浙教版七年级数学下册 4.3 乘法公式分解因式

合集下载

2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版

2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版

4.3 用乘法公式分解因式第1课时用平方差公式分解因式知识点1平方差公式分解因式把乘法公式(a+b)(a-b)=a2-b2反过来,得a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.我们可以运用这个公式对某些多项式进行分解因式,这种方法叫运用平方差公式法.1.把下列多项式分解因式:(1)x2-36;(2)36-25y2;(3)(x+p)2-(x+q)2.一提公因式与平方差公式综合运用把下列各式分解因式:(1)18a2-8b2;(2)a5-81ab4.[归纳总结] (1)用平方差公式分解因式的条件:①二次(能写成平方的形式);②异号.(2)对于多项式中的两部分不是很明显的平方形式,应先变形为平方形式,再运用公式进行因式分解,以免出现16a2-9b2=(16a+9b)·(16a-9b)的错误.(3)还要注意不要出现分解后又乘开的现象.(4)因式分解应遵循:一提二公式.同时因式分解需彻底.二尝试用平方差公式进行简便运算教材作业题第3题变式题用简便方法计算:(1)3142-2142;(2)3.14×752-3.14×252.探究三平方差公式分解因式的应用教材补充题如图4-3-1所示,在半径为R的大圆内部挖去四个半径为r的小圆.(1)用含R,r的式子表示剩余部分的面积S;(2)当R=35 cm,r=12.5 cm时,应用分解因式的知识计算剩余部分的面积(结果保留π).图4-3-1[反思] 判断下列分解因式的过程是否正确,若不正确,请改正.①4a2-1=(4a-1)(4a+1);②(x-y)2-4x2=x2-2xy+y2-4x2=-3x2-2xy+y2.1.下列各式中,不能用平方差公式分解因式的是( )A.-m4-n4B.-16x2+y2C.1.21-a2D.9a2-64b22.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x)C.(9-x)2D.(9+x)(9-x)3.将多项式x3-xy2分解因式,结果正确的是( )A.x(x2-y2) B.x(x-y)2C.x(x+y)2D.x(x+y)(x-y)4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,则这个多项式是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b25.观察下面4个分解因式的过程:(1)(x-3)2-y2=x2-6x+9-y2;(2)a2-4b2=(a+4b)(a-4b);(3)4x6-1=(2x3+1)(2x3-1);(4)m4n2-9=(m2n+3)(m2n-3);(5)-a2-b2=(-a+b)(-a-b).其中正确的有( )A.1个B.2个C.3个D.4个6.某同学粗心大意,在分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题7.xx·嘉兴、舟山分解因式:a2-9=__________.8.xx·长沙分解因式:x2y-4y=________.9.xx·荆门分解因式:(m+1)(m-9)+8m=________.10.xx·株洲因式分解:x2(x-2)-16(x-2)=____________________.11.已知58-1能被20~30之间的两个整数整除,则这两个整数是________.三、解答题12.分解因式:(1)a3-16a;(2)16(a+b)2-9(a-b)2;(3)m4(m-2)+16(2-m).13.用简便方法计算:(1)6.42-3.62;(2)1.42×16-2.22×4.14.设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.n(m>2n)的小正方形.(1)用含m,n的式子表示剩余部分的面积S;(2)当m=13.2厘米,n=3.4厘米时,利用分解因式计算剩余部分的面积.图4-3-2详解详析【预习效果检测】1.解:(1)x2-36=x2-62=(x+6)(x-6).(2)36-25y2=62-(5y)2=(6+5y)(6-5y).(3)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).【重难互动探究】例1[解析] 分解因式时,要先观察多项式,有公因式的要先提取公因式再考虑是否符合公式.解:(1)18a2-8b2=2(9a2-4b2)=2(3a+2b)(3a-2b).(2)a5-81ab4=a(a4-81b4)=a(a2+9b2)(a2-9b2)=a(a2+9b2)(a+3b)(a-3b).例2解:(1)原式=(314+214)×(314-214)=52800.(2)原式=3.14×(752-252)=3.14×(75+25)×(75-25)=15700.例3[解析] 剩余部分的面积为大圆面积减去四个小圆的面积.解:(1)剩余部分的面积为S=πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).(2)当R=35 cm,r=12.5 cm时,S=π(R+2r)(R-2r)=π(35+2×12.5)×(35-2×12.5)=π·60×10=600π(cm2).【课堂总结反思】[反思] 两个均不正确.改正:①4a2-1=(2a)2-12=(2a-1)(2a+1).②(x-y)2-4x2=(x-y)2-(2x)2=(x-y-2x)·(x-y+2x)=-(x+y)(3x-y).【作业高效训练】[课堂达标]1.A 2.B3.[解析] D x3-xy2=x(x2-y2)=x(x+y)(x-y).4.D 5.B 6.B7.[答案] (a+3)(a-3)8.[答案] y(x+2)(x-2)9.[答案] (m-3)(m+3)10.[答案] (x-2)(x-4)(x+4)11.[答案] 26,24[解析] 58-1=(54+1)(52+1)(52-1),因为52+1=26,52-1=24,所以这两个数是26,24. 12.解:(1)原式=a(a+4)(a-4).(2)原式=(7a+b)(a+7b).(3)原式=m4(m-2)-16(m-2)=(m-2)(m4-16)=(m-2)(m2+4)(m2-4)=(m-2)(m2+4)(m+2)(m-2)=(m-2)2(m+2)(m2+4).13.[解析] 利用平方差公式简化计算过程.解:(1)6.42-3.62=(6.4+3.6)(6.4-3.6)=10×2.8=28.(2)1.42×16-2.22×4=(1.4×4)2-(2.2×2)2=5.62-4.42=(5.6+4.4)(5.6-4.4)=10×1.2=12.14.解:原式=(2n+1)2-52=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=4(n+3)(n-2),即(2n+1)2-25能被4整除.[数学活动][解析] 剩余部分的面积为大正方形的面积减去四个小正方形的面积.解:(1)S=m2-4n2=(m+2n)(m-2n).(2)当m=13.2厘米,n=3.4厘米时,S=(m+2n)(m-2n)=(13.2+3.4×2)(13.2-3.4×2)=20×6.4=128(厘米2).所以剩余部分的面积为128平方厘米.。

浙教版七年级下数学因式分解难题

浙教版七年级下数学因式分解难题

一■分式知识要点回顾1.因式分解几中常用方法①提取公因式法。

②乘法公式法:a2-b2二a b a-b ;a2_2ab b2二a_b 2。

③分组分解法:ma mb na nb = m a b n a b j i:a b m n。

④十字相乘法:x2・a・bx・ab=x・ax・b。

2.分式的有关概念A A .C A A 十C(1 )分式的基本性质:一=——C或—= --------- (C M0),其中A , B, C均为整式。

B B *C B B + C(2)分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幕,约去分子和分母系数的最大公约数。

(3)分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。

(4)分式的运算①分式乘法法则: a c•—=ac - 。

b d bd②分式除法法则: a c / d : _ adb d bc bca c a 二c③分式的加减法:(1)同分母分式相加减:;(2)异分母分式相加减:b b ba c ad bc ad 二bc———= 十 = -------------- 。

b 一d bd bd bd3.分式方程(1)定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。

(2)解分式方程。

温馨提示:(1)在方程两边都乘以最简公分母时,切勿漏项;(2)验根是必要步骤。

二•巩固练习1.解下列分式方程‘ 2 小x 1 -x 2x (2)x_2 x -5x 6 x_3 2 -x , 11 -x -3 3 - x2.因式分解2 2a -6ab 12b 9b -4a x2_ 2xy「xz yz y2x2 -7x 6 x2 4x - 523x -11x 10 2x -11x 242 2x y 「3xy 2 2y -12y-282 2 2 x 4 -16xx 2「4xy _1 4y 2o12a b x-y -4ab y-x3.分式的混合运算(a 2-5a 21) 且-b . a? -a+2b‘ a 2+4ab+4 b 2a 1 a 1a —1 a -2a 1 a亠 a 2 -42 2xr. E y _ 2y打如* x2+6xy+9y £ 时卩2x-6 ,4-4x x 2(x 3)x 2 x -6 3—x其中a=1.4. 化简求值2x 2x -8/ X -2 x 4、—2十(x 3 2x xx x 1a 2「5a 6 a 2 -5a 4 a 「3 T—2 2a —16 a -4 a 41 —x 3 (2)x^ g 厂2),其中1 x= . 25•计算2 2x -x_2x x-6X2_X_6 X2X_2的结果是6.当m为非负数时,求代数式———3有最大值还是最小值,并求出此最值。

4.3用乘法公式分解公式(1) 2014浙教版

4.3用乘法公式分解公式(1) 2014浙教版

(4)(x z) ( y z) ( x z) ( y z)( x z) ( y z)
2 2
( x y 2 z)(x y)

参照对象:
a b
2
2
( a b )( a b )
2 2 2 2 (n+2) ( n-3) (2006 2mn) (3 2-2005 2 xy)

例1 把下列各式分解因式:
(1)16a 1 (4a) 1
2
2 2
(4a 1)(4a 1)
(2) m2 n2 4l 2 (2l )2 (mn)2 (2l mn)(2l mn)
9 2 1 4 (3) x y ( 3 x) 2 ( 1 y 2 ) 2 ( 3 x 1 y 2 )( 3 x 1 y 2 ) 25 16 5 4 5 4 5 4
结论:
公式中的a、b无论表示数、单项式、还是多项式, 只要被分解的多项式能转化成平方差的形式,就能用平 方差公式因式分解。

(1) 16a 9b
2
2
(2)
1 2 2 2 a b c 4
2 2
(3) (2n 1) (2n 1)

例2
9991 10000 9 100 3
2
2
(100 3)(100 3)
103 97

说能出你这节课的收获和体验让大家 与你分享吗?

布置作业
1、作业本 2、课后练习

★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边:
(是分解因式的结果)

【最新】浙教版七年级数学下册第四章《4.3用乘法公式分解因式(2)》公开课课件1

【最新】浙教版七年级数学下册第四章《4.3用乘法公式分解因式(2)》公开课课件1

a2 +2ab +b2; a2 - 2ab +b2
2.填写下表(若某一栏不适用,请填入“不适用”)
多项式
x 2 6x 9 4y 2 4y 1
1 4a 2
x2 1x 1 24
1m m2 4
4y2 12xy 9x 2
是否是完全 平方式
是 是 不是 不是


表示成(a+b)2或 (a-b)2的形式
1、用简便方法计算 (1)49.92+9.98 +0.12 (2)9 9992 +19 999 2、因式分解 (1)(4a2+1)2-16a2 (2)(a 2-2)2-4 (a2-2)+4
(1)形如_a__2___2_a__b___b_2___形式的两次三项式
可以用完全平方公式分解因式。
(2)因式分解通常先考虑__提_取__公__因__式__法___方法。 再考虑 公式法 _____________ 方法。 (3)因式分解要__彻__底_____
第4章 因式分解
把下列各式分解因式
(1) - ax4+ax2 (2)16m4-n4 首项有负常提负
各项有公先提公 分解因式要彻底
a2−b2 = (a+b)(a−b)
把下列多项式因式分解:
4a2 +12ab +9b2
如图,用一张正方形纸片甲、两张长方形 纸片乙、一张正方形纸片丙拼成一个大正 方形丁.
(1)用一个多项式
表示图形丁的面积; b 乙

(2)用整式积表示 图丁的面积;
a
(3)根据(1)(2)所得 到的结果,写一个表 示因式分解的等式.


a
b

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)

4.3 用乘法公式分解因式(二)A 组1.填空:(1)分解因式:x 2-4x +4=(x -2)2.(2)分解因式:4a 2-4a +1=(2a -1)2.(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.(4)分解因式:2x 2-4x +2=2(x -1)2.(5)分解因式:x 3+2x 2+x =x(x +1)2.2.下列多项式中,不能用完全平方公式分解因式的是(C )A. m +1+m 24B. -x 2+2xy -y 2C. -a 2+14ab +49b 2D. n 29-23n +1 3.把多项式x 2-6x +9分解因式,结果正确的是(A )A. (x -3)2B. (x -9)2C. (x +3)(x -3)D. (x +9)(x -9)4.分解因式:(1)x 2-x +14. 【解】原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122 =⎝⎛⎭⎪⎫x -122. (2)a 2-12ab +116b 2.【解】原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2 =⎝⎛⎭⎪⎫a -14b 2. (3)9m 2-6mn +n 2.【解】原式=(3m )2-2·(3m )·n +n 2=(3m -n )2.5.把下列各式分解因式:(1)3x 2-12xy +12y 2.【解】原式=3(x 2-4xy +4y 2)=3(x -2y )2.(2)-2x 3+24x 2-72x .【解】原式=-2x (x 2-12x +36)=-2x (x -6)2.(3)(a +b )2-12(a +b )-36.【解】原式=[(a +b )-6]2=(a +b -6)2.(4)2m 2+2m +12. 【解】原式=2⎝⎛⎭⎪⎫m 2+m +14 =2⎝⎛⎭⎪⎫m +122. 6.用简便方法计算:(1)9992+2×999+1.【解】原式=9992+2×999×1+12=(999+1)2=10002=1000000.(2)552-110×45+452.【解】原式=552-2×55×45+452=(55-45)2=102=100.B组7.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为__4__.【解】∵(x2+y2)(x2+y2-2)=8,∴(x2+y2)2-2(x2+y2)=8,(x2+y2)2-2(x2+y2)+1=9,∴(x2+y2-1)2=9,∴x2+y2-1=3或x2+y2-1=-3,∴x2+y2=4或x2+y2=-2.∵x2+y2≥0,∴x2+y2=4.8.分解因式:(1)(a2+1)2-4a2.【解】原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(2)81+x4-18x2.【解】原式=x4-18x2+81=(x 2)2-2·x 2·9+92=(x 2-9)2=[(x +3)(x -3)]2=(x +3)2(x -3)2.9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.【解】x 2+4x +y 2+2y +5=0,x 2+4x +4+y 2+2y +1=0,(x +2)2+(y +1)2=0,∴x +2=0且y +1=0,∴x =-2,y =-1,∴x y =(-2)-1=-12. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.【解】a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2=2×32=18.10.阅读材料,并回答问题:分解因式:x 2-120x +3456.分析:由于常数项数值较大,可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.解:x 2-120x +3456=x 2-2×60x +3600-3600+3456=(x -60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面方法分解因式:x2-16x-561.【解】x2-16x-561=x2-16x+64-64-561=(x-8)2-625=(x-8)2-252=(x-8+25)(x-8-25)=(x+17)(x-33).11.已知(a+2b)2-2a-4b+1=0,求(a+2b)2018的值.【解】∵(a+2b)2-2a-4b+1=0,∴(a+2b)2-2(a+2b)+1=0,∴(a+2b-1)2=0,∴a+2b-1=0,∴a+2b=1,∴(a+2b)2018=12018=1.数学乐园12.阅读材料,并回答问题:分解因式:x4+4.分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了一项4x2组成完全平方公式,然后将4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)·(x2-2x+2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲·热门的做法,将下面各式分解因式:(1)x4+4y4. (2)x2-2ax-b2-2ab.【解】(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2y2+2xy)(x2+2y2-2xy).(2)x2-2ax-b2-2ab=x2-2ax+a2-a2-2ab-b2=(x-a)2-(a+b)2=[(x-a)+(a+b)][(x-a)-(a+b)]=(x+b)(x-2a-b).。

2024年浙教版七年级数学下册全册教案

2024年浙教版七年级数学下册全册教案

2024年浙教版七年级数学下册全册教案一、教学内容1. 第五章:数的运算1.1 实数的性质与运算1.2 代数式的化简与运算1.3 乘法公式与因式分解2. 第六章:方程与不等式2.1 一元一次方程2.2 一元一次不等式2.3 不等式组与不等式应用3. 第七章:图形的初步认识3.1 平面几何图形的性质3.2 线段、射线与直线3.3 角与角的度量4. 第八章:概率与统计4.1 概率的基本概念4.2 统计图与统计表4.3 数据的表示与处理二、教学目标1. 理解并掌握实数的性质与运算,提高运算能力。

2. 学会代数式的化简与运算,掌握乘法公式与因式分解。

3. 能够解决一元一次方程与不等式问题,并运用不等式组解决实际问题。

4. 认识平面几何图形的性质,掌握线段、射线、直线与角的概念。

5. 了解概率与统计的基本概念,学会数据的表示与处理。

三、教学难点与重点1. 教学难点:实数的性质与运算代数式的化简与运算不等式组的解决方法2. 教学重点:乘法公式与因式分解一元一次方程与不等式的解决方法平面几何图形的性质四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、教学课件2. 学具:课本、练习本、直尺、圆规、量角器五、教学过程1. 导入:实践情景引入,如购物时如何计算折扣、计算物品的平均价格等。

2. 新课:按照教材章节,讲解数的运算、方程与不等式、图形的初步认识、概率与统计等内容。

3. 例题讲解:针对每个知识点,给出典型例题进行讲解。

4. 随堂练习:设计与例题类似的练习题,让学生当堂巩固所学知识。

5. 课堂小结:六、板书设计1. 2024年浙教版七年级数学下册全册教案2. 知识点框架:第五章:数的运算第六章:方程与不等式第七章:图形的初步认识第八章:概率与统计七、作业设计1. 作业题目:第五章:数的运算练习题第六章:方程与不等式练习题第七章:图形的初步认识练习题第八章:概率与统计练习题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:布置拓展性作业,如研究性学习、数学阅读等,提高学生的数学素养。

4.3.2 用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

4.3.2 用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

4.3用乘法公式分解因式第2课时用完全平方公式分解因式基础过关全练知识点1完全平方式1.若关于x的多项式x2-4x+a(其中a是常数)是完全平方式,则a的值是()A.2B.-2C.4D.-42.【新独家原创】若关于x的多项式x2+mx+n是完全平方式,则m,n 的值可能是()A.-1,14B.12,14C.14,-14D.-14,143.下列各式中,与2x2-6x的和是完全平方式的是()A.x+9B.3C.9D.9-x2知识点2用完全平方公式分解因式4.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+15.(2022浙江杭州余杭期末)下列因式分解正确的是()A.x2+y2=(x+y)2B.x2+2xy+y2=(x-y)2C.x2+x=x(x-1)D.x2-y2=(x+y)(x-y)6.(2022贵州黔东南中考)分解因式:2 022x2-4 044x+2 022=.7.【一题多变】(2022黑龙江绥化中考)分解因式: (m+n)2-6(m+n)+9=.[变式] 分解因式:19-13(a+b)+14(a+b)2= . 8.【教材变式·P108T5变式】因式分解:(1)m 2-4mn+4n 2; (2)-a+2a 2-a 3;(3)4+12(a-b)+9(a-b)2; (4)(x 2+4)2-16x 2.9.(2021浙江杭州余杭模拟)给出三个多项式:①a 2+3ab-2b 2;②b 2-3ab;③ab+6b 2.请任意选择两个多项式进行加法运算,并把结果分解因式.知识点3 简便运算10.用简便方法计算: 1012+198×101+992.能力提升全练11.下列因式分解正确的是( ) A.ab+ac+a=a(b+c)B.a 2-4b 2=(a+4b)(a-4b)C.9a 2+6a+1=3a(3a+2)D.a 2-4ab+4b 2=(a-2b)212.(2022浙江绍兴柯桥期中,7,)若x 2+2(k+1)x+4是完全平方式,则k 的值为( ) A.1 B.-3 C.-1或3 D.1或-313.把(a+b)2-4(a 2-b 2)+4(a-b)2因式分解为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)214.若ab=2,b-a=3,则-a 3b+2a 2b 2-ab 3的值为 .15.因式分解:a 2-b 2-x 2+y 2-2ay+2bx= .16.【新独家原创】下列单项式:①3x;②-5x;③-154;④-1516x 2;⑤-3x 中,加上x 2-x+4后成为一个完全平方式的有 .(填序号)17.【作差法比大小】已知P=2x2+4y+13,Q=x2-y2+6x-1,试比较P,Q的大小.18.【学科素养·运算能力】(2022浙江杭州外国语学校期中,22,)配方法是一种重要的解决问题的数学方法,它不仅可以将一个看似不能分解的多项式因式分解,还能解决一些与非负数有关的问题或代数式最大值、最小值的问题.请用配方法解决以下问题.(1)试说明:无论x,y取何值,多项式x2+y2-4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足-a2+5a+b-3=0,求a+b的最小值.素养探究全练19.【运算能力】我们知道(x+a)(x+b)=x2+(a+b)x+ab,若将该式从右到左使用,就可得到用“十字相乘法”因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)分解因式:x2+6x+8=(x+)(x+);(2)请用上述方法解方程:x2-3x-4=0.答案全解全析基础过关全练1.C ∵关于x 的多项式x 2-4x+a(其中a 是常数)是完全平方式,∴a=4,故选C.2.A 当m=-1,n=14时,x 2+mx+n=x 2-x+14=(x −12)2,故选A. 3.D (2x 2-6x)+(9-x 2)=2x 2-6x+9-x 2=x 2-6x+9.故选D.4.C 1-4a+4a 2=(1-2a)2,故选C.5.D x 2+y 2不能分解,故A 错误;x 2+2xy+y 2=(x+y)2,故B 错误; x 2+x=x(x+1),故C 错误;x 2-y 2=(x+y)(x-y),故D 正确.故选D.6.答案 2 022(x-1)2解析 原式=2 022(x 2-2x+1)=2 022(x-1)2.7.答案 (m+n-3)2解析 原式=(m+n)2-2·(m+n)·3+32=(m+n-3)2.[变式] 答案 (13−12a −12b)2解析 原式=[13−12(a +b)]2=(13−12a −12b)2. 8.解析 (1)原式=m 2-2·m·2n+(2n)2=(m-2n)2.(2)原式=-a(a 2-2a+1)=-a(a 2-2·a·1+12)=-a(a-1)2.(3)原式=22+2·2·3(a-b)+[3(a-b)]2=[2+3(a-b)]2=(2+3a-3b)2.(4)原式=(x 2+4)2-(4x)2=(x 2+4+4x)(x 2+4-4x)=(x 2+4x+4)(x 2-4x+4)=(x+2)2(x-2)2.9.解析答案不唯一,写出以下任意一个即可.①+②得a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).①+③得a2+3ab-2b2+ab+6b2=a2+4ab+4b2=(a+2b)2.②+③得b2-3ab+ab+6b2=7b2-2ab=b(7b-2a).10.解析1012+198×101+992=1012+2×99×101+992=(101+99)2=2002=40 000.能力提升全练11.D ab+ac+a=a(b+c+1),故A错误;a2-4b2=(a+2b)(a-2b),故B错误; 9a2+6a+1=(3a+1)2,故C错误;a2-4ab+4b2=(a-2b)2,故D正确.故选D.12.D∵x2±2·x·2+22=(x±2)2,∴k+1=±2,∴k=1或-3,故选D.13.C(a+b)2-4(a2-b2)+4(a-b)2=(a+b)2-2×2(a+b)(a-b)+[2(a-b)]2=(a+b-2a+2b)2=(3b-a)2.14.答案-18解析当ab=2,b-a=3时,-a3b+2a2b2-ab3=-ab(a2-2ab+b2)=-ab(b-a)2= -2×32=-18.15.答案(a-y+b-x)(a-y-b+x)解析a2-b2-x2+y2-2ay+2bx=(a2-2ay+y2)-(b2-2bx+x2)=(a-y)2-(b-x)2=(a-y+b-x)(a-y-b+x).16.答案③④⑤解析 ①3x+x 2-x+4=x 2+2x+4,不是完全平方式;②-5x+x 2-x+4=x 2-6x+4,不是完全平方式;③-154+x 2-x+4=x 2-x+14=(x −12)2,是完全平方式; ④-1516x 2+x 2-x+4=116x 2-x+4=(14x −2)2,是完全平方式; ⑤-3x+x 2-x+4=x 2-4x+4=(x-2)2,是完全平方式.综上,满足条件的有③④⑤.故答案为③④⑤.17.解析 ∵P=2x 2+4y+13,Q=x 2-y 2+6x-1,∴P-Q=(2x 2+4y+13)-(x 2-y 2+6x-1)=2x 2+4y+13-x 2+y 2-6x+1=x 2-6x+9+y 2+4y+4+1=(x-3)2+(y+2)2+1>0,∴P>Q.18.解析 (1)x 2+y 2-4x+2y+6=x 2-4x+4+y 2+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1>0,∴无论x,y 取何值,多项式x 2+y 2-4x+2y+6的值总为正数.(2)a 4+a 2+1=a 4+2a 2+1-a 2=(a 2+1)2-a 2=(a 2+a+1)(a 2-a+1).(3)∵-a 2+5a+b-3=0,∴b=a 2-5a+3,∴a+b=a 2-4a+3=(a-2)2-1,∴当a=2时,a+b 有最小值,为-1,∴a+b的最小值为-1.素养探究全练19.解析(1)2;4或4;2.(2)因为x2-3x-4=x2+(1-4)x+1×(-4)=(x-4)·(x+1)=0,所以x-4=0或x+1=0, 所以x=4或x=-1.。

新浙教版七年级数学下册各章知识点汇总

新浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与相交线一、知识结构⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎨⎨⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩⎪⎩同位角相等,两直线平行直线平行的判定内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线直线平行的性质两直线平行,内错角相等平行线与相交线两直线平行,同旁内角互补作一条线段等于已知线段尺规作图作一个角等于已知角相交线:补角、余角、对顶角二、要点诠释1.两条直线的位置关系(1)在同一平面内,两条直线的位置关系只有两种:相交与平行。

(2)平行线:在同一平面内,不相交的两条直线交平行线。

2.几种特殊关系的角(1)余角和补角:①定义:如果两个角的和是直角,称这两个角互为余角;如果两个角的和是平角,称这两个角互为补角。

②性质:同角或等角的余角相等,同角或等角的补角相等。

(2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边的两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角。

①在两条直线同一侧并且在第三条直线的旁边的两个角叫同位角。

②在两条直线之间并且在第三条直线的两旁的两个角叫做内错角。

③在两条直线之间并且在第三条直线的同旁的两个角叫做同旁内角。

三、主要内容(1)平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同一直线的两条直线平行;垂直于同一条直线的两直线平行。

(2)平行线的性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;经过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2.1二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

2.2二元一次方程组由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

浙教版七(下)数学第4章《因式分解》 4.3 用乘法公式分解因式 第1课时校本作业(含答案)

浙教版七(下)数学第4章《因式分解》 4.3 用乘法公式分解因式 第1课时校本作业(含答案)

4.3 用乘法公式分解因式(第1课时)课堂笔记两个数的平方差,等于这两个数的与这两个数的的积. 即a2-b2=(a+b)(a-b). 分层训练A组基础训练1. 下列各式能用平方差公式分解因式的是()A. 2x2+y2B. -x2+y2C. -x2-y2D. x3+(-y)22. 把多项式-4n2+m2分解因式,其结果正确的是()A. (m+2n)(m-2n)B. (m+2n)2C. (m-2n)2D. (2n+m)(2n-m)3. 下列因式分解中,正确的有()①4x2-1=(4x+1)(4x-1)②m2-n2=(m+n)(m-n)③-16+9x2=(4+3x)(-4+3x)④a2+(-b)2=(a+b)(a-b)A. ①②B. ②③C. ③④D. ①④4. 在一个边长为12.75cm的正方形内挖去一个边长为7.25cm的正方形,则剩下部分的面积是()A.11cm2B.20cm2C.110cm2D.200cm25. (金华中考)把代数式2x2-18分解因式,结果正确的是()A. 2(x2-9)B. 2(x-3)2C. 2(x+3)(x-3)D. 2(x+9)(x-9)6. 下列各式不是多项式x3-x的因式的是()A. xB. 3x-1C. x-1D. x+17.小敏是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:乡、爱、我、家、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A. 我爱美B. 家乡游C. 爱我家乡D. 美我家乡8.小华在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,且能利用平方差公式分解因式,他抄到作业本上的式子是x□-4y2(□表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种9. 填空:(1)36x 2y 2-49a 2=( )2-( )2;(2)-4n 2+m 2=( )2-( )2;(3)m 4- =(m 2+5)(m 2- ).10. (杭州中考)若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).11. 已知x +y =2,则x 2-y 2+4y = .12. 分解因式:9x 2(a -b )+y 2(b -a )= .13. 把下列各式分解因式:(1)1-16x 2;(2)-n 2+0.81m 2; (3)925x 2-64y 2;(4)(a +b )2-4; (5)4m 2-(m +n )2. (6)a 4-b 4;(7)x 3y 2-x 3; (8)25(m +n )2-81(m -n )2.14. 用简便方法计算:(1)552- 452; (2)9941×10043;(3)已知a +2b =5,a -2b =3,求5a 2-20b 2的值.B组自主提高15. 两个偶数的平方差,一定是()A. 2B. 4C. 8D. 4的倍数16. 如图,某筑路工程队需要一种空心混凝土管道,它的规格是:内径d=120cm,外径D=150cm,长L=200cm. 利用分解因式计算:浇筑一节这样的管道需要多少立方米的混凝土(π取3.14,结果精确到0.1m3).17. 阅读题:我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1)即1,原式的值不变,而且还使整个算式能运用平方差公式计算,解答过程如下:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=…=264-1.你能用上述方法算出下列式子的值吗?请试试看.(3+1)(32+1)(34+1)(38+1)(316+1).C组综合运用18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.参考答案【课堂笔记】和 差【分层训练】1—6. BABCC 6. B7. C 【点拨】原式=(x 2-y 2)(a 2-b 2)=(x +y )(x -y )(a +b )(a -b ). ∵x +y ,x -y ,a +b ,a -b 四个代数式分别对应我、爱、家、乡,∴结果呈现的密码信息可能是“爱我家乡”.8. D9. (1)6xy 7a (2)m 2n (3)25 510. 答案不唯一,如-1,-4等11. 412. (a -b )(3x +y )(3x -y )13. (1)(1+4x )(1-4x ) (2)(0.9m +n )(0.9m -n )(3)(35x +8y )(35x -8y ) (4)(a +b +2)(a +b -2) (5)(3m +n )(m -n ) (6)(a -b )(a +b )(a 2+b 2)(7)x 3(y +1)(y -1) (8)4(7m -2n )(7n -2m )14. (1)1000 (2)9999167 (3)75 15. D16. 所需混凝土为[π(2D )2-π(2d )2]L =πL (2D -2d )(2D +2d )≈3.14×200(75-60)(75+60)=1271700(cm 3)=1.2717(m 3)≈1.3(m 3). 所以浇筑一节这样的管道需要1.3立方米的混凝土.【点拨】混凝土的立方数即为图中阴影部分的体积,亦即大圆柱体与小圆柱体的体积差.17. 原式=21(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=21(32-1)(32+1)(34+1)(38+1)(316+1)=…=21×(332-1)=21332 . 18. (1)36是“和谐数”,2016不是“和谐数”. 理由如下:36=102-82,2016=1008×2;(2)∵两个连续偶数为2k +2和2k (k 为自然数),∵(2k +2)2-(2k )2=(2k +2+2k )(2k +2-2k )=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22-02)+(42-22)+(62-42)+…+(502-482)=502=2500. 故答案:2500.。

4-3 用乘法公式分解因式(1) 2022—2023学年浙教版数学七年级下册

4-3 用乘法公式分解因式(1)  2022—2023学年浙教版数学七年级下册


解:(1) a表示x, b表示1, x²-1=(x+1)(x-1). (2) a表示m,b表示3, m²-9=(m+3)(m-3). (3) a表示x, b表示2y, x²-4y²=(x+2y)(x-2y).
新知讲解
说一说:利用平方差公式a²-b²=(a+b)(a-b)分解因式的多 项式有什么特征?
4.3用乘法公式分解因式(1)
数学浙教版 七年级下
新知导入
1、说一说提取公因式法的一般步骤? (1)确定应提取的公因式; (2)用公因式去除这个多项式,所得的商作为另一个因式; (3)把多项式写成这两个因式的积的形式. 注意:提取公因式后,应使多项式余下的各项不再含有公因式.
2、说一说添括号法则? (1)括号前面是“+”号,括到括号里的各项都不变号; (2)括号前面是“-”号,括到括号里的各项都变号.
解:7.52π-5.52π =(7.52-5.52)π =(7.5+5.5)(7.5-5.5)π =13×2π =26π
新知讲解
做一做:下列各式能用平方差公式a2-b2=(a+b)(a-b)分解
因式吗?a,b分别表示什么?把下列各式分解因式.
(1) x²-1;
(2) m²-9;
(3) x²-4y².
拓展提高
在日常生活中,如取款、上网需要密码,有一种因式分解法产 生密码,例如x4-y4=(x-y)(x+y)(x2+y2),当x=9,y=9时 ,x-y=0,x+y=18,x2+y2=162,则密码为018162.对于多 项式9y3-x2y,取x=10,y=10,用上述方法产生的密码是 __1_0_4__0_2_0__.(写出一个即可)
C.(2a-1)2

浙教初中数学七下《4.0第4章 因式分解》PPT课件 (3)

浙教初中数学七下《4.0第4章 因式分解》PPT课件 (3)
(2)规律:任意两个奇数的平方差是8的倍数 (3)理由:设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1), 当m,n同是奇数或偶数时,(m-n)一定是偶数,所以4(m-n)一定是8的倍数; 当m,n一奇一偶时,则(m+n+1)一定为偶数,所以4(m+n+1)一定是8的倍数. 所以,任意两奇数的平方差是8的倍数.
①2x2-xy+x=x(2x-y+1);
②x2-4y2=(x+2y)(x-2y);
③x2-3x+2=(x-1)(x-2);
④4x2-4x+1=(2x-1)2.
A.1个
B.2个
C.3个
) D.4个
第4章 因式分解 4.1 因式分解
16.(4 分)下列计算不正确的是( D ) A.642+64×36=64×100=6 400 B.1782-782=(178+78)×(178-78)=256×100=25 600 C.492+49=49×(49+1)=49×50=2 450 D.(912)2-(12)2=(912+12)×(912-12)=81 17.(8 分)计算下列各题,并说说你的算法. (1)99+992; (2)(814)2-(134)2.
(3)-9+4x2=(3+2x)(2x-3);
(4)a2-b2=(a-b)(a+b)
A.1个
B.2个
C.3个
4.3 用乘法公式分解因式 第1课时 用平方差公式分解因式
6.(6分)分解因式: (1)x2-y2=__(x+y)(x-y)__; (2)1-x2=__(1+x)(1-x)__; (3)4-x2=__(2+x)(2-x)__; (4)x2-64=__(x+8)(x-8)__; (5)x2-9=__(x+3)(x-3)__; (6)x2-9y2=__(x+3y)(x-3y)__. 7.(8分)分解因式: (1)x2y-y=__y(x+1)(x-1)__; (2)5x2-20=__5(x+2)(x-2)__; (3)a2b-4b3__b(a+2b)(a-2b)__;(4)ab2-4a=__a(b+2)(b-2)__;

用乘法公式分解因式(分层练习)-2022-2023学年七年级数学下册同步精品课堂(浙教版)

用乘法公式分解因式(分层练习)-2022-2023学年七年级数学下册同步精品课堂(浙教版)

第4章 因式分解4.3 用乘法公式分解因式精选练习(2023春·重庆沙坪坝·八年级重庆八中校考开学考试)1. 下列因式分解正确的是( )A. ()222x xy y x y ++=+ B. ()()25623x x x x --=--C. ()3244x x x x -=- D. ()()22943232m n m n m n -=+-(2023春·七年级课时练习)2. 用分组分解2222a b c bc --+的因式,分组正确的是( )A. ()()222a b b bc --- B. ()2222a b c ab --+C. ()()2222a b c bc --- D. ()2222a b c bc -+-(2023春·广东佛山·七年级佛山市第四中学校联考阶段练习)3. 如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片1张,边长为b 的正方形卡片4张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A. 2+a bB. 4a b +C. 2a b +D. 3a b +(2023春·全国·七年级专题练习)4. 已知2022202020212021202120202022x -=⨯⨯,则x 的值为( )A. 2023B. 2022C. 2021D. 2020(2023秋·山东淄博·八年级统考期末)5. 已知3b a -=,2ab =,计算:22a b ab -等于( )A. 6-B. 6C. 5D. 1-(2023春·七年级课时练习)6. 已知120212022a x =-+,120222022b x =-+,120232022c x =-+,那么,代数式222a b c ab bc ac ++---的值是( )A. 2022-B. 2022C. 3-D. 3(2023秋·广东韶关·八年级统考期末)7. 若+=3,+=1a b x y ,则代数式22+2++2 015a ab b x y --的值是( )A. 2019B. 2017C. 2024D. 2023(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)8. 已知多项式224A x x n =++,多项式222633B x x n =+++.(1)2B A -≥;(2)若A B +=,4A B ⋅=-,则8A B -=-;(3)代数式22591262032A B A B A +-⋅-+的最小值为2023.以上结论正确的个数有( )A. 0个B. 1个C. 2个D. 3个(2022·湖南湘潭·校考一模)9. 分解因式:2288x x -+=_____.(2022秋·河南安阳·八年级统考期末)10. 如图,长与宽分别为a 、b 的长方形,它的周长为14,面积为10,则32232a b a b ab ++的值为________.(2022春·山东青岛·八年级山东省青岛市第五十七中学校考期中)11. 当12s t -=时,代数式22242s st t -+的值为______________.(2023春·全国·七年级专题练习)12. 若2310x x x +++=,则23201920201x x x x x ++++⋯++的值________.(2023春·四川达州·七年级校考阶段练习)13. 阅读材料:对于任何实数,我们规定符号a b c d 的意义是a b ad bc c d=-,例如:121423234=⨯-⨯=-,按照这个规定请你计算:当2440x x -+=时,12123x x x x +--的值是__________.(2023春·江苏·七年级专题练习)14. 阅读材料:根据多项式乘多项式法则,我们很容易计算:()()22356x x x x ++=++;()()21323x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:()()256=23x x x x ++++;()()223=13x x x x --++.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是1=11⨯,常数项()3=13--⨯,一次项系数()2=13-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:()()223=13x x x x --++.利用这种方法,将下列多项式分解因式:(1)2710=x x ++_______________;(2)223=x x --_________________;(3)2712=y y +-_________________;(4)2718=x x -+______________________.(2022春·山东青岛·八年级山东省青岛市第五十七中学校考期中)15. 因式分解:(1)22432a c c ac --+(2)()224216a b b --(2022春·山东青岛·八年级山东省青岛第七中学校考期中)16. 因式分解:(1)22()9()a x yb y x -+-(2)()222224x y x y +-(2023秋·辽宁葫芦岛·八年级统考期末)17. 阅读材料:教科书中提到“222a ab b ++和222a ab b -+这样的式子叫做完全平方式.”有些多项式是完全平方式,我们可以通过添加项,凑成完全平方式,再减去这个添加项,使整个式子的值不变,这样也可以将多项式进行分解,并解决一些最值问题.例如:分解因式:()()()()()22222321412121213x x x x x x x x x --=-+-=--=-+--=+-求代数式223x x --的最小值()2222321414x x x x x --=-+-=--∵()210x -≥,∴当1x =时,代数式223x x --有最小值4-.结合以上材料解决下面的问题:(1)分解因式:267x x --;(2)当a ,b 为何值时,222242023a ab b b -+++有最小值?最小值是多少?(2023秋·重庆黔江·八年级统考期末)18. 阅读与思考:整式乘法与因式分解是方向相反的变形.由()()()2x p x q x p q x pq ++=+++得,()()()2x p q x pq x p x q +++=++;利用这个式子可以将某些二次项系数是1的二次三项式分解因式.例如:将式子256x x ++分解因式.分析:这个式子的常数项623=⨯,一次项系数523=+,所以()22562323x x x x ++=+++⨯.解:()()25623x x x x ++=++.请依照上面的方法,解答下列问题:(1)分解因式:2712x x ++;(2)分解因式:()()222332x x -+--;(3)若28x px +-可分解为两个一次因式的积,请写出整数p 的所有可能的值.(2023秋·云南昆明·八年级统考期末)19. (1)【知识再现】在研究平方差公式时,我们在边长为a 的正方形中剪掉一个边长为b 的小正方形(如图1),把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a ,b 的等式①______.(2)【知识迁移】在边长为a 的正方体上挖去一个边长为b 的小正方体后,余下的部分(如图3)再切割拼成一个几何体(如图4).根据它们的体积关系得到关于a ,b 的等式为②33a b -=______.(结果写成整式的积的形式)(3)【知识运用】已知4a b -=,3ab =,求33a b -的值.(2022春·湖南永州·七年级统考期中)20. 提出问题:你能把多项式256x x ++因式分解吗?探究问题:如图1所示,设a ,b 为常数,由面积相等可得:22()()()x a x b x ax bx ab x a b x ab ++=+++=+++,将该式从右到左使用,就可以对形如2()x a b x ab +++的多项式进行进行因式分解即2()()()x a b x ab x a x b +++=++.观察多项式2()x a b x ab +++的特征是二次项系数为1,常数项为两数之积,一次项为两数之和.解决问题:2256(23)23(3)(2)x x x x x x ++=+++⨯=++运用结论:(1)基础运用:把多项式2524x x --进行因式分解.(2)知识迁移:对于多项式24415x x --进行因式分解还可以这样思考:将二次项24x 分解成图2中的两个2x 的积,再将常数项15-分解成5-与3的乘积,图中的对角线上的乘积的和为4x -,就是24415x x --的一次项,所以有24415(25)(23)x x x x --=-+.这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:231914x x --(2023春·七年级课时练习)21. 将下列多项式因式分解,结果中不含因式(2)x +的是( )A. 224x x +B. 2312x -C. 26x x +- D. 2(2)8(2)16x x -+-+(2023·浙江宁波·校考一模)22. 如果328x ax bx +++能被232x x ++整除,则b a 的值是( )A. 2 B. 12 C.3 D. 13(2023春·全国·七年级专题练习)23. 计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为( ).A. 512 B. 12 C. 712 D. 1130(2023春·新疆乌鲁木齐·八年级乌市八中校考开学考试)24. 已知2211244m n n m +=--,则22m n -的值为( )A. 2- B. 0 C. 1- D. 14-(2023·全国·九年级专题练习)25. 已知当22x m n =++和2x m n =+时,多项式246x x ++的值相等,且20m n -+≠,则当1x m n =++时,多项式246x x ++的值等于( )A. 439 B. 1399 C. 3 D. 11(2023春·七年级单元测试)26. 对于两个整式,22,A a ab B b ab =+=+,有下面四个结论:(1)当2,3a b ==时,A 的值为10;(2)当7,9A m B m =+=-时,则4a b +=;(3)当0A a =≠时,则1a b +=;(4)当248A B b ab -=+时,则2a b =-或6a b =;以上结论正确的有( ).A. 1个B. 2个C. 3个D. 4个(2022秋·北京·八年级校考阶段练习)27. 在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”法生成的密码,方便记忆.如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()0x y -=,()18x y +=,()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式329x xy -,取10x =,1y =时,用上述方法生成的密码可以是( )A. 101001B. 1307C. 1370D. 10137(2022秋·河南周口·八年级校考期末)28. 设m 、n 是实数,定义一种新运算:2()m n m n ⊗=-.下面四个推断正确的是( )A. m n n m⊗=⊗ B. 222()m n m n ⊗=⊗C. ()()m n p m n p ⊗⊗=⊗⊗ D. ()()()m n p m n m p ⊗-=⊗-⊗(2023·陕西渭南·统考一模)29. 因式分解:22x y y xy +-=________.(2023春·浙江·七年级专题练习)30. 利用配方法因式分解:22232a a a a +-=++______()2414a -=+-=______;(2023春·广东深圳·七年级坪山中学校考阶段练习)31. 已知12a a +=-,则441a a-的值是_____.(2023春·八年级课时练习)32. 已知2217m m +=(0m >),则代数式326103m m m -++=_____.(2023春·八年级课时练习)33. 若a 、b 是ABC 的两条边的长度,且满足226825a b a b +--=-,则ABC 面积的最大值是__________.(2022秋·全国·八年级专题练习)34. 阅读下面材料:分解因式:2232453x xy y x y +++++.因为()()22322x xy y x y x y ++=++,设()()22324532x xy y x y x y m x y n +++++=++++.比较系数得,425m n m n +=+=,.解得13m n ==,.所以()()2232453123x xy y x y x y x y +++++=++++.解答下面问题:在有理数范围内,分解因式2222111343x xy y x y ---+-=________.(2023春·浙江·七年级专题练习)35. 分解因式:(1)264a bc ab-(2)333x x -+(2023秋·辽宁沈阳·八年级校考期末)36. 因式分解(1)()()2294a x y b y x -+-(2)()2222214x y x y +-(2023·河北石家庄·统考一模)37. 发现:若两个已知正整数之差为奇数,则它们的平方差为奇数?若两个已知正整数之差为偶数,则它们的平方差为偶数.验证:如()22232+-=______________,()22343+-=______________.探究:设“发现”中的两个已知正整数为n ,n m +(两数之差为m ).请论证“发现”中的结论的正确性.(2023秋·吉林长春·八年级统考期末)38. 如图,将一张长方形大铁皮切割成九块(切痕为虚线),其中有两块是边长都为cm a 的大正方形,两块是边长都为cm b 的小正方形,五块是长为cm a 、宽为cm b 的小长方形.(1)这张长方形大铁皮的长为____cm ,宽为_____cm ;(用含a 、b 的代数式表示)(2)求这张长方形大铁皮的面积S ;(用含a 、b 的代数式表示)(3)若一个小长方形的周长为22cm ,一个大正方形与一个小正方形的面积之差为233cm ,求a 、b 的值,并求这张长方形大铁皮的面积S .(2023春·七年级课时练习)39. 把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法叫做配方法.配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例如:①用配方法因式分解:268a a ++.原式()()()()()2269131313124a a a a a a a =++-=+-=+-++=++②若222222M a ab b b =-+-+,利用配方法求M 的最小值:()()22222222222221111a ab b b a ab b b b a b b -+-+=-++-++=-+-+∵()20a b -≥,()210b -≥,∴当1a b ==时,M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:24a a ++______.(2)若231M a a =-+,求M 的最小值.(3)已知2222246130a b c ab b c ++---+=,求a b c ++的值.(2023秋·吉林长春·八年级统考期末)40. 我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到()()22232a b a b a ab b ++=++.请回答下列问题:(1)写出图②中所表示的数学等式______;(2)猜测()2a b c d +++=______.(3)利用(1)中得到的结论,解决下面的问题:已知12a b c ++=,48ab bc ca ++=,求222a b c ++的值;(4)在(3)的条件下,若a 、b 、c 分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.第4章 因式分解4.3 用乘法公式分解因式精选练习(2023春·重庆沙坪坝·八年级重庆八中校考开学考试)【1题答案】【答案】D【解析】【分析】根据因式分解的方法进行逐一判断即可.【详解】解:A 、22x xy y ++不能进行因式分解,不符合题意;B 、()()25661x x x x --=-+,原因式分解错误,不符合题意;C 、()()()324422x x x x x x x -=-=+-,原因式分解错误,不符合题意;D 、()()22943232m n m n m n -=+-,因式分解正确,符合题意;故选D .【点睛】本题主要考查了因式分解,熟知因式分解的方法是解题的关键.(2023春·七年级课时练习)【2题答案】【答案】D【解析】【分析】把二、三、四项作为一组,第一项作为一组,然后根据完全平方公式和平方差公式分解即可.【详解】解:2222a b c bc--+()2222a b c bc =-+-()22a b c =--()()a b c a b c =+--+.故选:D .【点睛】本题考查了分组分解法分解因式,正确分组是解答本题的关键.(2023春·广东佛山·七年级佛山市第四中学校联考阶段练习)【3题答案】【答案】A【解析】【分析】计算大正方形的面积,因式分解即可得到边长.【详解】解:大正方形的面积为()222442a b ab a b ++=+,∴大正方形的边长为2+a b ,故选:A .【点睛】此题考查了因式分解的应用,正确理解题意列得面积进行因式分解是解题的关键.(2023春·全国·七年级专题练习)【4题答案】【答案】D【解析】【分析】原式先提取公因式,再运用平方差公式进行计算即可求解.【详解】解:2022202020212021- ()20202202120211=⨯-()()202020212021120211=⨯+⨯-2020202220212020=⨯⨯,又2022202020212021202220212020x -=⨯⨯ ,2020202220212020202220212020x ∴⨯⨯=⨯⨯,2020x ∴=.故选:D .【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.(2023秋·山东淄博·八年级统考期末)【答案】A【解析】【分析】先提取公因式ab ,再化为()ab b a --,再整体代入求值即可.【详解】解:∵3b a -=,2ab =,∴()()22236a b ab ab a b ab b a -=-=--=-⨯=-,故选:A【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“提公因式分解因式”是解本题的关键.(2023春·七年级课时练习)【6题答案】【答案】D【解析】【分析】先求解1a b -=-,1b c -=-,2a c -=-,再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦,再代入求值即可.【详解】解:∵120212022a x =-+,120222022b x =-+,120232022c x =-+,∴1a b -=-,1b c -=-,2a c -=-,∴222a b c ab bc ac++---()=++---22212222222a b c ab bc ac ()()()22212a b b c a c =-+-+-⎡⎤⎣⎦ ()11142=++ 3=;故选D .【点睛】本题考查的是利用完全平方公式分解因式,因式分解的应用,求解代数式的值,掌握“完全平方公式的应用”是解本题的关键.(2023秋·广东韶关·八年级统考期末)【答案】D【解析】【分析】把所给代数式变形后把+=3,+=1a b x y 代入计算即可.【详解】解:∵+=3,+=1a b x y ,∴22+2++2 015a ab b x y --()()2+2 015a b x y =+-+231+2 015=-2023=.故选D .【点睛】此题考查了因式分解的应用,代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)【8题答案】【答案】C【解析】【分析】(1)把A ,B 代入化简后,根据完全平方公式变形为()()221111x n ++++≥,故(1)错误;(2)根据完全平方公式的变形可得8A B -=±,再由1B A -≥,可得8A B -=-,故(2)正确;(3)根据完全平方公式变形为()()2223320232023A B A -+-+≥,故(3)正确,即可.【详解】解:(1)()()222226334x x n B A x x n +++--+=+222226334x x n x x n =--+-++222223x x n n +++=+22221211x x n n +++++=+()()22111x n +++=+1≥,故(1)错误;(2)∵A B +=,∴()248A B +=,即22248A AB B +⋅+=∵4A B ⋅=-,∴2256A B +=,∴()222264A B A A B B -=-⋅+=,∴8A B -=±,∵1B A -≥,∴0A B -<,∴8A B -=-,故(2)正确;(3)22591262032A B A B A +-⋅-+2224129692023A AB B A A =-⋅++-++()()222332023A B A =-+-+2023≥,故(3)正确;故选:C【点睛】本题主要考查了完全平方公式的变形及其应用,熟练掌握完全平方公式的特征是解题的关键.(2022·湖南湘潭·校考一模)【9题答案】【答案】()222x -【解析】【分析】先提取公因式2,再利用完全平方公式分解因式即可.【详解】解:原式()2244x x -=+()222x =-.故答案为:()222x -.【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解题的关键.(2022秋·河南安阳·八年级统考期末)【10题答案】【答案】490【解析】【分析】利用面积公式得到10ab =,由周长公式得到7a b +=,所以将原式因式分解得出()2ab a b +.将其代入求值即可.【详解】解:∵长与宽分别为a 、b 的长方形,它的周长为14,面积为10,∴10,7ab a b =+=,∴()()2322322222107490a b a b ab ab a ab b ab a b ++=++=+=⨯=.故答案为:490【点睛】此题考查了因式分解的应用,熟记公式结构正确将原式分解因式是解题的关键.(2022春·山东青岛·八年级山东省青岛市第五十七中学校考期中)【11题答案】【答案】12【解析】【分析】将所求式子因式分解,再整体代入计算即可.【详解】解:∵12s t -=,∴22242s st t -+()2222s st t =-+()22s t =-2122⎛⎫=⨯ ⎪⎝⎭12=故答案为:12.【点睛】此题主要考查了代数式求值,因式分解,正确将原式变形得出是解题关键.(2023春·全国·七年级专题练习)【12题答案】【答案】1【解析】【分析】对所求代数式每相邻四项为一组提取公因式,然后代入已知条件式进行求解即可.【详解】解:2310x x x +++= ,∴原式()()()234567820172018201920201x x x x x x x x x x x x =+++++++++⋯++++()()()235232017231111x x x x x x x x x x x x =+++++++++⋯++++1000=+++⋯+1=.故答案为:1.【点睛】本题主要考查了因式分解的应用,解答本题的关键是把原式每相邻的四项提取公因式,此题难度不大.(2023春·四川达州·七年级校考阶段练习)【13题答案】【答案】1-【解析】【分析】根据:2440x x -+=时,可得:2(2)0x -=,据此求出x 的值是多少,进而求出12123x x x x +--的值是多少即可.【详解】解:2440x x -+= 时,2(2)0x ∴-=,20x ∴-=,解得2x =,∴12123x xx x +--3411=3141=⨯-⨯34=-1=-故答案为:1-.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2023春·江苏·七年级专题练习)【14题答案】【答案】 ①. ()()25x x ++ ②. ()()31x x -+ ③.()()34y y -- ④. ()()92x x +-【解析】【分析】根据题意,(1)将式子2710x x ++分解因式,这个式子的二次项系数是1=11⨯,常数项10=25⨯,一次项系数7=25+;(2)将式子223x x --分解因式,这个式子的二次项系数是1=11⨯,常数项()3=13-⨯-,一次项系数()2=1+3--;(3)将式子2712y y -+分解因式,这个式子的二次项系数是1=11⨯,常数项()()12=34-⨯-,一次项系数()7=3+4---;(4)将式子2718x x +-分解因式,这个式子的二次项系数是1=11⨯,常数项()18=29--⨯,一次项系数7=2+9-.【详解】(1)将式子2710x x ++分解因式,这个式子的二次项系数是1=11⨯,常数项10=25⨯,一次项系数7=25+,∴()()2710=25x x x x ++++.(2)将式子223x x --分解因式,这个式子的二次项系数是1=11⨯,常数项()3=13-⨯-,一次项系数()2=1+3--,∴()()223=31x x x x ---+.(3)将式子2712y y -+分解因式,这个式子的二次项系数是1=11⨯,常数项()()12=34-⨯-,一次项系数()7=3+4---,∴()()2712=34y y y y +---.(4)将式子2718x x +-分解因式,这个式子的二次项系数是1=11⨯,常数项()18=29--⨯,一次项系数7=2+9-,∴()()2718=92x x x x -++-.故答案为:(1)()()25x x ++,(2)()()31x x -+,(3)()()34y y --,(4)()()92x x +-.【点睛】本题主要考查了因式分解-十字相乘法,根据题意可知a 、b 是相互独立的,利用多项式相乘法则计算,再根据对应系数相等即可求出a 、b 的值是解题的关键.(2022春·山东青岛·八年级山东省青岛市第五十七中学校考期中)【15题答案】【答案】(1)()22c a c --(2)()44a a b -【解析】【分析】(1)先提公因式,再利用完全平方公式分解;(2)先提公因式,再利用平方差公式分解.【小问1详解】解:22432a c c ac --+()2222c a c ac =-+-()22c a c =--;【小问2详解】()224216a b b --()22424a b b ⎡⎤=--⎣⎦()()42222a b b a b b =-+--()44a a b =-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.(2022春·山东青岛·八年级山东省青岛第七中学校考期中)【16题答案】【答案】(1)()()()33x y a b a b -+-(2)()()22x y x y +-【解析】【分析】(1)先提公因式()x y -,然后根据平方差公式进行计算即可求解;(2)先根据完全平方公式展开,然后根据完全平方公式与平方差公式因式分解即可求解.【小问1详解】解:22()9()a x y b y x -+-()()229x y a b =--()()()33x y a b a b =-+-;【小问2详解】解:()222224x y x y +-42242224x x y y x y =++-()222x y =-()()22x y x y =+-.【点睛】本题考查了因式分解,掌握因式分解的方法以及乘法公式是解题的关键.(2023秋·辽宁葫芦岛·八年级统考期末)【17题答案】【答案】(1)()()17+-x x ;(2)2a b ==-时,最小值为2019.【解析】【分析】(1)将多项式加9再减9,利用配方法可得;(2)将多项式配方后可得结论.【小问1详解】解:267x x --26916x x =-+-()2234x =--()()3434x x =-+--()()17x x =+-;【小问2详解】解:222242023a ab b b -+++2222442019a ab b b b =-+++++()()2222019a b b =-+++,∵()20a b -≥,()220b +≥,∴当0a b -=,20b +=,即2a b ==-时,原代数式有最小值,最小值为2019.【点睛】本题主要考查了配方法的应用,非负数的性质,将多项式配方,再利用非负数的性质解答是解题的关键.(2023秋·重庆黔江·八年级统考期末)【18题答案】【答案】(1)()()34++x x(2)()()()()2211x x x x +-+-(3)7±,2±【解析】【分析】(1)利用十字相乘法分解因式即可;(2)将23x -看作整体,利用十字相乘法分解,再利用平方差公式分解可得;(3)找出所求满足题意p 的值即可.【小问1详解】解:()()271234x x x x ++=++【小问2详解】解:原式()()223132x x =---+()()2241x x =--()()()()2211x x x x =+-+-;【小问3详解】解:若28x px +-可分解为两个一次因式的积,则整数p 的所有可能的值是:817-+=-;187-+=;242-+=;422-+=-,即整数p 的所有可能的值是:7±,2±.【点睛】此题考查了因式分解——十字相乘法,弄清题中的分解因式方法是解本题的关键.(2023秋·云南昆明·八年级统考期末)【19题答案】【答案】【知识再现】()()22a b a b a b -=+-;【知识迁移】()()22a b a ab b -++;【知识运用】100.【解析】【分析】(1)由题意可知,图1 阴影面积为大正方形面积减小正方形面积,图2剪拼后一个长方形长为()a b +,宽为()a b -,据此列等式即可得到答案;(2)由题意可知,图3的体积为大正方形体积减小正方形体积,图4切割拼成的几何体正面面积为()22a ab b ++,高为()a b -,据此列等式即可得到答案;(3)先利用完全平方公式求出2222a b +=,再根据结论对33a b -进行变形,即可计算求值.【详解】(1)【知识再现】解:根据题意可得:()()22a b a b a b -=+-,故答案为:()()22a b a b a b -=+-;(2)【知识迁移】解:根据题意可得:()()3322a b a b a ab b -=-++,故答案为:()()22a b a ab b -++;(3)【知识运用】4a b -= ,3ab =,()222216622a b a b ab ∴+=-+=+=,()()()33224223425100a b a b a ab b ∴-=-++=⨯+=⨯=.【点睛】本题考查了因式分解的应用,利用数形结合的方法解决问题是解题关键.(2022春·湖南永州·七年级统考期中)【20题答案】【答案】(1)()()83x x -+(2)327()()x x +-【解析】【分析】(1)把24-拆成83-⨯即可;(2)把23x 拆成3x x ⋅,把-14拆成()27⨯-即可.【小问1详解】解:()()2524 83x x x x --=-+;【小问2详解】解:231914(32)(7)x x x x --=+-.【点睛】本题属于阅读理解题型,考查了因式分解的十字相乘法,解题关键是掌握十字相乘法的运算规律.(2023春·七年级课时练习)【21题答案】【答案】C【解析】【分析】将四个选项的式子分别进行因式分解,即可作出判断.【详解】A 、2242(2)x x x x +=+,故该选项不符合题意;B 、223123(4)3(2)(2)x x x x -=-=+-,故该选项不符合题意;C 、26(2)(3)x x x x +-=-+,故该选项符合题意;D 、()()222(2)8(2)16242x x x x -+-+=-+=+,故该选项不符合题意.故选:C .【点睛】本题考查了因式分解,涉及提公因式法、公式法、十字相乘法,熟练掌握因式分解的方法是解决本题的关键.(2023·浙江宁波·校考一模)【22题答案】【答案】A【解析】【分析】先把232x x ++因式分解为(2)(1)x x ++,找到进而得到21--,是方程328=0x ax bx +++的根,代入整理得2b a =,计算即可解题.【详解】解:∵232=(2)(1)x x x x ++++∴328x ax bx +++能被(2)(1)x x ++整除,即21--,是方程328=0x ax bx +++的根,∴84280180a b a b -+-+=⎧⎨-+-+=⎩,解得20a b -=,∴2b a =,∴=2b a,故选A .【点睛】本题考查整除问题,转化为求方程的解是解题的关键.(2023春·全国·七年级专题练习)【23题答案】【答案】C【解析】【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯,712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.(2023春·新疆乌鲁木齐·八年级乌市八中校考开学考试)【24题答案】【答案】A【解析】【分析】首先根据2211244m n n m +=--,可得:()()2222m n ++-=0,据此求出m 、n 的值各是多少,然后代入即可.【详解】解:2211244m n n m +=-- ,22448m n n m ∴+--=,()()2244440m m n n +-∴+++=,()()22220m n ∴++-=,20m ∴+=,20n -=,解得:2m =-,2n =,22m n∴-11=--2=-.故选:A .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,熟练掌握解题的方法是解题的关键.(2023·全国·九年级专题练习)【25题答案】【答案】C【解析】【分析】根据22x m n =++和2x m n =+时,多项式246x x ++的值相等,得到20m n -+=或20m n ++=,由20m n -+≠,得到20m n ++=,推出=1x -,即可得解.【详解】∵22x m n =++和2x m n =+时,多项式246x x ++的值相等,∴()()()()222242262426m n m n m n m n ++++++=++++,∴()()222422m n m n ++=++,∴()()2202422m n m n +-++=+∴()()242224220m n m n m n m n +++++++---=,即:()()3220m n m n ++-+=,∴20m n -+=或20m n ++=,∵20m n -+≠,∴20m n ++=,当1x m n =++时,=1x -,∴()()224614163x x ++=-+⨯-+=;故选C .【点睛】本题考查代数式求值.解题的关键是利用整体思想,求出x 的值.(2023春·七年级单元测试)【26题答案】【答案】C【解析】【分析】将2,3a b ==代入代数式即可判断(1)计算()2A B a b +=+,又16A B +=根据平方根的定义即可判(2),利用因式分解即可判断(3)(4).【详解】解:22,A a ab B b ab=+=+(1)当2,3a b ==时,A =2222310a ab +=+⨯=,故(1)正确;(2)∵()222A B a ab ab b a b +=+++=+又当7,9A m B m =+=-时,16A B +=∴4a b +=±,故(2)不正确(3)∵()2A a ab a a b =+=+,当0A a =≠时,则1a b +=;故(3)正确(4)∵222244434A B a ab b ab a ab b -=+--=--当248A B b ab -=+时,则222348a ab b b ab--=+∴224120a ab b --=即()()260a b a b +-=∴2a b =-或6a b =,故(4)正确;故选:C .【点睛】本题考查了代数式求值,因式分解的应用,整式的加减,正确的计算是解题的关键.(2022秋·北京·八年级校考阶段练习)【27题答案】【答案】D【解析】【分析】首先对多项式提公因式,再利用平方差公式分解因式,然后把数值代入计算,即可确定出密码.【详解】解:329x xy -()229x x y =-()()33x x y x y =+-,当10x =,1y =时,10x =,310313x y +=+=,31037x y -=-=,∴上述方法生成的密码可以是10137.故选:D【点睛】本题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出产生密码的方法是解本题的关键.(2022秋·河南周口·八年级校考期末)【28题答案】【答案】A【解析】【分析】各式利用题中的新定义判断即可.【详解】解:根据题中的新定义得:A .()2m n m n ⊗=-,()2n m n m ⊗=-,故推断正确;B .()()2242()m n m n m n ⎡⎤⊗=-=-⎣⎦,()()()()()22222222m n m n m m m n m n n n =-=+-=+-⎡⎤⎣⎦⊗,故推断不正确;C .()()222()m n p m n p m n p ⎡⎤⊗⊗=-⊗=--⎣⎦,()()222()m n p m n p m n p ⎡⎤⊗⊗=⊗-=--⎣⎦,故推断不正确;D .()()22()m n p m n p m n p ⊗-=--=-+⎡⎤⎣⎦,()()()()()()()()22()()2m n m p m n m p m n m p m n m p m n p p n ⊗-⊗=---=-+----=---⎡⎤⎡⎤⎣⎦⎣⎦,故推断不正确.故选:A .【点睛】此题考查了整式的运算和因式分解,弄清题中的新定义是解本题的关键.(2023·陕西渭南·统考一模)【29题答案】【答案】()21y x -【解析】【分析】先提取公因式,再根据完全平方公式进行因式分解.【详解】解:()()2222211x y y xy y x x y x +-=-+=-,故答案为:()21y x -.【点睛】本题考查了综合提公因式和公式法分解因式,正确运用完全平方公式分解因式是解题关键.(2023春·浙江·七年级专题练习)【30题答案】【答案】①. 1 ②. ()()31a a +-【解析】【分析】利用完全平方公式和平方差公式求解即可.【详解】解:223a a +-2214a a =++-()214a =+-()()1212a a =+++-()()31a a =+-,故答案为:1;()()31a a +-.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式和平方差公式是解题的关键.(2023春·广东深圳·七年级坪山中学校考阶段练习)【31题答案】【答案】0【解析】【分析】利用完全平方公式进行计算即可求得221a a +和1a a -的值,再将441a a-利用平方差公式进行因式分解,即可求解.【详解】解: 12a a +=-,2221124a a a a ⎛⎫∴+=++= ⎪⎝⎭,2212a a ∴+=,又 222112a a a a ⎛⎫-=+- ⎪⎝⎭,210a a ⎛⎫∴-= ⎪⎝⎭,10a a ∴-=.422242*********a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+-=++-= ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∴.故答案为:0.【点睛】本题考查了代数式求值,因式分解,解题的关键是灵活运用完全平方公式和平方差公式,注意整体带入的思想.(2023春·八年级课时练习)【32题答案】【答案】6【解析】【分析】先将2217m m +=变形为219⎛⎫+= ⎪⎝⎭m m ,再根据0m >得出13m m +=即231m m -=-,最后对326103m m m -++进行因式分解即可求解.【详解】解:∵2217m m +=,∴221272m m ++=+,∴219⎛⎫+= ⎪⎝⎭m m ,∵0m >,∴13m m+=,∴231m m -=-,∵326103m m m -++3223393m m m m m =--+++()()()23333m m m m m =---++()()()2333m m m m =--++()()313m m =-⨯-++33m m =-+++6=,故答案为:6.【点睛】本题主要考查了完全平方公式及因式分解,掌握完全平方公式及因式分解的方法是解题的关键.(2023春·八年级课时练习)【33题答案】【答案】6【解析】【分析】利用因式分解得到()()22340a b -+-=,利用非负性,求出,a b 的值,再根据两条边互相垂直时,三角形的面积最大,进行求解即可.【详解】解:∵226825a b a b +--=-,∴2268250a b a b +--+=∴()()22340a b -+-=,∵()()2200,34a b ≥--≥,∴30,40a b -=-=,∴3,4a b ==,设:,AC b BC a ==,∵直角三角形的斜边大于直角边,∴BC 边上高AC ≤,∴当AC BC ⊥时,ABC 的面积最大,最大值为1134622ab =⨯⨯=;故答案为:6.【点睛】本题考查因式分解的应用,以及非负性.熟练掌握因式分解的方法,以及非负数的和为0,每一个非负数均为0,是解题的关键.(2022秋·全国·八年级专题练习)【34题答案】【答案】()()23111x y x y +--+【解析】【分析】先用十字相乘法分解因式得到()()2222111211x xy y x y x y --=+-,再设()()2222111343211x xy y x y x y m x y n ---+-=++-+,比较系数得到211134m n m n +=--+=,,解方程组即可求解.【详解】解:∵()()2222111211x xy y x y x y --=+-,设 ()()2222111343211x xy y x y x y m x y n ---+-=++-+,比较系数得,211134m n m n +=--+=,,解得31m n =-=,,∴()()222211134323111x xy y x y x y x y ---+-=+--+,故答案为:()()23111x y x y +--+.【点睛】本题考查分组分解法分解因式,十字相乘法分解因式等知识,是重要考点,掌握相关知识是解题关键.(2023春·浙江·七年级专题练习)【35题答案】【答案】(1)2(32)ab ac -(2)3(1)(1)x x x +-【解析】【分析】(1)用提公因式法因式分解即可;(2)先用提公因式,再根据平方差公式分解因式即可.【小问1详解】264a bc ab-解:原式2(32)ab ac =-【小问2详解】333x x -+解:原式23(1)x x =-3(1)(1)x x x =+-【点睛】本题考查了提公因式法因式分解,公式法因式分解,掌握因式分解的方法是解题的关键.(2023秋·辽宁沈阳·八年级校考期末)【36题答案】【答案】(1)()()()3232a b a b x y +--(2)()()2211xy xy -+【解析】【分析】(1)先提取公因式()x y -,然后利用平方差公式分解因式即可;(2)先利用平方差公式分解因式,再利用完全平方公式分解因式即可.【小问1详解】解:()()2294a x y b y x -+-()()2294a x y b x y =---()()2294a b x y =--()()()3232a b a b x y =+--;【小问2详解】解:()2222214x y x y +-()()22221212x y xy x y xy =+++-()()2211xy xy =-+.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.(2023·河北石家庄·统考一模)【37题答案】【答案】验证:21,40;探究:见解析【解析】【分析】验证:;根据算式计算出结果即可;探究:根据完全平方公式,合并同类项法则计算,再分解因式即可求解;【详解】解:验证:()22222325225421+-=-=-=;()22223437349940+-=-=-=;故答案为:21,40探究:()22n m n +-()2222222n nm m n nm m m n m =++-=+=+当m 为奇数时,2n 为偶数,则2n m +为奇数,所以()2m n m +为奇数;当m 为偶数时,2n 为偶数,则2n m +为偶数,所以()2m n m +为偶数;【点睛】本题考查了完全平方公式的计算,解答本题的关键是明确题意,找出题目中的式子的规律,写出相应的结论并进行验证.(2023秋·吉林长春·八年级统考期末)【38题答案】【答案】(1)()2a b +,()2b a +(2)22252a ab b ++(3)7a =,4b =,2270cm 【解析】【分析】(1)根据图形可知张长方形大铁皮长为(2)cm a b +,宽为(2)cm a b +;(2)根据长方形面积公式即可求出面积表达式;(3)根据题意列出方程,联立求值.【小问1详解】解:这张长方形大铁皮长为(2)a b +厘米,宽为(2)b a +厘米;故答案为:(2)a b +,(2)b a +;【小问2详解】根据题意得:2222(2)(2)422252a b b a ab a b ab a ab b ++=+++=++(平方厘米);【小问3详解】根据题意得:2()22a b +=,2233a b -=,整理得:11a b +=,()()33a b a b +-=,解得:3a b -=,7a ∴=,4b =,225221409832270ab a b ∴++=++=,则这张长方形大铁皮的面积为270平方厘米.【点睛】本题考查了列代数式以及整式的混合运算,解答本题的关键是理解题意,列出等式方程.(2023春·七年级课时练习)【39题答案】【答案】(1)4。

说题课件(绝对原创)

说题课件(绝对原创)

1.图中的虚线网格我们称之为正三角形网格,它 的每一个小三角形都是边长为1个单位长度的正三 角形,这样的三角形称为单位正三角形。
(1)直接写出单位正三角形的高与面积; (2)图①中的□ABCD含有多少个单位正三角 形?□ABCD的面积是多少? (3)求出图①中线段AC的长(可作辅助线); (4)求出图②中四边形EFGH的面积。
(1)请写出图(3)所表示的代数恒等式:
(2a+b)(a+2b)=2a2+5ab+2b2 (2)试画一个几何图形,使它的面积表示: (a+b)(a+3b)=a2+4ab+3b2; (3)请仿照上述方法另写一个含有a,b的代数恒等式, 并画出与它对应的几何图形.
引申:
1.网格中的操作题 (1)(2012南昌)如图,有两个边长为2的正方形,将其中 一个正方形沿对角线剪开成两个全等的等腰直角三角形,用 这三个图片分别在网格备用图的基础上(只要再补出两个等 腰直角三角形即可),分别拼出一个三角形、一个四边形、 一个五边形、一个六边形.
b ①
b 图4 ②
a
a
拼法三:将图(3)沿虚线剪下来恰好有拼成一个平行 四边形如图(6)所示,底边长为 (a b) ,高为 (a b) ,则 平行四边形的面积为 (a b)(a b) ,又一次验证:
a2 b2 (a b)(a b)
a+b a-b ②
图6
从形到数:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC (余下部分不再使用); 第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意 取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分; 第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合, 将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三 角形纸片EBC面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠) 则拼成的这个四边形纸片的周长的最小值为 _________ cm,最大值为 _________ cm.

浙教版数学课本七年级下册

浙教版数学课本七年级下册

浙教版数学课本七年级下册
第1章平行线
1.1平行线
1.2同位角、内错角、同旁内角
1.3平行线的判定
1.4平行线的性质
1.5图形的平移
第2章二元一次方程
2.1 二元一次方程
2.2 二元一次方程组
2.3 解二元一次方程组
2.4 二元一次方程组的应用
2.5 三元一次方程组及其解法(选学)
第3章整式的乘除
3.1 同底数幂的乘法
3.2 单项式的乘法
3.3 多项式的乘法
3.4 乘法公式
3.5 整式的化简
3.6 同底数幂的除法
3.7 整式的除法
第4章因式分解
4.1 因式分解
4.2 提取公因式
4.3 用乘法公式分解因式
第5章分式
5.1 分式
5.2分式的基本性质
5.3 分式的乘除
5.4 分式的加减
5.5 分式方程
第6章数据与统计图表
6.1数据的收集与整理
6.2条形统计图和折线统计图
6.3扇形统计图
6.4频数与频率
6.5频数直方图。

2019年春七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式课件浙教版

2019年春七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式课件浙教版

4.3 用乘法公式分解因式
勤反思
小结
完 全 平 方 公 式
特征
运用完全平方公式分解因式
运用完全平方公式简化运算
4.3 用乘法公式分解因式
反思
判断下面分解因式的过程是否正确,若不正确,请改正.
a3b-2a2b+ab=ab(a2-2a+1).
解:不正确.改正:a3b-2a2b+ab=ab(a2-2a+1)=ab(a-1)2.
4.3 用乘法公式分解因式
筑方法
类型一 用完全平方公式分解因式
例1 教材例3变式题用完全平方公式进行因式分解:
(1)9m2+24mn+16n2;(2)(x2-4x+4)-4(x-2)+4.
解: (1)9m2+24mn+16n2=(3m+4n)2.
(2)(x2-4x+4)-4(x-2)+4=(x-2)2-4(x-2)+4=(x-2-2)2=(x-4)2.
解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2. (2)16a4-8a2+1=(4a2)2-2×4a2×1+12=(4a2-1)2=(2a+1)2(2a-1)2.
4.3 用乘法公式分解因式
【归纳总结】因式分解的一般步骤 (1)观察多项式是否存在公因式; (2)若提取公因式后的式子是两项或三项,则考虑是否符合平 方差公式或完全平方公式的特点; (3)检查每个因式是否分解彻底.
第4章
4.3
分解因式
用乘法公式分解因式
第4章 因式分解
第2课时
用完全平方公式 分解因式
学知识 筑方法
勤反思
4.3 用乘法公式分解因式
学知识
知识2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
平方和 ,加上(或者减去)这两数的积的2倍,等于这两数 即两数的________

浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)

浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)

2.
2
当 x= 156,y= 144 时,
原式=
1 2×(156+ 144)
2 =45000.
[ 点评 ]
本题应先把
x2 的系数
1 2提出来,使其他各项的系数均为整数.
并且分解因式要分解到每个因
7
16.解:- a4b2+ 4a3b3- 4a2 b4=- a2b2(a 2- 4ab+4b2) =- a2b2(a - 2b) 2.
4.3 用乘法公式分解因式
第 2 课时 用完全平方公式分解因式
知识点 1 完全平方公式分解因式 由完全平方公式可得: a2+ 2ab+b2= (a + b) 2, a2- 2ab+ b2=(a - b) 2. 即两数的平方和,加上 ( 或者减去 ) 这两数的积的 2 倍,等于这两数和 ( 或者差 ) 的平方. 1.把下列各式分解因式: (1)a 2- 8a+ 16;
分解因式: x 4+4.
4
解: x + 4
=x 4+4x 2+ 4- 4x2
=(x 2+ 2) 2- 4x2
=(x 2+ 2x+ 2)(x 2- 2x+ 2) .
以上解法中,在 x 4+ 4 的中间加上一项,使得三项组成一个完全平方式,为了使原式的值保持不变,必须减
去同样的一项.按照这个思路,试把多项式
2
=(x - y- 5) . (4)(x 2+ 4) 2- 16x2 =(x 2+ 4+ 4x)(x 2+ 4- 4x) =(x + 2) 2(x -2) 2. (5) 原式= (x 2-2x+ 1) 2 =[(x - 1) 2] 2 =(x - 1) 4. 14.解: (1)96 2+96×8+ 16 =962+2×96×4+ 42 =(96 + 4) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 乘法公式分解因式(1)
教学目标:
1、会用平方差公式分解因式。

2、了解因式分解的思考步骤。

教学重难点:
教学重点:用平方差公式分解因式是本节教学的重点。

教学难点:例1第(4)题和本节的“合作学习”的因式分解和化简过程较为复杂,是本节教学的难点。

教学过程:
一、题引入:
节头图:把一张如图甲形状的纸剪拼成图乙形状的长方形,作为一幅精美剪纸的衬底,你认为应该怎么剪?你能给出数学解释吗?
通过今天的学习,我们将解决这个问题。

(板书课题)
二、新课
1、上一章我们已学过平方差公式(a +b )(a -b )=a 2-b 2,今天我们将换一个角度来认识这个公式的应用。

由此可得:(板书)a 2-b 2=(a +b )(a -b )
这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。

我们运用这个公式可以把平方差形式的多项式进行分解因式。

2、做一做:(学生口答完成)
下列各式能用平方差公式a 2-b 2=(a +b )(a -b )分解因式吗?a ,b 分别表示什么?把它们分解因式。

(1)x 2―1; (2)m 2―9; (3)x 2―4y 2
由此可见,运用平方差公式分解因式的关键是把要分解的多项式看成两个数的平方差。

公式中的字母可以是一个数、一个字母、也可以是一个式,所以在运用平方差公式分解因式前,首先能够找出字母所表示的数或式,尤其当项的系数是分数或小数时,给我们在判别上带来一定的困难,为此我们先来完、下面填空练习:
3、填空:
9
1x 2=( )2 499x 2-0.01y 2=( )2-( )2 4(x -y )2-9(x +y )2=[ ]2-[ ]2
-252+0.25x 2=( )2-( )2
4、例题讲解:
例1 把下列各式分解因式:
(1)16a 2-1 (2)-m 2n 2+4l 2 (3) 25
9x 2-161y 4 (4) (x +z )2-(y +z )2 例题小结:
能用平方差公式分解因式的一般步骤:①表示成哪个数的平方差的形式;②运用平方差公式分解因式。

借助这个方法,我们也可以较轻松地解决节头图所提出的问题了:甲图形状的纸面积为(a 2-b 2),根据a 2-b 2=(a +b )(a -b )可知乙图可看作长为(a +b ),宽为(a -b )的长方形,从而得到问题的解决。

当然在分解因式的过程中,有的时候需要对某些多项式能否运用平方差公式分解作出判断。

例2 判别下列各多项式能否用平方差公式分解因式,为什么?
―4x 2―y 2, 4x 2+(―y )2, (―4x )2―y 2
5、提出问题:对于多项式4x 3y -9xy 3能否直接用平方差公式分解因式?
合作学习:怎样把多项式4x 3y -9xy 3分解因式?
可按下述步骤思考:
(1)能否提取公因式?
(2)提取公因式后,多项式还能继续分解因式吗?
让学生通过分析、尝试、交流等形式归纳形成解决问题的策略、方法和步骤。

三、课内练习:书本157页练习(有针对性地选择学生板演,并由学生完成评价)
四、课堂小结:
1、今天学习了把乘法公式中的平方差公式逆向使用,得到的平方差公式进行的因式分解。

数学公式的互逆运用目的都是为了数学问题的解决。

2、运用平方差公式分解因式的关键是把要分解的多项式看成两个数平方差的形式。

当要分解的多项式是两个多项式的平方差时,分解成的两个因式一般要进行去括号等化简,如有同类项,要进行合并。

3、在综合运用多种方法分解因式时,多项式中有公因式的先提取公因式,后再用平方差公式分解因式。

五、作业:
4.3乘法公式分解因式(2)
教学目标:
1、会用完全平方公式分解因式。

2、会综合运用提取公因式法、公式法分解因式。

教学重难点:教学重点:用完全平方公式分解因式是本节教学的重点.
教学难点:例3分解和化简过程比较复杂,是本节教学的难点。

教学过程:
一、引入:
通过前两节课的学习,我们已掌握了运用“提取公因式法分解因式”和“运用平方差公式分解因式”,尤其是“平方差公式分解因式”是借助于多项式乘法公式中的平方差公式的逆向使用来实现多项式的因式分解。

在多项式乘法中我们还学习了两个完全平方公式:
(a+b)2=a2+2ab+b2 , (a-b)2=a2-2ab+b2,
今天我们将借助于这两个完全平方公式的逆向使用来进行分解因式。

(板书课题)
二、新课:
1、板书:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
这就是说,两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方。

运用完全平方公式分解因式的关键是把要分解的多项式看成两个数的和(或者差)的完全平方(仿书本“例如”举例说明)
2、完全平方式:a2+2ab+b2,a2-2ab+b2。

对一个多项式能否直接用完全平方公式,首先应判断其是否完全平方式。

例1判断下列各式是否完全平方式:
1
(1)4x3-4x+1(2)4x2-2x+1(3)4x2-4x+1(4)x2-x+
4
(5) 92x +1-3
2x
具体判别时可按如下的程序操作:
(1)先看能否把其中的某两个数的平方和的形式。

(2)如果能把其中的某两项写成两个数的平方和的形式,那么就要乍剩下的一项能否写成加上或减去同样两数乘积的两倍的形式。

例如:4x 3-4x +1中的任何两项都不能写成两个整式的平方和的形式,因此不能用完全平方公式来分解因式。

4x 2-2x +1中的4x 2+1虽然可以看成2x 与1的平方和,但是剩下的一项-2x 并不是-2x 与1乘积的两倍。

因此也不能用完全平方公式来分解因式。

4x 2-4x +1中的4x 2+1可以看成2x 与1的平方和,并且剩下的一项-4x 恰好是-2x 与1乘积的两倍,所以可以用完全平方公式来分解因式,分解的结果应是2x 与1的差的平方。

92x +1-3
2x ,虽然外观与a 2-2ab +b 2不一致,但它是完全平方式。

学习练习:书本159页“做一做”
(通过这样正、反两方面的对照,使学生正确判别能否用完全平方公式分解因式,以及分解的结果是什么样的两数和(或差)的平方。


3、例2 把下列各式分解因式:
(1)4a 2+12ab +9b 2; (2) ―x 2+4xy ―4y 2 (3) 3ax 2+6axy +3ay 2
范例讲解应注意以下几点:
(1)当两个平方项前面的符号为负时,应先提取“-”号,如―x 2+4xy ―4y 2=―(x 2―4xy +4y 2)
(2)第(3)由学生思考后,强调“多项式中有公因式的先提取公因式”
例3、分解因式:(2x +y )2-(2x +y )+9
本例分析要突出换元的思想,也就是把(2x +y )看作一个整体,教学中应当使学生理解换元的含义,体验换元的作用。

三、练习:书本160页“课内练习1、2”
四、小结:
1、通过这两节课的学习,我们熟悉了运用平方差公式分解因式和运用完全平方公式分解因式。

一般地,利用公式a 2-b 2=(a +b )(a -b ),或a 2±2ab +b 2=(a ±b )2把一个多项式分解因式的方法,叫做公式法。

公式中的a ,b 可以是一个数,也可以是一个整式。

2、运用公式法分解因式的关键是判断能用哪个公式,然后针对公式进行分解。

3、对综合运用多种方法分解因式时,应先考虑有公因式的先提取公因式,后运用公式法分解因式。

4、分解后的各因式,如果可以去括号、合并同类项等化简,则要化简。

五、作业:。

相关文档
最新文档