机振荡器组成,如图1-1所示,图中本机振荡器用来提供本振信号频率f L。
输入高频调幅波s v,与本振等幅波L v,经过混频后输出中频调幅v。
输出的中频调幅波与输入的高频调幅波的调制规律完全相同。
亦即波i变频前与变频后的频谱结构相同,只是中心频率由f s改变为f i,亦即产生了频谱搬移。
图1-1 晶体管混频器的组成框图混频器工作原理:晶体三极管混频器的原理性电路如图1-2所示,在发射结上作用有三个电压,即直流偏置电压BB v 信号电压s u 和本振电压L u 。
为了减小非线性器件产生的不需要分量,一般情况下,选用本振电压振幅U U SM LM ,也就是本振电压为大信号,而输入信号电压为小信号。
在一个大信号L u 和一个小信号s u 同时作用于非线性器件时,晶体管可近似看成小信号的工作点随大信号变化而变化的线性元件,如图1-5所示。
1t 时刻,在偏压BB v 和本振电压L u 的共同作用下,它的工作点在A 点,此时s u 较小。
因此,对s u 而言,晶体管可以被近似看成工作于线性状态。
9.三极管混频器
晶体管混频器实验——三极管混频器学号:200800120228 姓名:辛义磊 仪器编号:30一、 实验目的1、掌握晶体管混频器的工作原理及其作用2、弄清混频增益、晶体管工作状态及本振电压的关系二、实验仪器双踪示波器数字频率计超高频毫伏表直流稳压电源数字万用表三、实验原理与实验电路晶体管混频原理(1)混频一般工作原理分析 混频的基本功能是保持已调信号的调制规律不变,仅使载波频率升高或降低。
从频谱角度看,混频的实质是将已调信号的频谱沿频率轴做线性搬移,因而混频电路必须由具有乘法作用的非线性器件和中频带通滤波器组成。
设)cos()(t V t V c sm s ω=是输入的已调信号,)cos()(t t V L L ω=是参考信号,亦称本振,则其乘积])cos()[cos(2)(t t V V t V c L c L Lm sm o ωωωω-++=经中频带通滤波器,取出c L ωω+或c L ωω-的频率分量,即完成变频作用。
新的载波频率称为中频。
若取出的频率分量为c L I ωωω-=则输出中频信号为t V t V V t V I c L Lm sm I ωωωcos )cos(2)(Im =-=混频器的主要质量指标之一是混频增益(或混频损耗)。
混频增益是指混频器输出中频信号电压振幅VIm (或功率PI )对输入高频信号电压振幅Vsm (或功率Ps )的比值,用分贝表示,即s I pc sm vc P P V V A lg 20G 或lg 20Im ==在输入信号相同的情况下,分贝数越大,表明混频增益越高,混频器将输入信号变换为输出中频信号的能力越强,接收机的灵敏度越高。
混频损耗是对不具备混频增益的混频器而言的,它定义为在最大功率传输条件下,输入信号功率对输出中频功率的比值,用分贝表示,即I s c P P L lg 10=(2)晶体管混频器原理高频AM 信号经耦合电容C1耦合到混频管的基极;本振信号经耦合电容C3耦合到混频管的发射极。
高频电路课程设计 三极管多谐振荡电路实验报告
成绩华中师范大学武汉传媒学院传媒技术学院课程设计题目高频电路课程设计班级电信B1101班姓名学号三极管多谐振荡电路实验报告一、题目、要求1、题目:2、要求:(1)题目、要求;(2)设计方案;(3)硬件框图;(4)电路原理图及分析;(5)制作及调试;(6)心得体会;二、设计方案电路通电瞬间,两个发光二极管同时开始亮,但是有一个二极管是闪亮瞬间后变为微亮,紧接着熄灭。
另外一个二极管则亮一段时间熄灭,同时之前灭掉的二极管开始点亮并持续一段时间再熄灭,同时另一个二极管点亮……形成交替点亮的循环模式。
三、元件清单1、电阻:R1、R2 (68K)2、电解电容:C1、C2 (100µF)3、发光管:VD1、VD2 (3mm)4、三极管:VT1、VT2 (9014)5、PCB板四、电路原理及分析1、电路原理图:2、电路原理:电路电源接通瞬间,电容对于变化的电压近似看做短路,所以瞬间D1和D2点亮,且电容充电开始时电流大,所以点亮瞬间亮度较大,之后会较暗。
此时三极管VT1和VT2都处于导通状态,电容C1和C2都在进行充电,充电至将近电源电压3V(瞬间),在对电容充电时,B点和D点电势升高,导致两个三极管基极点位升高,虽然两个三极管及其它元件相同,但由于其工艺不可能完全相同,所以,一定有一个三极管初始时间的导电量大,因而这个三极管的集电极电流升高的快,假设VT1初始时间导电量大,此时VT1中集电极电流升高的比VT2集电极电流升高的快,所以VT1集电极电位比VT2集电极电位降低的快,因而A电位降低的快,D电位降低的慢,所以耦合到B点和C点的点位时,B点电位下降的比C点快,导致VT2先进入截止状态,VT1仍处于导通状态,此时,电容C2通过绿色发光二极管D2和VT1的发射结接地充电(此时D2因为VT2截止而不亮,但其仍然导通,因为二极管两端电压只要达到0.7V就导通,只是电压没有达到发光二极管的发光电压)。
电容C1通过电阻R1接电源正极和VT1的ce极接电源负极进行放电,当C1放电完全时,B点电位开始升高使VT2基极点位升高,直到VT2进入导通状态,绿色二极管亮,此时,VT2近似开做是导通状态,C2正极瞬间接低电位(D经VT2ce极接地),D点位瞬间拉低同样耦合到C端点位瞬间拉低,导致VT1基极点位瞬间拉低,VT1进入截止状态,红色二极管灭。
高频电子线路设计(三极管混频器的设计)讲解
通信电子线路课程设计说明书三极管混频器院、部:电气与信息工程学院学生姓名:蔡双指导教师:俞斌职称讲师专业:电子信息工程班级:电子1002完成时间:2012-12-20摘要随着社会的发展,现代化通讯在我们的生活中显得越来越重要。
混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。
要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。
其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
关键词混频器;中频信号;选频回路ABSTRACTWith the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit.Key words mixer;intermediate frequency signal;frequency selective circuit目录1 三极管混频器的设计内容及要求 (1)1.1设计内容 .................................... 错误!未定义书签。
高频课程设计混频器讲解
河南理工大学高频电子线路课程设计报告混频器的设计与应用学号:310608030126姓名:殷旭可专业班级:电信06-1班指导老师:高娜时间: 2009.6.20摘要混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。
移动通信中一次中频和二次中频等。
在发射机中,为了提高发射频率的稳定度,采用多级式发射机。
用一个频率较低石英晶体振荡器做为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
本文通过MC1496构成的混频器来对接收信号进行频率的转换,变成需要的中频信号.目录●摘要 (1)●一.概述 (3)●二. 方案分析 (4)●三.单元电路的工作原理 (6)●1.LC正弦波振荡器 (6)●2.模拟乘法器电路 (7)●3.选频﹑放大电路 (8)●四.电路性能指标的测试 (10)●五.课程设计体会 (12)●参考文献 (13)●附录Ⅰ总电路图 (14)●附录Ⅱ元器件清单 (15)一.概述混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。
直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。
采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。
课程设计-混频器
通信电子线路课程设计说明书三极管混频器院、部:学生姓名:指导教师:职称:专业:班级:完成时间:混频器在现代通信中的应用非常的广泛,融入了人们的生活当中。
是现代通信中一个不可或缺的。
混频器通过改变频率来达到应有的目的,即变频。
本次课程设计采用三级管混频器,电路简单,变频增益高。
输入两个高频信号,通过三极管混频电路和选频回路,最后可以得到一个差频信号。
采用9014三极管,用中周来充当选频回路,本设计结构简单,性能相对较为稳定,成本低,使用滑动变阻器改变静态工作点,使其工作在非线性工作区域,是发射极注入、基极输入式变频电路。
关键词:混频器;三极管;选频Application of mixer in modern communication is very wide, into people's lives. The modern communication is an indispensable. The mixer to achieve the desired objective by changing frequency, variable frequency.This course is designed with three pipe mixer, simple circuit, high conversion gain. Input two high-frequency signal, pipe mixer circuit and frequency selection circuit through the pole, and then we can get a difference frequency signal. The 9014 triode, used in the weeks to act as a frequency selective circuit, this design has the advantages of simple structure, performance is relatively stable, low cost, the use of a sliding rheostat change the static working point, which works in the nonlinear area, is the emitter injection, base input type frequency conversion circuit.Key word: mixer;transistor;frequency目录第一章三极管混频器的设计内容及要求 (1)1.1 设计内容 (1)1.2 设计要求 (1)1.3 混频器工作原理及系统框图 (1)1.4 三极管混频器的设计方案 (3)第二章电路设计及其原理分析 (4)2.1 本地振荡电路 (4)2.2 混频电路 (6)第三章三极管混频器的仿真和调试 (9)3.1 仿真软件介绍 (9)3.2 混频器电路的仿真 (9)3.3 实物调试 (10)3.4 总结 (10)参考文献 (11)致谢 (12)附录 (13)附录 A (13)附录 B (14)附录 C (14)附录 D (15)第一章 三极管混频器的设计内容及要求1.1 设计内容在本次课程设计中采用了Multisim 仿真软件对三极管混频器进行设计及绘制,并模拟仿真。
高频课程设计教案
黄冈职业技术学院机电工程系高频课程设计教案姓名:温锦辉研究室:电子二00八年九月十一日高频课程设计教案项目1:调频发射机电路框图,振荡器电路和变容二极管调频电路工作原理教学目的要求:1、掌握调频发射机电路框图2、掌握高频振荡器与调频电路的设计、装调及主要性能参数的测试3、掌握高频振荡器与调频电路的工作原理,能够画出交流等效电路4、了解高频电路中分布参数的影响及如何正确选择电路的测试点主要教学内容:1、调频发射机电路框图2、高频振荡器与调频电路的工作原理教学重点难点:1、调频发射机组成框图确定振荡器电路,放大(缓冲隔离)电路,甲放丙放的信号流程2、高频振荡器与调频电路的工作原理和交流等效电路3、高频振荡器与调频电路的设计及主要性能参数的测试教学内容:一、小功率调频发射机组成框图从框图可知小功率调频发射机有五部分组成:LC振荡与调频电路,缓冲隔离级,功率激励,末级功放,调制信号。
在该设计中我们采用电容三点式振荡器的改进型电路即西勒电路,变容二极管直接调频电路,共集电极放大电路(射极跟随器),高频宽带功率放大器(工作在甲类状态),高频谐振功率放大器(工作在丙类状态)。
二、LC振荡与调频电路(一)LC振荡电路1、工作原理(电路如图4.2.1所示)电路如图所示,晶体管T组成电容三点式振荡器的改进型电路即克拉泼电路,它被接成共基组态,C B为基极耦合电容,其静态工作点由R B1、R B2、R E和R C所决定,即V BQ = V CC R B2/( R B1+R B2) (1-1)V EQ = V BQ -V BE ≈I CQ R E (1-2) I CQ = (V CC -V CEQ )/(R E +R C ) (1-3) I BQ = I CQ /β (1-4)小功率振荡器的静态工作电流I CQ 一般为(1~4)mA. I CQ 偏大,振荡幅度增加,但波形失真加重,频率稳定性变差.L 1、C 1与C 2、C 3组成并联谐振回路,其中C 3两端的电压构成振荡器的反馈电压V BE ,以满足相位平衡条件∑ϕ=2n π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路课程设计说明书三极管混频器系、部:电气与信息工程系学生姓名:罗佳指导教师:贾雅琼职称讲师专业:电子信息工程班级:电信0901班学号:09400230123完成时间:2011年6月7日摘要混频,又称变频,也是一种频谱的线性搬移过程,它是使信号自某一个频率变换成另一个频率。
完成这种功能的电路称为混频器。
混频技术的应用十分广泛。
混频器是超外差式收音机中的关键部件。
直放式接收机高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大,灵敏度较低。
采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。
因为放大功能主要在中放,可以用良好的滤波电路。
采用超外差接收后,调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号的频率低,性能指标容易得到满足。
混频器在一些发射设备中也是必不可少的。
在频分多址信号的合成、微波接力通信、卫星通信等系统中也有其重要的地位。
此外,混频器也是许多电子设备、测量仪器的重要组成部分。
关键字:信号;频率;混频器ABSTRACTFrequency mixing, say again, is also a kind of variable frequency spectrum of linear moving process, it is to make the signal from a certain frequency conversion to another frequency. Complete the functions of the circuit is called the mixer. Mixing technique used widely. The mixer is the superheterodyne key component. Straight put type small signal detection, high-frequency receivers working frequency variation range, the working frequency of high-frequency channels of influence is bigger, a low sensitiity. Using specialized superheterodyne technology after receiving signal frequency mixing into a fixed frequency, put large basic from receive frequency influence, such, frequency signal within the amplification good consistency, sensitivity can do so tall that selective is better also. Because magnifier function mainly in putting, can use good filter circuits. Using specialized superheterodyne after receipt and easy to adjust, put large, selectivity consists mainly of intermediate frequency part decision, and intermediate frequency is of high frequency signals low frequency, performance index easily be satisfied. The mixer in some launch equipment is also essential. In frequency division multiple access signal synthesis, microwave relay communications, satellite communications, etc system also has its important position. In addition, the mixer is also many electronic equipment, measurement instrument important component.Key words signal;frequency;mixer目录摘要 (1)ABSTRACT (2)1、混频器工作原理及系统框图 (4)2、主要部分电路图及原理分析 (5)2.1本地振荡电路 (5)2.1.1振荡器起振条件 (5)2.1.2电路参数选择及性能分析 (6)2.2变频电路 (7)2.2.1混频原理 (7)2.2.2电路参数选择及性能分析 (9)2.3中频滤波网络 (10)3、仿真及结果................................................................................................................... 错误!未定义书签。
4、心得体会 (14)参考文献 (15)致谢 (16)附图1 总电路图 (17)1、混频器工作原理及系统框图一个实际应用中调幅收音机的混频器电路的主要功能是使信号自某一个频率变换成另外一个频率,实际上是一种频谱线性搬移电路。
它能将高频载波信号或已调波信号进行频率将其变换为某一特定固定频率的信号。
而变换后的信号,它的频谱内部结构和调制类型保持不变,改变的仅仅是信号的载波频率。
混频电路的类型较多,常用的有模拟相乘混频器、二极管平衡混频器、环型混频器、三极管混频器等。
其中三极管混频器最为常用,其工作原理图如图1.1:图 1.1 系统原理图从图中可以看出混频电路主要有三大部分组成:本地振荡器、晶体管变频器电路和中频滤波网络,各个部分独立工作。
本地振荡器产生稳定的振荡信号(设其频率为f)通过晶体管混频电路和输入的高频调幅波信号(设其频率为1f),由于晶体管的非线性特性,两个信号混合后会产生f+1f、0f-1f频率的信号,然后通过中频滤波网络,取出f-1f频率的信号,调节好0f、1f的大小使其差为中频频率,即所需要的中频信号6.455MHZ。
2、主要部分电路图及原理分析2.1本地振荡电路本地振荡器是本设计电路的重要部分,同时也是超外差式接收机的主要部分。
其主要作用是将直流信号变为高频正弦信号,将产生的正弦高频信号与输入的高频调幅信号相乘得到0f +1f 、0f -1f 的信号,其中0f 为正弦信号频率,1f 为调幅信号频率,通过中频滤波器得到中频信号0f -1f 。
即本地振荡器主要是产生一个和调幅信号相乘的高频信号,通过信号相乘以得到新的频率,若振荡器不能够稳定工作,就会使产生的中频信号不稳,为此我们必须保证振荡器的稳定性,故这里采用高稳定度的石英晶体振荡器。
2.1.1振荡器起振条件正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。
反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。
所谓振荡器是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。
负阻式振荡器则是将一个呈现负阻性的有源器件直接与谐振电路相接,产生振荡。
本设计中用的是反馈式振荡器,图2.1所示即为LC 三点式反馈式振荡器的原理图。
通过我们对高频电路的学习知道,三点式振荡器的构成法则是:1X 与2X 的符号相同,与3X 的符号则相反。
凡是违反这一准则的电路不能产生振荡。
图 2.1本振电路原理图2.1.2电路参数选择及性能分析图2 .2本振电路图图2.3 交流等效电路图2.2是本次课设所使用的LC振荡电路,由图中可以看出是并LC振荡电路,其交流等效电路如图2.3所示,由图可知,与晶体管发射极相连电容C4、C5为同性质的电抗;与集电极的C3、C4,基极和C5、L1相连同理其阻抗性质也是相反的,故此振荡器满足振荡条件,其类似于考毕兹振荡电路。
振荡频率公式为:Ct=1/[(1/C3+1/C4+1/C5)]LC f t π21=可通过共识计算可得其振荡频率为:LC f t π21==16..455MHZ电路中其它主要器件的参数如下R1=12K,R2=2K 为基极偏置电阻,用来给给三极管确定一个合适的静态工作点,C 1=300pF 为基极耦合电容,L2=1mH 为扼流圈,防止突变对三极管造成损害,3100R =Ω用来限制射极电流,C 2=1uF 为旁路电容。
R2,R1,R3组成分压电流反馈偏置电路,C 为发射极旁路电容。
C3,C4,C5构成谐振回路。
2.2变频电路变频电路是混频器的核心部件。
变频电路本质上说是实现频谱搬移的电路,是一个六端网络。
它有两个输入电压,输入信号s u 和本地振荡信号l u ,其工作频率分别为c f 和l f ;输出信号为o u ,称为中频信号,其频率是o f ,o f =l c f f ±。
由此可见,变频器在频域上起着(加)减法器的作用。
变频电路有多种形式,如二级管式、模拟乘法器式和三极管式。
本电路采用的是应用最广泛的晶体三极管式变频电路。
2.2.1混频原理图2.4 混频原理图上图即为混频电路原理图,下面对其进行一个简要的分析:设s u 为输入高频调幅波信号,l u 亦为本地振荡器产生的高频振荡信号且 l u ﹥﹥s u ,时变偏置电压2()b b b l E t E u E u =+=+,由此可得集电极电流C i 为 C i ≈()()c o m s I t g t u + 012()(c o s c o s 2)c m o m lmlsI t g g t g t u ωω=++++ Ci 经集电极谐振回路滤波后,得到中频电流o i1111cos()cos 22o m s l c m s o i g U t g U tωωω=-=c o s c o sc s o o o g U t I tωω== 式中c g =112m g 称为变频跨导。
从以上分析结果可以看出:只有时变跨导的基波分量才能产生中频分量,而其它分量会产生本振谐波与信号的组合频率。
变频跨导c g 是变频器的重要参数,它不仅直接决定着变频增益,还影响到变频器的噪声系数。
变频跨导c g =112m g ,1m g 只与晶体管特性、直流工作点及本振电压lU 有关,与s U 无关,故变频跨导亦有上述性质。